Submission: Only original papers written in English are considered and should be sent to:

Prof. Dr. K. Messmer
Institute for Surgical Research
University of Munich
Marchioninistrasse 15
D-W-8000 München 71 (FRG)

Manuscripts should be submitted in triplicate (with three sets of illustrations of which one is an original), typed and double-spaced on one side of the paper, with a wide margin. Authors are requested to keep their manuscripts as succinct as possible.

Conditions: All manuscripts are subject to editorial review. Manuscripts are received with the explicit understanding that they are not under simultaneous consideration by any other publication. Submission of an article for publication implies the transfer of the copyright from the author to the publisher upon acceptance. Accepted manuscripts become the permanent property of 'European Surgical Research' and may not be reproduced by any means, in whole or in part, without the written consent of the publisher. It is the author's responsibility to obtain permission to reproduce illustrations, tables, etc. from other publications.

Arrangement

Title page: The first page of each paper should indicate the title (main title underlined), the authors' names, and the institute where the work was conducted. A short title for use as running head as well as the full address of the author to whom correspondence should be sent are also required.

Full address: The exact postal address complete with postal code of the senior author must be given at the bottom of the page. Please also supply Phone and Fax numbers.

Key words: For indexing purposes, a list of 3–10 key words in English is essential.

Abstract: Each paper needs an abstract of up to 10 lines.

Small type: Paragraphs which can or must be set in smaller type (case histories, test methods, etc.) should be indicated with a 'p' (petit) in the margin on the left-hand side.

Footnotes: Avoid footnotes. When essential, they are numbered consecutively and typed at the foot of the appropriate page.

Tables and illustrations: Tables and illustrations (both numbered in Arabic numerals) should be prepared on separate sheets. Tables require a heading and figures a legend, also prepared on a separate sheet. For the reproduction of illustrations, only good drawings and original photographs can be accepted; negatives or photocopies cannot be used. When possible, group several illustrations on one block for reproduction (max. size 144 × 196 mm) or provide crop marks. On the back of each illustration, indicate its number, the author's name, and 'top'. Color illustrations are reproduced at the author's expense.

References: In the text identify references by Arabic numerals [in square brackets]. Material submitted for publication but not yet accepted should be noted as 'unpublished data' and not be included in the reference list. The list of references should include only those publications which are cited in the text. Do not alphabetize; number references in the order in which they are first mentioned in the text. The surnames of the authors followed by initials should be given. There should be no punctuation other than a comma to separate the authors. Cite all authors, 'et al' is not sufficient. Abbreviate journal names according to the Index Medicus system. (Also see International Committee of Medical Journal Editors: Uniform requirements for manuscripts submitted to biomedical journals. Br Med J 1988;296: 401–405.)

Examples

(a) Papers published in periodicals:

Further details: Authors may consult our leaflet 'Rules for the Preparation of Manuscripts', available on request from the Publisher. S. Karger AG P.O. Box, CH-4009 Basel (Switzerland).

Page charges: A charge of SFr. 115.–, US$ 75.00 per page will be levied for the first 4 printed pages of an article Any additional page will be charged to the author at SFr. 225.– / US$ 150.00 The allotted size of a paper is equal to approx. 10 manuscript pages (including tables, illustrations and references).

Galley proofs: Unless indicated otherwise, galley proofs are sent to the first-named author and should be returned with the least possible delay. Alterations made in galley proofs, other than the correction of printer's errors, are charged to the author. No page proofs are supplied.

Reprints: Order forms and a price list are sent with the galley proofs. Orders submitted after the issue is printed are subject to considerably higher prices. Allow five weeks from date of publication for delivery of reprints.
Publication data: 'European Surgical Research' is published 6 times annually. Volume 25 with 6 issues appears in 1993.

Subscription rates: Subscriptions run for a full calendar year. Prices are given per volume.

Personal subscription:
- Subscription + postage and handling
 - SFr. 317.10 + SFr. 16.80 Europe
 - SFr. 317.10 + SFr. 25.20 Overseas
 - US$ 211.40 + US$ 16.80

(Must be in the name of, billed to, and paid by an individual. Order must be marked 'personal subscription'.)

Institutional subscription:
- Subscription + postage and handling
 - SFr. 453.− + SFr. 24.− Europe
 - SFr. 453.− + SFr. 36.− Overseas
 - US$ 302.00 + US$ 24.00

Airmail postage: SFr. 24.− US$ 20.00.

Discount subscription prices: European Society for Surgical Research.

(Exclusive to subscribers of the paper edition.)

Subscription orders: Orders can be placed at agencies, bookstores, directly with the Publisher S. Karger AG, P.O. Box, CH – 4009 Basel (Switzerland) or with any of the following distributors:
- Deutschland: S. Karger GmbH Lorracher Strasse 16A, Postfach D-W–7800 Freiburg
- France: Librairie Luginbühl 36, bd de Latour-Maubourg F–75007 Paris
- Great Britain, Ireland: S. Karger Publishers 11 Ravenscroft Road Beckenham, Kent BR3 4TP USA: S. Karger Publishers, Inc. 26 West Avon Road, P.O. Box 529 Farmington, CT 06085
- Indien, Bangladesh, Sri Lanka: S. Karger India Subscription Agency B– 5/132 Safdarjung Enclave New Delhi–110029
- Japan: Katakura Libri, Inc. 36-9 Hongo 3-chome, Bunkyo-ku Tokyo 113

Change of address: Both old and new address should be sent to the subscription source.

Single issues and back volumes: Information can be obtained through the Publisher.

Bibliographic indices: This journal is regularly listed in bibliographic services, including 'Current Contents'.

Advertising: Correspondence and rate requests should be addressed to the Publisher.

Copying: This journal has been registered with the Copyright Clearance Center (CCC), as indicated by the code appearing on the first page of each article. For readers in the US, this code signals consent for copying of articles for personal or internal use, or for the personal or internal use of specific clients, provided that the stated fee is paid per copy directly to CCC, 21 Congress Street, Salem, MA 01970 (USA). A copy of the first page of the article must accompany payment. Consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. In these cases, specific written permission must be obtained from the copyright owner, S. Karger AG, P.O. Box, CH – 4009 Basel (Switzerland).

The Interdependence of Dermatosurgery and Dermatopathology

Dermatologic surgery and dermatologic pathology cannot be practised at a high level unless surgeons are knowledgable about pathology and pathologists are conversant with surgery. Despite this reality, dermatopathology is not a serious component of training programs in dermatologic and plastic surgery, and dermatopathologists during their training are not imbued with principles of surgery. This colloquium seeks to help rectify these deficiencies and to educate dermatologists, pathologists and surgeons about matters of this mutual interest and concern.

Symposia
- General Principles
- Melanocytic Nevi and Malignant Melanoma
- Tumor Conference

For further information, please contact:
The Secretariat
Congress Office
University of Siena
Via S. Vigilio, 6
I-53100 Siena
Tel. +39 577 298256
Fax +39 577 298377
Author Index

Numbers refer to Abstract-No.

<table>
<thead>
<tr>
<th>Author</th>
<th>Abstract-No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varnio, P.</td>
<td>153</td>
</tr>
<tr>
<td>Vasen, A.O.</td>
<td>29</td>
</tr>
<tr>
<td>Vbebe, W.</td>
<td>32</td>
</tr>
<tr>
<td>Vgrawal, D.K.</td>
<td>32</td>
</tr>
<tr>
<td>Vho, A.J.</td>
<td>19</td>
</tr>
<tr>
<td>Vkram, H.M.</td>
<td>73</td>
</tr>
<tr>
<td>Vl-Kutoubi, A.</td>
<td>172</td>
</tr>
<tr>
<td>Vla-Mononen, P.</td>
<td>137</td>
</tr>
<tr>
<td>Vlberty, A.</td>
<td>63</td>
</tr>
<tr>
<td>Vlbrecht, D.M.</td>
<td>39</td>
</tr>
<tr>
<td>Vlexandre, E.</td>
<td>74, 102</td>
</tr>
<tr>
<td>Vlhava, E.M.</td>
<td>58</td>
</tr>
<tr>
<td>Vlmaas, R.</td>
<td>170</td>
</tr>
<tr>
<td>Vithaus, U.</td>
<td>150</td>
</tr>
<tr>
<td>Vmemiya, H.</td>
<td>185</td>
</tr>
<tr>
<td>Vncona, E.</td>
<td>82, 147</td>
</tr>
<tr>
<td>Kndersson, Ö.H.</td>
<td>16, 135</td>
</tr>
<tr>
<td>^ndroulakis, J.</td>
<td>179</td>
</tr>
<tr>
<td>Vnselmino, M.</td>
<td>82</td>
</tr>
<tr>
<td>^nurow, M.</td>
<td>86, 94</td>
</tr>
<tr>
<td>Wmatsu, Y.</td>
<td>185</td>
</tr>
<tr>
<td>^ouad, K.</td>
<td>87</td>
</tr>
<tr>
<td>Aflt, G.</td>
<td>47</td>
</tr>
<tr>
<td>Arnala, I.</td>
<td>58</td>
</tr>
<tr>
<td>Ar, H.T.</td>
<td>132</td>
</tr>
<tr>
<td>Arthur, M.</td>
<td>55</td>
</tr>
<tr>
<td>Asanuma, Y.</td>
<td>69</td>
</tr>
<tr>
<td>Ask-Seljavaara, S.</td>
<td>133</td>
</tr>
<tr>
<td>Auer, G.U.</td>
<td>160</td>
</tr>
<tr>
<td>Aufray, S.</td>
<td>87</td>
</tr>
<tr>
<td>Auwerda, J.J.A.</td>
<td>77</td>
</tr>
<tr>
<td>Awane, M.</td>
<td>48</td>
</tr>
<tr>
<td>Azimzadeh, A.</td>
<td>107</td>
</tr>
<tr>
<td>Aznai, J.</td>
<td>101</td>
</tr>
<tr>
<td>Azoulay, D.</td>
<td>54</td>
</tr>
<tr>
<td>Baaako, B.</td>
<td>55</td>
</tr>
<tr>
<td>Baccarini, E.</td>
<td>93</td>
</tr>
<tr>
<td>Bacchini, P.</td>
<td>128</td>
</tr>
<tr>
<td>Bagolin, F.</td>
<td>82</td>
</tr>
<tr>
<td>Baiabaud, C.</td>
<td>161</td>
</tr>
<tr>
<td>Baldini, F.</td>
<td>91</td>
</tr>
<tr>
<td>Bannenberg, J.J.G.</td>
<td>140</td>
</tr>
<tr>
<td>Barker, J.H.</td>
<td>44</td>
</tr>
<tr>
<td>Barrios, C.</td>
<td>17, 61, 159</td>
</tr>
<tr>
<td>Basso, N.</td>
<td>146</td>
</tr>
<tr>
<td>Baumel, H.</td>
<td>2</td>
</tr>
<tr>
<td>Becker, H.</td>
<td>142</td>
</tr>
<tr>
<td>Beese, G.</td>
<td>80</td>
</tr>
<tr>
<td>Beger, C.</td>
<td>1</td>
</tr>
<tr>
<td>Beger, H.G.</td>
<td>22, 24, 97, 104, 189, 191, 192, 193</td>
</tr>
<tr>
<td>Bellón, J.M.</td>
<td>37, 127</td>
</tr>
<tr>
<td>Berger, D.</td>
<td>24, 192</td>
</tr>
<tr>
<td>Bergmann, U.</td>
<td>139</td>
</tr>
<tr>
<td>Bernard, S.J.</td>
<td>28, 119</td>
</tr>
<tr>
<td>Berti, A.</td>
<td>91</td>
</tr>
<tr>
<td>Bertocchi, G.</td>
<td>173</td>
</tr>
<tr>
<td>Bertrán, A.</td>
<td>30</td>
</tr>
<tr>
<td>Bezzi, M.</td>
<td>146</td>
</tr>
<tr>
<td>Biagini, G.</td>
<td>15</td>
</tr>
<tr>
<td>Bielecki, K.</td>
<td>13</td>
</tr>
<tr>
<td>Bijma, A.M.</td>
<td>89</td>
</tr>
<tr>
<td>Bilbao, J.</td>
<td>181</td>
</tr>
<tr>
<td>Bilotta, T.W.</td>
<td>173</td>
</tr>
<tr>
<td>Bioulac-Sage, P.</td>
<td>161</td>
</tr>
<tr>
<td>Birch, R.</td>
<td>172</td>
</tr>
<tr>
<td>Birk, D.</td>
<td>193</td>
</tr>
<tr>
<td>Bismuth, H.</td>
<td>54</td>
</tr>
<tr>
<td>Bloch, P.</td>
<td>143</td>
</tr>
<tr>
<td>Blümel, G.</td>
<td>59, 144, 165, 171</td>
</tr>
<tr>
<td>Boccù, C.</td>
<td>82</td>
</tr>
<tr>
<td>Boeckl, O.</td>
<td>148</td>
</tr>
<tr>
<td>Boehm, J.</td>
<td>163</td>
</tr>
<tr>
<td>Boers, W.</td>
<td>72</td>
</tr>
<tr>
<td>Bohle, R.M.</td>
<td>154</td>
</tr>
<tr>
<td>Boidin, P.</td>
<td>74</td>
</tr>
<tr>
<td>Bolder, U.</td>
<td>47, 114, 121</td>
</tr>
<tr>
<td>Bonardet, A.</td>
<td>2</td>
</tr>
<tr>
<td>Bonoldi, A.P.</td>
<td>88</td>
</tr>
<tr>
<td>Borel Rinkes, I.H.M.</td>
<td>7</td>
</tr>
<tr>
<td>Böstman, O.</td>
<td>196, 198</td>
</tr>
<tr>
<td>Botzlar, A.</td>
<td>26, 96</td>
</tr>
<tr>
<td>Boudjema, K.</td>
<td>74</td>
</tr>
<tr>
<td>Boudjema, K.</td>
<td>71, 102, 105, 107</td>
</tr>
<tr>
<td>Brady, K.</td>
<td>176</td>
</tr>
<tr>
<td>Bruch, H.-P.</td>
<td>25</td>
</tr>
<tr>
<td>Brückner, U.B.</td>
<td>46, 99</td>
</tr>
<tr>
<td>Buchholz, J.</td>
<td>141</td>
</tr>
<tr>
<td>Büchner, M.</td>
<td>189, 191, 193</td>
</tr>
<tr>
<td>Buess, G.</td>
<td>142</td>
</tr>
<tr>
<td>Buhler, L.</td>
<td>186</td>
</tr>
<tr>
<td>Buhr, H.</td>
<td>194</td>
</tr>
<tr>
<td>Bujan, J.</td>
<td>37, 127</td>
</tr>
<tr>
<td>Büll, U.</td>
<td>190</td>
</tr>
<tr>
<td>Buttenschoen, K.</td>
<td>192</td>
</tr>
<tr>
<td>Byrne, J.</td>
<td>158</td>
</tr>
<tr>
<td>Calahoras, L.</td>
<td>90</td>
</tr>
<tr>
<td>Calne, R.Y.</td>
<td>113</td>
</tr>
<tr>
<td>Calvo, M.A.</td>
<td>70, 101, 108, 109</td>
</tr>
<tr>
<td>Campeau, J.D.</td>
<td>126</td>
</tr>
<tr>
<td>Cañadell, J.</td>
<td>65</td>
</tr>
<tr>
<td>Carlsen, H.</td>
<td>29</td>
</tr>
<tr>
<td>Castaing, D.</td>
<td>54</td>
</tr>
<tr>
<td>Castresana, J.S.</td>
<td>159</td>
</tr>
<tr>
<td>Cavallari, N.</td>
<td>32, 177</td>
</tr>
<tr>
<td>Cejalvo, D.</td>
<td>70, 84, 101, 108, 109</td>
</tr>
<tr>
<td>Cella, G.D.</td>
<td>128</td>
</tr>
<tr>
<td>Chamuleau, R.A.P.M.</td>
<td>72</td>
</tr>
<tr>
<td>Chantrel, F.</td>
<td>107</td>
</tr>
<tr>
<td>Chao, E.Y.S.</td>
<td>62</td>
</tr>
<tr>
<td>Christopoulos, D.</td>
<td>90</td>
</tr>
<tr>
<td>Cinqalibre, J.</td>
<td>74, 102, 105</td>
</tr>
<tr>
<td>Contreras, L.</td>
<td>127</td>
</tr>
<tr>
<td>Conty, J.L.</td>
<td>181</td>
</tr>
<tr>
<td>Cook, S.D.</td>
<td>18</td>
</tr>
<tr>
<td>Copetti, E.</td>
<td>147</td>
</tr>
<tr>
<td>Corbascio, M.</td>
<td>175</td>
</tr>
<tr>
<td>Costantini, M.</td>
<td>82</td>
</tr>
<tr>
<td>Cross, M.R.</td>
<td>28, 119</td>
</tr>
<tr>
<td>Cuadrado, M.A.</td>
<td>168</td>
</tr>
<tr>
<td>D'Addato, M.</td>
<td>175</td>
</tr>
<tr>
<td>Deacon, D.</td>
<td>28, 119</td>
</tr>
<tr>
<td>Descomps, B.</td>
<td>2</td>
</tr>
<tr>
<td>De Grote, D.</td>
<td>11</td>
</tr>
<tr>
<td>de Lucas, F.G.</td>
<td>168</td>
</tr>
<tr>
<td>de Pablos, J.</td>
<td>17</td>
</tr>
<tr>
<td>de Pedro, J.A.</td>
<td>8, 129, 168</td>
</tr>
<tr>
<td>Deng, S.</td>
<td>186</td>
</tr>
<tr>
<td>Detroz, B.</td>
<td>157</td>
</tr>
<tr>
<td>Diamond, T.</td>
<td>54</td>
</tr>
</tbody>
</table>
Dietl, K.-H. 35
Dijkema, A.R.A. 200
Diongi, P. 88
Dippe, B. 112, 164
Dittrich, R. 79
Di Zerega, A. 139
Domergue, J. 2
Dömini, M. 93
Dougenis, D. 149
Duncker, H.P. 36, 178
Dupreyrat, A. 87
Dwenger, A. 115, 116
Edwards, J.D. 32, 177
Egger, E.L. 62
Ehrenberg, A. 17
Eisele, S. 189, 191, 193
Ekkernkamp, A. 134
Elbers, M. 121
Eleftheriadis, E. 145
Emparan, C. 181
Encke, A. 112
Engels, F. 164
Eriksson, E. 123
Eriksson, E.T. 160
Esposito, C. 15
Esterbauer, H. 100
Fabre, J.M. 2
Faggioni, G.L. 175
Fantini, A. 146
Fass, J. 190
Feldhaus, R.J. 177
Fernández-Cruz, L. 30
Fiddian-Green, R.G. 42
Fietze, E. 76
Filos, K. 179
Finco, C. 147
Finn, M. 15, 128, 173, 175
Fink, U. 163
Fiocca, F. 146
Fligou, F. 179
Fossati, G. 162
Fossett, G.S. 88, 162
Franchimont, P. 11
Frank, J. 44
Freeman, A. 28, 119
Fuchs, K.-H. 80
Fujino, Y. 5, 152, 184
Fukui, K. 103
Fukumoto, T. 53, 67
Fukuo, T. 110
Furio, V. 168
Galdikas, J. 150
Galmarini, D. 92
Gansauge, F. 104
Gansauge, S. 104
García-Alonso, I. 181
García-Barcina, M. 161
Gargiulo, M. 175
Gastinger, I. 141
Gatti, S. 92
Gatzen, S. 45
Geck, P. 112
Genova, A. 146
Gerling, W. 25
Gerngroß, H. 59, 171
Girardino, R. 15, 128, 173, 175
Giavresi, G. 173
Gil-Albaro, J. 65
Gil-Albaro, O. 17, 65
Gimeno, L.O. 109
Gien, H.F. 158
Gleich, C. 35
Gnu, S. 173
Gomar, F. 61
González-Arjenté, X. 30
Gottstrup, F. 41, 130
Gotz, L. 120
Grandi, M. 93
Grimm, H. 154, 155
Grotz, M. 115, 116
Gründeman, P.F. 43, 140
Guagliano, A. 88, 91, 162
Guillén, A. 70, 108
Gun, J. 107
Haapiainen, R. 195
Haarman, H.J.Th.M. 200
Hahn, M. 154
Halttunen, J. 187, 188
Hámamoto, I. 73
Hämäinen, P. 153
Hancock, W. 3
Happonen, R.-P. 16, 19, 131, 135
Harjula, A. 153
Harris, N. 172
Hartmann, St. 139
Hasenjak, J.M. 34
Haukipojo, K. 4
Havikko, T. 64
Häyry, P. 187
Heaton, D. 158
Hecht, R. 26, 96
Heikkilä, J.T. 19
Heinerman, M. 148
Heino, J. 122
Heitland, W. 144
Heldin, C.-H. 125
Helwig, U. 60
Herfarth, Ch. 194
Hernando, A. 37, 127
Hette, K. 120
Hiki, N. 192
Hitunen, A. 6
Hiraoka, K. 5, 152
Hirvensalo, E. 198, 201
Hisanaga, M. 56
Höckerstedt, K. 40, 75, 117
Hofer, S.O.P. 43
Hoffman, R.A. 9
Högström, H. 83
Holmdahl, L. 123
Honda, L. 123
Hondavilla, N.G. 37
Hoyneck van Papendrecht, A.A.G.M. 118
Huebner, K. 164
Hukkanen, M. 170
Hulet, C. 87
Hunt, D. 172
Hunter III, W.J. 32, 177
Ichikawa, Y. 73
Ilberg, L. 4
Ikonen, T. 78, 153
Imbs, P. 74, 102
Imhof, H.-G. 12
Ino, K. 95
Isselhard, W. 98
Iwasaki, T. 53, 67
Iwata, H. 185
Izbicki, J.R. 23, 156
Izuishi, K. 73
Jacquet, N. 157
Jaeck, D. 74, 102, 105
Jahn, H. 41
Jem, V. 88
Jilg, D. 79
Joels, C. 44
Johann, S. 165
Johannes, E.J. 89, 166
Johnson, J. 172
Jonsson, T. 83
Viljanto, J. 124
Virolainen, P. 132
Virtanen, J. 40
Virtanen, P. 174
Vischjager, M. 180
Vuorio, E. 6, 132
Waclawiczek, H.W. 148
Wagner, K. 25
Walpoth, B. 150
Waschke, K. 39
Washida, M. 95
Washio, M. 103, 126
Wasowska, B. 3
Wenisch, H.J.C. 112
Wilhelm, L. 79
Winnock, M. 161
Wippermann, B.W. 20
Wolf, P. 105, 107
Wolff, H. 76
Yamada, H. 51
Yamaguchi, M. 31, 51
Yamamoto, Y. 48
Yamaoka, Y. 51, 68, 95
Yanabu, N. 52, 68
Yarmush, M.L. 7
Yli-Urpo, A. 16, 131, 135
Yoshimura, A. 185
Younes, M. 189, 191
Zaninotto, G. 82, 147
Zati, A. 173
Zavala, E. 30
Zeichen, J. 115
Zeillemaker, A.M. 118
Ziegler-Heitbrock, H.W.L. 23
Ziolkowska, A. 13
Zippel, R. 139
Zonta, A. 88, 162
Zucchini, C. 15
Zwipp, H. 20
M. Weltea
B. Zwisslera
H. Habazettlb
K. Messmerb

Institute of Anaesthesiology and Institute for Surgical Research, University of Munich, FRG

Abstract

Intravenous prostacyclin (PGI\textsubscript{2}) is a potent pulmonary vasodilator in pulmonary hypertension. However, dose-dependent systemic vasodilation, an increase in intrapulmonary shunt and hypoxemia limit its clinical application. Recently, inhaled nitric oxide (NO) has been reported to elicit selective pulmonary vasodilation, but its clinical use is restricted by its potential toxicity; furthermore, the feasibility of NO application in clinical practice seems difficult. Therefore, we investigated the effects of PGI\textsubscript{2} aerosol on pulmonary and systemic circulation and compared the hemodynamic effects to those of inhaled NO. In 6 dogs, ventilation with a hypoxic gas mixture (F\textsubscript{1}O\textsubscript{2} 0.09–0.11) increased pulmonary vascular resistance (PVR) by 196\% (HPV). Aerosolization of a PGI\textsubscript{2} solution at a concentration of 430 ng/ml reduced hypoxia-induced increase of pulmonary artery pressure by 48\% and PVR by 52\% within 6–10 min without systemic vasodilation. The administered dose of PGI\textsubscript{2} was 0.87 ± 0.26 ng/kg/min. In 2 dogs, doubling the PGI\textsubscript{2} concentration (860 ng/ml) did not enhance the vasodilatory effect. After termination of PGI\textsubscript{2} inhalation, HPV was restored within 10–15 min. Inhaled NO (50 ppm) decreased the HPV-induced increase in PAP by 76\% and in PVR by 73\% within 5–10 min. Clinically relevant systemic vasodilation was not observed. It is concluded that inhalation of aerosolized PGI\textsubscript{2} leads to selective pulmonary vasodilation in hypoxia-induced pulmonary hypertension. Aerosolized PGI\textsubscript{2} at a concentration of 430 ng/ml was less potent than NO (50 ppm). However, due to the lack of known toxicity and its uncomplicated mode of application, inhaled PGI\textsubscript{2} may be one alternative to inhaled NO in the treatment of acute pulmonary hypertension.
Prostacyclin (PGI₂), an arachidonic acid metabolite, is a potent pulmonary vasodilator [1]. It has been successfully given intravenously to decrease pulmonary artery pressure (PAP) in primary pulmonary hypertension [2], in patients with ARDS [3], and in various experimental models of acute pulmonary hypertension [4-6]. The vasodilatory effect of PGI₂ is, however, not restricted to the pulmonary circulation. When infused intravenously, PGI₂ leads to dose-dependent systemic vasodilation and hypotension. Furthermore, intrapulmonary shunt and venous admixture increase dose-dependently; consequently, arterial oxygen content decreases and the net effect of intravenous PGI₂ on oxygen delivery depends on the ability to increase cardiac output. For these reasons, the clinical use of intravenous PGI₂ to treat pulmonary hypertension is limited [1-3, 7].

Recently, inhaled gaseous nitric oxide (NO), considered to be identical with endothelial derived relaxing factor [8], has been described to act as a selective pulmonary vasodilator in pulmonary hypertension [9, 10]. In awake and spontaneously breathing lambs, inhaled NO reduced acute pulmonary hypertension induced by hypoxia or by intravenous infusion of the stable endoperoxide analogue U-46619 without being associated with systemic vasodilation. Experimental studies have demonstrated that inhaled NO improves the ventilation/perfusion mismatch in hypoxia-induced pulmonary hypertension and is efficient in reversing pulmonary hypertension due to sepsis [11, 12].

In mechanically ventilated sheep inhalation of NO (20 ppm) had no effect on pulmonary gas exchange but decreased blood flow to unventilated and poorly ventilated areas of the lung (ventilation/perfusion ratio <0.1) and consequently reduced ventilation/perfusion mismatch [11]. In addition to its effects on pulmonary circulation and arterial oxygenation inhaled NO exerts dilation of the bronchial smooth muscles which might improve pulmonary ventilation/perfusion ratio [13]. Inhaled NO had no effect on pulmonary hemodynamics or gas exchange when applied during normoxia (FiO₂ 0.21) [11].

In experimental models of sepsis using infusion of endotoxin [14] or group B streptococci [12] inhalation of NO diminished pulmonary vasoconstriction. In the latter study in ventilated piglets inhalation of 150 ppm of NO reversed pulmonary hypertension during the early (<1 h) and late phase of sepsis (2 to 6 h) whereas ventilation/perfusion mismatch was not counteracted in the late phase of sepsis [12]. More recently inhaled NO was therapeutically applied in man. In a restricted number of patients, inhaled NO proved efficient in lowering PAP; however, in contrast to intravenous PGI₂, inhaled NO caused no systemic vasodilation [7, 15, 16].

In the most recent human studies low doses of inhaled nitric oxide (20 to 80 ppm) decreased pulmonary artery pressure in hypoxia-induced pulmonary hypertension in volunteers [17], in cardiac patients before and after cardiopulmonary bypass [18] and in children with pulmonary hypertension due to congenital heart disease [19].

In adults with respiratory distress syndrome (ARDS) inhalation of NO (5 to 36 ppm) reduced pulmonary artery pressure and intrapulmonary shunting and improved arterial oxygenation for up to 53 days without tachyphylaxis and noticeable side effects. Though in the same study intravenous prostacyclin (4 ng/kg/min) lowered pulmonary artery pressure as well, systemic arterial pressure fell and intrapulmonary shunt increased [20].

Finally, NO (10 ppm) inhaled for 30 minutes by an infant after cardiac surgery improved gas exchange permanently while pulmonary hypertension was resolved permanently [21]. Furthermore, enhanced resolu-
tion of pneumonic infiltrates was observed upon NO inhalation [22].

Despite the convincing evidence that inhaled NO leads to selective pulmonary vasodilation and hence may be useful to treat pulmonary hypertension, it should be noted that NO itself is a radical with potential cytotoxic effects. Although severe acute lung injury and methemoglobinemia are observed after inhalation of gas mixtures containing high concentrations of NO, there is little evidence for pulmonary toxicity at low concentrations (<100 ppm) of NO inhaled for short periods of time in different species [10]. However, little is known about the toxicity of long-term breathing of NO at low concentrations and the effect of NO on lungs with pre-existing acute or chronic disease. As long as the absence of long-term toxicity of NO has not been demonstrated, its routine clinical application for selective pulmonary vasodilation is restricted [10]. Furthermore, for the application of gaseous NO, a specially designed ventilator and an expensive chemiluminescence analyzer for continuous monitoring of the inspiratory NO and NO\textsubscript{x} concentrations are mandatory, hence it is questionable whether NO inhalation will become clinical routine.

In view of these limitations of both inhaled NO and intravenous PGI\textsubscript{2}, the present study was designed to investigate the effect of PGI\textsubscript{2} inhaled as an aerosol on hypoxic pulmonary vasoconstriction in dogs. We hypothesized that inhaled PGI\textsubscript{2} may lead to selective pulmonary vasodilation via direct relaxation of pulmonary vascular smooth muscle cells. Vasodilatory effects on both the pulmonary and the systemic circulation were assessed. To evaluate the relative potency of inhaled PGI\textsubscript{2} at the concentration used, its vasodilatory effect was compared to that of inhaled NO at a concentration (50 ppm) known to cause a nearly maximal vasodilatory effect in HPV-induced pulmonary hypertension [10]. We aimed to answer the question whether inhaled PGI\textsubscript{2} induces pulmonary vasodilation without causing systemic hypotension.

Methods

Animal Preparation

The studies were performed in 6 foxhounds of either sex (mean body weight 27.6 ± 1.9 kg). All animals received care in compliance with the 'Guide for the Care and Use of Laboratory Animals' [NIH Publ. No. 85-23, revised 1985]. The study was approved by the institutional animal care and use committee.

After premedication with propiomazine (1.5 mg/kg i.m., Combelen®, Bayer AG, Leverkusen, FRG), anesthesia was induced by intravenous injection of pentobarbital (20 mg/kg, Nembutal®, Ceva, Bad Segeberg, FRG), piritramide (0.75 mg/kg, Dipidolor®, Janssen, Neuss, FRG) and alcuronium (0.25 mg/kg, Alloferin®, Roche, Grenzach-Whylen, FRG), and maintained by continuous intravenous infusion of pentobarbital (5 mg·kg-1·h-1). After termination of the surgical preparation an additional infusion of piritramide (150 μg·kg-1·h-1) and alcuronium (75 μg·kg-1·h-1) was started. Fluid losses were replaced by intravenous infusion of Ringer's solution (5 ml·kg-1·h-1). A warming pad was used to keep core body temperature between 35.5 and 37 °C. The dogs were endotracheally intubated and mechanically ventilated at a rate of 12 cycles/min using a FiO\textsubscript{2} of 0.5 (Servo 900B, Siemens-Elema, Solna, Sweden). Tidal volume (V\textsubscript{T}) was adjusted to maintain an arterial PCO\textsubscript{2} of 35–40 mm Hg.

Fluid-filled catheters (PP270, Portex, Hythe, UK) were positioned in the descending aorta and superior caval vein via the left femoral artery and the right external jugular vein to measure mean arterial (MAP) and central venous pressure (CVP), respectively. A Swan-Ganz catheter (model 93A-431-7.5F G, Baxter Healthcare Corp., Santa Ana, Calif., USA) was inserted into the pulmonary artery via the right external jugular vein to measure mean PAP and cardiac output (CO). After median sternotomy and pericardiotomy prewarmed, precalibrated tip manometers (PC 370, Millar Instruments, Houston, Tex., USA) were inserted into the right ventricle (RV) via the right carotid artery. In four dogs an ultrasonic flow probe (Transonic Systems Inc., Ithaca, N.Y., USA) was placed around the pulmonary artery. At the end of the surgical preparation, the pericardium was closed with running suture to avoid constraint to the
myocardium. Thereafter, a chest tube was inserted, the thorax was closed air-tight, and the lungs were completely reinflated. Subsequently, the dogs were turned to the left lateral decubitus position.

Administration of NO

NO was obtained in 50-liter cylinders as a precise mixture of 200 ppm NO in nitrogen (Linde AG, Unterschleissheim, FRG). During inspiration the NO/N₂ mixture was introduced into the inspiratory gas using a T-tube connected to the endotracheal tube. A magnetic valve (Servo Nebulizer 945, Siemens, Erlangen, FRG) triggered by the electronic regulation system of the ventilator was used for insufflation of NO exclusively during inspiration. The inspiratory NO flow was varied using a precise pressure reduction valve (SP 750.0183.M, Kuhnke, Malente, FRG). The correct inspiratory NO concentration was produced by varying the NO admixture to the inspired gas mixture at constant tidal volumes (Tv). The FIO₂ was maintained constant during administration of the NO/N₂ mixture by increasing the inspiratory oxygen concentration proximal to the NO insufflation port. The inspired oxygen concentration (FIO₂) was continuously monitored distal to the NO insufflation port (Oxydig, Dräger AG, Lübeck, FRG). Expired gas was scavenged and discarded. Prior to the experiments the complete application system (ventilator, pressure reduction valve, electronic manometer) had been calibrated to achieve the desired inspiratory NO concentration at different Tv and oxygen concentrations using a chemoluminescence NO/NO₂ analyzer (Beckman, Model 951 A, Beckman Instruments, Munich, FRG). The inspiratory NO concentration at a given system setting varied no more than 3% during repeated calibration measurements.

To avoid oxidation of NO to NO₂, the critical contact time of NO and O₂ during inspiration [10] has been kept short by using a short inspiration time (1.65 s) and by introducing NO into the inspiratory gas mixture very close to the endotracheal tube (19 cm). The concentrations of NO₂ measured at the endotracheal tube during calibration were below 1 ppm.

Administration of PGI₂ Aerosol

For inhalation of PGI₂ as aerosol, a jet nebulizer (Servo Nebulizer 945, Siemens, FRG) was connected to a Siemens 900B ventilator. The nebulizer chamber (Intersurgical Ltd, Twickenham, UK) was located 16 cm from the endotracheal tube. The jet flow supplied to the nebulizer chamber during inspiration was kept constant in all experiments at a flow rate of 14 liters/min. This high flow rate was chosen because the fraction of particles with a diameter of < 2 μm, which are likely to settle in the alveolar region of the lung, increases with flow rate. Tv and total inspiratory flow rate were maintained constant during aerosolization by decreasing the inspiratory flow from the ventilator. Total Tv was monitored (CO₂ analyzer 930, Siemens-Elema).

PGI₂ was supplied as the sodium salt of epoprostenol (Flolan®, Wellcome, London, UK) dissolved in glycine buffer of pH 10.5 at a concentration of 10 μg/ml; the solution was prepared on the day of the experiment and stored on ice until use. Prior to inhalation, PGI₂ was further diluted with normal saline to a concentration of 430 ng/ml and a total volume of 10 ml of this solution was filled into the nebulizer chamber. The dosage of PGI₂ was based on pilot experiments in which this concentration has proven to be effective in lowering PAP. To assess the actual amount of PGI₂ nebulized, the total volume of the PGI₂ solution in the nebulizer chamber was measured prior to and immediately after inhalation (volume nebulized × concentration/duration of inhalation).

6-keto-Prostaglandin-F₁α (6-keto-PGF₁α), the stable metabolite of PGI₂, was measured by radioimmunoassay (antibody: Pastor Diagnostic, Marne-la-Coquette, France; ³H-PG’S: Amersham Buchler, Braunschweig, FRG) in unextracted arterial plasma before and after PGI₂ inhalation in 3 dogs.

To exclude that the vasodilatory effect of PGI₂ aerosol was mediated by uptake of PGI₂ into the blood, the effects of PGI₂ infused at a rate of 1 and 2 ng/kg/min were compared to those of inhaled PGI₂ in 2 dogs.

Measurements

Hemodynamics. All measurements were performed with the dogs in left lateral position. MAP, PAP, and CVP were recorded (Astromed MT 9500, Astro-Med, Inc., West Warwick, R.I., USA) using Statham P23Db transducers (Gould-Statham, Oxnard, Calif., USA) referred to the right atrium. ECG and ventilricular pressures (LVP, RVP) were sampled every 4 min, digitized in real-time (A/D converter C1000, Cosima Corp., Salem, Oreg., USA) and stored for evaluation using a PC/AT 386 computer system. Data were analyzed with interactive software ('Meduse', H. Zeintl, Neckargemünd, FRG). All parameters were evaluated at end-expiration using the average of three consecutive heart beats.

PGI₂ Aerosol versus NO in Pulmonary Hypertension
In the RV and LV, maximal (RVP\textsubscript{max}, LVP\textsubscript{max}) and end-diastolic pressures (RVEDP, LVEDP) were assessed. CO was obtained from triplicate thermodilution measurements at end-expiration (REF-1™, Ejec- tion Fraction/Cardiac Output Computer, Baxter Healthcare, Santa Ana, Calif., USA).

The following parameters were calculated:

\[CI = 10 \cdot CO \cdot BW^{-0.75} \]

(according to Holt et al. [23])

\[PVR = (PAP_{mea} - LVEDP) \cdot 79.9 \cdot CO^{-1} \]

\[SVR = (MAP_{mea} - RVEDP) \cdot 79.9 \cdot CO^{-1} \]

where CI = cardiac index, CO = cardiac output, BW = body weight, PVR = pulmonary vascular resistance, LVEDP = LV end-diastolic pressure, SVR = systemic vascular resistance, RVEDP = right ventricular end-diastolic pressure, HR = heart rate.

Lung Function. \(P_{O_2}, P_{CO_2} \) and pH (ABL 300, Radiometer, Copenhagen, Denmark), as well as arterial (\(S_O_2 \)) and mixed venous oxygen saturation and arterial methemoglobin fraction (CO-Oximeter 282, Instrumentation Laboratory Inc., Lexington, Mass., USA) were analyzed. End-tidal \(CO_2 \) concentration and \(T_c \) were monitored using a \(CO_2 \) analyzer (CO\(_2\) analyzer 930, Siemens-Elema), airway pressures (\(P_{peak}, P_{plut} \)) and total thoracic compliance (\(C_{tot} \)) were assessed (Lung Mechanics Calculator 940, Siemens-Elema).

Experimental Protocol

After termination of surgery the dogs were isovolu- mically hemodiluted with 6% dextran 60 (Makrodex®, 6%, Schiwa, Glandorf, FRG) to a hematocrit of 27–30% in order to achieve identical values of hematocrit and hemoglobin in all animals. The withdrawn blood was used to replace blood samples taken for laboratory analysis. Hematocrit and hemoglobin did not change significantly during the experiment.

Control measurements were performed 30 min after termination of surgery under stable hemodynamic conditions (control). Thereafter, hypoxia was induced by decreasing the Fi\(O_2 \) to 0.09–0.11 to achieve a Pa\(O_2 \) of near 40 mm Hg. The inspired Fi\(O_2 \) was monitored and Pa\(CO_2 \) was maintained constant by adjusting \(V_r \). Following a period of stable hemodynamics, baseline recordings were obtained during hypoxia (HPV). Subsequently, either NO at a concentration of 50 ppm or PG\(_I_2\) at a concentration of 430 ng/ml were administered in random order. Measurements were obtained after 10 min of NO or PG\(_I_2\) application, respectively (NO, PG\(_I_2\)). Subsequently, the administration of either NO or PG\(_I_2\) was terminated and a further measurement under hypoxic conditions was performed (post-NO, post-PG\(_I_2\)) 10–15 min thereafter.

Statistical Analysis

Data are reported as mean ± SD. Statistical analysis was performed using a repeated measures analysis of variance (rANOVA). If the f value was significant (\(p < 0.05 \)), the following time points were compared by paired t test: control vs. HPV, HPV vs. NO, HPV vs. PG\(_I_2\) as well as the difference between HPV and NO versus the difference between HPV and PG\(_I_2\). Bonferroni correction was applied as appropriate. Differences were considered significant for \(p < 0.05 \).

Results

Hemodynamics

The effects of NO and PG\(_I_2\) on hypoxia-induced changes in pulmonary and systemic hemodynamics are summarized in figure 1. Aerosolization of the solvent (glycine buffer, pH 10.3) and normal saline did not exert effects on systemic or pulmonary hemodynamics.

Hypoxia. Ventilation with a hypoxic gas mixture (Fi\(O_2 \) 0.09–0.11) produced a significant increase in PAP (+57%, \(p < 0.001 \)), PVR (+196%, \(p < 0.001 \)), heart rate (control 99 ± 11, HPV 135 ± 30, \(p < 0.01 \)) and CI (control 2.3 ± 0.3, HPV 3.0 ± 0.5, \(p < 0.05 \)) as well as a reduction in SVR (-26%, \(p < 0.05 \)) in all dogs (fig. 1). The degree of hypoxic pulmonary vasoconstriction as assessed by PVR remained constant during basic HPV, post-NO and post-PG\(_I_2\). Right and left ventricular pre-load (RVEDP, LVEDP) remained constant.

Nitric Oxide. When NO was added to the hypoxic gas mixture, PAP was significantly reduced in all dogs (−28%, \(p < 0.001 \) vs. HPV) but did not reach baseline levels (Fi\(O_2 \) 0.5). NO attenuated the HPV-induced increase in PAP and PVR by 76 and 73%, respectively (fig. 1). A minor reduction in MAP (−5%, \(p < 0.05 \) vs. HPV) was observed, however, there was no change in calculated SVR (fig. 1). The maximal pulmonary vasodilating effect of NO occurred within 7 ± 1.3 min (fig. 2). After termination of NO inhalation, all hemody-
Fig. 1. Effects of inhalation of NO (n = 6) and PGI₂ (n = 6) during hypoxia on PAP, MAP, PVR and SVR. Inhalation of NO and PGI₂ decreased PAP and PVR reversibly while MAP and SVR remained unchanged. Data are given as mean ± SD. CONT = Control before hypoxia. * p < 0.05; ** p < 0.01; *** p < 0.001 versus preceding measurement.

Dynamic variables returned to pre-NO values. During inhalation of NO, HR, CI, LVEDP and RVEDP remained unchanged.

Mean methemoglobin levels increased from 0.8 ± 0.2 to 1.2 ± 0.3% after NO inhalation (p < 0.05) and returned to baseline values after termination of NO application.

Prostacyclin. Inhalation of PGI₂ aerosol during HPV decreased PAP and PVR by 17 and 32%, respectively (fig. 1). The hypoxia-induced increase in PAP was reduced by 48% and the increase in PVR by 52%. No significant changes occurred in MAP (−2 ± 5 mm Hg), SVR (+83 ± 124 dyn·cm·s⁻⁵) (fig. 1), CI (−0.25 ± 0.27 liter/min) and RVEDP. During PGI₂ inhalation, HR was slightly reduced (HPV 139 ± 27, PGI 127 ± 27, p < 0.05). The maximal pulmonary vasodilating effect of PGI₂ was achieved within 8 ± 1 min (fig. 2). The decrease in PAP induced by PGI₂ was smaller compared to the effect of NO in all dogs (p < 0.02). After termination of PGI₂ administration, hypoxic pulmonary vasoconstriction was restored within 10–15 min.
Fig. 2. Sequential changes of PAP during inhalation of NO (n = 6) and PGI₂ (n = 5). NO and PGI₂ led to an immediate decrease of PAP that reached its maximum within 10 min with both substances; the magnitude of PAP and PVR change was greater during NO than during PGI₂ inhalation (p < 0.05). Data are given as mean ± SD.

Table 1. Blood gas and respiratory parameters at control, at baseline HPV and during NO and PGI₂ inhalation

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control</th>
<th>HPV</th>
<th>HPV + NO</th>
<th>Post-NO</th>
<th>HPV</th>
<th>HPV + PGI₂</th>
<th>Post-PGI₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaO₂, mm Hg</td>
<td>186 ± 65</td>
<td>41 ± 9.6</td>
<td>42.4 ± 9.2</td>
<td>41.1 ± 9.6</td>
<td>40.8 ± 9.7</td>
<td>45.1 ± 13.1</td>
<td>39.6 ± 5.2</td>
</tr>
<tr>
<td>PvO₂, mm Hg</td>
<td>46.1 ± 3.0</td>
<td>27.6 ± 5.3</td>
<td>28.4 ± 5.0</td>
<td>27.8 ± 5.2</td>
<td>27.1 ± 5.2</td>
<td>29.0 ± 5.4</td>
<td>26.6 ± 3.5</td>
</tr>
<tr>
<td>PaCO₂, mm Hg</td>
<td>38.9 ± 2.0</td>
<td>37.6 ± 2.8</td>
<td>37.2 ± 2.1</td>
<td>35.3 ± 2.9</td>
<td>36.3 ± 2.9</td>
<td>33.5 ± 4.5</td>
<td>36.5 ± 6.6</td>
</tr>
<tr>
<td>pH art</td>
<td>7.36 ± 0.06</td>
<td>7.36 ± 0.03</td>
<td>7.36 ± 0.03</td>
<td>7.37 ± 0.04</td>
<td>7.38 ± 0.04</td>
<td>7.39 ± 0.05</td>
<td>7.36 ± 0.05</td>
</tr>
<tr>
<td>COM, ml/cm H₂O</td>
<td>59.5 ± 18.4</td>
<td>52.8 ± 14.3</td>
<td>53.5 ± 15.0</td>
<td>50.8 ± 13.5</td>
<td>50.3 ± 14.8</td>
<td>51.0 ± 12.2</td>
<td>50.7 ± 14.1</td>
</tr>
<tr>
<td>AWP_plat, mbar</td>
<td>12.0 ± 2.2</td>
<td>11.7 ± 2.7</td>
<td>11.0 ± 1.7</td>
<td>12.2 ± 2.6</td>
<td>12.5 ± 3.0</td>
<td>11.7 ± 1.8</td>
<td>11.8 ± 3.1</td>
</tr>
</tbody>
</table>

Data are given as mean ± SD. PaO₂ = Arterial O₂ tension; PvO₂ = mixed venous O₂ tension; PaCO₂ = arterial CO₂ tension; pH art = arterial pH; COM = total compliance of lung and thoracic wall; AWP_plat = plateau airway pressure at end inspiration.
* p < 0.05; † p < 0.01 HPV vs. control; ‡ p < 0.05 PGI₂ vs. HPV.

The mean effective dose of PGI₂ administered to the lungs was 0.87 ± 0.26 ng/kg/min. Intravenous infusion of PGI₂ at comparable infusion rates (1 and 2 ng/kg/min) in 2 dogs had neither effects on pulmonary nor systemic hemodynamics (data not shown).

Plasma concentrations of 6-keto-PGF₁α measured in 3 dogs before, during and after PGI₂ inhalation remained unchanged (HPV 94 ± 50 pg/ml, PGI 112 ± 20 pg/ml, post-PGI 103 ± 9 pg/ml).

Lung Function

Blood gas parameters and lung mechanics are summarized in table 1. Ventilation with the hypoxic gas mixture (FiO₂ 0.09–0.11) re-
sulted in a decrease of mean arterial Po$_2$ from 186 ± 65 mm Hg and mean PvO$_2$ from 46.1 ± 3.0 to 41 ± 9.6 mm Hg and 27.6 ± 5.3 mm Hg, respectively. Arterial and mixed venous Po$_2$ remained constant during ventilation with the hypoxic gas mixture. There was no significant change in arterial Pco$_2$ throughout the experiments. Mean arterial pH was maintained between 7.36 and 7.39. PaO$_2$ and PvO$_2$ increased slightly and reversibly only during PGI$_2$ inhalation. There was no change in airway pressures (P$_{peak}$, P$_{plat}$). Total thoracic compliance slightly decreased after induction of hypoxia, but remained constant during NO and PGI$_2$ administration.

Discussion

The main finding of this study was that inhaled PGI$_2$ selectively attenuated hypoxia-induced pulmonary hypertension without causing systemic vasodilation. Both PGI$_2$ aerosol and NO gas reduced hypoxia-induced increase in PVR within minutes without affecting systemic vascular resistance or CI; the effects on the pulmonary vessels were reversible upon termination of either drug within 10–15 min.

PGI$_2$ is the main metabolite of arachidonic acid produced by endothelial cells in different species. It is a potent dilator of both arteries and veins [24]. The vasodilatory effect is endothelium independent and is mediated by stimulation of specific receptors on membranes of vascular smooth muscle cells [25]. Intracellular PGI$_2$ acts by increasing the concentration of cyclic adenosine monophosphate (cAMP) [25]. PGI$_2$ has a rapid onset of action and a short half-life (2–3 min) when infused intravenously. Due to the lack of a carrier mechanism to transfer PGI$_2$ across the cell membrane, it is, unlike most other prostaglandins, not metabolized by the lung and retains its pulmonary vasodilatory properties [26]. Therefore, and because of its lack of known toxicity, PGI$_2$ aerosol was chosen for inhalation.

Since the first description of the dilating effects on pulmonary and systemic vessels of intravenous PGI$_2$ in dogs [1], it has been successfully applied as pulmonary vasodilator in animal models of acute pulmonary hypertension [4, 5, 27, 28] and in patients with pulmonary hypertension of various etiologies [2, 29]. At doses effective in reducing PVR, intravenous PGI$_2$ did, however, induce systemic vasodilation and an increase in cardiac output. In addition, intravenous PGI$_2$ was shown to attenuate HPV and to increase venous admixture; consequently, arterial oxygen content decreases and the net effect of intravenous PGI$_2$ on oxygen delivery depends on the ability to increase cardiac output [4, 30].

In this study, the inhalation of PGI$_2$ aerosol reduced the hypoxia-induced increase in PAP and PVR without eliciting systemic vasodilation. Both PGI$_2$ aerosol and NO gas reduced hypoxia-induced increase in PVR within minutes without affecting systemic vascular resistance or CI; the effects on the pulmonary vessels were reversible upon termination of either drug within 10–15 min.

In contrast to intravenous PGI$_2$, PGI$_2$ aerosol did not increase cardiac output. Therefore, the calculated PVR, which was used in this study to assess pulmonary vascular tone and that is influenced by changes of cardiac output, may truly reflect PVR changes.

In contrast to the decrease in PaO$_2$ occurring during intravenous infusion of PGI$_2$, the inhalation of PGI$_2$ produced a small and reversible increase in PaO$_2$ and PvO$_2$. This finding cannot be easily explained from our data. One may speculate that PGI$_2$ inhalation led to a reduction in V$_a$/Q mismatches as it has been described during NO inhalation in...
patients with ARDS [7]. However, in this study, NO did not affect either arterial or mixed venous oxygenation during inhalation. The effect of inhaled PGI$_2$ on pulmonary ventilation/perfusion ratio has to be assessed in further studies using more appropriate techniques (e.g. multiple inert gas elimination technique).

The mean dose of PGI$_2$ aerosolized was 0.87 ± 0.26 mg/kg/min. Doubling the concentration of the PGI$_2$ solution (860 ng/ml) at constant inspiratory flow, and hence presumably doubling the dose administered, did not enhance the effect on pulmonary or systemic hemodynamics. So far, we have not yet established the minimal effective dosage of inhaled PGI$_2$, therefore we cannot exclude that a higher concentration of the PGI$_2$ solution might have a more pronounced effect. Furthermore, it cannot be excluded that inhalation of PGI$_2$ at higher concentrations might affect systemic hemodynamics. In patients with bronchial asthma, systemic vasodilation has been reported following the short-time inhalation (maximal time of inhalation 3 min) of considerably higher doses of PGI$_2$ (200–400 μg) [31].

It should be noted that the dose of PGI$_2$ administered was assessed by measuring the volume of the PGI$_2$ solution in the nebulizer chamber before and after inhalation; this dose may, however, not reflect the actual amount of PGI$_2$ inhaled as it does not account for losses in the nebulizer, the ventilator tubing, the endotracheal tube and the extrapulmonary airways. Using radiolabeled aerosol, it has been demonstrated that during mechanical ventilation only a small fraction of a given dose of aerosol (0.37–3.68%) is actually deposited in the lung [32]. Therefore, the effective dose of inhaled PGI$_2$ may be considerably lower than calculated. Furthermore, it must be emphasized that the actual output of nebulizers is influenced by the type of nebulizer used, by the volume initially placed in the nebulizer and by the ventilator setting [33].

Still, the dose of PGI$_2$ aerosol effective in reducing HPV in this study is considerably lower than the dose of intravenously given PGI$_2$ necessary to lower PAP in different models of experimental pulmonary hypertension (249 ± 69 ng/kg/min [4], 79 ± 5 μg/kg/min [5]) or in patients with pulmonary hypertension of various origin (7.1–35.0 ng/kg/min [3, 29]. In 2 dogs the intravenous infusion of PGI$_2$ at a rate of 1 and 2 ng/kg/min – comparably to the inhaled dose – neither caused pulmonary nor systemic vasodilation and had no effect on CO (data not shown).

Our findings indicate that aerosolized PGI$_2$ at the concentration used in this study acts predominantly on smooth muscle cells in the lung vessels and does not reach the systemic circulation in efficient amounts. This view is supported by the fact that the arterial concentration of 6-keto-PGF$_1α$, the main metabolite of PGI$_2$, did not increase during inhalation of prostacyclin. From our data, however, we cannot decide whether the selective pulmonary dilation was due to the low concentration of inhaled PGI$_2$ or whether it is exclusively the route of administration that prevents systemic effects of the drug.

A reduction in PAP and PVR has previously been reported upon inhalation of aerosolized arachidonic acid in dogs [34]. The pulmonary changes were, however, accompanied by systemic vasodilation and by bronchoconstriction indicating that prostaglandin precursors were absorbed and metabolized into different prostanoids in lung tissue. In contrast, prostacyclin administered as aerosol is neither transformed into an active form nor metabolized by the lung [26]. Although we did not measure dynamic compliance and airway resistance, we observed no change in total static compliance and in plateau airway pressure during PGI$_2$ inhalation. Hence, PGI$_2$
aerosolized at low concentrations appears to act as pulmonary vasodilator without causing side effects (e.g., bronchoconstriction) attributable to other arachidonic acid metabolites or to systemic absorption.

In this study, we compared \(\text{PGI}_2\) aerosol to \(\text{NO}\) in order to assess the maximal dilation of pulmonary vessels that can be pharmacologically achieved during HPV without systemic side effects. We chose an inspiratory concentration of 50 ppm \(\text{NO}\), because it has been demonstrated that a further increase of the inspiratory \(\text{NO}\) concentration produces virtually no additional vasodilatory effect [10]. In this study, the inhalation of \(\text{NO}\) at a concentration of 50 ppm produced a reduction of hypoxia-induced increases in PAP by 76% and in PVR by 73% accompanied by a slight decrease in arterial pressure (fig. 1) and no change in cardiac output. A complete reversal of hypoxic pulmonary vasoconstriction, as demonstrated in spontaneously breathing sheep at a \(\text{NO}\) concentration of 40 ppm [10], was not achieved in ventilated dogs in this study. The failure of \(\text{NO}\) to reverse HPV completely may be partially explained by species differences or by positive pressure ventilation producing a more heterogeneous distribution of pulmonary ventilation and blood flow. The slight systemic vasodilation observed was not reported in other studies [9, 10].

At the concentrations used, the magnitude of pulmonary vasodilation was more pronounced during \(\text{NO}\) than during \(\text{PGI}_2\) inhalation. However, \(\text{PGI}_2\) infused intravenously did not fully reverse HPV [5, 28]. Thus, inhaled \(\text{NO}\) may be the more potent pulmonary vasodilator when compared to prostacyclin at both routes of administration.

It must be noted that \(\text{NO}\) is a radical (\(\cdot\text{N} = \text{O}\)) with the potential for cytotoxicity. Superoxide (\(\text{O}_2^-\)) and \(\text{NO}\), which both are generated by endothelial cells, macrophages and neutrophils, combine to form peroxynitrite anion (\(\text{ONOO}^-\)). Peroxynitrite decomposition products are nitrogen dioxide and hydroxyl radical which exert cytotoxic effects by initiating lipid peroxidation of cell membranes [35]. In the presence of molecular oxygen, \(\text{NO}\) reacts in a concentration- and \(\text{FiO}_2\)-dependent manner to form nitrogen dioxide (\(\text{NO}_2\)), which is subsequently transformed to nitric and nitrous acid. Severe damage to the lung and airways may result. \(\text{NO}\) binds avidly to hemoglobin to form nitrosylhemoglobin (Hb-NO) which is subsequently oxidized to methemoglobin (Met-Hb). Reduction of Met-Hb occurs, however, much slower than Met-Hb formation from Hb-NO and the rate of Met-Hb reduction is decreased by increasing \(\text{NO}\) concentrations [36]. Although Met-Hb plasma concentrations at doses of \(\text{NO}\) inhaled for pulmonary vasodilation remain low (<1–2%), methemoglobinemia following inadvertent overdosage of \(\text{NO}\) may lead to critical reduction of oxygen transport. Oxidative cross-linking of membrane proteins of erythrocytes exposed to \(\text{NO}\) may impair their rheological properties [36]. Although there is little evidence for severe toxicity at low concentrations (<100 ppm) of \(\text{NO}\) inhaled for short time periods in different species, little is known about the toxicity of long-term breathing of \(\text{NO}\) at low concentrations and the effect of \(\text{NO}\) on lungs with pre-existing acute or chronic disease [10].

The feasibility of \(\text{NO}\) inhalation in clinical routine seems cumbersome: due to its potential toxicity, the application of gaseous \(\text{NO}\) requires specially designed respirators which permit exact adjustment and long-term constancy of the inspired \(\text{NO}\) concentration. Expensive chemiluminescence analyzers for continuous monitoring of the inspired \(\text{NO}\) concentration and for detection of \(\text{NO}\) oxidation products (\(\text{NO}_2\)) are mandatory and finally, \(\text{NO}\) gas has not been approved for medical purposes so far.
Thus, the clinical application of inhaled NO as a selective pulmonary vasodilator appears limited by the lack of data on long-term toxicity and effects on preinjured lungs, but also due to the necessity of complicated and expensive techniques to safely allow and control NO administration.

In contrast to the potential toxicity of NO, no severe toxic side effects of PG\textsubscript{I2} have been reported. Furthermore, PG\textsubscript{I2} can be administered as aerosol using a standard jet nebulizer and no sophisticated system to monitor the inspired PG\textsubscript{I2} concentration is required. In further studies the dose-response relationship for inhaled PG\textsubscript{I2} has to be established, the pulmonary vasodilatory effects have to be assessed in different models of pulmonary hypertension and the effects of long-term inhalation have to be investigated. Finally, due to the different mechanisms of action, the combination of inhaled NO and aerosolized PG\textsubscript{I2} may have additive pulmonary vasodilatory effects. Upon clarification of these open questions, PG\textsubscript{I2} aerosol may become an attractive alternative to the inhalation of NO in the treatment of acute pulmonary hypertension.

Acknowledgement

Miss D. Wagner and Miss H. Naschberger are thanked for technical assistance.

References

