MIMICA V5.1, User guide

Julien SAVRE
Meteorological Institute, Ludwig-Maximilians-Universitat, Munich
julien.savre@lmu.de

Matthias Brakebusch
Dept. of Environmental Science and Analytical Chemistry, Stockholm University,
Stockholm
matthias.brakebusch@aces.su.se

28.04.2021

Contents

(I _Introduction|

[2

How to compile and run MIMICA|

[2.1 Required libraries|
2.2 Compiling MIMICA|
(2.3 Running MIMICA|

Model description|

[3.1 Governing equations|
[3.2 The anelastic and compressible cores|

[3.3.1 Numerical grid|
[3.3.2 Boundary conditions|
[3.3.3 Parallelisation and domain decomposition|

[3.3.5 Scalar advection and time-steppingl
[3.4 Physical parameterizations|o Lo oo
[3.4.1 Subgrid scale turbulence]o
3.4.2 Surface conditionsl

[3.4.4 Microphysics|
[3.4.5 Droplet activation|.
L‘i. l.ti l£:s= lll]!:lg:iili!llll

[3.4.7 Damping, nudging and large scale tendencies|.
3.4.8 Tracersl. e

[3.0.3 Kinetic growth|
[3.0.4 Regeneration|
[3.50.5 Precipitation scavenging|o
[3.0.6 Impaction scavenging|
[3.6 Lagrangian particle tracking| oo oo

4.2.6 cm bd 45

M.2.7 cm_phys e 46
428 cmmid e 47
429 cmaerd 49
M.2.10 em_lag 50

M3 oufmml 50
3T ouldml o 51
W32 ouldanl 53
M33 oudanl 54
.. 55

[4.4 Inmitial soundings and idealized profiles] 0oL 55
[4.5 Recommended configuration| Lo 56
Mol Numerics e 56
[4.5.2 Physics| 57

b MIMICA outputs| 59
[>.1 2D-3D complete outputs| 59
[5.2 2D Slices (3D simulations only)| L 59
[>.3 1D profiles| 60
b4 Time series L e 60
b5 Restart filed 61
[6 Templates and examples| 62
[6.1 Awvailable templates| 62

1 Introduction

MIMICA is a local-area, 3D high-resolution atmospheric model written entirely in fortran. Current
and past applications of the model include: very high-resolution simulations (Large-Eddy simulation)
of boundary-layer stratocumulus clouds in Arctic and marine environments, tropical and midlatitude
continental convection and its diurnal cycle, and Radiative-Convective Equilibrium over the tropical
ocean.

The code is an extension of the CRM-MIT model developed by Chien Wang and Julius Chang [2].
Since then, the model has been substantially modified and upgraded by Julien Savre at Stockholm
University. Most of the original code has been rewritten using modern fortran 90 and MPI standards.
Previously released MIMICA versions that have already been extensively used include version V4.0
(2014 [29], no longer maintained) and V5.0 (2017). The current version (V5.1) has been released in
2021.

The present document is intended to new MIMICA users who wish to start working with the
model, or more experienced users who are interested in knowing more about the code. First and
foremost, the vocation of this document is to list and explain all the different options accessible
through configuration files. We also give here some guidelines to compile the code and run your
first simulations with a personalized configuration. In addition, you will be able to find information
regarding the default numerical schemes and physical modules implemented in MIMICA. It is not
intended here to give a complete description of all implementations. Instead, we wish to provide here
the theoretical background needed to understand the model and some of the choices made during its
development. Interested readers are invited to refer to the cited literature for more details.

MIMICA is presently developed under the git version control system and is hosted by the
Bitbucket platform. The model can be found and downloaded at the following address: https:
//bitbucket.org/matthiasbrakebusch/mimicavb/src/master/. Besides, additional help and in-
formation regarding the model, how to set it up, and our monthly MIMICA community meetings
can be found at: https://uppslag.aces.su.se/mimica/mimica.

This document is organized as follows. Section [2| gives all necessary guidelines to setup, compile
and run MIMICA. Anyone interested in running the model should pay close attention to this section.
Section [3] is intended to give the theoretical background needed to understand how MIMICA works
and what it does. Section [4] gives a detailed description of all option flags available to control the
model’s configuration. It should be noted that while section [3] mostly insists on a "default” MIMICA
setup, the option flags and keywords detailed in section [4| can help design simulations making use of
more advanced configurations. Section [4f also includes a brief description of how initial conditions are
defined. Section [5|introduces the reader to all output files produced by the MIMICA model, and is of
great help for those wishing to know more about how to analyse the model’s results. Finally, section
[6] presents a list of available predefined test cases that can be used either for testing and debugging,
or as the basis for more advanced, personalized configurations.

https://bitbucket.org/matthiasbrakebusch/mimicav5/src/master/
https://bitbucket.org/matthiasbrakebusch/mimicav5/src/master/
https://uppslag.aces.su.se/mimica/mimica

2 How to compile and run MIMICA

2.1 Required libraries

First and foremost, in order to compile and run MIMICA properly, you will need a recent compiler
(both gfortran and intel are currently supported), as well as an MPI library for parallel simulations
(SPMD TRUE in start). Before starting the compilation (see next section), make sure that the
corresponding library paths are properly defined in your environmental variables. Besides, in the
more general case, MIMICA needs to be link to two other external libraries: netCDF [27] and fftw
[8].

The netCDF library is used to generate output files in the netCDF format. There is a good
chance that the library will be available on your system. If it is properly loaded, linking is done
automatically at compile time (see below). The only requirement is that you use a netCDF package
compiled with a compiler that is compatible with the one used to compile MIMICA.

The fftw (which stands for Fastest Fourier Transform in the West) library is required when
MIMICA is run with ANELASTIC TRUE in start (this implies that a pressure correction equation
is solved using a FFT based algorithm).

e If fftw is centrally built and available on your local server, it can be directly linked to MIMICA
V5 with only small modifications. In order to use the central fftw library, MIMICA should be
compiled with Makefile_centralfft which must first be copied into your local work directory, and
renamed Makefile. If the environment variables FFTW_INC and FFTW_LIB are not already
defined on your system, you should define those yourself. Again, make sure that the loaded
fftw library has been compile with a compatible compiler.

e [f fftw is not available or if you do not wish to link to a centrally distributed version of fftw,
you will need to download the library from the official fftw website (http://www.fftw.org) and
compile it yourself. Once fftw has been successfully built, MIMICA can be compiled by using
the default Makefile present in the main mimicavb directory. Makefile can then be copied in
your local work directory without any further modification.

2.2 Compiling MIMICA

Before going any further and proceeding with MIMICA’s compilation, a new environment variable
must be defined to specify the main path to your MIMICA directory. To do this, you must simply
type: export MIMICA=...... , where you must specify your own MIMICA path name. For future uses,
you can directly add this line to your ./profile file.

Compiling MIMICA is performed using the start script which must be edited to compile with the
desired physical and numerical packages. start templates are provided for a variety of idealized test
cases in the ./templates folder. The most important compilation flags that must be edited in start
are:

e NETCDF: path to your netCDF directory.
e NPX, NPY: number of processors.

e CMPLER: choice of compiler. The default compiler is gfortran. If setenv CMPLER INTEL
is uncommented, the intel fortran compiler is used (make sure that a recent intel compiler is
available and loaded on your system).

e DEBUG: if TRUFE, MIMICA is compiled with debug options.
e SPMD: it TRUE, MIMICA is compiled for parallel runs (NPX must be > 1).

All other flags in start control the numerical or physical configuration.

Once your start file is ready, you must provide one of the two Makefiles available in the parent
directory as described in section la above. Compilation is then performed by typing: ./start

All objects and modules are stored in ./build. The file compile.log created in your work direc-
tory contains a summary of the compilation with all the different start options selected. Finally,
the executable mimicavs_XXXXXX.eze is created in your local MIMICA directory, with XXXXXX
corresponding to the current version number from which your executable has been built.

2.3 Running MIMICA

Running MIMICA can be done in serial by typing: ./mimicav5_XXXXXXX.exe, or in parallel with
(for example): mpirun -np N mimicav5_XXXXXXX. exe (with N the number of processors). Please
consult your HPC help page to get more information on how to properly run a parallel job.

In order to run MIMICA, a minimum of 2 input files must also exist in your local directory,
ecm.nml and out.nml, as well as appropriate initial conditions in ./INCLUDE.

cm.nml contains a list of model options and parameters. cm.nml templates are available for
idealized cases in ./templates. The file must be present (copied from a template) in your local
working directory and edited as desired. out.nml is used to define the quantities you want to ouput
using various keywords. An example is available in the main MIMICA repository.

Initial conditions will be prescribed using either a specific include file, .h, which must be present
in ./INCLUDE, or by creating your own initial sounding, again in ./INCLUDE (the name of the
initial sounding file must be prescribed in ¢m.nml under file_init).

2.4 Issues with MIMICA

Despite our best efforts to provide a bug-free code working in any possible configuration, we cannot
guarantee that this is effectively the case. This subsection describes briefly what should be done in
case MIMICA fails unexpectedly.

Before taking any special action, following these simple and straightforward steps may help resolve
many issues:

1. First and foremost, you should obviously make sure that the model is configured properly.
Things that need particular attention include the numerical grid, initial conditions, and stability
criteria (for example, the CFL number should be kept close to 0.5).

2. A simulation that crashes unexpectedly despite a correct configuration might indicate the
presence of coding errors. Finding out where such errors may be can be difficult, but using
debug options can help greatly. For example, setting ldebug to .true. in c¢m.nml indicates in
which part of the code the model stopped by printing out a short line of text in c¢m.prt when
the code enters or leaves specific routines. Besides, when MIMICA is compiled with DEBUG
TRUE in start, compiler specific debug flags are turned on and a debug executable is created.
When run in debug mode, the code will stop whenever an error is encountered, and the exact
place where this error was found is specified in your simulation’s log file.

3. If the simulation’s design is complex, perhaps making use of many of the available physical
parameterizations, it can be difficult to figure out what part of the model is responsible for
a reported error. In this situation, it can be beneficial to simplify the problem by changing
the configuration step-by-step. For example, some of the parameterizations may be turned off
(radiation or aerosols), while different choices can be made for others (microphysics, numerical
schemes). Similarly, downscaling the configuration (for example, going from 3D to 2D, or
making each dimension smaller) can help executing your tests faster.

If following these advises allowed you to identify a bug or modelling error, you can choose to either
resolve the issue yourself by correcting the code and submitting the commit to the main git repository,
or report the issue for someone else to correct it. When reporting an issue, it is preferable to use
the "Issues” section on MIMICA’s bitbucket page (https://bitbucket.org/matthiasbrakebusch/
mimicavb/src/master/). A detailed description of the problem should then be given. Alternatively,
you can contact Julien Savre directly by email: julien.savre@lmu.de.

https://bitbucket.org/matthiasbrakebusch/mimicav5/src/master/
https://bitbucket.org/matthiasbrakebusch/mimicav5/src/master/
mailto:julien.savre@lmu.de

3 Model description

The description proposed in this section focuses on a ”default” configuration of the MIMICA model.
It should be reminded that MIMICA possesses many more capabilities which are not detailed below
for the sake of clarity. Some of these features are however mentioned when appropriate, and more
information can be found in the description of the start and ecm.nml files given in section [4]

3.1 Governing equations

MIMICA solves the basic conservation equations for mass (continuity), momentum, potential tem-
perature and total water content in 2 or 3 dimensions. Depending of the level of complexity and
physical parameterizations requested, a set of additional conservation equations for microphysical
quantities (typically the mass and number concentrations of certain hydrometeor classes) as well as
passive tracers can also be solved.

Two different dynamical cores are available in MIMICA: an anelastic core, in which the density
is assumed to depend on altitude only so that the continuity equation reduces to a diagnostic equation
constraining momentum to be divergence free, and a compressible core, in which no approximation
for the density is made and the continuity equation is solved explicitly. All the equations presented
hereafter are written according to the anelastic approximation of [20] as this is the preferred option in
MIMICA (setenv ANELASTIC TRUE in start). More detail about the compressible core are given
in section

The momentum equations can be written as follows:

Ipou _ 9 (v
MV) = oy (L) 4 o+ 9 () + 5,)
dpov B a9 (v
BT + V- (pouv) = poa—y (%) fou+ V- (poy) + Sy (2)
Opow _ o (¥
ot + V- (pouw) = b poé (@) + V- (poTw) + Sw (3)

u is the velocity vector (u, v, w), b is the buoyancy, 7,, 7, T, are the contributions from subgrid scale
turbulent diffusion to u, v and w respectively (defined in section [3.4.1]), fy is the Coriolis parameter
(f-plane approximation), po is the reference anelastic density (independent of time and varies only
with altitude), and p’ = p — po is the perturbation pressure defined with respect to the base state
hydrostatic pressure. S,, S, and S, are additional source terms that may represent nudging or
large-scale forcing. The buoyancy b is defined as a function of virtual potential temperature:

0, O(1+eqy —q—q)
b= pog (t%o) Pog { T (4)

with 6 being the potential temperature, g, is the water vapor mixing ratio, ¢, and ¢; are the liquid
and ice mixing ratios respectively, g is the gravitational acceleration (constant, set to 9.81 ms~2) and
e =~ 0.602. 0y and g, are here defined as the base state potential temperature and vapor mixing ratio
(independent of time, functions of altitude only). The different terms appearing in the momentum
budget equations can be turned on or off individually using various options in ¢m.nml and start.

The potential temperature, total water mixing ratio and passive tracer equations read:

dpot
g(; + V- (,00119) = Qrad + Qmicro + Y (007'9) + SO (5)
0
paotqt +V- (pOUQt) = V- (POth) + Qprec + Sq (6)
0
GV (boug) = V- (oom,) + 5, 7)

with 9,4 and Qi being source terms representing radiative and latent heating and cooling re-
spectively, Qe is a sedimentation term, ¢; and ¢ are the total water mixing ratio and passive tracer,
while 7y, 74, T, are the contributions from subgrid scale turbulent diffusion. Again, Sy, S, and S, are
additional sources including for example nudging or large-scale advection. Note that the potential

temperature is defined as:
—cpa/Ra
o-r(L) T, 0

Poo

with T the absolute temperature, poo = 1000 hPa, cp, = 1004 JK 'kg~! and R, = 288 JK 'kg™?
the dry air specific heat capacity at constant pressure and specific ideal gas constant for dry air
respectively. As an alternative to the potential temperature equation, MIMICA an also operate with
the frozen moist static energy (MSE) as the conserved energy variable (available by setting setenv
ISENTROPIC FALSE in start). The frozen MSE is often used to simulate tropical convection as it
is almost exactly conserved upon adibatic processes and phase changes, and is directly related to the
enthalpy (and therefore to the first law of thermodynamics).

Finally, the system of equations is closed using the ideal gas law for moist air to relate all
thermodynamic properties:

po = poRT 9)

with R = (1 — ¢;) Ry + quR, the ideal gas constant for moist air (R, = 461.5 JK 'kg~! being the
ideal gas constant for water vapor). By default, the vapor contribution to R is neglected so that
R =R, =288 JK 'kg~!'. This can however be changed by setting cst_cp = 0 in cm.nml, making
all heat capacities dependent on water vapor, liquid and ice mass mixing ratios. More information
regarding thermodynamically consistent equations and relationships can be found in [2§].

3.2 The anelastic and compressible cores
3.2.1 The anelastic solver

In its default configuration, MIMICA employs the anelastic approximation of [20] in which the
density is assumed to vary only with altitude and to be time independent. This enables us to filter
out acoustic waves to improve the model’s stability and overall performance.

Before going any further, a few important notations have to be introduced. We denote u”™ the
velocity vector estimated at time ¢", that is at the beginning of the time-step. u™*! then denotes
the velocity vector estimated at time ¢"+t! = " + At. We similarly define p”" and p""" the pressure
perturbation estimated at time ¢ and t"*!.

The idea behind the anelastic solver is to estimate the perturbation pressure p’ in equations
implicitly (i.e. at time ¢"!). To do so, the anelastic continuity equation [5]:

Opou Opgv Opow
PO+P0+PO

ox dy 0z 0 (10)

is used as a diagnostic constraint to find """ and enforce mass conservation at the end of the time
step. The procedure (often called projection method, [5]) can generally be decomposed into three
steps:

1. The momentum equations are first solved with all terms (including the pressure gradient
term) estimated at time ¢". At this stage, the updated velocity vector u* does not satisfy the
continuity equation [I0]

2. Next, a pressure correction dp is introduced to update u* and yield the momentum vector at
the end of the time step u"**:

)
pou™ ™ = pou* — AtpgV (p_§>) (11)

and:
liian

C=p" +op. (12)
Taking the divergence of equation [L1] yields:

J
0=V-(pou*) — AtV - (povp—p) . (13)
0
We have used here the fact that V - (ppu*) must be 0. The first term on the right hand side,
V - (pou*), can be computed easily, leaving us with an elliptic equation for dp.

1

3. The elliptic dp equation is then solved (see details below), and u™** can be obtained from

equation 1]

The procedure can be repeated several times (this is specified by nsubp in e¢m.nml which is set to 1
by default) in order to improve the accuracy of the method.

An efficient solver based on Fast Fourier Transforms (FFT) is implemented in MIMICA to solve
equation [I3] Let’s first rewrite equation [I3] as follows:

v ()4 Lom o (i) (1)

Po po 0z 0z \ po

with F =V - (pou*) / (poAt), and apply a Fourier transform in the horizontal plane to give:

7o\ 02 [op\ 19p @ [op\ ~
() Po 922\ po po 0z 0z \ po (5)

Using centered finite differences to approximate the first and second order derivatives of the trans-
formed perturbation pressure yields a tridiagonal system for (dp/po) which can be efficiently inverted.

Once this is done, the solution (dp/pg) can be transformed back into the physical space to find dp/pg
at each grid point. It is then easy to calculate the gradient V (0p/po) and introduce it in equation
[11] to complete the correction procedure.

The procedure presented above can only estimate the pressure perturbation to within an unknown
constant. This is not a problem when updating the velocity vector as the pressure perturbation
gradient is not affected by the exact value of this constant. By default, the constant of integration
is computed to ensure that the domain averaged value of dp is 0.

Although very accurate and efficient, the anelastic solver also comes with its limitations. It must
be noted in particular that the present FFT solver assumes by default that the domain’s lateral
boundaries are periodic (extending the solver to open boundaries is possible but has not been done
yet). In addition, when used in parallel, the FFT solver can only handle specific combinations of
grid sizes and number of processors. The following combinations are recommended:

e In 2D, the main dimension MAXX must be divisible by the number of processors squared,
NP?

e In 3D, both dimensions MAXX and MAXY must be divisible by NP (the total number of
processors, MAXXx MAXY).

3.2.2 The compressible solver

By setting setenv ANELASTIC FALSE in start, MIMICA solves for the fully compressible equations
of motions, which implies that the density is allowed to vary both in time and space. As mentioned
previously, solving the fully compressible system of equations requires much smaller time steps to
satisfy the acoustic CFL stability criterion, which often translates into a significant loss of perfor-
mance. The compressible solver however has its advantages: there is no a priori assumption on the
density and it is more flexible in the sense that using periodic or open lateral boundaries does not
need any extra coding effort.

In short, the following continuity equation now needs to be solved:

? + V- (pu) = Qprec- (16)
t

The presence of a term related to precipitation (Q,..) can be understood by noting that ¢, +q,+ ¢+

¢; = 0 (g, being the dry air mixing ratio), and that total continuity must be retrieved when summing

all equations for ¢,, q,, ¢ and ¢;. The conservation of water mass implies that all microphysical

sources and sinks add up to 0 except for the sedimentation terms.

All the equations introduced previously still need to be solved, except that py must now be
replaced by p. In addition, note that divergence damping is applied (an extra term in the momentum
equations, see [33]) in order to improve stability. The strength of this damping is controlled by adiv
in em.nml whose value is set by default to 0.1.

To solve the new system of coupled equations, no extra step must be taken. Because the density
and potential temperature are solved and known explicitly within each grid cell, the pressure can be
found using the ideal gas law. It is then enough to take the gradient of the diagnosed pressure and
introduce it directly in the momentum equations.

Because the stability of the fully compressible equations is constrained by an acoustic CFL crite-
rion requiring small time-steps, a split-explicit procedure is employed to solve the system, as described
in [28, [17]. The split-explicit method involves solving for slow waves and processes at the main model
time-step, while fast waves (i.e. all terms supporting acoustic waves) are solved using a smaller time-
step calculated to satisfy the acoustic CFL criterion. The small time-step is defined as a fraction
of the main model time-step: A7 = At/Ng.,, with N, being the number of iterations required to
solve the acoustic waves.

10

3.3 Numerical methods
3.3.1 Numerical grid

The grid is defined in a cartesian coordinate, in 2 or 3 dimensions. The cell size is always constant in
the horizontal plane (dz and dy in ¢m.nml) but a stretched grid can be used in the vertical direction
by setting setenv FINE TRUFE in start. Predefined vertical grids are available for specific test cases.
Alternatively, the vertical grid can be provided as an external input file named g¢rid.dat containing
a unique column specifying each individual grid level. Note that the surface boundary in MIMICA
is always flat: the surface altitude is constant across the domain, no topography can be simulated.
Besides, the surface is always located at z = 0 in the model, but the surface pressure psurf can be
decreased to elevate the numerical domain.

The number of cells in all 3 directions must be set by the user in start (MAXX, MAXY, and
MAXZ). The domain length in X and Y is then obtained by multiplying the number of grid cells in
each direction by the cell sizes dz and dy. The number of grid points along each direction, MAXX and
MAXY, is a priori not limited. In parallel simulations however, domain decomposition imposes that
MAXX and MAXY must be exactly divisible by NPX and NPY respectively (see section . Note
also that using the anelastic solver with the FF'T'W library in parallel also sets additional constraints
on domain size and decomposition, as explained previously.

Cartesian grids are very convenient to discretize fluid equations using finite differences or finite
volume methods. In MIMICA, a staggered grid system is employed, the C-Arakawa grid, defined as
follows:

e pressure, and all other scalars, are defined at the center of each grid cell

e the three velocity components are shifted by half a cell and are therefore defined at face centers:
Ui, = U (l’—l_ %73%2)7 Vijk = U (x7y+ %72:)7 Wij, = W (m7y72+ %)

In addition, the local velocity (respectively pressure) gradients are defined at the point where pressure
(respectively velocity) is defined.

In practice, because of the staggering, two different sets of vertical grid spacings have to be
defined: one corresponding to the spacing between two vertical velocity points, the other for the
spacing between two scalar points. These two quantities are refered to as Az, and Az, respectively.

3.3.2 Boundary conditions

Boundary conditions in MIMICA are defined by default as periodic in the horizontal plane, and solid
(i.e. the vertical velocity vanishes exactly at the boundary) in the vertical. Because gravity waves
are allowed to propagate in the domain and are usually reflected by the top boundary, it is often
recommended to apply a sponge layer near the domain top (above zdamp defined in e¢m.nml), whose
role is to nudge the simulated state in this region to the initial conditions with a time scale tdamp
defined in e¢m.nml (see section for more detail).

Open boundary conditions have also been implemented for the lateral boundaries, but this option
is not recommended in the current version of MIMICA. It is however possible to apply pseudo-
open lateral boundaries by using a large horizonal domain with the default periodic conditions, and
prescribing thick horizontal sponge layers as described in section [3.4.7] Similarly, it is possible to use
periodic conditions in the vertical, although this only applies to specific idealized templates. Overall,
it is recommended not to modify the default specification of boundary conditions accessible through
parameters bel(1-6) in cm.nml.

11

3.3.3 Parallelisation and domain decomposition

In parallel simulations, the numerical domain is divided into n, sub-domains, each containing an equal
number of grid points, where n, is the number of processors used. MIMICA offers the possibility
to either divide the domain along the single x direction (DECOMP_2D set to FALSE in start), or
to divide it along both x and y directions (DECOMP_2D set to TRUE). In the first case, each sub-
domain consists in a slab of the whole domain with dimensions n,/n, x n, X n,. In the second case,
each sub-domain has dimensions n, /n, , Xny,/n, , xn.. Both n, , and n, , must be explicitly defined in
start via parameters NPX and NPY respectively. In the 1D decomposition case, n, = NPX x NPY.

§When setting-up a new case, one must of course be careful and make sure that n, is exactly
divisible by n,,, (i.e. MAXX by NPX) and that n, is exactly divisible by n,, (i.e. MAXY by NPY).

3.3.4 Momentum advection

The momentum advection scheme must provide sufficient accuracy and stability when coupled with
the time integration scheme. With no additional constraint, this leads to a very limited choice,
mainly based on the easiness of implementation. We chose here to discretize momentum advection
using high-order finite differences of 3rd (upwind biased) or 4th (central) order. Switching from 3rd
to 4th order can be done via parameter mom_ord in cm.nml. For more detail regarding high-order
conservative finite-difference discretizations, interested readers can refer to [22].

For convenience, the advective fluxes are recast into conservative form:

Fivio6 — Ficok n Firv12 — Fir-1/2
Az Az, ’

V- (pouu) = (17)
where Fii 12k, Fizi/2k, Figt1/2 and Fj /5 are the fluxes interpolated at the center of the right, left,
upper and lower cell faces on the staggered grid. For simplicity, we have here considered only a 2D
system where the subscript ¢ is used in the x direction and k in the z direction. This formulation is
by definition energy and mass conserving. The main issue consists now in evaluating the interpolated
fluxes F. If we consider polynomial interpolations at the cell centers, the interpolated flux at the
center of the right face can be approximated by:

n—1
Fi+1/2,j = Z Ca,lf (Ui—a+l,j)) (18)

=0

where n represents the order of the interpolation, a the first point considered for the interpolation, f
the local flux and C,; the coefficients of the polynom. Selecting @ = 1 and n = 4 yields a 4th order
central approximation for the interpolated flux given by:

7 7 1
1ot T girtd — ol - (19)

12 12

Po 1
Fivijzg = 75 (Uipr + i) {—Eui—lu‘ T

Similar expressions can be obtained for all the fluxes necessary to fully discretise the advection
operator V - (pouu). A similar flux formulation can be obtained easily for the 3rd order, upwind
biased discretization.

In practice, in the absence of numerical diffusion or hyperviscosity, the 3rd order scheme (mom_ord
= 3) should be preferred as it is more stable and less likely to develop numerical oscillations.

12

3.3.5 Scalar advection and time-stepping

Regarding scalar advection, additional constraints must be considered in order to make sure that the
advected quantities always remain within prescribed physical bounds and do not develop spurious
numerical instabilities. For instance, it is obvious that mass mixing ratios (for vapor or hydrometeors)
must always remain positive thus requiring a so-called positive-definite scheme. It must also be
realized that low dissipation central difference schemes, as presented above for momentum advection,
generally develop numerical oscillations in the presence of discontinuities. Consequently, specific
advective schemes must be employed for scalars to avoid the development of instabilities.

To satisfy these conditions, it is generally not enough to only optimize the spatial discretization
scheme. Since we are dealing with time-dependent problems, the fully-discretized equations must be
considered and the choice of an appropriate time-stepping method also influences the stability of the
solution. Two approaches are available in MIMICA to provide stable solutions to the time-dependent
scalar advection problem: the first one is based on finite-volume formulations, while the second one
relies on the so-called method of lines that allows the use of any time-stepping method provided
that this latter doesn’t yield unstable solutions. An extensive description of both approaches can be
found in [19].

Finite volume formulation: In finite-volume methods, the continuous, space-dependent scalar
function ¢ (x) is replaced by the discontinuous scalar field ® where ® is defined as an average
over small volumes (the grid cells). This can be formally written as [19] (in one-dimension for
simplicity):

1
%= /V o (x) dz, (20)

where V is the volume over which the integral is performed, i.e. the grid cell with spatial
index 7, and V; is its volume. Applying the volume integral to the scalar advection equation
Opo /Ot + 0 (poue) /Ox = 0 and further integrating in time between ¢" and "' = " + At,
yields:

tn+l tn+1

[t [e@a= [e[rena ey

tn

with the notations f~ and f* denoting the fluxes of ¢ across the grid cell boundaries (outgoing
and incoming fluxes respectively). This suggest that the advection equation may be replaced
by the following finite-volume approximation:

®; = o7 — A_:z: (i+1/2 — Fz’—l/z)) (22)
with Fi /2 and F;_;/2 now denoting the fluxes of ¢ across the grid cell boundaries, integrated
over time. The main issue associated with finite-volume schemes therefore lies in providing
estimates for the incoming and outgoing fluxes. This equation forms the basis of all finite-
volume schemes implemented in MIMICA.

Among the wide variety of high-order finite-volume methods available to estimate these fluxes,
three common approaches have been implemented in MIMICA and can be selected with the
scal_adv parameter in cm.nml:

Iw enables the (at most 2nd order) flux-limited Lax-Wendroff scheme [5]. The default flux
limiter there is the Van Leer limiter.

13

muscl enables the (at most 2nd order) MUSCL finite volume scheme (piecewise linear, [38]).
The default flux limiter there is the MC limiter.

quick enables the (at most 3rd order) QUICK finite volume scheme (piecewise parabolic, [18]).

All these schemes rely on the use of slope limiters to avoid the development of unwanted
numerical instabilities in the vicinity of discontinuities. In the following, only the default
MUSCL scheme is introduced (the other schemes have a similar design).

The MUSCL scheme [38] is a central method that generates minor numerical dissipation in
smooth areas. Let’s first rewrite the flux swept through a cell face (Fit1/2 at ;41/2) during a
time step as:
Tit1/2
Fivip :/ ¢ (z)da. (23)
Tip1/2—Uip1/2008

To estimate the integral, we then need to approximate the continuous function ¢ based on the
model solution ®. Popular approximations rely on polynomial interpolations: a polynomial
of order 0 means that ¢ is constant within each grid cell (1st order), a polynomial of order 1
means that ¢ is linear within each grid cell (2nd order) and a polynomial of order 2 means that
¢ is quadratic within each grid cell (3rd order). MUSCL schemes as described here make use
of piecewise linear interpolations and are therefore (at most) 2nd order accurate).

Using a piecewise linear interpolant between x;_;,, and x;;; /5 gives:

6 (x) = ¢ (wo) + si (v — o), (24)
with s; the slope and z the location of the grid cell center. Integrating over the grid cell then
gives ¢ (o) = ®; and:

Qi — P

AL (25)

S; =

Integral 23| can now be evaluated exactly:
1
Fiyi2 = tiv12 | P+ 3 (1= |p]) (Pip1 — ®) (26)

where we have introduced the Courant number p = u; 4 /gAt/ Az. Note that on the Arakawa
C-grid, because u is defined at face centers, the advective velocity w; /o is directly available
and does not require any interpolation.

As mentioned previously, scalar advection often requires the use of so-called limiters to prevent
unphysical values to be produced as a result of numerical errors (limit = .true. in cm.nml,
default behavior). We thus rewrite equation [26] as (see for example [5]):

1
Fit1/2 = Uiy1)2 [‘Di + 50i+1/2 (1= ul) (@; - (Dil)] (27)

where we have now introduced the flux limiter Ci;1/9. Cjiy1/2 si defined as a function of the
slope ratio r; = (®;11 — ®;) / (P; — ®;_1). For example, the default MC limiter reads [37]:

1
Ci+1/2 = max [mln |:27",L'7 5 (TZ‘ + 1) s 2:| ,0:| . (28)

The role of the flux limiter is to selectively switch between the low-order, upwind biased for-
mulation (very diffusive to prevent the development of numerical oscillations) in the presence

14

of strong gradients, and the 2nd order central scheme (more dispersive and prone to produce
wiggles) where gradients are smooth enough. For computational efficiency, limitation is not
applied everywhere in the domain, but only in regions where |®; 1 — ®;| > A |P;|, with A set by
default to 1072 (this can be changed through the parameter limit_tol in em.nml, larger values
of the tolerance leading to less overall limitation).

In the situation where u;112 < 0, the flow comes from the right side of the cell and the
upwinding must be reversed:

_ 1 L.
-F;'_’_l/g - Eui—i-l/Q (I)i+l - §Ci+1/2 (1 - |M|) (q)i+2 - q)i-‘rl)) (29)

and C

i+1/2
defined by equation [27] we can finally write, for a velocity of arbitrary sign:

is now a function of r; 11 = (P41 — ®;) / (Ps12 — P;41). By denoting F;il/Z the flux

Fit1yo =05 [1+ sign (1, uis12)] F;W +0.5 [1 — sign (1, uir1/2)] Fiil/Q. (30)
The function sign (1, ui+1/2) has the sign of u;;,/2 and an absolute value equal to 1.

Method of lines: In contrast to finite volume methods where the integral formulation [23| naturally
leads to a discrete equation in both time and space, the method of lines allows the use of
distinct distretization schemes for the time derivative and advection term [I9]. This provides
more flexibility as different combinations of high-order discretization schemes for these two
terms can be employed. We must however be careful in doing so as the basic requirements
for the global scheme to remain stable and not produce over- or under-shoots (especially in
presence of discontinuities) limits the choice of possible combinations.

To discretize the advection term, some of the methods proposed above (MUSCL and QUICK)
can also be employed. The main difference between the finite-volume method and method of
lines concerns the streaming terms (involving u) that stem from the time integrals in [23| and
are therefore absent in the method of lines formulation. The equivalent MUSCL fluxes with
flux limiters thus become:

1
Fit12 = tiz12 |95 + §Ci+1/2 (®; — D;q)] . (31)

To complement the MUSCL (or QUICK) advection scheme, the time derivative should be
discretized using a method of (at least) equivalent order of accuracy, and that doesn’t generate
spurious oscillations or spurious extrema. Given these conditions, a 2nd order Runge-Kutta
method (Heun’s method) appears as a good choice [12]. This scheme can be viewed as a
predictor corrector scheme consisting in two stages:

O* = U" 4+ AtF (V") (32)
1
O = W SAL[F (VM) + F (V)] (33)
with F denoting the discrete estimates of the advective terms.

Time-step limitations: The stability of the fully discrete equations is generally assessed in terms
of the Courant-Friedrichs-Lewy (CFL) criterion that constrains y = |u| At/Az to remain below
a threshold value. For both the method of lines and finite-volume method, stability is generally

15

ensured when p =~ 0.5. Threshold values larger than 0.5 are possible, but a precise estimate
of the maximum allowed value is hard to determine in practice due to the complexity of the
problem involving 3 spatial dimensions, flux limiters, and other physical tendencies.

In MIMICA, setting ldtfir = 0 in cm.nml allows the effective time-step At to be computed
dynamically so that the maximum CFL number in the numerical domain, fi,,,., always remains
within prescribed bounds: cfl_min < pme: < cflomax, with cflmax and cfl_min defined in
cm.nml. In 2 or 3 dimensions, the maximum CFL number is calculated as:

fmaz = SUP (At max (‘AU—;J)) (34)

where sup corresponds to the absolute maximum within the entire domain, while max denotes
a local maximum over all 3 dimensions (i = {1,2,3}).

In the fully compressible case, the acoustic waves propagating at a speed ¢ = \/yp/p must be
resolved, giving 1 = (Ju| + ¢) At/Ax. Since c is generally an order of magnitude larger than |u
in most atmospheric applications, a compressible solver will typically require time steps that
are at least 10 times smaller than with the anelastic solver.

3.4 Physical parameterizations
3.4.1 Subgrid scale turbulence

Turbulence models are used to evaluate the subgrid scale (SGS) turbulent fluxes of all transported
quantities, and are denoted 7y. Typically, a simple gradient hypothesis is used to model these terms,
by analogy with molecular diffusion [36]:

ov
K
T\Il,z ha:L‘Z- (35)
for scalars and 5
Tuij = —Kn (Tacﬁuiaxj + 8?;]) (36)

for momentum. Two approaches can then be used in MIMICA to estimate the eddy diffusivities K,
and K,,.

The first approach, selected by setting setenv TKE TRUFE in start, is a 1st order closure based on
the solution of a turbulent kinetic energy (TKE) equation [36, 21]. A closed form of the SGS TKE
equation can be written:

de de 0 de g 00, e3/?

— i— =2K,,5::S;; +2— | K;\,— | — K= —Ce—. 37

ot "o, RS (ax) "By D2 z (37)
In the above equation, e is the SGS TKE, S;; = % gz% + %) is the strain tensor, and [a charac-

teristic turbulent length scale. The characteristic length scale can be defined as (in 3D):

| = min (zA,o.761 /A%,OBCQAZ (1)) , (38)

with the characteristic cutoff scale given by:

Ia = (AzAyAz)3. (39)

16

z is the altitude, x the Von Karman constant (= 0.41),C; a constant of the model (given below),
and Az (1) the size of the first model level. Using this formulation for [, turbulent mixing is limited
close to the surface and in very stable conditions where turbulence is inhibited and the size of the
turbulent eddies is small. The eddy diffusivity K, is finally obtained using simple scaling arguments:

K = Cly/e. (40)

The constants C), C. and C,, are set to 0.845, 0.845 and 0.0856 respectively. It is then usually
assumed that K} = K,,/Pr, with Pr the turbulent Prandtl number. Pr can be defined in em.nml
(pran) and a recommended value is ~ 0.4. Note that if pran is negative, turbulent mixing is only
applied up to zdec (to be defined in ¢m.nml) with Pr =pran.

The second closure is based on the Oth order Smagorinsky and Lilly approach [34] (setenv TKE
FALSFE in start). If we assume a balance between production of TKE by shear plus buoyancy and
dissipation in equation it follows that:

3/2
2K,,Si;Si; — KpnN? — Ce—=0. (41)

Rearranging the terms yields:

Ky, = (Csl)?1/2S;;Sij4/ 1 — % (42)

with Cs = 0.18. We have here introduced the Richardson number Ri = AN?/|S| to account for
convective stability. In this case, the Brunt-Vaisala frequency N? is modeled following [35] to include
changes in stability related to condensation/evaporation at the SGS level, and:

KyN? = —HL;O (W) ~ Kh%. (43)

Note that applying turbulent diffusion to microphysical quantities (mass and number concentra-

tions) as well as to aerosol concentrations is optional. This is controlled by parameter micro_dif in

cm.nml: if it is set to false, these quantities are not affected by turbulent diffusion (default is true).

Turbulent diffusion can also be switched off altogether by setting with_dif to false in em.nml (this
also turns off fluxes at the surface).

3.4.2 Surface conditions

The surface in MIMICA is treated as a solid wall upon which the vertical velocity vanishes. The first
and most basic condition enforced at the surface is thus:

w(z,y,z=0)=0. (44)

Next, exchanges of energy, moisture and momentum (this latter can be optionally turned off by
setting momsf = 0 in cm.nml) between the surface and the atmosphere due to turbulent mixing need
to be parameterized. The method adopted can be selected via isurfin cm.nml. isurfis an integer
which can take any value between 0 and 4:

0 Prescribed surface fluxes

1 Prescribed skin surface temperature (SST)

17

2 Prescribed SST with fixed drag coefficient
3 Similar to 2 but with «* defined as in [13]
4 Fixed SST, with SST computed interactively to result in prescribed average surface fluxes.

Only cases 0, 1 and 2 are described below.
Options 0 and 1 rely on Monin-Obukhov similarity theory according to which momentum and
virtual potential temperature fluxes at the ground are proportional to the friction velocity u* [36]:

uut = v = v (45)

ur =0 w'. (46)

In the simple case where surface sensible and latent heat fluxes are prescribed (isurf= 0), there is no
need to estimate 6% as 6w’ is readily given, but u* still needs to be computed to calculate the surface
momentum flux. Although u* can be set as a constant in ¢m.nml (variable ust), it must generally be
computed interactively.

The turbulent surface fluxes are now rewritten using the usual gradient hypothesis:

ou
= —K,,—, 47
u'w o (47)
with K, approximated by:
K,, = kzu*, (48)

where £ is the von Karman constant (=~ 0.41) and z is the altitude of the first velocity grid point.
Combining these relations and integrating over z yields the classical logarithmic shape of the velocity

profile inside the surface layer:
2 K |ul
nl =) = 49

20

from which wu, can be deduced. Here, 2, is a surface roughness height depending on the ground
nature. zg is set by default to zrough = 1.e —4 m in cm.nml, and must be adjusted depending on the
simulated surface type. Relation 49 remains valid as long as the surface layer remains neutral. For
stable and unstable BL, Monin-Obukhov similarity theory is used to derive relations similar to 49
This first requires the evaluation of a surface buoyancy flux which can take different forms depending
on the selected option.

wsurf = 0: Fixed surface fluxes The surface buoyancy flux is defined as:

g (SHF LHF)

V' = 0w =

+ 6900 (50)

cp v
Where SHF and LHF must be prescribed in e¢m.nml (shf0 and Ihf0 respectively). We then
define the Monin-Obukhov length scale by:

u*3

L=—

(51)

kbw'’
and deduce the friction velocity from a relation similar to |49

(2] - v =" (52)

20 u*

18

in which ¥,, (the stability function) has been introduced to account for stability /instability at
the surface. The ratio (= z/L can be viewed as a measure of surface layer stability (stable for
¢ > 0 and unstable for (< 0). ¥,, is commonly obtained from observations and depends on
the sign of (. We use here the forms proposed by Garratt [11]:

for (>0 U, (¢) = —5.3¢ (53)
for ¢ < 0 \Ilm(():2ln(1;x> +ln(1+2x2> ~ 9tan™ (x)+g and x=(1—16C)(%4)

As this was the case for the neutral boundary layer, u* can be derived from relation 52 However,
L depending directly on u*, an iterative procedure is required to obtain a converged value of u*.
The friction virtual potential temperature can then be deduced from: 6 = —%. Of course,
the applied sensible and latent heat fluxes are directly given by the prescribed SHF and LHF,
and do not need to be recomputed.

wsurf = 1: Fixed surface properties The surface buoyancy flux is now calculated from the gra-
dient between the virtual potential temperature in the first grid cell above the surface and a
skin surface virtual potential temperature:

b= ei (Oo1 — Oyshin) = Qi [(6, — TIooSST) + 0.608600 (qi — SSM)] . (55)
00 00

SST and SSM are the prescribed skin surface temperature and surface moisture (where it is
generally assumed that the near surface air is saturated) which can be prescribed in ¢m.nmi.
An initial friction potential temperature can readily be obtained under neutral conditions using;:

bl

Pryn <i> =2 (56)
<0 ge;*

with Pr; the turbulent Prandtl number defined in ¢m.nml. Under stable/unstable conditions,

we can write: o b
Pr, {ln (i) v, (g)] - gog*. (57)

20 v

The friction velocity is still estimated following ¥, doesn’t change compared to the fixed
surface fluxes case, and Wy, is given by:

for (>0 U, (¢)=—5.3¢ (58)
for (<0 W, (¢) =2in (#) and y=(1—16¢)"*. (59)
with ¢ = z/L and:
B ’LL*ZQ()()
L= ol (60)

Once again, the dependency of L on u* and 6 requires subiterations. Once a converged value
of 8 is obtained, it can be used to determine the surface latent and sensible heat fluxes.

wsurf = 2: Fixed surface drag The option isurf= 2 implies a very simple surface flux formulation
whereby friction quantities at the surface are obtained using:

u* = Cym U], (61)

19

and: o
9 — d,s

v Pr,
0,5 is the surface value of the virtual potential temperature calculated using a fixed SST (pre-
scribed in em.nml) and assuming near surface air is saturated. The drag coefficients Cy,, and
Cy.s can be prescribed in em.nml. Their default values are 1.2 x 1072 and 1.1 x 1073 respectively.
Again, sensible and latent heat fluxes can be recomputed from 6% and u*. |U| is the magnitude
of the surface winds. This latter can be limited to a minimum value equal to min_w in ¢m.nml
in order to guarantee that surface fluxes are non-zero even under quite conditions.

(01 — B,5) - (62)

3.4.3 Radiation

The radiation solver coupled to MIMICA is a version of the Fu-Liou-Gu model [9, 10, 14]. The
solver is a multiband, 4-stream radiation model that requires multiple input files and options to
operate. Running MIMICA with interactive radiation is done by setting setenv RADIA TRUEFE in
start. Because the radiative transfer model is the slowest part of all the MIMICA model, radiation
is only calculated every iradz seconds (can be modified in ¢m.nml). Note that short-wave radiation
can be turned off setting rad_sw = 0 in cm.nml.

The radiation solver works on 1D columns extending up to the top of the atmosphere. Because
MIMICA’s domain is limited in altitude, the input data must be completed by a standard atmo-
sphere above the numerical domain. Standard soundings are stored in .lay files located in the DATA
directory. The most appropriate standard atmosphere must then be renamed sounding_rad.dat to be
read by MIMICA. In addition to the standard atmosphere, the radiation solver also requires two ad-
ditional tables located in DATA containing informations used by the CKD (correlated k-distribution)
model: ckd.dat and cldwtr.dat.

In addition to these 1D soundings, surface parameters must also be provided as inputs to the
radiation solver. These parameters are: the surface albedo (alb in e¢m.nml, set by default to 0.07),
the surface skin temperature (sst in cm.nml, set by default to 295 K), and the surface emissivity
(emi in cm.nml, set by default to 0.984). To finish with, the solar zenith angle is computed at each
radiation step. The formula uses the prescribed latitude, julian day, starting time of the simulation
(UTC) and the local simulation time. All these parameters can also be set in ¢cm.nmi.

Note that in some special cases, for example in the DYCOMS and ISDAC templates, radiation
is computed as a simple function of the liquid water path only, and the full radiative transfer model
is not needed.

3.4.4 Microphysics

Two bulk microphysics schemes are readily available in MIMICA. The more advanced and complete
choice is given by the Seifert-Beheng two-moment microphysics model [30, 31] which can be selected
by setting SEIFERT TRUFE in start. When SEIFERT is FALSE, a simpler and more computationally
effective one-moment scheme developed by [13] is used.

The Seifert-Beheng (SB) scheme: In the available SB scheme, at most 6 classes of hydrometeors
are defined: cloud droplets, rain drops, ice crystals, graupel, snow particles and hail stones. The
Imicro keyword in ¢m.nml controls the number of hydrometeors modeled: Imicro = 0 deactivates
microphysics altogether (a similar effect is obtained by setting with_micro to false), Imicro =
1 considers warm cloud microphysics only (cloud droplets and rain drops), Imicro = 2 adds a
simple ice category, Imicro = 8 also includes graupel and snow particles, while with Imicro = 4,

20

all hydrometeors are considered, including hail stones. However, in the following, microphysics
level up to 3 only are described: The implemented hail microphysics is still experimental.

Each hydrometeor category is characterized by a particle mass distribution f (m) assumed to
take the form of a generalized gamma distribution:

f(m) = Aym” exp (—Am*). (63)

While both exponents v and p are typically held constant for each hydrometeor type (see table
, Ap and A must be computed to fully determine the hydrometeors’ size distributions. This
can be achieved by relating these two parameters to known moments of the gamma distribution,
typically M° and M. This yields:

o AF v+1
N:MO:/ f(m)dm:O—VH), (64)
0

and:

o AT (%)
q:Mlz/ mf(m)dm = ——F5+. (65)
0 MA 1

Combining these two equations, one can estimate Ay and A as functions of NV and g¢:

r(=) 1"
A= %% (66)
and:
Ay = Ve (67)

)

From the full knowledge of all particles’ mass distributions, all microphysical processes (phase
changes, collision-coalescence, riming...) can be calculated.

The number and mass concentrations of each hydrometeor category are obtained by solving
the following equations:

dpoN,
p(;t L4V (pouNy) = Qni+ V- (poTni) + Sn (68)
0
paotQk + V- (pougr) = Qur+ V- (po7er) + 5y (69)

with N, and g, the number and mass concentrations of particle k, Q the sum of all microphysical
contributions including collision-coalescence, phase changes and precipitation, 7 the subgrid
scale turbulent mixing terms (optional) and S possible additional sources.

In general, the rates of change due to collisions are treated by integrating the particles’ distri-
butions over a collection kernel K. For instance, the collision between particles 7 and k results

m:
—+00 —+00

-/ fj<mj>[0 i (m3) K (my,mig) dit| s, (70)
jk

ox,
ot

21

and:
94,

+o0 +oo
= [g m) | [e miy 6 g i | . (71)

jk

For warm microphysics (involving liquid water only), a simple kernel defined as a picewise
polynomial (Long’s kernel) is used:

K(m,m*) = k.(m?*+m™) (72)
K (m,m") = k.(m+m"). (73)

The first polynomial is used when the mass of the collector m is smaller than a critical mass
m. separating cloud drops and rain drops, and set to the mass of a 40 pum radius droplet (m.
is known as the auto-conversion threshold). The second one is used when the collector’s mass
is greater than m.. The constants k. and k, are given the values 9.44¢9 m3/kg2/s and 5.78
m3/kg/s respectively.

Integrating mass distributions using the above kernels leads to the exact expressions for the
rates of auto-conversion (c+c — 1), accretion (r+c¢ — r) and selfcollection (c4+c¢ — ¢ or r+r —

r):

| et i 1+ 2], -
o o o (75)
= (76)

aaq; = krer Pac (7) (78)

.~ (79

3= (50)

e e o (81)

o =0 (82)

aéf" = —k Ny gy @y, (7) (83)

o =0 (84)

22

ON, (e +2)
= —k,
ot

sC

1 g,
e 2) 9~
et D% B

where v, = 1 corresponds to the mass exponent in the mass distribution for cloud droplets. In

(85)

auto

the above, m = ¢/N is a mean mass, 7 = 1 — ﬁ is a dimensionless scaling parameter, and
d,, b, and P, are autoconversion, accretion and break-up rates defined by Seifert and Beheng

31.

For cold microphysics (involving ice particles), collisions are treated using the gravitational
kernel: .

* * *\2 *

K(D,D%) = pE* 7 (D + D) |V, =V}

. (86)

E* is an efficiency coefficient, which can be defined as the product of a collision efficiency and
a coalescence or sticking efficiency. While the traditional gravitational kernel is a function of
the particles’ size, a relationship between m and D must be provided to be able to integrate
equations and . In addition, the precipitation velocities V,, must also be computed as
functions of m. Both D and V), are usually defined as power law functions of the mass:

D = a,m’ (87)
V, = a,m” (88)

which simplifies greatly the computation of collision integrals. Default values for parameters
Gy b, a, and b, are provided in table . Note that alternative ice crystal types are available
in MIMICA including dendrites, columns, plates or rosettes, and a different set of parameter
values must be used for each different habit. Only one type of crystal can be used at a time, and
this can be selected via the ice_habit parameter in cm.nml (ice_habit is a string of characters of
length 3, equal to DEN, COL, PLA, BUL for the four crystal types mentioned previously).

In the case where a given particle k (with k standing for rain, ice, graupel, snow or hail)
collides with cloud droplets, the problem can be further simplified by assuming that cloud
droplets do not precipitate (V,, = 0) and Dy, << Dy. Special collision processes such as partial
riming (conversion of ice crystals to graupel when they collide with small cloud droplets) or
ice multiplication by the Hallett-Mossop process are also described in more details in [31]. All
interactions between hydrometeors thus parameterized in MIMICA are listed in table ?7?.

Following Pruppacher and Klett [20], the mass tendency of a given droplet of diameter D due
to evaporation/condensation is given by:

om

e/c

with 0 = ¢,/qs — 1 is the relative supersaturation and:

RwT le le !
G = —1 90
o ()] 50
es being the saturation vapor pressure over liquid water, R, the ideal gas specific constant for
water vapor, D, the diffusion coefficient for water vapor (&~ 3 x x107° m?/s), Kr the heat

conductivity (& 2.5 x 1072 Jm/s/K). The ventilation factor F, is defined as a function of the
Best number X = Sc!/3Re'/?, with F, = a, + b,X (m)” and Re = poVpD/p. The Schmidt

23

number Sc is assumed to be constant and equal to 0.7, while V,, is the drop terminal fall speed
and p is the dynamic viscosity of air (=~ 1.5 x 107° kg/m/s). All parameters appearing in F,
are assumed to be independent of hydrometeor type and a, = 0.78, b, = 0.308 and v = 1. It is
possible to switch on/off ventilation by setting lvent to true/false in em.nml (i.e F, = 1 if lvent
= .false.).

To obtain condensation/evaporation sources for the whole drop population, we then have to
integer relation over the assumed mass distribution. The final total mass tendency takes
the form:

dq

gn = 27NG(T,p) (D) F;— (91)

e/c qs

where we defined an averaged ventilation factor: F* = a* +b*X (m)"?, with m = ¢/N, and the

modified coefficients a’ and b} are given in [31]. Evaporation also decreases the number con-

centration of the considered drop population, and the corresponding rate of change is expressed
ON

as:
N . [0q
E » = Emlﬂ (E » 70) . (92)

This reduces to assuming that the mean particle mass is conserved during evaporation. Similar
relations are found for sublimation/deposition processes applied to ice crystals, graupel and
snow flakes. Note that evaporation of cloud droplets is treated as in [23]: V. is held constant
during droplet evaporation, but they all evaporate instantaneously when ¢. drops below a tiny
threshold value.

Note that condensation/evaporation of cloud droplets can alternatively be paramterized using
saturation adjustment (setenv SAT_ADJ TRUE in start). Essentially, saturation adjustment
assumes that condensation/evaporation over cloud droplets is an infinitely fast process. In
other words, in a cloudy grid box, all the vapor in excess of saturation condenses extremely fast
onto cloud particles until saturation is reached, and cloud particles will evaporate extremely
fast in subsaturated conditions until saturation is reached. In practice, saturation adjustment
is imposed diagnostically at the end of each time step following the procedure described below
(see Grabowski scheme).

Melting of ice particles is treated in a similar manner as diffusional growth, with the mass
tendency of a single particle given by:

(9m . 2 Dv Do Ds

5 =1 [KT(T—TO)FthL—lv(T—?O) F} D. (93)

melt

Fy, is a heat ventilation coefficient approximated by F,, = Le,F, with Le, ~ 0.67 the Lewis
number for water vapor, and Ty = 273.15 K is the freezing temperature. Integrating over the
particle population gives:

0Q
ot

with F' defined as previously. All the melted water is considered to be rain.

2m Dv Py Ds
= —N |Kp (T —"1Tp) Le, — — = || E (D), 94
o [0 - T ey 2 (B -) 2 () (99

melt

Precipitation is handled by adding a precipitation term integrated over the hydrometeors’ mass

distribution: .
Apo [V, (m) Tdm
0z ’

v
Qprec -

(95)

24

to the governing equations for ¢ and N (here ¥ = {q, N}). With the definition of V, as a
function of m given previously, the precipitation integrals appearing above are relatively easy
to estimate directly. Once the velocity integrals are known, the ngrec
implicitly which requires the solution of a tridiagonal system in each model column.

terms are estimated

Finally, it should be noted that all hydrometeor mass and number concentrations are appro-
priately limited at the end of each time-step to avoid negative concentrations. In practice,
limitation is applied whenever ¢ and N drop below appropriately prescribed minimum values.
The procedure is conservative in the sense that if a mass concentration becomes negative (even
slightly), the mass of water added to reach 0 kg/m? is subtracted to the other hydrometeor

concentrations.
hydrometeor QA b, y by, v i Ag (1-moment only)
cloud (c) 0.124 1/3 - - /3 1 -
rain (r) | 0.124 1/3 159 0.266 -2/3 1/3 5e5
ice (i, default) | 0.217 0.302 317 0.363 -1/3 1/3 -
graupel (g) | 8.156 0.526 27.7 0.216 -2/3 1/3 4.5¢6
snow (s) 0.168 0.323 40 0.230 1/3 1/2 1.8e8

Table 1: t Default microphysical parameters for the SB scheme and all kinds of hydrometeors. Units
are SI (kg-m-s). Note that v and u values reported here are different from the original SB scheme
for the parameterized mass distributions to be more consistent with typical size distributions. In
particular, v values were adjusted so that the main precipitating particles follow exponential size
distributions.

Single-moment SB scheme: A single-moment version of the SB scheme described above has been
implemented in MIMICA to provide a detailed description of all liquid and ice microphysics at
a lower computational cost. This model can be selected by setting SEIFERT to TRUFE in start,
and adding the option moments = 1 in cm.nml (default it 2 for the standard two-moment SB
scheme).

The single-moment SB scheme follows exactly the standard two-moment version for the pa-
rameterization of all microphysical processes. The difference between one and two moments
lies in the computation of the preexponential factor Ay appearing in the definition of the gen-
eralized gamma distribution (equation , and of hydrometeor number concentrations N. For
precipitating hydrometeors (i.e. rain, graupel and snow), while N is a prognostic variable in
the two-moment scheme and Ag is diagnosed, Ay is now fixed in the single-moment version
and N is diagnosed from ¢ and Ay. Combining equations [66] and67], and letting N being the
unknown, we find:

A= AOF(;—Q#) - (96)
and:
N = AO@)\T (97)

Note that even in the single-moment version of the SB scheme, cloud droplet and ice crys-
tal number concentrations are obtained from the selected activation and nucleation schemes.

25

Transport equations for N, and N; are not solved in the single-moment scheme, and the acti-
vation and nucleation parameterizations are used diagnostically instead of equation [97]

With A and N diagnosed from A, and ¢, all microphysical processes can be parameterized

exactly as done for the standard two-moment scheme, without any further modification.

Single-moment Grabowski scheme: In the single-moment scheme from Grabowski [13] (default
model is SEIFERT is FALSE in start), hydrometeors are divided into only two classes: pre-
cipitating and non-precipitating. The distinction between liquid and ice particles then solely
depends on the modelled temperature. The parameterization therefore requires the addition
of only two prognostic microphysical variables: ¢. and ¢,, the mass mixing ratios of non-
precipitating and precipitating particles respectively. The equations governing the evolution of
¢. and ¢, are similar to equation [69

Here, only 4 microphysical processes need to be parameterized:
1. auto-conversion: conversion from non-precipitating cloud particles to precipitating parti-
cles,
2. accretion: the collection of non-precipitating particles by precipitating particles,
3. phase changes: condensation and evaporation, or deposition and sublimation),

4. precipitation: only concerns precipitating particles.
Precipitating particles are assumed to follow a Marshall-Palmer (exponential) size distribution:

f (D) = Noexp (=AD), (98)

where Ny is fixed to 10" m™%, and) is diagnosed from g,

. [amNoF (b+ 1)}%1
T @ ’

(99)

where b, and a,, are the two parameters of the mass-size relationship, m = a,, D’ (see table

. The number concentration of precipitating particles can then be simply obtained using:
N = Ny/ .

To parameterize auto-conversion (and other processes), the partitioned concentrations of liquid
and ice are obtained based on a simple linear function of temperature: ¢ = fiq. and ¢; =

(1 — q) ge, with:
T-T,
S 100
fl T(] — jwia ()
with Ty = 273.15 K, and T; = 253.15 K (the temperature below which the liquid and ice
fractions are 0 and 100% respectively). Auto-conversion rates calculated separately for liquid

and ice following [13] are then combined as follows:

g,
ot

= fl@auto,l + (1 - fl) Qauto,iu (101)

auto

Accretion is parameterized following a very similar method, again distinguishing between liquid
and ice particles using f; (T'). Accretion rates of non-precipitating particles by precipitating
particles is then expressed as:

Quee = 7aEND.Y,, (D) g (102)

26

with F the accretion efficiency and « the ratio of the particle’s surface area and that of a perfect
sphere of same size (see table [2). D is the diameter of a particle with mean mass m = ¢/N,
ie. D = (q/amN)(l/bm), and N = Ny/\. The precipitation velocity is expressed as a power
of the particles’ size: V, = a,D% . Again, once the accretion rates have been calculated for

both liquid and ice particles separately, the total accretion rate is calculated using an equation
similar to [[01

Condensation/evaporation (or deposition/sublimation) of precipitating particles is parameter-
ized using an expression similar to equation [89] used in the SB scheme. Again, phase change
rates calculated separately for ice and liquid particles are combined using the liquid fraction f;.

Phase changes for non-precipitating particles are parameterized using the saturation adjustment
approach which relies on the assumption that in-cloud water vapor relaxes instantaneously to
saturation. Let’s denote ¢ and ¢ the cloud water and vapor concentrations at time ¢", before
adjustment, and ¢"™! and ¢"! the same quantities after adjustment. Knowing that ¢; = ¢, +q.,
the total water content, is conserved, we can write:

@ =q —q (T, (103)

were ¢, is the saturation vapor mixing ratio calculated as a function of 7™ and p only. When
the cloud water and vapor concentrations after adjustment are known, an updated temperature
is obtained using 7" = T" + LC—:’ (g™t — ™). Because the saturation vapor mixing ratio
depends explicitly on the temperature, the adjustment procedure must be repeated until ¢,
T and ¢, converge. In practice, the problem is solved using Newton-Raphson iterations. The
final temperature, cloud water and vapor mixing ratios after adjustment are then given by the

latest solution of the iterative procedure.

Finally, the mass weighted precipitation velocity used for the gravitational settling of g, is given
by:

v LTlntb+1)

V, = a, AT 104

hydrometeor ‘ Ay by b, EF «
precip. liquid | 523.6 3 130 0.5 0.8 1
precip. ice | 0.025 2 4 025 02 0.3

Table 2: Default microphysical parameters for the Grabowski scheme and all kinds of hydrometeors.
Units are SI (kg-m-s).

Time integration: In contrast to all other physical tendencies (including turbulent diffusion, nudg-
ing, radiation and others), microphysical tendencies are computed and integrated outside of
the main time loop. The adopted split-explicit strategy gives better control on the stability
and physical significance of the numerical solution.

In short, denoting Mg the collection of all microphysical tendencies applied to a quantity P,
and Ty all other tendencies (including advection), the solution ®"™! at time ¢"™! is obtained
in two steps:

P = D" 4 AtMg (D7) (105)
P = D"+ AtTy (DY), (106)

27

where we have employed the finite-volume approach to discretize the second, advective step.

The simple two-step splitting procedure described above is theoretically only first-order ac-
curate. Second-order accuracy can be achieved easily using the so-called three-step Strang
splitting [19]:

1
= B S AEM, () (107)
O = D+ AtTy (O7) (108)

1
O = B S AIM (27). (109)

With this method, microphysical tendencies must be computed twice per time-step. This
obviously implies a certain computational overhead. Strang splitting can be selected by setting
split_mic to .true. in cm.nml.

3.4.5 Droplet activation

It is sometimes enough to assume a fixed cloud droplet number concentration which doesn’t require
any specific parameterization for activation. This is done by setting Indrop = 0 in cm.nml and
specify the desired number concentration as zn_ccn0. In most situations however, activation needs
to be modeled explicitly. This can be achieved using either a detailed representation of the aerosol
population and aerosol physics (setenv AEROSOL TRUE in start, as described in section ?7), or a
simplified parameterization as proposed by [15, [16] (setenv AEROSOL FALSE in start).

The latter relies on a log-normally distributed CCN population with mean size znc0_d and stan-
dard deviation zncO_s in cm.nml. The CCN concentration is assumed to be homogeneous across
the domain and equal to zn_ccn0. The number of activated droplets within a given grid box with
temperature 7" and water vapor mixing ratio g, is then computed as:

1

Nact == §NCCN [1 - €7"f (X)]) (110)
with: log (s0/5)
~ log(so/s

B 1.5\/§loga‘ (111)

In the above, erf is the error function, Nocy is the local CCN concentration, o is the CCN size-
distribution standard deviation, s is the local saturation ratio ¢,/qs — 1, sq is a critical saturation
ratio connected to hygroscopicity (specified as znc0-k in c¢m.nml). A detailed expression for sq is
given by [16]. Ny only represents the number of particles that can potentially be activated within
a time step. The rate at which cloud droplets are activated is thus given by:

ON., max(Nye — N, 0)

BT = A . (112)

act

The mass of activated water vapor can be computed diagnostically during the saturation adjust-
ment step (if SAT_ADJ is TRUE in start) in which case no further calculation is required. When
condensation/evaporation is treated explicitly, the subsequent growth of newly activated particles
must be taken into account to determine the total mass of vapor condensed. This is done using small
time-step iterations as explained in section [3.5.3

28

3.4.6 Ice nucleation

Three ice nucleation parameterizations are currently implemented in MIMICA. Each of these can be
selected by setting the appropriate value of lfreeze in cm.nml (from 0, to disable ice nucleation, to
3). Moreover, it is possible to only activate ice nucleation after a given time, prescribed in cm.nml
through ice_delay (in seconds), in order to allow the model to spin-up without ice. All three available
schemes are described below, from the simplest to the more complex one.

Simple relaxation model (ifreeze = 1): Ice nucleation is here calculated as a simple relaxation of
the ice number concentration towards a fixed background IN concentration [6]:

ONi| _ Ni— Ning

ot | At 7

(113)

where Ny is set in cm.nml via zn_in0. Ice nucleation is only active under case dependent
conditions. By default, nucleation is only allowed when ¢. > 1073 g.kg~! and supersaturation
over ice exceeds 5%. All newly nucleated ice crystals are assumed to have the same mass,
m; = 4.2 x 1071 kg.

Exponential model (lfreeze = 2): Ice nucleation is here parameterized as in equation m The
difference is that I Ny is not held constant anymore but depends on temperature [3]:

Nino = 117 exp [0.125 (273.15 — max (T, 233))] . (114)

Nucleation is only allowed when g. > 1077 kg/kg and T' < 267.15 K K, or if supersaturation with
respect to ice exceeds 2% and T' < 248.15 K. The nucleation rate for the ice mass concentration
is again calculated using a fixed minimum ice crystal mass of m; = 4.2 x 1071% kg.

In addition, rain freezing is allowed at this level. However, for simplicity, it is assumed that all
rain drops freeze instantaneously below 7' = 269 K.

Diehl and Wurzler parameterization (/freeze = 3) : This scheme parameterizes immersion freez-
ing as a function of temperature, aerosol nucleation efficiency, and cloud droplets volume. Ac-
cording to [4], the fraction of ice nucleating particles (INPs) forming ice at a given time is:

Ning = fe [l — exp (= JrpAt)], (115)

with At being the time-step, § = 1/q.dq./dt — a;.dT'/dt is the rate at which INPs become able
to nucleate ice (increases when new INPs are advected with liquid droplets or activated, and
when the temperature decreases), and:

Jp = VeByexp [—ay (T — Ty — ATy)]. (116)

In the above relationship, V. is the mean volume of a cloud droplet, a quantity straightforward
to estimate from ¢. and N., T, = 273.15 K, and AT} is the freezing point depression (see
[4]). Three types of INPs are considered here: dust, black carbon and bio-particles. Each
type is characterized by the couple ay-By, (defined explicitly for each INP type), as well as the
fraction fi representing the fraction of INP k in the aerosol population (defined as a fraction
of zn_cenl). Once Ny is known for each particle type, the total nucleation rate is computed
as: 5

% _ N; — Zk:l Nin,

ot B At ‘

nuc

(117)

29

Homogeneous freezing (only applied to cloud droplets, not rain) is calculated independently of
the heterogeneous nucleation model, and is added to the total freezing rate. Homogeneous freezing
is obtained from nucleation theory, and only computed below 240 K.

3.4.7 Damping, nudging and large scale tendencies

So-called sponge layers are generally imposed at the top of the numerical domain to damp gravity
waves reflecting against the top boundary [5]. Damping is achieved by adding a source term of the
form:

b — @0 (Z)

No (z,y,2,t) = —Cs (2) (118)

to the relevant governing equation (® is either the velocity, potential temperature or total water
mixing ratio). ®q is chosen to be the initial ® profile. The damping strength is characterized by the
time scale 7 which can be prescribed in cm.nml via tdamp. The altitude dependent coefficient Cy
allows a smooth transition between the base and the top of the sponge. Damping is only applied
above altitude zdamp as prescribed in ¢m.nml). In general, reasonable results are obtained when the
sponge layer occupies the upper third to upper fourth of the numerical domain. Note that the same
model can be used to implement horizontal sponge layers along lateral boundaries. In this case, the
thickness of these layers can be set with dzdamp and dydamp in em.nml.

In some cases, the simulated wind and scalar fields are nudged to a given reference state (nudging
is applied only if with-nudg = .true. in em.nml). Nudging is based on the same principle as the
damping layer described above except that Cg is now a user defined, case dependent function of
altitude, and 7 is now set via tnudg in cm.nml.

Large-scale scalar horizontal advection can be considered in a similar fashion. It is generally
modeled as a constant, case dependent source added to the scalar tendencies (only for potential
temperature and total water mixing ratio). These sources can possibly be time dependent.

Large-scale upwelling /downwelling is modelled assuming a prescribed background vertical velocity
profile wy. The background velocity can be prescribed in different ways: directly, with a constant
value w_up in cm.nml, using a constant horizontal wind divergence ddiv in c¢m.nml, in which case
wo (2) = —Dyiz, or by adding a specific wy column in the initial sounding file. Transport in the
vertical direction by wy is then computed in advective form and is added as a source term to the
relevant equation. By default, only the potential temperature field is affected by large-scale vertical
transport. Other scalars (total water content and passive tracers) can also be transported by setting
lssub = .true. in cm.nml.

3.4.8 Tracers

MIMICA offers the possibility to define and transport additional tracers for specific applications.
While the basic set of prognostic variables includes the velocity vector, potential temperature, the
total water mass concentration and microphysical variables (mass and number concentrations of
selected hydrometeors), the NSCAL (with NSCAL set in start) additional scalars will obey similar
basic governing equations (includes by default advection and turbulent diffusion), with predefined
or user-defined initial conditions, and the possibility to add specially defined sources, sinks and even
surface fluxes.
Predefined sets of additional tracers can be selected using parameter sca_set in cm.nml.

1. setting sca_set = 1, three tracers are defined to diagnose lateral entrainment/detrainment in
cumulus clouds. The three scalars are defined as so-called purity tracers and are equal to

30

0 or 1 depending on the location (in general 1 inside cloudy areas or cloudy updrafts, and
0 everywhere else). Using this option, the selected scalars are transported using the usual
governing equations, but their values are reset and recomputed at the end of each time step
from the resolved flow field. The difference between the transported and diagnosed scalar values
is used to calculate entrainment/detrainment.

2. setting sca_set = 2, a single tracer is added whose initial profile mimics that of ozone in the
tropics. No chemistry is currently implemented, but this pseudo-ozone tracer is allowed to
interact with radiation and specific nudging in the lower troposphere can be selected to model
ozone sinks in this part of the atmosphere.

It is possible for anyone interested to implement new tracers or new sets of tracers in a very simple
way. All the transport and mixing is handled by default in MIMICA, and the only thing that needs
to be done concerns defining initial conditions and possible sources and sinks. This is all done in a
single routine (scalar_source.f90), and the tracers already defined as part of the scalar sets described
above can be used as templates.

3.5 Aerosols

A bulk aerosol model is implemented in MIMICA that allows the simulation of detailed cloud-aerosol
processes using a very flexible framework. The module becomes active when AFROSOL is set to
TRUFE in start, and requires specific input parameters in cm.nml.

3.5.1 Bulk aerosol representation

In MIMICA, the aerosol population is composed of several modes (nmode0 being the number of
modes specified in c¢m.nml), each defined by a series of parameters characterizing its composition
and distribution in size.

Each aerosol mode is composed of a mixture of 4 compounds present in different fractions (to
be defined in cm.nml with aero%init%present and aero%init%frac): sulfates, black carbons, sea
salt and organics. The hygroscopicity (as defined by [25]), density and molar weight of each of
these elementary compounds are given values of {0.53,0.01,1.12,0.06}, {1840, 600, 2180, 1560} and
{98,12,58.4,104} (for sulfates, black carbons, sea salt, and organics). The mixed properties of each
aerosol mode are then calculated using volume weighted averages of the properties of each element
constituting individual particles. For example, mixed hygroscopicity is calculated following [25]:

4

K= ZEklik, (119)
k

with s the mixed aerosol hygroscopicity, sy the kth element hygroscopicity, and €, = V5 /Vy, with
Va the volume of the dry particle and V;j, the volume occupied by component k alone. Ignoring
all physical and chemical processes affecting the composition of the dry aerosols, x is assumed to
remain constant for all aerosol modes during the course of a simulation, and is only determined by
the initial composition assigned to each mode. The latter assumption simplifies greatly the problem
of characterizing the properties of the whole aerosol population

Concerning the size representation, each mode k is assigned a log-normal distribution of the form
[32]:

2
£ (1) = dny, _(logr —logry i)] | (120)

ng
= ex
dr /2nrlogoy P [2log? oy,

31

with o, the geometric standard deviation, and 7, the geometric mean radius of aerosol mode k.
The distribution is initialized by giving the standard deviation via aeroi%size %sigma and the initial
geometric radius via aeroi%size %rmean in cm.nml. While oy, is held constant during the simulation,
the geometric mean radius r, is allowed to vary. It can be deduced for each mode from the knowledge
of the number and mass concentrations (ng and xj) which are directly related to the Oth and 3rd
moments of the aerosol size distribution.

By definition of the log-normal distribution, we can write:

+o0o
ng = fr (r)dr, (121)
0
and:
4 +eo 3
Tk = 3Pk r° fi (1) dr, (122)
0

with pp being the density of aerosol mode k. By definition of the moment generating function of a
log-normal distribution, z; can then be expressed as:

4 9
Ty = §7rpkr§’7knk exp <§ log? ak) . (123)

Solving transport equations for both n; and zj, the geometric mean radius r, can thus be diagnosed
using equation [123] Similarly, while the initial mode number concentration is prescribed in em.nml
via aeroi%n0, the initial mass concentration is recomputed from the knowledge of the initial mode
geometric size and standard deviation.

Without further details, the equations for n; and xj solved in MIMICA read:

Pk

E + V- (punk) = .An,k + Rk + Lok (124)
% + V- (puxk) = -AxJ(; + nyk + Ia:,k- (125)

In order to keep track of the total aerosol population, an equation for the mass of activated particles,
ay, is also solved for each mode k:

% 4+ V- (puay) = —Aup — Rose — Top + Po (126)

where A, i (resp. Ay k), Rk (resp. Rux), and Z, . (resp. Z,) represent aerosol number (resp. mass)
concentration tendencies due to activation, regeneration (the former acting as a sink and the latter
as a source of aerosol particles) and impaction scavenging. Py represents precipitation scavenging of
activated aerosol particles.

Four different levels of complexity are available in MIMICA, controlled by laero in cm.nml. laero =
-1 maintains the number and mass aerosol concentrations constant everywhere, laero = 0 introduces
advection and removal by activation, laero = I adds precipitation scavenging and regeneration, while
with laero = 2 the all physical processes including impaction scavenging are treated.

3.5.2 Activation

A commonly used approximation of the equilibrium saturation s over a solution droplet of radius r
that provides reasonably good results over a wide range of k values is given by [32]:

s(r) = 4 5_7“2 (127)

T r3

32

with A = 2‘7;/ j;‘;{w, R the universal gas constant, o/, the surface tension at the solution/air interface,

M, and p,, the molecular weight and density of water, and T" the air temperature. Using the above
equation, the critical saturation ratio and critical wet particle size can be found easily from the
condition ds/dr = 0. This yields:

(128)

Now, due to the simple relationship between r; and the critical saturation s., the activation spectrum
can be calculated [16, [7]:

dny, n (log s — log sc7k)2 (129)
= exp |— ,
ds V2mslog 02/2 2log? 02/2

Further assuming that the particles that activate under a certain model supersaturation s are
those for which s, < s, we can estimate the number of activated particles as:

i log s — log S¢.x
Nactkh = = |1 —erf | —=—=— || 130
t 9 [< \/§log 02/2)] ()

where 14 1 is the number of activating particles in mode k. We then can simply define:

A = —n"A—Ctt”“. (131)
Note that if kinetic growth of activated droplets is explicitly accounted for, and equation for s is
solved with a small time-step A7 and is therefore estimated explicitly. s is otherwise chosen as the
maximum between the modeled saturation at the beginning of the time-step and at the end (s at
time t"*! is then guessed by integrating equation explicitly).
To determine the mass of activated particles, we simply note that the aerosol mass distribution
can be deduced from equation [120] and reads:

dny, ny [_ (logm — log mg7k)2] (132)

= ex
dm \/27my log o, i 210g” ok

with mg; = 4/37Tpkr§’7k the mass of a particle of size r, (all particles are assumed to be spherical)
and o, 1 = op. The total mass of particles larger than Taet,k; can thus be obtained following:

400 d
Tacty = / mﬂdm (133)
Mect,k dm

ng 1.,) [<logmactk—logmgk—logQJmk)}
= —mgrexp | =log” o, 1—er : ’ : : 134
mgaexp (51087 o) |1 erf N i (131)

It then follows that: -
act,k

ok = — — 135

Note that when laero = -1, the potential number of activated particles is calculated as described
above, but since the overall aerosol concentration is maintained constant, the number of activated
droplets is determined based on a method similar to equationm (see simple CCN activation method,

section [3.4.5]).

33

3.5.3 Kinetic growth

In the more general case (that is for SAT_ADJ FALSE in start), newly activated particles will imme-
diately grow within updrafts where supersaturated conditions prevail. Growth by vapor condensation
is, in this case, limited by a balance between the increase of supersaturation through adiabatic cool-
ing and its decrease through condensation. This balance can be explicitly accounted for using small
time-step integration when lkin is .true. in cm.nml. By default (i.e. in the absence of explicit ki-
netic growth), the mass of newly activated droplets is set to a constant value of 4.19 x 10~° kg
(corresponding to a droplet of radius 1 pm).
Kinetic growth of activated particles can be described by the following equations [24] [7]:

%: (s+1) <a—’y%), (136)

with dg/dt the total condensation rate over all activated particles, and:

L, g
- _ 1
@ RoT?” RIT" (137)
1 L2
- v 138

In the above, w is the updraft velocity and ~ —wdT/0z+ Qg is the sum of adiabatic and radiative
cooling contributions. As s continues to increase over a time step (ds/dt > 0), further particles can
activate and subsequently grow. To treat this continuous activation/growth process, a split-explicit
method is employed where the problem is integrated using a small time-step (A7) at the moment
fixed to 0.5 s.

First, activation is calculated at the beginning of the time-step (at time ") giving a first estimate
of nge r corresponding to a supersaturation ratio s". Equation @ is then solved to estimate s at
time t" + A7, with:

dq Nmode
i 4G (5 — Seq) ; Tw,kNact k> (139)

with s, the equilibrium saturation over a particle of size r,, (given by equation , G is given by
equation |90| (the dependence of diffusivity on particle size is not considered here) and 7, , is the mean
wet radius of particles just activated. Just like we did with the mean mass of activated particles, it
can be shown that the particles wet size distribution follows:

dny, N exp [_ (10g T i — 108 Tug 1)’ (140)

dry, V 271y log oy g, 210g2 Ork

/

with 7, the critical wet radius for a particle of size 7,5 and o, = 02 2 The total mass of particles

larger than 7, 5 can thus be obtained following:

10g 740 1, —10g Fug £ —log2 0,
7 —r ex llogQ o |:1 B e/rf < \/ilogifr,k >i| (141)
w,k wg,k p 9 rk [1 o 67“f <logr,j/c£’k—logrg,k>]
2log oy,

Similarly, the total amount of condensed water vapor as well as the temperature can be updated at
time t" + ArT.

34

If ds/dt is positive, supersaturation increases, and the number of particles that activate when
going from s = s" to s = s" + Ards/dt is recomputed. 7getk, Tacer can thus be updated as well
as the mass of condensed water and, finally, the supersaturation. It should be noted that in the
algorithm implemented, the distinction is made between the smaller particles that form at each
small time-steps and those that were formed previously but continue to grow by condensation.

The procedure is repeated over subsequent small time-steps until time ¢"*!. Again, New particles
activate and already formed particles grow as long as ds/dt > 0, but these existing particles will also
evaporate if ds/dt < 0.

3.5.4 Regeneration
In practice, regeneration R, for each aerosol mode is evaluated following:

N r0 dN
Zj:h%d d_t] evap/sublim
Rx,k = —a Z hpdro N y (142)
j=1 j
with IV; the number concentration of hydrometeors of type j, and dN;/ dt|emp Jsublim the evapora-
tion/sublimation rates of hydrometeor type j as computed by the selected microphysics scheme
(negative by definition).
The number of regenerated aerosols is calculated by assuming that the mean mass of regenerated
particles is equal to the mean mass of the original aerosol population:

4 9
my = gﬂ'pk?";k exp (5 1Og2 O'k) s (143)
that is: »
R = —2& (144)
my

3.5.5 Precipitation scavenging

Precipitation scavenging of activated particles is estimated as follows:

ZNhydro 8pNij,j
Pok = @ =2, (145)
Zj:ij Nj
where V), ; is the terminal fall speed of hydrometeors in category j, and the summation is performed
over all hydrometeor categories.

3.5.6 Impaction scavenging

As they fall, hydrometeors collect aerosol particles. The rate at which aerosol particles in mode k
are collected by all hydrometeors can be expressed as:

In,k = —Ng Z Ij,Iw (146)

with I, the reduced collection rate between hydromteteor j and particle k:

M —

Iy = 4Ej,kD2-V N, (147)

7 "PsJ

35

with DJZV;,J the mean product of the hydrometeor size squared and precipitation velocity (which
stems from the integration over the hydrometeor size distribution), and Ej,k the mean impaction
efficiency between the hydrometeor and aerosol particles. Integrating impaction scavenging alone
over a time-step, we can rewrite the impaction rates implicitly as [1]:

1 —exp (—At Zj-v:hi’d”’ Ij7k>
Lok =— A7 : (148)
A similar expression is obtained for Z, j.
Impaction efficiencies are parameterized following for example [I] and include contributions from
Brownian motions, interception and inertial impaction. For simplicity, the average efficiencies Ej,k
are calculated using mean hydrometeor and aerosol properties (mean mass, size and precipitation

velocities).

3.6 Lagrangian particle tracking

MIMICA offers the possibility to seed the numerical domain with multiple particles, and subsequently
track their trajectories over the course of the simulation using a lagrangian framework. Lagrangian
particle tracking is turned on by setting LAGRANGE TRUE in start, while NPART indicates the
number of particles to intitialize.

At the beginning, the position of each particle is chosen randomly within a prescribed part of the
domain (to be defined with lag_init in cm.nml). Particles are then allowed to follow the simulated
flow by solving the following lagrangian equation:

dxy,
dt
where x;, indicates the position in cartesian coordinates of particle k, u, is the flow velocity in-
terpolated at location x; and uj, is a turbulent contribution. This latter is calculated as follows:

=u; + u;ca (149)

u), =1y, ge; (150)
with e}, being the turbulent kinetic energy interpolated at parcel k’s location and ry is a vector of 3
random numbers normally distributed between 0 and 1.

While the basic principles and equations are relatively simple, one of the difficulties of the track-
ing algorithm resides in the many interpolations needed to estimate flow properties at the parcels
locations. Interpolations are required to estimate particle velocities appearing in equation but
also to estimate basic flow properties (in particular thermodynamic properties) for diagnostic and
output purposes. For example, the algorithm gives access to the values of temperature, moisture,
buoyancy, relative humidity, as well as several tendencies at the location of each seeded particle. In
the present algorithm, no calculation is performed to estimate particle properties. These are always
interpolated from the eulerian model solution.

Two interpolation procedures are currently available and accessible via lag_ord in cm.nml. The
first method relies on the application of a three-dimensional Gaussian filter centered at the location
of each parcel. The filter has a radius of =~ 0.8Axz. The second method relies on simple linear
interpolations between neighbouring grid points values.

It should be noted finally that the algorithm is fully parallelized. Initially, each particle is assigned
to the sub-domain to which it belongs. Solving equation for all particles can thus be done in
parallel. Later, as particles cross sub-domain boundaries, they are also moved from one processor to
another.

36

4 MIMICA inputs

4.1 start

start is a csh script piloting the compilation of MIMICA. Compilation is simply accomplished by
typing

./start

in your local working directory. start also contains a series of configuration options, controlling,
for example, the selection of various physical modules, the size of the domain or MPI decomposi-
tion. Each option can be activated (resp. deactivated) by uncommenting setenv XXXXX TRUFE
(resp. setenv XXXXX FALSE), with XXXXX being the desired option keyword. Note that MIM-
ICA must be recompiled entirely after changing anything in start by first cleaning all the directory
(make clean). A compile.log file is created locally in your working directory each time start is exe-
cuted. This file contains a summary of all the configuration options used to create the last MIMICA
executable.

A description of all options currently available in start is provided below.

MIMICA, INCDIR, DATADIR, NETCDF 1t is important here to replace whatever is defined by
default by the paths to your own MIMICA directory, INCLUDE directory (can be replaced by
$MIMICA /INCLUDE), DATA directory (can be replaced by SMIMICA/DATA), and finally
the path to the netCDF repository you want to compile MIMICA with.

CMPLER (default: commented) Setting setenv CMPLER INTEL enables compilation with the
intel ifort compiler. The default compiler (if CMPLER is left commented) is the gfortran
compiler.

DEBUG (default: setenv DEBUG FALSE) Setting setenv DEBUG TRUE turns on all recommended
debug options. The MIMICA executable thus created is usually larger than an optimized one,
and its execution is about 2 to 10 times slower. It is however strongly recommended to use the
DEBUG configuration and run MIMICA with debug options when problems possibly related
to coding errors is encountered at run time.

PROF (default: setenv PROF FALSE) Setting setenv PROF TRUEFE turns on profiling (with gprof)
options. The MIMICA executable thus created can be run to estimate the time spent in each
routine at run time. This option should be used for optimization purposes.

SPMD (default: setenv SPMD FALSE) Setting setenv SPMD TRUE allows parallelization with
MPI. MIMICA is then compiled using the appropriate MPI wrapper, and must be executed
using commands like mpirun or mpiexec.

M3D (default: setenv M3D FALSE) Setting setenv M3D TRUE will compile MIMICA for a three-

dimensional simulation.

DECOMP_2D (default: setenv DECOMP_2D FALSE) This option is only relevant when SPMD
and M3D are both set to TRUFE (three-dimensional parallel simulation compiled with MPI).
Setting setenv DECOMP_2D TRUE enables a two-dimensional decomposition of the three-
dimensional domain. When set to FALSE (1D decomposition, default), subdomains are cre-
ated by splitting the numerical domain NP times along the x direction (/NP is here the total

37

number of processors). However, when setenv DECOMP_2D TRUE, the numerical is split
NPX times along x, and NPY times along y. If the numerical domain is big enough, a two-
dimensional decomposition is generally more computationally efficient than a one-dimensional
decomposition.

NPX and NPY NPX and NPY correspond to the number of subdivisions of the numerical domain
along dimensions x and y respectively. If setenv DECOMP_2D TRUEFE, the total number of
subdomains (also corresponding to the number of processors to be used) is given by NP =
NPX x NPY. Otherwise, in a 1D decomposition case, NP = NPX, and NPX is redefined as
the product of NPX and NPY (although it is recommended to set NPY = 1 in this situation).

NPART and NSCAL (default: 0) NPART is the number of lagrangian parcels initialized in the
numerical domain (if LAGRANGE TRUE). Similarly, NSCAL is the number of additional
tracers to be transported (predefined sets of tracers can be selected in ¢m.nml, but users can
also code their own additional tracers).

FINE (default: setenv FINE FALSE) If setenv FINE TRUE, a stretched grid will be used in the
vertical dimension. The type of grid stretching used depends on the casename in cm.nml.

NESTING (default: setenv NESTING FALSE) Setting setenv NESTING TRUE allows nested sim-

ulations (very very experimental).

CHANNEL (default: setenv CHANNEL FALSE) Enables channel like configurations with free slip
boundary conditions along Y axis instead of periodicity (only in 3D). Typically used to simulate
the tropical atmosphere centered on the equator.

PARALLEL_OUT (default: setenv PARALLEL_OUT FALSE) Setting setenv PARALLEL_OUT TRUE
will create parallel outputs: there will be one netCDF file per processor or subdomain (i.e. NP
full output files). This option can be interesting if outputting the full 3D domain in very large
simulations is absolutely necessary (the amount of data that can be written at once in netCDF
files is indeed limited). In general, it is however not recommended to output such large datasets
altogether.

MEANDATA (default: setenv MEANDATA FALSE) With setenv MEANDATA TRUE, temporally
averaged data are output instead of instantaneous ones. The averaging frequency is defined in
cm.nml with iav.

RADIA (default: setenv RADIA FALSE) Setting setenv RADIA TRUE allows the use of the in-
teractive radiative transfer model. If FALSE, radiation is either completely turned off, or a
simplified representation of cloud related long-wave cooling is used (case dependent option).

CHEM (default: setenv CHEM FALSE) This option allows MIMICA’s chemistry module. The
module has not been revised in a while and it is currently not recommended to enable it.

AEROSOL (default: setenv AEROSOL FALSE) Setting setenv AEROSOL TRUE enables MIM-
ICA’s aerosol module. If set to FALSE, a single bulk CCN population will be used for droplet
activation. Options for the aerosol parameterization (number of aerosol modes, initial com-
positions, concentrations and size distributions) must be set in ¢m.nml under cm_aero, while
parameter [aero controls the model’s level of complexity (i.e. whether regeneration, scavenging,
etc must be included).

38

TKE (default: setenv TKE FALSE) With setenv TKE TRUE, turbulent mixing is parameterized
using the 1.5th order scheme with prognostic turbulent kinetic energy. If FALSE (default),
turbulent viscosity is calculated using the standard Smagorinsky-Lilly model.

LAGRANGE (default: setenv LAGRANGE FALSE) Setting setenv LAGRANGE TRUE enables
lagrangian parcel tracking. The number of tracked parcels is set by NPART, and their initial
location is either prescribed in an external file (parcels.dat, which must be present in the
simulation’s directory) or drawn randomly inside the numerical domain (if no parcel file is
present). Options for the tracking algorithm must be set in cm.nml under c¢m_lag. Setting

LAGRANGE TRUEF also allows all parcel related outputs.

ISENTROPIC (default: setenv ISENTROPIC TRUE) The isentropic solver (setenv ISENTROPIC
TRUE) uses potential temperature as the default conserved energy quantity (as described in
this document). When ISENTROPIC is set to TRUE, potential temperature is replaced with
Moist Static Energy, a quantity directly related to enthalpy and therefore to the first law of
thermodynamics.

ANELASTIC (default: setenv ANELASTIC TRUE) The anelastic solver (setenv ANELASTIC TRUE)
is used to efficiently filter out acoustic waves. In this situation, numerical stability can be
achieved at larger time-steps. In this solver, the density is assumed to be time independent and
to vary only with altitude. The continuity equation is therefore used as a mere constraint on
the velocity field. The alternative, setenv ANELASTIC FALSE, solves the fully compressible
set of equations, including an explicit continuity equation. The solver relies on a time-split
approach where all terms connected to acoustic perturbations are integrated using a smaller
time-step.

CONSERVATIVE (default: setenv CONSERVATIVE TRUE) With setenv CONSERVATIVE TRUE,
all equations are cast and solved in conservative form. As its name says, the option allows to
conserve mass and energy to machine precision. When the option is set to FALSE, all equations
are solved in advective form.

ADV_SPLIT (default: setenv ADV_SPLIT FALSE) When the option is set to TRUE, advection in
all 3 cartesian directions (X, Y, Z) is performed one after the other. For example, a variable W
is first advected along X to produce an intermediate solution W', ¥! is then advected along Y
to give U2, and ¥? is finally advected along Z. When FALSE (default) advection is performed
simultaneously along each direction.

ADV_CROW (default: setenv ADV_.CROW FALSE) When TRUE, the alternative 4th or 3rd order
Crowley scheme is used for momentum advection. This is a high-order extension of the classical
Lax-Wendroff scheme.

RK (default: setenv RK FALSE) When TRUE, the 2nd order Runge-Kutta time integration scheme
is employed.

SAT_ADJ (default: setenv SAT_ADJ TRUE) Saturation adjustment is used to calculate cloud droplet
evaporation/condensation when set to TRUE. Phase changes involving cloud droplets are
treated explicitly otherwise, using, by default, a semi-analytical method.

39

SEIFERT (default: setenv SEIFERT TRUE) The option enables the two-moment bulk microphysics
scheme as described by Seifert and Beheng. By default, the scheme includes 5 types of hy-
drometeors for which both the mass and number concentrations are transported. The level of
complexity of the scheme can be modified through various ¢m.nml parameters. When FALSE,
the simple one-moment scheme from Grabowski is used.

NUC_CNT (default: setenv NUC_CNT FALSE) Turns on ice nucleation based on classical nucle-

ation theory and a detailed description of the ice nuclei population.

4.2 cm.nml

cm.nml is a namelist file containing the most important options and parameters required to run
MIMICA. The namelist is organized in 10 "sections”:

cm_run contains general options related to time integration and the simulation period
cm_init contains options related model initialization

cm_grid contains options related to the grid and numerical domain

cm_out contains options related to model outputs

cm_num contains options related to the model’s numerical schemes

cm_phys contains options related to physical models

cm_bc contains options related to boundary and surface conditions

cm_micro contains options specific to the microphysics schemes

cm_lag contains options specific to lagrangian particle tracking

cm_aero contains options specific to lagrangian particle tracking

Default values for all the parameters contained in c¢m.nml are defined in INCLUDE/default.h. If an
option is not present in your local e¢m.nml file, the default value is applied automatically. MIMICA
does not need to be recompiled when an option is modified in em.nml.

4.2.1 cm_run

dt0 (default: dt0 = 1) dt0is the initial/default model time step in seconds. Unless specified other-
wise (see ldtfiz), dt0 is used to compute the first time step but is adjusted automatically later
on based on the CFL stability criterion.

ldtfix (default: Ildtfix = 0) If ldtfiz is set to 0 (default), the time step is adjusted automatically
during the course of the simulation to satisfy the CFL stability criterion. If ldtfiz is set to 1,
the time step is held constant and equal to dt0 during the entire simulation.

limit_ts (default: limit_ts = 20 limit_ts is the ration between the default time step dt0 and the
minimum time step allowed during the simulation: after adjustment, the time step cannot
become smaller than dt0/limit_ts. If it does, the simulation stops with the following error
message: "ERROR: Time-step too small’.

40

tstart (default: tstart = 0) tstart is the time at initialization.

tstop (default: tstop = 1) tstop is the simulation end time in seconds. For example, if tstart = 0
and tstop = 86400, the simulated period will be exactly 1 day.

ntau (default: ntau = 30) Number of small time-steps in split-explicit method employed by fully
compressible solver (only relevant with ANELASTIC FALSE).

ldebug (default: Ildebug = .false.) When true, information on code execution are dumped at run
time in c¢m.prt. Typically informs the user when the code enters and leaves specific routines.
Useful to know where the code crashes in case of problems.

new_run (default: new_run = .true.) Simulation starts at time 0 when true. Simulation restarts
from state dumped in restart.dat when false. Needed to restart from or continue a previous
run.

nest_run (default: nest_run = .false.) Experimental. Allows grid nesting when true: data stored
in nest file are used as initial and boundary conditions.
4.2.2 cm_oinit

casename (default: casename = 'none’) Allows the specification of predefined model configura-
tions. When an existing case name is given, corresponding initial conditions are read from
a .h file, and potential case specific model settings are automatically activated (including spe-
cific grid layouts, radiative cooling approximations, sources and sinks...).

psurf (default: psurf = 101600.) Surface pressure (in Pa). This is considered a constant.

dpt (default: dpt = 1.e-4) Magnitude of initial potential temperature perturbations applied up to
kpert. Perturbations are drawn from a normal distribution. Often required to speed up model
spin-up.

dqu (default: dgv = 0.) Magnitude of initial water vapor mixing ratio perturbations applied up to
kpert. Perturbations are drawn from a normal distribution.

dw (default: dw = 0.) Magnitude of initial vertical velocity perturbations applied up to kpert. Per-
turbations are drawn from a normal distribution.

sca_set (default: sca_set =) Selects a predefined set of passive tracers. The option automatically
turns on specific sources, sinks and possible reinitialization procedures corresponding to the
selected tracers. Current possibilities include:

e (: No predefined tracer.

e 1: Three tracers are initialized to diagnose convective clouds (inside cloud cores, in the
environment and inside cloud shells).

e 2: A single tracer representative of atmospheric ozone.

41

kpert (default: kpert = 20) Vertical level up to which random perturbations are applied (all per-
turbations are set to 0 above).

J—day (default: j_day = 67) Julian day at the start of the simulation (integer).

ctr_lat (default: ctr_lat = 0.) Latitude in degrees. Corresponds roughly to the position at the cen-
ter of the domain.

t_local (default: t_local = 0.) Local time (UST, in hours) at initialisation.

file_init (default: file_init = ’“initial.dat’) Name of the file containing initial soundings (stored in
INCLUDE).

file_rest (default: file_rest = ’restart.dat’) Name of restart file that will be read if new_run is false,
and written every ires time steps. The file is by default located in QUTPUT.

4.2.3 cm_grid

dz (default: dz = 50.) Cell size in X direction (in m).

dy (default: dy = 50.) Cell size in Y direction (in m).

dz (default: dz = 20.) Cell size in Z direction (in m). This is not a constant, rather a reference
value. The true vertical cell size may depend on altitude and is generally case dependent.

gridfile (default: gridfile = 'none’) Name of a file containing the vertical levels used to generate
the numerical grid. The file must contain a single column of sorted altitudes corresponding to
the altitudes at cell centers. The file must be located in your local working directory.

zc_nest, yc_nest (default: xc_nest = yc_nest = 0) Experimental. Defines the position in X and Y
of the center of the nested grid.

lz_nest, ly_nest (default: lz_nest = ly_nest = () Experimental. Length of nested mesh along X and
Y.

21, 22 (default: z1 = 500., 22 = 900) Particular altitudes used for grid refinement. Depending on
the type of refinement selected (with one or two layers of refinement), the two parameters may
not be used.

ztop (default: ztop = 1750.) Altitude at the top of the domain. Used by certain grid refinement
methods.

sratio (default: sratio = 1.) Factor used by certain grid refinement methods to define the size of
the smallest vertical grid cells as z,,;, = sratio X dz. Must vary between 0 and 1.

zdamp (default: zdamp = 1500.) Altitude where the damping layer starts.

dz_damp, dy_damp (default: dr_damp = dy-damp = 0.) Define the thickness of damping layers im-
posed along the lateral boundaries in X and Y. May be used to simulate pseudo-open domains.

tdamp (default: tdamp = 300.) Relaxation time scale imposed in the sponge layer.

tnudg (default: tnudg = 21600.) Nudging time scale used to nudge prognostic quantities across the
domain. This is a reference value since nudging is often corrected by an altitude dependent
factor.

42

4.2.4 cm_out

no_out (default: no_out = .false.) When true, the full 3D (if M3D is TRUE in start) or 2D data is
not output. It is possible to output

iaz (default: iax = 120) If no_out = .false., output frequency of full 3D or 2D data in seconds. If
no_out = .true. the frequency applies to the slices output.

its (default: its = 200) Output frequency of time-series data (file T_S) in seconds.

ipro (default: ipro = 300) Output frequency of one-dimensional profiles (files profiles.nc) in sec-
onds.

ires (default: ires = 300) Output frequency of restart file (restart.dat) in seconds.

inest (default: inest = 0) Output frequency in seconds of nesting file used to restart a nested run
(file nesting.dat).

iav (default: iav = 120) Reset frequency of temporal averages (when MEANDATA is TRUFE in
start).

minmaz (default: minmaz = .false.) When true, min and max values of relevant prognostic quan-
tities are output at the end of each time-step in cm.prt.

2bl, ztrop (default: 2bl = ztrop = () Height of boundary layer and tropopause respectively. Used
to compute certain diagnostics.

kout (default: kout = 0) When larger than 0, writes full 3D (if M3D is TRUFE in start) or 2D data
only below vertical level kout.

nslicez, nslicey, nslicez (default: nslicex = nslicey = nslicez = 0) Number of slices output along di-
rections X, Y and Z. A maximum of 15 slices can be created along each direction. Slice positions
are specified as follows.

slicex_io, slicey_io, slicez_io (default: slicez_io = slicey_io = slicez_io = (.) One-dimensional arrays
of length 15. Allows the specification of the position of output slices along dimensions X, Y,
7. Must be specified as a list of real numbers separated by comas.

allres (default: all_res = .false.) When true, all restart files are stored separately with an extension
corresponding to their respective output times. In the default case, restart.dat is overwritten
each time model data is dumped for restart.

ts_out (default: ts_out = ’stratus’) Type of time series file dumped. Three choices possible: ’stra-
tus’, ’cumulus’, 'deep’. Each possibility corresponds to a predefined set of scalars output in
T_S relevant to the selected cloud type.

out_surf (default: out_surf = .false.) Enables the calculation and output of surface related quanti-
ties (including surface fluxes, surface rain rates) as well as other two-dimensional diagnostics
(including LWP, IWP and other column integrated quantities). nslicez must be larger than 0.
All surface variables will then be dumped to all Z slices output.

out_hov (default: out_hov = .false.) Enables the creation of a hovméller type of output.

43

out_yav (default: out_yav = .false.) Enables the creation of two-dimensional slices in the X-Z plane,
averaged along the Y dimension. Useful in long channel configurations.

spec_diag (default: spec_diag = .false.) Enables the calculation of advanced diagnostics including
turbulence, cloud and thermodynamic diagnostics. This must be turned on to output quantities
such as resolved and subgrid scale vertical fluxes, column integrated quantities (such as LWP)
or hydrometeor sizes.

file_output (default: file_output = 'mimica.nc’) Name of main netCDF output (specified with .nc
extension).

4.2.5 cm_num

scal_adv (default: scal_adv = 'muscl’) Selects the scalar advection scheme. Possible choices cur-
rently implemented include: 'muscl’, 'quick’, ’lw’ and 'ppm’.

limit (default: limit = .true.) Enables flux limitation for scalar advection when true.

lim_tol (default: lim_tol = 1.e-7) Relative tolerance for the application of flux limiters: for limita-
tion to be applied, the ratio between the difference of two successive grid point scalar values
and the local scalar value must be larger than lim_tol.

imp_buoy (default: imp_buoy = .true.) Buoyancy is treated implicitly in the vertical momentum
equation when true. May help with under-resolved gravity waves.

split_mic (default: split-mic = 0) Three possible choices: when 0, microphysics tendencies are ag-
gregated and added to the total scalar tendencies, when 1, microphysics tendencies are cal-
culated after solving for advection and mixing, when 2, a Strang splitting strategy is applied
(microphysics tendencies are integrated over half a time step, then advection over a full time-
step, and finally microphysics again over anothe half time-step).

mome_ord (default: mom_ord = 8) Order of momentum advection scheme. The stable, upwind bi-
ased 3rd order finite-difference scheme is the default.

diff—ord (default: diff ord = 2) Order of second order spatial derivatives: 2 or 3.

p-mcons (default: p_mcons = .false.) The pressure correction calculated by the anelastic solver is
always determined within a constant. When true, p_mcons determines the constant of integra-
tion such that the total energy in the domain is conserved (the constant is otherwise calculated
such that pressure perturbations average to 0 everywhere).

nusbp (default: nsubp = 1) Number of times the pressure correction is calculated when ANELAS-
TIC is TRUFE in start. A higher number of iterations leads to a more accurate velocity field
(momentum divergence tends to 0) but is computationally more expensive.

cflmin, cflLmaz (default: cflmin = 0.4, cflLmaz = 0.5) When Ildtfix = 0, the time-step is dynam-
ically updated over the course of a simulation such that CFL always remains within these
prescribed bounds.

adiv (default: adiv = 0.01) Divergence damping coefficient. Helps damping acoustic waves in the
fully compressible solver and gravity waves in the anelastic solver.

44

4.2.6 cm_bc

bel(1-6) (default: bel(1-6) = (‘per’,’per’, ’per’, per’, 'nnf’, 'nnf’)) Type of boundary conditions ap-
plied along X (left and right), Y (left and right) and Z (surface and top). ’per’ indicates
periodic conditions, 'nnf’ indicates a no normal flow condition (symmetry) and 'ope’ indicates
open boundaries (experimental).

isurf (default: isurf = 0) Type of surface conditions:

e (: fixed surface fluxes.

1: fixed surface temperature and moisture, with similarity theory.

2: fixed surface temperature and moisture, with fixed drag coefficients.

3: like 2 but follows Grabowski’s parameterization.

4: fluxes calculated based on surface properties computed to result on average in prescribed
fluxes.

shf0, Ihfo (default: shf0 = Ihf0 = 0.) Values of fixed sensible and latent heat fluxes (with isurf = 0
or 4). These are reference values as fluxes may be defined as time or space dependent functions.

scf (default: scf = 0.) Fixed surface scalar flux.

momsf (default: momsf = 0.) Momentum surface fluxes are calculated if momsf = 1. These fluxes
are set to 0 otherwise.

zrough (default: zrough = 1.e-2) Surface roughness length (constant across the domain).

ust (default: ust = 0.) if ust is different from 0., its value is used to specify the surface velocity
scale u*. It is otherwise calculated using similarity theory.

min_w (default: min_w = 0.1) Minimum velocity at the surface. This guarantees that surface
fluxes are non zero even when horizontal winds are 0 (for example after initialization).

sst, ssm (default: sst = 295., ssm = 1.) Fixed surface temperature and relative humidity. Used to
calculate surface fluxes with isurf = 1 for example.

c-dm, c_ds (default: c_dm = 1.2¢-3, c_ds = 1.1e-3) Fixed drag coefficients (for momentum and
scalars respectively) used to calculate surface fluxes with isurf = 2 and 3.

alb, emi (default: alb = 0.07, emi = 0.984) Surface albedo and emissivity used by radiative trans-
fer model.

45

4.2.7 cm_phys

with-mom (default: with-mom = .true.) Enables solving the full momentum equations. Velocity is
held constant everywhere otherwise.

with_scal (default: with_scal = .true.) Enables solving the scalar equations (including potential tem-
perature and total water mixing ratio). Velocity is held constant everywhere otherwise.

with_dif (default: with_dif = .true.) Enables turbulent diffusion and surface fluxes. No parameter-
ized turbulent mixing otherwise (also disables surface fluxes).

with_buoy (default: with_buoy = .true.) Enables the computation of buoyancy. The flow is not
buoyant otherwise.

with-mic (default: with-mic = .true.) Enables the computation of microphysics tendencies. When
false, hydrometeor quantities are still defined and initialized, but no microphysics is calculated.

with_adv (default: with_adv = .true.) Enables advection of all prognostic quantities. No transport
implemented otherwise.

with_rad (default: with_rad = .true.) Enables radiation.
with_cor (default: with_cor = .false.) Enables Coriolis forces.

with_lssub (default: with_lssub = .false.) When true, large scale subsidence/upwelling is also com-
puted for the total water mixing ratio and passive tracers. Only temperature is affected other-
wise.

with_nudg (default: with_nudg = .false.) Enables nudging of prognostic quantities across the do-
main (nudging strength is generally case dependent).

with_lssrc (default: with_lssrc = .false.) Enables additional, case dependent sources and sinks (gen-
erally applied to passive tracers only).

with_lsadv (default: with_lsadv = .false.) Enables large scale scalar advection. Large-scale tenden-
cies are computed as altitude and case dependent sources and sinks added to the prognostic
scalar equations.

diff-2d (default: diff 2d = .false.) When true, turbulent diffusivity is calculated independently in
the horizontal and vertical directions. Turbulent mixing is therefore different in the horizontal
and vertical.

iradz (default: iradz = 30.) Frequency (in seconds) at which the radiative transfer model is called.
Radiative tendencies are held constant between two radiation steps.

rad_sw (default: rad_sw = .true.) Enables the calculation of short-wave solar radiation. Only long-
wave radiation is included otherwise.

rad_o3 (default: rad_o3 = 0) This option controls the way ozone interacts with radiation. Three
options possible: when 0, the default background ozone sounding is used, when 1, a used
defined constant ozone sounding is used, when 2, ozone is fully interactive and treated as a

passive tracer advected around. An ozone tracer can be included easily choosing sca_set = 2
and NSCAL = 1 (in start).

46

diff (default: diff = 0.) When different from 0, defines a constant turbulent diffusion coefficient,
held constant in time and space.

pran (default: pran = 0.4) Turbulent Prandtl number, defined as the ratio between the turbulent
viscosity and turbulent diffusivity (applied to momentum and scalars respectively). pran can
be defined as a negative number in which case its absolute value is used but turbulent diffusion
is only applied up to a predefined level (see below).

zdec (default: zdec = 2000.) Defines the altitude up to which turbulent mixed is applied (only if
pran < 0.). Turbulent diffusion quickly tend to 0 above.

uOshift, vOshift (default: uOshift = vOshift = 0.) Geostrophic winds: used both to calculate Coriolis
effects and lagrangian runs (the numerical domain is advected with velocities u0shift, vOshift).

Ddiv (default: Ddiv = 0.) Horizontal wind divergence (in seconds) used to calculate large-scale
subsidence.

w_up (default: w_up = 0.) Large scale upwelling velocity used to imposed a background vertical
velocity.

csp-cp (default: csp_cp = 1) When equal to 1, constant ¢, and ¢, values are used for air. When
equal to 0, air ¢, and ¢, depend on the amount of vapor and condensed vapor.

4.2.8 cm_mic

micro_dif (default: micro_dif = .true.) When true, microphysical and aerosol variables (number
and mass concentrations) are subject to turbulent diffusion. Turbulent mixing is otherwise
ignored for these quantities.

Imicro (default: Imicro = 0) Microphysics level of complexity.

e (: no microphysics.

e 1: warm phase microphysics only.
e 2: like 1 plus pristine ice crystals.
e 3: like 2 plus graupel and snow.

e 4: like 3 plus hail.
laero (default: laero = -1) Aerosol description level of complexity.

e -1: activation only, but aerosols are not removed. The number of aerosols is overall kept
constant.

e (: advection and aerosols are removed during activation.

47

e 1: like 0 plus wet scavenging and regeneration.

e 2: like 1 plus impaction scavenging.

Indrop (default: Indrop = 0) When equal to 0, the cloud droplet number concentration is held
constant and equal to zn_ccn0. No aerosol activation is thus needed.

Ifreeze (default: Ifreeze = 0) Selection of freezing parameterization:

e 0: No freezing at all.
e 1: simple relaxation towards a constant ice crystal number concentration.
e 2: temperature dependent freezing following Cooper.

e 3: empirical parameterization following Diehl and Wurzler.

lrime (default: lrime = .true.) Allows riming. No graupel can be formed when false.
lvent (default: lvent = .true.) Enables ventilation effects during evaporation/sublimation.

dtcon (default: dtcon = 0.5) Small time-step used to solve condensation/evaporation explicitly. A
stable semi-analytic method is used otherwise when dtcon < 0.

auto_k (default: auto_k = .false.) When true, auto-conversion is computed following the simple
Kessler parameterization.

zauto (default: zauto = 2.6e-10) Seifert-Beheng auto-conversion threshold. By default, this corre-
sponds to the mass of a cloud droplet of radius 40 /mum.

qauto (default: gauto = 1.e-4) Kessler auto-conversion threshold (used with auto_k = .true.) ex-
pressed in kg/m™3.

moments (default: moments = 2) Takes values 1 or 2. Indicates the number of moments used in
Seifert-Beheng microphysics.

ice_delay (default: ice_delay = 0.) Delay (in seconds) between beginning of the simulation and first
ice initiation.

ice_habit (default: ice_habit = 'DEF’) A string of characters of length 3 indicating the default type
of ice crystals considered by the model. Many choices possible including 'DEN’ (dendrites),
'PLA’ (hexagonal plates), 'BUL’ (bullet rosettes), 'COL’ (columnar crystals)... Each type
corresponds to a predefined set of microphysical parameters, notably used to calculate mass-
size and mass-fall speed relationships.

qthres (default: gthres = 1.e-5) Threshold condensed water content used to identify cloud regions.
For diagnostic purposes only.

48

zn_cen0 (default: an_cen0 = 50.e6) Homogeneous CCN number concentration used for droplet ac-
tivation (Indrop = 1) or homogenecous cloud droplet number concentration (Indrop = 0).

zn_in0 (default: zn_in0 = 1000.) Homogeneous IN number concentration used to define the back-
ground ice crystal concentration when [freeze = 1.

znc0-d (default: zncO_-d = 1.e-7) Geometrical diameter of CCN particles. Used for activation when
AFEROSOL is FALSE in start.

zncl_s (default: zncO_s = 1.8) Standard deviation of CCN size distribution (assumed to be log-
normal). Used for activation when AEROSOL is FALSE in start.

zncO-k (default: zncO_k = 0.7) CCN hygroscopicity for activation when AEROSOL is FALSE in
start.
4.2.9 cm_aero

nmode0 (default: nmode0 = 1) Number of aerosol modes.

reg-mode (default: reg_mode = .false.) An additional mode is defined that includes only regener-
ated particles. The initial number of particles in this mode is 0.

lkin (default: lkin = .false.) Enables the kinetic growth of newly activated cloud droplets using
small time-steps of 0.2 s. The size of activated droplets is otherwise set to 1 um by default.

aero_sfc_source (default: aero_sfc_source = .false.) Enables surface sources of aerosols.

aeroi(k)%mnelem (default: aeroi(k)%nelem = 0) Number of elements constituting mode k. Varies
between 1 and 4.

aeroi(k) %init %present (default: aeroi(k)%init%present = (/.false., .false., .true., .false./)) Indicates
the presence or absence of predefined elements constituting aerosol mode k. In order, the array
indicates the presence of sulfates, black carbons, sea salt and organics.

aeroi(k) %init %frac (default: aeroi(k)%init%frac = (/0., 0., 1., 0./)) Indicates the volume fraction
of each element constituting aerosol mode k.

aeroi(k)%init%n0 (default: aeroi(k)%init%n0 = 65e6) Initial aerosol number concentration in mode
k (units are kg m™3).

aeroi(k) %size%rmean (default: aeroi(k)%size%rmean = 0.0465) Geometric mean radius of aerosols
in mode k& (in microns).

aeroi(k) %size%sigma (default: aeroi(k)%size%sigma = 1.5) Standard deviation of kth aerosol size
distribution.

49

4.2.10 cm_lag
ilag (default: ilag = 1.) Lagrangian particle output frequency expressed in seconds.
aerosol_lag (default: aerosollag = .false.) Seeds each lagrangian parcel with aerosol particles.

nlag (default: nlag = 0) When aerosol_lag is true, indicates the number of aerosol particles per
parcel. Particles are drawn from a log-normal size distributions.

mu_lag, sigma_lag (default: mu_lag = sigma_lag = 0.) Aerosol size distribution characteristics (mean
geometric radius and standard deviation) for parcel aerosols.

compos_lag (default: compos_lag = 'NaCl’) Composition of aerosol particles within each parcel (only
NaCl currently avaialble).

res_lag (default: res_lag = .true.) When true, for each particle exiting the numerical domain, a new
particle is randomly created within the domain.

lag_init (default: lag_init = 1) Method used to initialize the lagrangian particles:

e 1: Particles initialized within the boundary layer (below altitude zbl).
e 2: Particles initialized between altitudes zl1 and z[2.

e 3: Particles initialized along a single line (2D) or within a single plane (3D) located at
altitude 20l.

211, 212 (default: 21 = 212 = (.) Altitudes defining the layer where aerosol particles are initialized
(with lag_init = 2).

lag-miz (default: lag_miz = .false.) Enables the impact of turbulent mixing on lagrangian particle
trajectories.

lag_ord (default: lag ord = 1) Method of data interpolation at parcels location . When 0, a gaus-
sian filter is applied centered at parcels locations. When 1, interpolation is performed using
quadratic Lagrange polynomials (2nd order interpolation).

4.3 out.nml

Just like ¢cm.nml, out.nml is a namelist file used to enable/disable output variables. It is organized
in 4 "sections™

ou_in contains switches for all output variables included in the full 2D /3D output file and profiles

ou2d_in contains switches for surface or vertically integrated quantities (eg. surface rain rates or

LWP)
oud_in contains switches for the tendencies included in the full 2D /3D output file and profiles

pro_in contains options related to the different horizontal profiles to output

Default values for all the parameters contained in out.nml are also defined in INCLUDE/default.h.
A complete description of all out.nml options follows.

20

4.3.1 out_in

Flags under out_in allow the user to select the output variables that will be written in the complete

2D-3D output files, 2D slices, and one-dimensional profiles (see a description of all existing output
files in section [f]).

out_u, out_v, out_w (default: out_u = out_v = out_w = .true.) Outputs winds in all 3 directions
(variable names: U, V|, W). out_v is automatically false in 2D simulations.

out_p (default: out_p = .true.) Outputs the hydrostatic pressure and the pressure perturbation cal-
culated using either the anelastic or fully compressible solver (2 variables: P_tot, P_pert).

out_pt (default: out_pt = .true.) Outputs potential temperature (variable name: PT).

out_ptv (default: out_ptv = .false.) Outputs the virtual potential temperature as well as virtual
potential temperature perturbations (2 variables: PTv, PTv_pert).

out_t (default: out_t = .false.) Outputs the absolute temperature temperature (variable name: T).

out_mse (default: out_mse = .false.) Outputs the moist static energy (variable name: MSE), here
defined as:
MSE = ¢, (T = To) + Logu + (Ly = L)) Y ax+ g2, (151)
k={i,g,s}

with summation performed over all ice categories, and Ty = 273.15 K.

out_rho (default: out_rho = .false.) Outputs the density and perturbation density (2 variables:
RHO, RHO_pert).

out_sca (default: out_sca = .false.) Outputs all scalars defined with NSCAL in start (NSC AL vari-
ables: SCAX, with X the scalar number).

out_qu, out_qt, out_ql (default: out_qu = out_qt = out_ql = .false.) Outputs the water vapor, total
water and liquid water mass mixing ratios (units are kg/kg, variable names: Qv, Qt, Ql).

out_qc, out_qr, out_qi, out_qg, out_qs, out_gh (default: out_gc = out_qr = out_qi = out_qg = out_qs = out_gh
Outputs the mass number concentrations of each hydrometeor category (units are kg/kg, vari-
able names: Qc, Qr, Qi, Qg, Qs, Qh). Of course, the appropriate level of complexity must be
set (Imicro in em.nml).

out_nc, out_nr, out_ni, out_ng, out_ns, out_nh (default: out_nc = out_nr = out_ni = out_ng = out_ns = out.

Same as above with hydrometeor number concentrations (variable names: N¢, Nr, Ni, Ng, Ns;
Nh).

out_de, out_dr, out_di, out_dg, out_ds, out_dh (default: out_dc = out_dr = out_di = out_dg = out_ds = out_c
Mean hydrometeor diameters (variable names: Dc, Dr, Di, Dg, Ds, Dh). spec_diag must be
true in cm.nml.

out_z (default: out_z = .false.) Outputs modeled reflectivity (variable name: Ze). spec_diag must
be true in cm.nml.

out_prec (default: out_prec = .false.) Outputs liquid (if imicro > 0) and ice (if Imicro > 1) precip-
itation fluxes defined as: pp = pgrV,x (variable names: PREC_RAIN, PREC_ICE)

o1

out_cen, out_in (default: out_ccn = out_in = .false.) Outputs the CCN and IN concentrations (vari-
able names: CCN, IN). When NUC_CNT is TRUE in start, out_in enables the output of all
nuclei number and mass concentrations (12 variables).

out_sat (default: out_sat = .false.) Outputs relative humidities with respect to liquid and ice (2
variables: RH, RHi).

out_mf (default: out_mf = .false.) Outputs in-cloud mass flux and cloud fraction (2 variables: MFL,
CC). spec_diag must be true in cm.nmi.

out_k (default: out_k = .false.) Outputs the turbulent viscosity (variable name: Ksgs).

out_tke (default: out_tke = .false.) Outputs multiple quantities related to turbulence: resolved tur-
bulent kinetic energy, parameterized turbulent kinetic energy, buoyancy frequency N2 and shear
S? (4 variables: TKE, TKE_sgs, N2, S2). spec_diag must be true in cm.nml.

out_flut (default: out_flut = .false.) Output resolved vertical fluxes (V'w’ with primes being fluc-
tuations around a horizontal average) of various quantities: w if out_u, v if out_v, potential tem-
perature if out_pt, virtual potential temperature if out_ptv, total water mixing ratio if out_gt,
buoyancy if out_buoy, and scalars if out_sca (up to 6+NSCAL variables: UW_flux, VW_flux,
WPT _flux, WQT_flux, WPTv_flux, WB_flux, WSCA1_flux). spec_diag must be true in cm.nmi.

out_fsgs (default: out_fsgs = .false.) Outputs parameterized vertical subgrid scale fluxes of all vari-
ables listed above (except scalars and virtual potential temperature, up to 5 variables: UWsgs_flux,
VWsgs_flux, WPTsgs_flux, WQTsgs_flux, WBsgs_flux). spec_diag must be true in cm.nml.

out_var (default: out_var = .false.) Outputs variances of potential temperature (if out_pt) and wa-
ter vapor mixing ratio (if out_qu, up to 2 variables: Pt_var, Qv_var). spec_diag must be true in
cm.nml.

out_wmom (default: out_wmom = .false.) Outputs vertical velocity moments: variance and skew-
ness (2 variables: W_var, W_skew). spec_diag must be true in cm.nmil.

out_div (default: out_div = .false.) Outputs flow divergence (variable name: Divergence). spec_diag
must be true in cm.nml

out_vort (default: out_vort = .false.) Outputs the vorticity vector (3 components: Vorticity_x, Vor-
ticity_y, Vorticity_z). spec_diag must be true in cm.nml.

out_grad (default: out_grad = .false.) Outputs gradients of prognostic quantities: u, v, w, 6 and ¢,
(at most 15 variables: grad_U_x, grad_U_y, grad_U_z,..., grad_PT_x, grad_PT_y, grad_PT_z,
...). spec_diag must be true in cm.nml.

out_buoy (default: out_buoy = .false.) Outputs buoyancy (variable name: Buoy).

out_beff (default: out_beff = .false.) Outputs effective buoyancy (variable name: Beff). spec_diag
must be true in cm.nml.

out_dp (default: out_dp = .false.) Outputs diagnosed non-hydrostatic pressure perturbation con-
tributions (3 variables: P_b, P_d, P_nh). spec_diag must be true in cm.nml.

out_dtnet (default: out_dtnet = .false.) Outputs radiative cooling/heating rates (variable name: DT_NET).

92

out_frad (default: out_frad = .false.) Outputs radiative fluxes: net fluxes, short-wave fluxes and
long-wave fluxes (3 variables: FRAD_net, FRAD_sw, FRAD_lw).

out_aero (default: out_aero = .false.) Outputs interstitial aerosol number and mass concentrations,
as well as activated aerosol mass for each defined mode (at most 3xnmode variables: N_AEROX,
M_AEROX, MA_AEROX, with X the mode number). Only when AEROSOL is TRUFE in start.

out_ent (default: out_ent = .false.) Outputs cumulus entrainment diagnostics (17 variables).

4.3.2 ou2d_in

All flags under ou2d_in control the output of two-dimensional fields (for a 3D simulation). These
outputs are only available in 2D horizontal slices, that is with no_out = .true. and nslicez > 0.

out_lwp (default: out_lwp = .false.) Enables the output of two-dimensional, vertically integrated
condensed water content. This includes both liquid water path (LWP) and ice water path
(IWP).

out_wup (default: out_wvp = .false.) Enables the output of vertically integrated water vapor con-
tent (water vapor path). A distinction is made between water vapor integrated over the entire
depth of the domain, only in the boundary layer (below zbl) and in the free-troposphere (above
2bl).

out_ints (default: out_ints = .false.) Outputs vertically integrated passive tracer values. Mostly
used in conjunction with sca_set = 2 which defines a unique tracer mimicking ozone concen-
tration in the atmosphere.

out_cmse (default: out_cmse = .false.) Same as out_wvp above, but with moist static energy (MSE)
instead of water vapor mixing ratio.

out_cmfl (default: out_cmfl = .false.) Output of vertically integrated vertical momentum pw.

out_cape (default: out_cape = .false.) Output of two-dimensional values of CAPE, CIN, LCL and
LNB computed within each model column. These quantities are calculated using the algorithm
from G. Bryan.

out_ctop (default: out_ctop = .false.) Output of two-dimensional cloud top and cloud base alti-
tudes.

out_base (default: out_base = .false.) Outputs two-dimensional cloud base mass, virtual potential
temperature and precipitation fluxes.

out_cp (default: out_cp = .false.) Outputs two-dimensional, cold pool specific variables. This in-
cludes cold pool intensity (based on low-level, vertically integrated virtual potential temperature
anomaly), horizontal cold pool intensity fluxes and, if enabled, cold pool intensity diagnostics.

out_rrate (default: out_rrate = .false.) Enables the output of the instantaneous and accumulated
surface precipitation rates.

out_srad (default: out_srad = .false.) Enables the output of net surface longwave and shortwave
radiative fluxes.

93

out_olr (default: out_olr = .false.) Enables the output of two-dimensional outgoing longwave radi-
ation and net top of the atmosphere radiation fields.

out_sfl (default: out_sfi = .false.) Enables the output of the full surface heat fluxes (sensible and
latent).

4.3.3 oud_in

All flags under oud_in control the output of tendencies for major prognostic quantities. Each flag
enables up to 10 output variables (generally named ’_tend_1" to "_tend_10"). A complete description
of all 10 quantities dumped for each oud_in flag is given in the file README.diag found in the main
MIMICA repository. In the following, we only give a short overview of what each of these flags do.

out_diagu, out_diagv, out_diagw (default: out_diagu = out_diagv = out_diagw = .false.) Outputs ten-
dencies contributing to the three components of the momentum equations (advection, turbulent
mixing, pressure gradient, buoyancy, coriolis, nudging...).

out_diagp (default: out_diagp = .false.) Outputs tendencies contributing to advancing perturba-
tion pressure. Note that when using the anelastic solver, out_diagp does not necessarily contain
pressure tendencies, but rather various steps needed to solve the poisson pressure equation.

out_diagt (default: out_diagt = .false.) Outputs tendencies contributing to advancing potential tem-
perature (advection, turbulent mixing, radiation, phase changes, nudging...).

out_diagtv (default: out_diagtv = .false.) Outputs tendencies contributing to advancing the virtual
potential temperature. These are not computed directly by the various physics parameter-
izations, but are diagnosed from the potential temperature, total water and microphysical
tendencies.

out_diagq (default: out_diagq = .false.) Outputs tendencies contributing to advancing the total wa-
ter content (advection, turbulent mixing, precipitation, nudging...).

out_diagk (default: out_diagk = .false.) Outputs kinetic energy tendencies (purely diagnostic). Com-
puted directly from U, V and W tendencies. Components considered in kinetic energy depend
on the selected velocity diagnostic flags (out_diagu, out_diagv, out_diagw).

out_diagl, out_diagr, out_diagi (default: out_diagl = out_diagr = out_diagi = .false.) Outputs ten-
dencies contributing to advancing the cloud water, rain and cloud ice mass mixing ratios (ad-
vection, turbulent mixing, precipitation, phase changes, other microphysical contributions...).

out_diags (default: out_diags = .false.) Outputs tendencies contributing to advancing passive trac-
ers (advection, turbulent mixing, possible extra sources and sinks...).

out_diaga (default: out_diaga = .false.) Outputs tendencies contributing to advancing aerosol num-
ber concentrations for each mode defined (advection, turbulent mixing, activation, precipitation
scavenging, regeneration...).

out_micro (default: out_micro = .false.) Outputs the detail of all microphysical tendencies con-
tributing to each selected hydrometeor category (number and mass concentrations) depending
on the microphysics level. For example, micro outputs separate contributions from condensa-
tion/evaporation, melting, auto-conversion, accretion, riming, freezing, precipitation...

o4

4.3.4 pro_in

Flags under pro_in enable the creation of time-dependent, one-dimensional vertical profiles (2D out-
puts in the Z-time space). All output variables (as selected with the oud_in and out_in flags) are
here averaged horizontally. The various pro_in flags allow the selection of various "filters” to per-
form horizontal averaging over grid points satisfying particular conditions (in particular cloudy or
non-cloudy).

pro_tot (default: pro_tot = .true.) Enables the creation of one-dimensional vertical profiles where
all output variables are averaged horizontally across the entire domain. This is the default type
of 1D profile outputs.

pro_env (default: pro_env = .false.) Enables 1D vertical profiles like pro_tot, but all output quanti-
ties are here averaged over non-cloudy grid points only (defined with a condensed water content
smaller than gpres, qthres in em.nml).

pro_cl (default: pro_cl = .false.) Again, like pro_tot, but all output quantities are now averaged
over cloudy grid points only (defined with a condensed water content larger than ques, gthres
in cm.nml).

pro_cor (default: pro_cor = .false.) Again, like pro_tot, but all output quantities are now averaged
over cloud cores only (defined with a condensed water content larger than g..s AND a vertical
velocity w exceeding 1 m/s).

4.4 Initial soundings and idealized profiles

MIMICA can be initialized by either including idealized profiles of potential temperature 6, total
water mixing ratio ¢;, and wind velocities, or by specifying initial 1D soundings functions of altitude.
Both initialization methods depend on external files stored in the INCLUDE directory: the former
have a .h extension and contain short pieces of code written in fortran, while the latter are simple
text files with a standard formatted column structure. The use of one or the other method depends
on two cm.nml flags: the name of the simulation/configuration can be specified with casename, while
file_init is the name of the input sounding file to be used by the model (the specified file must be
present in INCLUDE). The choice of one method or the other is essentially case dependent: idealized
case studies tend to rely on standard initial profiles provided as simple functions of altitude which
can easily be implemented in include .h files, while more realistic configurations will typically require
the specification of a realistic atmospheric sounding.

A number of predefined test cases and configurations (see section ?7) are available with the
MIMICA code. Appropriate initial conditions are available for each of these templates, each file
being also found in the INCLUDE directory. However, anyone interested in configuring its own
simulation needs to create a new initial file. While using .5 files requires modifying the fortran code,
the simplest way to design new initial conditions is to create a new sounding file whose general
structure is described below.

1D soundings files generally have a 5 or 6-column structure, with a single line header starting

with #:
H T(C) RH U Vv

Each item on the line is a keyword indicating which variables are to be read in the file:

95

H indicates the altitude of each sounding level, in meters above the surface

T(C) indicates the absolute temperature in C at each vertical level. The temperature can alter-
natively be specified in K by specifying the keyword T(K) instead. An other possibility is to
specify the potential temperature at each vertical level using the keyword PT

RH indicates the relative humidity in % at each vertical level. The water vapor mixing ratio can
alternatively be specified in g/kg using the keyword Q instead

QL (optional) indicates the liquid water mixing ratio in kg/kg at each vertical level
U indicates the horizontal U velocity in m/s at each vertical level
V indicates the horizontal V velocity in m/s at each vertical level.

Note that QL is optional, while the specification of temperature and moisture profiles can be done in
several ways depending on the selected keyword and is mandatory.

In addition to these two types of initial condition files, there also exists a sounding rad.dat file,
located in the DATA directory, and required to run MIMICA with interactive radiation (with setenv
RADIA TRUEFE in start). The role of sounding_rad.dat is to describe the thermodynamic state of
the atmospheric column extending between the top of the model domain (typically located between
1.5 and 45 km depending on the simulated configuration) and the top of the atmosphere. This is
absolutely required by the radiative transfer model to calculate the exact solar insulation at the top
of the model domain. Because the exact structure of the full atmosphere is generally not known at
the precise location of the simulation, several default soundings are available (.lay files in DATA),
representative of a standard atmosphere at various locations and various seasons. For example,
kmlw.dat is representative of a mid-latitude winter atmosphere, while ktrop.lay is representative of
the tropical atmosphere. In order to use one of the available profiles, it is enough to rename it
sounding_rad.dat. Care must however be taken as the transition between the thermodynamic state
at the top of the model domain and that of the standard atmosphere must be smooth enough for the
radiation code to work successfully. Modifying the standard sounding_rad.dat file may be necessary
in some instances to guarantee a smooth transition.

4.5 Recommended configuration

In the following, recommended sets of start and c¢m.nml option flags are described. The proposed
choices should be stable and yield reasonable results in most situations

4.5.1 Numerics

For a default numerical configuration, it is recommended to set the following flags to TRUE in start:
ANELASTIC, CONSERVATIVE, ISENTROPIC. With these, the model will employ the anelastic
approximation (an elliptic pressure equation is solved with the FFT solver to satisfy continuity), all
scalar equations are written in conservative form (for exact energy conservation), and the potential
temperature is used as a proxy for thermal energy. The model has been extensively tested in this
configuration and it should not result in any unexpected behavior.

Besides, two different stable scalar configurations can be selected.

o6

e The first option is fast but perhaps less reliable since it involves solving for the non-linear
momentum equations using a simple forward-in-time scheme: RK must then be set to FALSE
in start, and scal_adv should be set to lw in c¢m.nml. This set of parameters will enable the
default finite-volume scheme for scalar integration.

e The second option is more computationally expensive, but it is also associated with a higher-
order of accuracy and it seems to behave well in most situations: RK should here be set to
TRUFE in start, with scal_adv = ‘quick’ in ¢m.nml. This configuration enables the method of
lines for scalar advection, with a 2nd order Runge-Kutta time-stepping scheme.

In addition to these parameters, setting mom_ord = 3 and nsubp = 2 seems to provide reasonable
accuracy and stability in any case. Moreover, it is always recommended to use flux limiters for scalar
advection which can be done by setting limit = .true. in ¢cm.nml, with a tolerance lim_tol = 1.e-4 -
1.e-7 (higher values are faster, lower values guarantee that no spurious oscillations can develop).

As a final recommendation, stability seems to be preserved in most situations when cfl_maz =
0.48 in cm.nml (setting cflmin = 0.43 is then a reasonable choice). It is possible that higher cfl_maz
values may also yield stable solutions, but in general, only experimenting with different CFL numbers
can confirm this. Another feature that may effect stability is the sponge layer added at the top of the
domain to damp propagating waves. As a rule of thumb, it is generally recommended that the sponge
layer corresponds to the upper fourth-third of the numerical domain (this sets zdamp in cm.nml),
while its strength should be case dependent (tdamp can be large - ~4-6 h - in deep domains, but
small - ~10-30 min - in shallow domains).

4.5.2 Physics

The set of recommended physical parameters will obviously be highly case dependent. It is however
always useful to define sets of recommended options for each selected physical parameterization.
Only the most important parameterizations are covered below: radiation, turbulent diffusion and
microphysics. It should be noted in passing that selecting and using a particular parameterization
generally involves setting the appropriate flag to TRUF in start, and/or turning the appropriate flag
to .true. in em.nml (for example with_mic = .true. to enable microphysics, with-rad = .true. to
enable radiation, or with_nudg = .true. to enable nudging).

There is only a small number of parameters controlling the radiative transfer model. The most
important one is iradz in ¢cm.nml which sets the frequency at which radiation is updated. Calling
radiation more frequently can be very slow, but calling it too seldom may introduce large errors.
Because of that, it is generally difficult to recommend a precise value of iradz: depending on the
case, and the clouds characteristic time scales, values between 1 min to 30 min may be chosen.
Besides iradz, it is possible to change the surface albedo, surface emissivity, and even the presence
of short-wave radiation via cm.nml flags.

Among the two turbulent diffusion parameterizations implemented in MIMICA, the simple Smagorin-
sky model will generally provide reasonable results in most situations (TKE FALSE in start) and has
been extensively tested. Using the 1st order TKE model can be advantageous when higher accuracy
is required to parameterize boundary-layer turbulence. Once a proper parameter has been chosen,
one can control certain details of the parameterization with particular cm.nml flags. For example, it
is possible to let the scalar turbulent diffusion coefficients go to 0 above a certain altitude zdec. This
will be in effect when pran < 0 (recall here that pran, the turbulent Prandtl number, corresponds
to the ratio between turbulent viscosity for momentum and turbulent diffusion for scalars, and is
generally ~0.4). With micro_dif, it is also possible to disable turbulent diffusion for microphysical

57

quantities. Diffusing these quantities may indeed not be absolutely necessary, but is generally com-
putationally expensive. Note finally that all parameters controlling surface fluxes in em.nml (directly
connected to turbulent diffusion) are very much case dependent and are not discussed here.

Last but not least, MIMICA offers a lot of flexibility when it comes to parameterizing micro-
physics, and this is associated with a lot of different microphysical flags and options. The first choice
to be made is between the two available microphysics scheme: Seifert and Beheng (SEIFERT TRUE
in start) or the one-moment, two-classes Grabowski scheme (SEIFERT FALSE). 1t is further possi-
ble to choose between saturation adjustment or explicit condensation/evaporation of cloud droplets
with the SAT_ADJ flag. In general, the Seifert Beheng scheme is recommended, except if speed and
efficiency are required (for example for long-term convective equilibrium simulations). Similarly, sat-
uration adjustment is useful mostly when long time-steps, relatively coarse resolution cloud resolving
simulations are performed, while explicit condensation/evaporation is preferable when simulating
high-resolution boundary-layer stratiform clouds.

Once the proper microphysics scheme has been selected, one can control the desired level of
details with flags such as Indrop (to enable activation or leave the cloud droplet number concentration
constant), Imicro (to select the hydrometeor classes to be included) or laero (to select how aerosols
are parameterized) in cm.nml. Certain parameters affecting the microphysics scheme should only
be modified in specific situations (debugging or sensitivity tests). This includes lvent (ventilation,
should be set to .true.), ldrizz (enables precipitation, set to .true.), or auto_k (enables Kessler auto-
conversion, set to). Besides, dicon controls the treatment of explicit condensation/evaporation
and although it is recommended to leave the parameter to 0. (pseudo-analytic method), small
values on the order of 0.5 s may be employed for an explicit integration. It should be noted finally
that while Seifert Beheng recommend to set zauto, the auto-conversion mass threshold, to 2.6e-10
(corresponding to a size threshold of 80 ym), we found that a smaller value of 6.55¢-11 (corresponding
to a size threshold of 50 um) is more appropriate for most MIMICA applications.

o8

5 MIMICA outputs

MIMICA offers a wide range of output possibilities, from instantaneous three-dimensional data fields,
to one-dimensional time-dependent profiles. Overall, if one carefully manages the kind of output files
written along with the list of dumped variables (see the full list of options available in out.nml), it is
possible to perform very detailed result analyses while keeping the occupied disk space to a minimum.

To briefly summarize, MIMICA outputs can be classified into 4 main categories (from "big” to
"small”):

1. the full output (in 2D or 3D) of all variables selected under out_in (in out.nml) at specified
times,

2. two-dimensional slices extracted from three-dimensional data (with MODEL_3D TRUE) at
specified positions along the X, Y and Z directions (slicex_io, slicey_io, slicez_io in cm.nml),

3. vertical profiles of horizontally averaged variables (in 2D or 3D) as a function of time, with the
possibility to apply filters to average over, for example, cloudy or non-cloudy grid points only,

4. time-series of global variables (domain averages or domain mins and maxes) output at a high
frequency.

Most of these output files are created in the netCDF V4 format. The only exception is the ASCII
formatted time-series file (this allows a quick inspection of a simulation’s good proceedings). All
output files are created and stored in a local OUTPUT directory.

5.1 2D-3D complete outputs

To output the complete 2D or 3D data, no_out must be set to .false. in cm.nml. The list of variables
dumped can be selected in out.nml and outputs will be written every iax seconds (set in cm.nml).

In the general case, a single file is created containing the complete data at all output times. The
file’s name can be specified under file_output in ¢m.nml. It should be noted however that, for very
large simulations, it is possible to create one file per processor (this option is enabled by setting
PARALLEL_OUT to TRUE in start). In this case, each file is named from the specified file name
followed by the extension XXX’ where XXX is the process number. The main advantage of this
option is that it doesn’t require collecting all data on a single processor before the output. This then
saves both CPU time (MPI communications can be slow) and memory.

5.2 2D Slices (3D simulations only)

Since outputting the complete data fields of a three-dimensional run can quickly become overwhelm-
ing, it can be advantageous and sufficient to only extract two-dimensional slices in the X-Y, X-Z or
Y-Z planes at specified positions. To do so, no_out must be set to .true. in ¢cm.nml and the number
and position of each individual slice must be specified using nslicex, nslicey, nslicez and slicex_io,
slicey_io, slicez_io respectively. No slice is created by default, nslicex, nslicey, nslicez being all set
to 0, and a maximum of 15 slices along each direction can be created. The slice positions slicez_io,
slicey_io, slicez_io are specified in meters as lists of up to 15 real numbers separated by comas. The
output frequency is again set by zaz in cm.nml.

Slice files are simply named slice_x- XXXX.nc, slice_y- XXXX.nc, slice_z_ XXX X.nc for slices taken
in X, Y and Z respectively, with "XXXX’ denoting the position (in meters) along the considered axis.

29

All slices will contain by default all variables selected under out_in in out.nml. In addition, Z
slices can contain surface specific as well as vertically integrated outputs (depending on X and Y)
such as sensible and latent heat fluxes (SHF and LHF), liquid water path (LWP), outgoing longwave
radiation (OLR) or surface precipitation rates. These quantities will be output if a Z slice is created
(at any given altitude, not necessarily at z = 0), and if out_surfis .true. in em.nml. The dumped
variables can then be selected in out.nml under ou2d_in.

Besides the local slices described above, the option out_yav in ¢m.nml enables the creation of a
single slice in the X-Z plane where all output variables are averaged along the Y dimension. This
output may be useful for "long channel” configurations where the domain breadth in Y is very small
compared to the length in X.

5.3 1D profiles

Time-dependent, one-dimensional profiles are output if (at the very least) pro_totis .true. in out.nmi.
This is the default option such that 1D profiles are created by default by MIMICA. 1D variables (the
same as in the complete outputs and slices) are written in profile files every ipro seconds (in cm.nml).

1D profiles are calculated by averaging horizontally the output variables at each model level. By
default (pro_tot) horizontally averages are performed over all grid points. However, it is possible to
restrict the horizontal averaging to specific grid points in each plane using filters. The three most
important filters can be selected with pro_env, pro_cl, pro_cor set to .true. in out.nml: the first
filter generates horizontal averaged computed over non-cloudy grid points only, the second calculates
averages over all cloudy grid points only (i.e. points with condensed water content exceeding Gipres
in em.nml), and the third calculates averages over cloud core grid points only (with condensed water
content larger than gu,.s AND vertical velocity larger than 1 m/s).

Profile files corresponding to the pro_tot, pro_env, pro_cl, pro_cor keywords are respectively
named: profiles_tot.nc, profiles_env.nc, profiles_cl.nc, profiles_cor.nc.

Among the family of one-dimensional outputs, although this is not a vertical profile, MIMICA
offers the possibility to create hovmoller plots. This can be done by selecting out_hov = .true. in
cm.nml, and the corresponding output file is called hovmoller.nc. Hovmoller plots are generally useful
to visualize the temporal evolution of one-dimensional surface properties (in particular surface pre-
cipitation rates or outgoing longwave radiation). In MIMICA, the hovmoller outputs are created by
averaging the 2D surface variables selected under ou2d_in along the Y dimension (as in slice_yav.nc).
The dimensions of the hovmoller.nc files are thus X-time.

5.4 Time series

The formatted time-series files 7.5 are used to plot the evolution of important global variables as
a function of time (generally with a high frequency, specified with its in ¢m.nml). These global
quantities include in particular domain averages, domain minima and domain maxima.

Unlike the other output files, the list of variables dumped in 7.5 is fixed. There exists however
three predefined sets of time-series variables which can be selected using ts_out in cm.nmi:

stratus’: with ’stratus’, global variables relevant to stratocumulus clouds are dumped, including
for example the mean cloud top entrainment rate and the mean LWP and IWP.

’cumulus’: with 'cumulus’, global variables relevant to convective clouds are dumped, including
mean cloud base mass flux, the maximum cloud top height and mean surface fluxes.

60

’deep’: with 'deep’, global variables relevant to deep tropical convection are dumped, including the
mean tropopause altitude, or mean tropopause temperature.

In addition to these case dependent global outputs, certain variables will be present in 7_S in
any case. This includes for example the mean cloud base and cloud top altitudes, mean surface
precipitation rates, maximum vertical velocity in the domain, and some radiation properties such as
mean OLR and TOA. Of course, some of these outputs are only available if the appropriate physics
package (in em.nml) and output flag (in out.nml) are enabled.

5.5 Restart files

The last file that you will find in your local OUTPUT directory is a restart.dat file (although its
name can be changed with file_rest in ¢m.nml). This non-formatted binary file is created (in fact,
overwritten unless the flag all_rest is .true. in em.nml) after each ires seconds of simulated time, and
it contains all the 2D or 3D data necessary to restart MIMICA (which is done by setting new_run
= .false. in ¢m.nml). This includes in particular the complete prognostic variable fields (potential
temperature, wind speeds, total water content, prognostic microphysical quantities...) as well as the
corresponding standard profiles (that is typically the initial state).

61

6 Templates and examples

6.1 Available templates

The templates repository present in your main MIMICA repository contains a series of predefined,
ready-to-use test cases that MIMICA users can use for testing, debugging, or as examples to start
brand new simulations. Each template sub-directory contains at least three files that can be readily
used to compile and run the corresponding test case: the first file defines the initial state from which
the simulation is started (either a .h or a sounding file), the second is a start file that can be used
to produce a standard mimica executable for the case, and the third one is a ¢m.nml file containing
default option values to run the case in a standard configuration (users are invited to test various
options for individual templates).

Each template is intended to represent either a highly idealized and simplified test case focusing
on a very specific aspect of the model, or a more comprehensive case previously used for research
purposes. Idealized test cases (such as rising warm bubbles, cold density current, inertia gravity
waves or elementary 1D and 2D advection scenarii) are typically designed for testing and debugging
some of the core elements of the model, either numerical schemes or physical parameterizations. The
second category of templates is obviously intended to serve as a basis for future research (but they
may of course be used also to ensure the reproducibility of reference results).

The following gives an overview of all the 34 templates currently available in the current MIMICA
version.

1D_ADV: Simple one-dimensional advection of a step function with fixed, homogeneous wind speed.
Uses the Anelastic approximation by default with the QUICK advection scheme with a 100
m resolution, but can be used to test various other scalar advection schemes. All physical
parameterizations are disabled.

1D_DIFF: One-dimensional diffusion of a step function. No advection is included and the diffusion
coefficient is fixed (0.01). All physical parameterizations are disabled.

2D_ADV: Two-dimensional advection of a gaussian blob. The gaussian scalar field is advected
along the diagonal using the QUICK scheme by default, and with fixed u and w velocities
(u=w). All physical parameterizations are disabled.

2D_NL_ADV: Two-dimensional non-linear advection-diffusion problem (no scalar solved). Initial
condition consists in a square shaped homogeneous U and W velocity perturbation.

2D_DIFF: Two-dimensional diffusion of a gaussian blob with a fixed diffusion coefficient (0.01).
Again, advection and all other physical parameterizations are disabled.

ASCOS: Semi-idealized case based on ASCOS data. The available configuration includes all relevant
physical parameterizations (in particular microphysics and radiation), and uses the anelastic
solver with limited Lax-Wendroff scalar advection.

BUBBLE_ANELASTIC: Warm bubble rising in an homogeneous atmosphere with open bound-
aries. The case is driven by buoyancy only. The Anelastic assumption is used with flux-limited
Lax-Wendroft advection for scalars. Resolution is approximately 10 m.

BUBBLE_REFINED: Same as BUBBLE_ANELASTIC but with non-constant grid spacing in the
vertical.

62

BUBBLE_3D: Same as BUBBLE_ANELASTIC but in 3D, with a small amount of diffusion (al-
though not necessary), and a 15 m resolution.

BUBBLE_COMPRESSIBLE: Same as BUBBLE_ANELASTIC but using the fully compressible

solver.

BUBBLE_PRECIP: A rising warm bubble such as BUBBLE_ANELASTIC, but condensation of
liquid water at saturation is here allowed.

BUBBLE_PRECIP_mse: Same as BUBBLE_PRECIP except that moist static energy is used
instead of potential temperature as a prognostic measure of internal energy.

CONE: Two dimensional advection of a cone-shaped scalar field in a rotating flow (fixed velocity
field). The case employs the anelastic solver and a MUSCL advection scheme.

DENSITY_CURRENT: An initially cold bubble sinks, hits the surface, and propagates later-
ally to develop a high density current. The case uses a 200 m resolution grid, the Anelastic
approximation, QUICK advection, and a fixed diffusion coefficient.

DENSITY_CURRENT_MPI: Same as above but in parallel (4 processors).

DENSITY_CURRENT_comp: Same as DENSITY_CURRENT but using the fully compressible

solver.

DRY_PBL: A typical test case where a dry planetary boundary layer is simulated at high resolution
(60 m in the horizontal, 25 m in the vertical). The MUSCL advection scheme is employed, but
no particular physical parameterization in used except for turbulent diffusion (Smagorinsky).

DYCOMS: The configuration is similar to the DY COMS-II model intercomparison study. The case
is representative of marine boundary layers capped with stratocumulus clouds.

HYDRO_ADJUST_1D: Hydrostatic adjustment with a fixed heat source in the middle of the
domain. Pseudo 1D domain with open lateral boundaries and vertical periodicity. Non-
conservative compressible equations are solved. Despite the fact that advection is enabled,
the case is mostly used as a benchmark for testing the compressible (or anelastic) solver.

HYDRO_ADJUST_2D: A case similar (but not exactly) to HYDRO_ADJUST_2D but in two
dimensions. The original configuration is compressible, periodic with Lax-Wendroff advection.
Possibility to switch to anelastic.

HYDRO_ADJUST_2D_mse: Anelastic version of the above. Also uses moist static energy as the
conserved energy variable.

IGW: Inertia gravity waves. 2D domain with fixed static stability and an initial temperature per-
turbation at the center. The MUSCL advection scheme is used with 1km horizontal resolution.
No physical parameterization is used.

ISDAC: Based on ISDAC F31 intercomparison study: a mixed-phase Arctic stratus cloud case.
The default configuration uses a 50 m resolution grid with MUSCL advection. Physical param-
eterizations include turbulent mixing, prescribed radiation, and the two-moment microphysics
scheme (cloud water, rain and cloud ice only). Possibility to use various options for the mod-
elling of ice phase initiation. Input files are here for a 2D simulation.

63

KMSec: An idealized stratocumulus case using a 2D kinematic framework (prescribed velocity field
representative of a single updraft and downdraft, and homogeneous initial conditions). Uses the
Seifert-Beheng microphysics with detailed activation. Possibility to use complex cloud-aerosol
interactions (recommended to test the aerosol module).

MIDLATITUDE: An idealized midlatitude summertime convection case. The grid is 200x200 km2
with 200 m resolution. Parameterizations include the full Seifert-Beheng microphysics scheme,
Smagorinsky turbulent diffusion, but no radiation. The time-dependent evolution of sensible
and Latent heat fluxes is prescribed.

RCE: A radiative-convective equilibrium case (here in 2D). Anelastic approximation with conserved
potential temperature. Horizontal resolution is set to 2 km, radiative cooling is fixed to -2 K/d
everywhere, sea surface temperature is set to 300 K, and the simple Grabowski microphysics is
employed by default. This is just a template for more elaborate RCE simulations.

RCEMIP: Setup is similar to the near-global, long-channel configuration defined for the RCEMIP
intercomparison study. The domain is 6000 km long and 400 km wide with a 3 km horizontal
resolution. The vertical grid is defined in the new_grid.dat file. SST is set to 300 K, and the
simple Grabowski microphysics is employed. Radiation is interactive and uses a prescribed
ozone profile.

RICO: Configuration based to the idealized RICO shallow cumulus case. Model resolution is 25
m along each direction, and QUICK advection is employed. Large-scale advection tendencies
and nudging are prescribed. Physical parameterizations are used for Coriolis forces, turbulent
diffusion and microphysics (Seifert and Beheng, warm phase only).

SINE: One-dimensional advection of a sine wave. Uses flux limited Lax-Wendroff advection by
default and no diffusion. Does 20 revolutions.

SPIRAL: Advection of a scalar gaussian blob in a rotating flow (prescribed time dependent veloc-
ities). Anelastic equations are solved with limited Lax-Wendroff advection scheme, and split
advection.

SPIRAL_HO: Same as above but with high-order numerics (PPM scalar advection and Runge-
Kutta time integration).

SQUALL_LINE: A two-dimensional idealized squall line from the WREF test case suite. Uses the
anelastic approximation and aturation adjustment with the full Seifert-Beheng microphysics
(for autoconversion and precipitation). The case is two-dimensional with 1 km resolution in
the horizontal and 250 m resolution in the vertical.

SQUALL_LINE_comp: Mostly similar to the SQUALL_LINE case above, but without saturation
adjustment and using the fully compressible core.

TG_VORTEX: Taylor Green vortex: the flow field should be balanced by the pressure field calcu-
lated from the pressure solver at all time. Fully compressible case. No scalar is advected here,
the focus is on representing the pressure-velocity balance.

TRANSITION: A shallow to deep convection transition case based on TRMM-LBA experiment.
The case is 2D, with time varying surface fluxes, refined grid in the vertical, and several case
specific 1/0.

64

References

[1] S. Berthet, M. Leriche, J.-P. Pinty, J. Cuesta, and G. Pigeon. Scavenging of aerosol particles by
rain in a cloud resolving model. Atmospheric Research, 96:325-336, 2010.

[2] J.S. Chang C. Wang. A three-dimensional numerical model of cloud dynamics, microphysics,
and chemistry: 1. concepts and formulation. Journal of Geophysical Research, 98:14,827-14,844,
1993.

[3] P.J. DeMott, A.J. Prenni, X. Liu, S.M. Kreidenweis, M.D. Petters, C.H. Twohy, M.S. Richard-
son, T. Eidhammer, and D.C. Rogers. Predicting global atmospheric ice nuclei distributions and
their impacts on climate. Proceedings of the National Academy of Sciences, 107:11217-11222,
2010.

[4] K. Diehl and S. Wurzler. Heterogeneous drop freezing in the immersion mode: Model calculations
considering soluble and insoluble particles in the drops. Journal of the Atmospheric Sciences,
61:2063-2072, 2004.

[5] D.R. Durran. Numerical methods for fluid dynamics with applications to geophysics, 2nd edition.
Texts in Applied Mathematics, Springer, 2010.

[6] M. Ovchinnikov et al. Intercomparison of large-eddy simulations of arctic mixed-phase clouds:
Importance of ice size distribution assumptions. Journal of Advances in Modeling Earth Systems,
6:223-248, 2014.

[7] S.J. Ghan et al. Droplet nucleation: Physically-based parameterizations and comparative eval-
uation. Journal of Advances in Modeling Farth Systems, 3:M10001, 2011.

[8] M. Frigo and S.G. Johnson. The design and implementation of FFTW3. Proceedings of the
[EEE, 93(2):216-231, 2005.

9] Q. Fu and K.-N. Liou. On the correlated k-distribution method for radiative-transfer in nonho-
mogeneous atmospheres. Journal of the Atmospheric Sciences, 49:2139-2156, 1992.

[10] Q. Fu, K.-N. Liou, M.C. Cribb, T.P. Charlock, and A. Grossman. Multiple scattering parame-
terization in thermal infrared radiative transfer. Journal of Atmospheric Sciences, 54:2799-2812,
1997.

[11] J.R. Garratt. The atmospheric boundary layer. Cambridge University Press, 1994.

[12] S. Gottlieb and C.-W. Shu. Total variation diminishing runge-kutta schemes. Mathematics of
Computation, 67:73-85, 1998.

[13] W.W. Grabowski. Toward cloud resolving modeling of large-scale tropical circulations: A simple
cloud microphysics parameterisation. Journal of the Atmospheric Sciences, 55:3283-3298, 1998.

[14] Y. Gu, J. Farrara, K.-N. Liou, and C.R. Mechoso. Parameterization of cloud-radiation processes
in the ucla general circulation model. Journal of Climate, 16:3357-3370, 2003.

[15] V.I. Khvorostyanov and J.A. Curry. A simple analytical model of aerosol properties with ac-
count for hygroscopic growth: 1. equilibrium size spectra and ccn activity spectra. Journal of
Geophysical Research, 104:2163— 2174, 1999.

65

[16] V.I. Khvorostyanov and J.A. Curry. Aerosol size spectra and ccn activity spectra: Reconciling
the lognormal, algebraic, and power laws. Journal of Geophysical Research, 111:D12202, 2006.

[17] J.B. Klemp, W.C. Skamarock, and J. Dudhia. Conservative split-explicit time integration meth-
ods for the compressible nonhydrostatic equations. Monthly Weather Review, 135:2897-2913,
2007.

[18] B.P. Leonard. The ultimate conservative difference scheme applied to unsteady one-dimensional
advection. Computer Methods in Applied Mechanics and Engineering, 88:17-74, 1991.

[19] R.J. Leveque. Finite volume methods for hyperbolic problems. Cambridge University Press, 2002.

[20] F. B. Lipps and R. S. Helmer. A scale analysis of deep moist convection and some related
numerical calculations. Journal of the Atmospheric Sciences, 39(10):2192-2210, 1982.

[21] C.-H. Moeng and J.C. Wyngaard. Evaluation of turbulent transport and dissipation closures in
second-order modeling. Journal of the Atmospheric Sciences, 45:2311-2330, 1989.

[22] Y. Morinishi, T.S. Lund, O.V. Vasilyev, and P. Moin. Fully conservative high order finite
difference schemes for incompressible flow. Journal of Computational Physics, 143:90-124, 1998.

[23] H. Morrison, J.A. Curry, and V.I. Khvorostyanov. A new double-moment microphysics pa-
rameterization for application in cloud and climate models. part i: Description. Journal of
Atmospheric Sciences, 62:1,665-1,667, 2005.

[24] A. Nenes and J.H. Seinfeld. Parameterization of cloud droplet formation in global climatemodels.
Journal of Geophysical Research, 108:D14, 2003.

[25] M.D. Petters and S.M. Kreidenweis. A single parameter representation of hygroscopic growth
and cloud condensation nucleus activity. Atmospheric Chemistry and Physics, 7:1961-1971,
2007.

[26] H.R. Pruppacher and J.D. Klett. Microphysics of clouds and precipitation, 2nd edition. Kluwer
Academic Publishers, 1997.

[27] R.K. Rew and G.P. Davis. NetCDF: An interface for scientific data access. IEEE Computer
Graphics and Applications, 10(4):76-82, 1990.

[28] M. Satoh. Conservative scheme for a compressible nonhydrostatic model with moist processes.
Monthly Weather Review, 131:1033-1050, 2003.

[29] J. Savre, A. M. L. Ekman, and G. Svensson. Technical note: Introduction to mimica, a large-eddy
simulation solver for cloudy planetary boundary layers. J. Adv. Model. Earth Syst., 6(3):630-649,
2014.

[30] A. Seifert and K.D. Beheng. A double moment parameterization for simulating autoconversion,
accretion and selfcollection. Atmospheric Research, 59-60:265-281, 2001.

[31] A. Seifert and K.D. Beheng. A two-moment cloud microphysics parameterization for mixed-
phase clouds. part i: Model descroption. Meteorology and Atmospheric Physics, 92:45-66, 2006.

[32] J. Seinfeld and S. Pandis. Atmospheric chemistry and physics: from air pollution to climate
change. John Wiley, New York, 1998.

66

[33] W.C. Skamarock and J.B. Klemp. The stability of time-split numerical methods for the hydro-
static and nonhydrostatic elastic equations. Monthly Weather Review, 120:2109-2127, 1992.

[34] J. Smagorinsky. General circulation experiments with the primitive equations: 1. the basic
experiment. Monthly Weather Review, 911:99-164, 1963.

[35] D.E. Stevens, A.S. Ackerman, and C.S. Bretherton. Effects of domain size and numerical res-
olution on the simulation of shallow cumulus convection. Journal of Atmospheric Sciences,

59:3285-3301, 2002.
[36] R.B. Stull. An introduction to boundary layer meteorology. Kluwer Academic Publishers, 1988.

[37] B. van Leer. Towards the ultimate conservative difference scheme, iv. a new approach to nu-
merical convection. Journal of Computational Physics, 23:276-299, 1977.

[38] B. van Leer. Towards the ultimate conservative difference scheme, v. a second order sequel to
godunov’s method. Journal of Computational Physics, 32:101-136, 1979.

67

	Introduction
	How to compile and run MIMICA
	Required libraries
	Compiling MIMICA
	Running MIMICA
	Issues with MIMICA

	Model description
	Governing equations
	The anelastic and compressible cores
	The anelastic solver
	The compressible solver

	Numerical methods
	Numerical grid
	Boundary conditions
	Parallelisation and domain decomposition
	Momentum advection
	Scalar advection and time-stepping

	Physical parameterizations
	Subgrid scale turbulence
	Surface conditions
	Radiation
	Microphysics
	Droplet activation
	Ice nucleation
	Damping, nudging and large scale tendencies
	Tracers

	Aerosols
	Bulk aerosol representation
	Activation
	Kinetic growth
	Regeneration
	Precipitation scavenging
	Impaction scavenging

	Lagrangian particle tracking

	MIMICA inputs
	start
	cm.nml
	cm_run
	cm_init
	cm_grid
	cm_out
	cm_num
	cm_bc
	cm_phys
	cm_mic
	cm_aero
	cm_lag

	out.nml
	out_in
	ou2d_in
	oud_in
	pro_in

	Initial soundings and idealized profiles
	Recommended configuration
	Numerics
	Physics

	MIMICA outputs
	2D-3D complete outputs
	2D Slices (3D simulations only)
	1D profiles
	Time series
	Restart files

	Templates and examples
	Available templates

