
Vol.:(0123456789)1 3

Current Climate Change Reports 
https://doi.org/10.1007/s40641-021-00178-y

VEGETATION AND CLIMATE CHANGE (M CLAUSSEN, SECTION EDITOR)

Land Use Effects on Climate: Current State, Recent Progress, 
and Emerging Topics

Julia Pongratz1,2  · Clemens Schwingshackl1  · Selma Bultan1  · Wolfgang Obermeier1  · Felix Havermann1  · 
Suqi Guo1

Accepted: 25 November 2021 
© The Author(s) 2021

Abstract
Purpose of Review As demand for food and fiber, but also for negative emissions, brings most of the Earth’s land surface 
under management, we aim to consolidate the scientific progress of recent years on the climatic effects of global land use 
change, including land management, and related land cover changes (LULCC).
Recent Findings We review the methodological advances in both modeling and observations to capture biogeochemical and 
biogeophysical LULCC effects and summarize the knowledge on underlying mechanisms and on the strength of their effects. 
Recent studies have raised or resolved several important questions related to LULCC: How can we derive  CO2 fluxes related 
to LULCC from satellites? Why are uncertainties in LULCC-related GHG fluxes so large? How can we explain that estimates 
of afforestation/reforestation potentials diverge by an order of magnitude? Can we reconcile the seemingly contradicting 
results of models and observations concerning the cooling effect of high-latitude deforestation?
Summary Major progress has been achieved in understanding the complementarity of modeling, observations, and inven-
tories for estimating the impacts of various LULCC practices on carbon, energy, and water fluxes. Emerging fields are the 
operationalization of the recently achieved integration of approaches, such as a full greenhouse gas balance of LULCC, map-
ping of emissions from global models to country-reported emissions data, or model evaluation against local biogeophysical 
observations. Fundamental challenges remain, however, e.g., in separating anthropogenic from natural land use dynamics 
and accurately quantifying the first. Recent progress has laid the foundation for future research to integrate the local to global 
scales at which the various effects act, to create co-benefits between global mitigation, including land-based carbon dioxide 
removal, and changes in local climate for effective adaptation strategies.
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Introduction

Human land use extends over three-quarters of the ice-free 
land surface [1]. Changes in land use may alter the Earth’s 
land cover and may also encompass changes in the concrete 
type of management, which we summarize as land uses and 

related land cover changes (LULCC) in the following [2]. 
Examples of LULCC practices are displayed in Fig. 1. Quan-
tifying LULCC effects on local to global climate is essential 
to understand the drivers of climate change and to assess 
the strength of the underlying human impact. Furthermore, 
climatic effects of LULCC can offer an effective way to 
reduce global warming (mitigation) or to adjust local climate 
such that impacts of climate change on living conditions are 
attenuated (adaptation). LULCC has received a new level of 
attention as most of the socioeconomic scenarios compatible 
with the Paris Agreement’s goals require large-scale carbon 
dioxide removal (CDR), which includes afforestation or bio-
mass plantations with carbon capture and storage (BECCS) 
[3, 4]. Additionally, it has increasingly been recognized that 
non-greenhouse gas effects of LULCC—via exchange of 
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water, energy, and momentum with the atmosphere—need 
to be considered as well for sound policy-making [5].

The pathways through which changes in vegetation cover 
impact climate have been well understood [6]. On the global 
scale, impacts of LULCC comprise predominantly green-
house gas (GHG) fluxes and emissions of aerosol precursors 
(biogeochemical effects), mostly of  CO2,  N2O, and  CH4 [4, 
7, 8]. Emissions of  CO2 to the atmosphere are mainly due 
to the clearing of forests and other natural vegetation for 
conversion to agricultural land, degradation, wood harvest-
ing and related product decay, peat drainage, and peat burn-
ing. Removals of  CO2 from the atmosphere by LULCC are 

mainly due to reforestation and recovery of non-forest veg-
etation following agricultural abandonment, afforestation, 
and regrowth of forests following wood harvest [4, 9, 10]. 
The majority of  N2O emissions stems from the application 
of nitrogen fertilizers, manure management, and biomass 
burning [11].  CH4 emissions are mainly caused by enteric 
livestock fermentation, biomass burning under incomplete 
combustion, and rice cultivation [12]. Furthermore, LULCC 
leads to changes in the physical properties of the land sur-
face (in particular albedo, leaf area, and roughness; thus 
influencing evapotranspirative efficiency), altering the sur-
face energy balance (biogeophysical effects). These changes 

Fig. 1  The number of land use practices, including related land cover 
changes and land management (LULCC), that are represented in 
large-scale assessments (in particular in global modeling) has sub-
stantially increased over time. The stage of development is based on 
the assessment by Pongratz et al. [2], with “early” referring to prac-

tices captured by the majority of “generation 1” (CMIP5) models and 
“recent” to other LULCC practices discussed or partly implemented 
as model features. “New” developments have emerged since. Dashed 
arrows indicate the potential reversion of managed land to its natural 
state
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are very specific for each type of conversion and each region 
[13, 14]. They affect the climate both locally at the site of 
LULCC, e.g., through evaporative cooling, but, like GHGs, 
also in remote areas through advection of heat and moisture, 
and by altering atmospheric circulation (“non-local effects” 
[15]) (Fig. 2). The different scopes of these biogeophysi-
cal effects on local vs global climate create a challenge for 
political decision-making on LULCC.

Effects of global LULCC are routinely assessed by IPCC, 
e.g., in the IPCC Sixth Assessment Report (in particular 
Chapters 2 [16] and 5 [17]) and the IPCC Special Report on 
Climate Change and Land (Chapter 2 [4]). The recent years 
have seen major progress in a variety of fields not exten-
sively addressed by these IPCC assessments: a larger range 
of methods to assess LULCC effects on climate; deeper 
insights into land–atmosphere processes, in particular across 
scales and with respect to synergies between LULCC and 
climate effects; and more comprehensive compilations of 
effects. In this review, we summarize this recent progress 
and discuss emerging fields of research. Therefore, the 
review covers only the latest research in the field, typically 
the last 5 years of publications. We split our review into 
methodological advances and advances in understanding and 
quantification of LULCC effects on climate. In each section, 
we complement a short review of the recent literature with 
spotlights on selected topical questions. We focus on scales 
that guide global climate policies, such as the global, multi-
decadal to centennial timescales of the Coupled Model Inter-
comparison Projects (CMIP) [18] and, thus, LULCC studies 
on sub-continental scales are not considered. Our scope is 
limited to climatic effects, but we emphasize that the full 
suite of ecosystem services (e.g., agricultural productivity, 

water and air quality, biodiversity, recreation [19–21]) needs 
to be considered to develop pathways in line with the United 
Nations’ sustainable development goals.

Methods to Assess LULCC Effects on Climate

Overview of Methods

Biogeochemical and biogeophysical LULCC effects on 
climate are quantified through multiple methods includ-
ing in situ measurements, inventory data, remote sensing 
observations, and different modeling approaches [10–12]. 
The different methods provide independent estimates and 
make complementary analyses possible (e.g., [22]), but the 
methodological differences in terms of the captured LULCC 
practices, GHG sub-component fluxes (e.g., emissions from 
deforestation, removals from forest regrowth), and spatial 
scales of biogeophysical effects need to be considered 
and estimates need to be harmonized prior to combining 
them for GHG flux estimates. The recognition of the mas-
sive methodological differences combined with proposals 
for how to resolve them has been a key achievement of the 
last few years, in particular in light of the fact that findings 
from fundamental sciences become increasingly relevant for 
real-world application as LULCC’s political role in emis-
sions reductions and CDR, but also awareness of side effects 
on water and energy fluxes, has increased (see Spotlight: 
How Can We Derive CO2 Fluxes Related to LULCC from 
Satellites? Spotlight: Why Are Uncertainties in LULCC-
Related GHG Fluxes so Large? and Spotlight: Can We Rec-
oncile the Seemingly Contradicting Results of Models 

Fig. 2  LULCC alters local surface properties, which affect latent and 
sensible heat fluxes, the surface radiation balance, and greenhouse 
gas fluxes. Effects depend on vegetation types and location, in par-
ticular strong zonal differences exist. Thermometer symbols indicate 
lower land surface temperatures (small symbol) in non-forest land 
compared to forests in boreal regions (mainly due to roughness and 

albedo effects) and increased surface temperatures (big symbol) for 
cleared areas in the tropics (mainly due to evapotranspiration effects). 
Differentiating between local and total (local plus non-local) effects 
has helped reconciling local observational studies and coupled mod-
eling studies. It is also crucial for identifying win–win situations 
between (local) adaptation and (global) mitigation
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and Observations Concerning the Cooling Effect of High-
Latitude Deforestation?).

Models are a widely used tool for global-scale analyses 
of LULCC effects on climate, basing their assessments on 
differencing simulations with and without LULCC [23, 
24]. Dynamic Global Vegetation Models (DGVMs), some 
of which also serve as a land surface component in fully 
coupled Earth System Models (ESM), are frequently used to 
estimate LULCC-induced removals and emissions of GHGs 
by vegetation and soils, often in model ensembles to attain 
more robust results (e.g., [10, 12, 25, 26]). Basic LULCC 
activities were already implemented in early-generation 
DGVMs and have been extended steadily [2]. The improve-
ment of LULCC representation went in parallel with relevant 
improvements in general land surface process representation 
[27]. Recent progress includes processes such as grazing, 
irrigation, tillage, or plant species selection (see Fig. 1). 
Bookkeeping models are used to attribute anthropogenic 
GHG emissions and removals to different LULCC events 
(e.g., [11, 28–30]). Depending on the attribution approach, 
GHG fluxes can be tracked at the time of the event (instanta-
neous fluxes), as GHG fluxes that are triggered by the event 
but occur subsequent to the event (legacy fluxes) or as the 
sum of instantaneous and legacy fluxes but attributed to the 
time of the LULCC event (committed fluxes) (e.g., [31]). 
Furthermore, atmospheric inversion techniques allow us an 
indirect estimation of GHG emissions and removals, using 
atmospheric transport models and statistical methods to 
obtain those emission patterns that best fit observations (e.g., 
[32–34]). To translate estimates of GHG emissions from 
LULCC to climatic effects, if the climate is not simulated 
interactively within an ESM, the transient climate response 
to cumulative  CO2 emissions (TCRE) can be applied, which 
on average is 1.77 ± 0.37 K  EgC−1 based on 11 CMIP6 mod-
els [35].

DGVMs also simulate altered biogeophysical properties 
(e.g., surface albedo, roughness, leaf area) and processes 
(e.g., surface energy balance, latent, and sensible heat 
fluxes). To capture atmospheric feedbacks, they are usu-
ally coupled with the atmosphere, as in the Land-Use and 
Climate, IDentification of robust impacts (LUCID) project, 
which was the first structured model intercomparison pro-
ject on biogeophysical effects [36]. To fully include climate 
feedbacks, additional coupling to the ocean is needed, as 
done in the transient ESM simulations of LUCID-CMIP5 
for future LULCC scenarios [37–39]. To better understand 
model divergence (of biogeophysical but also biogeochemi-
cal effects) highly idealized ESM studies with clear LULCC 
protocols for large-scale deforestation were suggested as part 
of CMIP6 in the dedicated Land Use Model Intercompari-
son Project (LUMIP). LUMIP also covers simulations with 
alternative LULCC that identify mitigation potentials of 
LULCC effects under different future climate evolutions, 

comparison of coupled and land-only simulations to isolate 
feedbacks, and factorial simulations for a range of LULCC 
practices [24]. The separation of local and non-local effects 
of LULCC has been achieved through various approaches: 
some studies implicitly isolated the local effects in models 
by applying a neighboring areas comparison concept [40] or 
by comparing different vegetation types of the same grid cell 
in tile-level output [41]. Coupled models capture the total 
(local plus non-local) climate response to LULCC (Fig. 2) 
and, thus, methodological advances were developed to sepa-
rate local and non-local effects: a “checkerboard” approach 
of altered and unaltered grid cells [15], comparing coupled 
vs offline simulations [42], or isolating far-reaching telecon-
nections in suites of regional simulations [43]. This split 
is essential since observations only cover local effects (see 
Understanding and Quantifying LULCC Effects on Climate). 
Surface energy balance decompositions (e.g., [44–46]) are 
applied to identify the driving mechanisms (heat and radia-
tion fluxes) of the overall biogeophysical response, while 
factorial simulations (e.g., [46, 47]) are performed to iden-
tify the effects of individual surface property changes (such 
as albedo or roughness).

Recent remote sensing-based approaches to derive GHG 
fluxes from LULCC on global scales (e.g., [48–50]) have 
focused on combining estimates of terrestrial carbon stocks 
with LULCC processes (see Spotlight: How Can We Derive 
 CO2 Fluxes Related to LULCC from Satellites?) through 
imagery from airborne and terrestrial lidar, active and pas-
sive radar, and optical sensors in combination with ground-
based measurements, theoretically or empirically derived 
allometric equations, root-to-shoot ratios, and machine 
learning approaches (e.g., [50–53]). Other estimates rely on 
statistical upscaling of in situ measurements [11, 54]. Data 
on GHG emissions and removals from LULCC are further 
provided by national GHG inventories from country reports 
to the United Nations Framework Convention on Climate 
Change (UNFCCC) [55] and by data collections on agri-
cultural and forest GHG fluxes from the Food and Agri-
culture Organization of the United Nations [56–58]. Obser-
vational quantifications of biogeophysical LULCC effects 
are obtained either by a space-for-time approach based on 
satellite imagery (e.g., [14, 59]), from in situ observations 
such as Fluxnet sites (e.g., [13]), or directly from satellite 
time series capturing LULCC (e.g., [60]).

Spotlight: How Can We Derive  CO2 Fluxes Related 
to LULCC from Satellites?

Recent approaches to employ satellite-based information 
to estimate  CO2 fluxes from LULCC usually follow one of 
three approaches: (i) multiplying satellite-based information 
on area changes of different LULCC practices with either 
(partly satellite-based) estimates of soil and vegetation 
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carbon densities or (ii) with emission and removal factors 
that prescribe the amount of carbon released or absorbed by 
terrestrial ecosystems upon a LULCC event; (iii) deriving 
 CO2 fluxes directly from satellite-based time series of carbon 
stocks. Due to observational constraints, these approaches 
cover sub-component fluxes of the total LULCC flux only, 
often limiting themselves to aboveground carbon stock 
changes, excluding non-forest or non-woody vegetation, 
and/or focusing on forest losses, not covering regrowth. An 
example for (i) is Tyukavina et al. [61], combining forest 
cover loss observations with aboveground carbon densi-
ties. Though often applied to cumulated area changes over 
a longer timeframe, this method could be applied to time 
series of LULCC changes and would then be conceptually 
similar to the bookkeeping approach, with the important dif-
ference that the emission estimate is committed, i.e., legacy 
 CO2 fluxes from potentially slow processes such as slash, 
soil carbon or product decay, or forest regrowth are not cap-
tured at the time they actually occur, but are attributed to 
the time of the LULCC event. This can considerably affect 
the estimation of  CO2 fluxes over a given time period [29, 
31]. An example for (ii) is Harris et al. [50], who employ 
both forest cover loss and gain observations. This method 
is equivalent to the IPCC gain–loss approach that quantifies 
net  CO2 fluxes within a defined time frame as the difference 
between all removals and emissions of  CO2 in terrestrial 
ecosystems. An example for (iii) is Baccini et al. [51] using 
a concept equivalent to the IPCC stock difference method. It 
requires less information than the gain–loss approach (e.g., 
time series for gain–loss approach vs cumulated carbon 
stock differences), but can only be used to estimate com-
mitted emissions, as  CO2 fluxes are simply inferred by the 
difference in carbon stocks between two time steps [55].

Observations of carbon stocks as well as of vegetation 
cover changes rely on a range of assumptions. Global maps 
of area densities for carbon in woody biomass are often 
derived by combining inventory data and/or field measure-
ments with ground-based systems, aerial and/or satellite 
imagery (e.g., [50, 51, 62]). A crucial part is the deriva-
tion of aboveground biomass from structural vegetation 
properties (e.g., diameter at breast height, tree height, wood 
density), which is done through empirically or theoretically 
derived allometric equations. Similarly, conversion factors 
are applied to convert dry matter to organic carbon, and 
belowground biomass carbon is inferred from aboveground 
biomass carbon through root-to-shoot ratios [63–65].

Satellite-derived differences in area estimates for forest 
loss mainly arise from different methodological assump-
tions. Deforestation is defined as forest loss accompanied 
by a change in land cover [66, 67] while the term “forest 
degradation”—as defined in remote sensing approaches—
implies biomass loss with no change in land cover since 
the tree canopy may recover in the years subsequent to the 

degradation event. Forest degradation may also alter the 
composition of the vegetation layers underneath the tree 
canopy, which is hardly detectable through satellite imagery. 
Vegetation biomass losses are thus not necessarily depicted 
in canopy cover dynamics and may vary strongly, depend-
ing, e.g., on the severity of the respective event [68]. The 
implications of methodological choices for area estimates 
of deforestation and forest degradation can be exemplified 
by comparing the widely used Global Forest Watch (GFW) 
dataset [69] with the PRODES dataset by the Brazilian 
National Institute for Space Research [70]. Recent estimates 
(2000–2018) of the deforested area in the Brazilian Amazon 
vary by ~ 96% [53] due to several reasons: While PRODES 
uses ancillary data from expert photointerpretation to detect 
(anthropogenic) clear-cut deforestation [71], GFW reports 
all disturbances (anthropogenic and natural) combined 
[69]. Additionally, the datasets capture different types of 
forests in terms of demography (PRODES: primary; GFW: 
primary and secondary) [53, 72]. PRODES captures defor-
estation only, whereas GFW detects any type of forest dis-
turbance resulting in a long- or short-term loss of tree cover 
(i.e., also includes forest degradation). Furthermore, GFW 
detects forest disturbances on a much smaller scale (30 m) 
than PRODES (250 m) [72]. The different spatial resolu-
tion is relevant not only for the captured processes but also 
for the approximation of gross carbon fluxes since the area 
estimates for forest losses within each grid cell are always 
net values resulting from the cumulated effect of both forest 
gains and forest losses within a grid cell [53]. At coarser spa-
tial resolution, this may lead to spatial asymmetries between 
carbon removals and emissions, i.e., gross carbon fluxes do 
not cancel out to net zero [29, 51]. For forest degradation, 
the spatial resolution limits the distinction of different driv-
ers, as logging, burning, and shifting cultivation may occur 
on areas < 1 ha [68], i.e., even high-resolution datasets on 
forest degradation may miss selective removals due to log-
ging [61], underestimating LULCC emissions [73].

Recently, the quantification of forest degradation and its 
drivers has become a stronger research focus, although most 
studies only cover the Brazilian Amazon and only some 
studies derive  CO2 fluxes from forest degradation [51–53, 
72, 74, 75]. Multiple studies agree on an increased share of 
carbon losses and/or forest area losses due to forest degrada-
tion compared to deforestation in the Brazilian Amazon in 
recent years [51, 66, 67]. Matricardi et al. [67] even suggest 
that forest degradation rates may have surpassed deforesta-
tion rates by a factor of three in 2014. Qin et al. [53] find 
that ~ 73% of the gross reduction in aboveground carbon in 
forests in the Brazilian Amazon between 2010 and 2019 can 
be attributed to degradation, which is similar to the pantropi-
cal estimate of 69% for 2003–2014 by Baccini et al. [51]. 
Moreover, several studies suggest that fires (anthropogenic 
and natural) have a higher potential for forest degradation in 



 Current Climate Change Reports

1 3

terms of aboveground carbon loss [74], areal extent [72], and 
severity of damage to the canopy [75] compared to logging. 
Longo et al. [74] suggest that up to 94% of aboveground 
carbon may be lost due to severe fire damage. Overall, this 
highlights the need for global-scale datasets depicting forest 
degradation in terms of area and  CO2 fluxes.

Despite many advantages, there are some important 
limitations to all recent approaches to derive  CO2 fluxes 
from satellite data beyond the mentioned limitation to sub-
component fluxes and, often, the restriction to quantifying 
committed emissions. Most importantly, satellite data lack 
the possibility to distinguish directly between anthropogenic 
and natural processes on a global scale, which is crucial 
for deforestation and forest degradation monitoring sys-
tems, such as REDD + (Reducing Emissions from Defor-
estation and Forest Degradation under UNFCCC) [56]. The 
fundamental problem is that LULCC processes co-occur 
with natural processes. Observed changes in forest cover 
may be due to LULCC, but could also be a consequence 
of natural disturbances. Deforestation trends and forest 
cover loss due to drought or insect damage, may they be 
climate change-related or not, often go in the same direction. 
Similarly, observed changes in carbon stocks reflect both 
LULCC effects and the response to environmental changes, 
such as rising temperature, increasing  CO2 concentration, 
and nitrogen deposition. The inability of observational 
data to separate LULCC and natural processes on a global 
scale is one of the most important reasons for the wide-
spread application of models, which are thus often used for 
estimating both LULCC fluxes and the natural terrestrial 
sink in the budgeting of anthropogenic effects on the carbon 
cycle [10]. An emerging research field is thus the integra-
tion of observational data into models to split anthropogenic 
and natural processes while capturing observed dynamics 
from both processes combined. Alternatively, ancillary data 
(such as using the information on the shape of disturbance 
to identify LULCC in PRODES) can be employed to split 
fluxes by disturbance types. Furthermore, the model output 
can be refined to provide the same type of information as 
the satellite-based estimates (e.g., committed emissions or 
aboveground biomass only), enabling comparison even of 
sub-component fluxes of LULCC on an apple-to-apple basis. 
Still, mapping of satellite-derived fluxes to model-driven 
estimates has to be done with care [76].

Satellite-based approaches for quantifying LULCC effects 
can further include major uncertainties from the choice of 
emission and removal factors that are applied to the spe-
cific LULCC event or the land cover type when calculating 
LULCC emissions by multiplying emission and removal 
factors with LULCC data [63]. Harris et al. [50] compared 
GHG fluxes estimated from IPCC Tier 3 local removal fac-
tors derived from U.S. forest inventory plots with IPCC Tier 
1 global values and found that the latter result in a 38% 

stronger net global forest carbon sink. Cook-Patton et al. [77] 
suggest that IPCC factors for carbon removal underestimate 
the assimilation of aboveground carbon in forests by one-
third. Furthermore, the majority of observational datasets 
only provide vegetation carbon estimates for forests and 
sometimes woody vegetation, although a strong contribu-
tion of soil organic carbon to the interannual variability 
of the global terrestrial carbon cycle has been found [78]. 
Similarly, there is a lack of global remote sensing-based 
time series on forest regrowth [50], which hinders assess-
ments of  CO2 removals and, ultimately, the application of 
the gain–loss approach from remote sensing datasets.

Spotlight: Why Are Uncertainties in LULCC‑Related 
GHG Fluxes so Large?

Accurate estimates of  CO2 fluxes are essential for assessing 
changes in the global anthropogenic carbon cycle as pro-
vided, for instance, by the annually updated global carbon 
budget (GCB) of the Global Carbon Project [10]. The high-
est relative uncertainties within the most recent estimates 
are related to carbon fluxes from LULCC [10, 79]. These 
originate from uncertainties in (1) the underlying LULCC 
maps, (2) different comprehensiveness and levels of com-
plexity of the LULCC practices implemented in models, (3) 
lack of observational constraints for model parameters and 
methodologies for the processing of satellite data, (4) differ-
ent model assumptions and setups, and (5) inconsistencies 
in common terminology and definitions.

(1) Historical land use is not known perfectly and remains 
intrinsically uncertain for the future due to scenario-
dependent assumptions of upcoming land use pathways 
[80–82]. Reconstructions differ depending on the esti-
mated patterns, transitions, and considered categories 
of land use as well as the spatial resolution [82–84]. 
Historical data is frequently revised and can have sub-
stantial impacts on carbon fluxes. A recent revision of 
the underlying land use areas reported by countries to 
the Food and Agricultural Organization’s FAOSTAT 
[85] combined with a change in how national esti-
mates of agricultural areas are distributed in space is 
the main reason for a change in trend from increasing 
to decreasing LULCC emissions in recent years (from 
GCB2020 to the data release of GCB2021). Yet, the 
uncertainties are very large, and the change in trend is 
thus not statistically significant [79]. For satellite-based 
LULCC data, further uncertainties arise due to the diffi-
culty of distinguishing anthropogenic from natural and 
climate-driven LULCC dynamics on a global scale (see 
Spotlight: How Can We Derive  CO2 Fluxes Related 
to LULCC from Satellites?). For reconstructing land 
use, country-reported data on agricultural areas and 
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forest harvest, often from FAOSTAT [85] and the For-
est Resource Assessments [86], is typically included to 
isolate the anthropogenic signal [82]. Integrating better 
satellite-based and country-reported data on a global 
scale is clearly a promising path towards reducing the 
uncertainties around land use dynamics, but also the 
translation of country-reported data to land use dynam-
ics as input to models could be substantially improved: 
Rosan et al. [87] point out that retrospective updates 
in data reported by Brazil to FAO caused discrepan-
cies between agricultural expansion and forest cover 
changes, which were attributed to the FAO “other land” 
category and thus remained unused by current global 
datasets [88], although they may contain part of a land 
use-induced deforestation signal. Additional uncer-
tainties arise from the translation of land use data into 
land cover conversion [89]. As land use maps are used 
in DGVMs, bookkeeping models, and satellite-based 
stock change approaches, the associated uncertainties 
in land use patterns are propagated to the majority of 
GHG flux estimations (Table 1 [28, 90]).

(2) The degree of implementation of LULCC practices 
(e.g., degradation, drainage, grazing, irrigation, shift-
ing cultivation, wood harvest) varies across models as 
highlighted in Fig. 1 and Table 1 [10, 90–93], and prac-
tices can be implemented with very different complex-
ity and process realism [2, 94].

(3) LULCC  CO2 flux estimates are very sensitive to model 
parameterizations that are often not well constrained 
by observational data and differ between models, such 
as carbon densities in bookkeeping models and allo-
cation of wood to slash and product pools of differ-
ent lifetimes (Table 1, e.g., [95, 96]). At least region-
ally, emergent constraints are promising, for instance 
between initial biomass and LULCC emissions [97], 
as are efforts to constrain relevant soil and vegetation 
variables for a better representation of the processes 
underlying LULCC emissions [98, 99]. Satellite-based 
estimates of  CO2 fluxes from LULCC face uncertainties 
arising from spatial upscaling of locally or regionally 
derived allometric equations, conversion factors, and 
root-to-shoot ratios to the global scale. Uncertainties 
from field plot sampling and allometric equations alone 
can account for up to 50% of the total aboveground 
biomass estimate [100], with further uncertainties 
contributed by the spatial transferability of the derived 
functions [65]. Estimations of areas affected by defor-
estation or forest degradation vary strongly across data-
sets (see Spotlight: How Can We Derive CO2 Fluxes 
Related to LULCC from Satellites?), contributing addi-
tional uncertainty.

(4) The most common DGVM approach to derive  CO2 
fluxes from LULCC (using transient environmental 

forcing) yields widely increased  CO2 flux estimates as 
it includes the loss of additional sink capacity (LASC 
[23]). The LASC originates from carbon stocks of 
potentially existing but changed vegetation that would 
have profited from subsequent environmental changes 
(e.g., in cleared forests due to increasing atmospheric 
 CO2). It makes up about 40% of the LULCC  CO2 
emission estimates from transient DGVM simula-
tions during 2009–2018 (Table 1 [25]). The LASC 
strongly depends on the timing of a LULCC event and 
on the subsequent environmental changes which are 
often heterogeneous over time and across space [25]. 
To resolve this issue, time-independent DGVM esti-
mates of anthropogenic  CO2 emissions under fixed pre-
industrial or present-day environmental forcing can be 
used. However, in these approaches, carbon stocks do 
not adapt to environmental changes over time, which 
causes presumably strong underestimations and/or 
overestimations of the  CO2 fluxes from LULCC for 
later or earlier periods, respectively. Similar to the 
present-day DGVM forcing, bookkeeping models 
use time-invariant response functions derived from 
observed carbon densities to calculate  CO2 fluxes from 
LULCC, yielding presumably biased estimates under 
differing past and future environmental conditions.

(5) National GHG inventories based on country reports to 
UNFCCC or data submitted by countries to FAO [101] 
are frequently compared to the estimates of net LULCC 
emissions by DGVMs and bookkeeping models (e.g., 
[22]), yet they differ fundamentally in their scope. 
While global carbon cycle models distinguish anthro-
pogenic from natural fluxes based on processes and 
drivers, country-reported data distinguish fluxes based 
on area, through the adoption of the IPCC managed 
land proxy approach, which assumes that all carbon 
fluxes on land declared as managed are anthropogenic. 
As a consequence, fluxes due to environmental changes 
are always treated as natural in models while national 
GHG inventories attribute part of the fluxes caused by 
environmental changes to the land use sector when they 
occur on managed land. This terminology difference 
explains about 80% of the difference between global 
carbon cycle models and national GHG inventories 
(Table 1, Grassi et al. [102]). Adjustments have been 
developed that allow for a translation and, thus, direct 
comparison of modeled and inventory-based GHG 
fluxes [102, 103]. An application to the annual updates 
of the global carbon budget shows the global carbon 
cycle models are consistent with the national GHG 
inventories when parts of the natural sink on managed 
forests—making up almost half of the total natural land 
sink—is redistributed to the land use sector [79]. When 
considering natural fluxes on managed land, the net 
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land use flux globally turns from a substantial source 
of  CO2 emissions in the global models’ assessment 
(see Biogeochemical Effects) to a  CO2 sink reported 
by countries [79]. This reallocation of carbon fluxes 
reduces the allowable emissions for reaching a climate 
target by currently around 1.5 PgC  year−1 compared to 
the estimates from global socioeconomic models [102]. 
Connecting the annual updates of land use emissions 
from models to national GHG inventories opens the 
path to an operational assessment of the collective 
countries’ progress towards mitigation in the land use 
sector as it avoids double accounting for parts of the 
natural terrestrial sink. Also, the successful translation 
between the two approaches could provide the opportu-
nity to fill gaps in the national GHG inventories, which, 
in particular for non-Annex-I countries, are not annual 
and do not cover the most recent years.

We conclude from our review of recent methodological 
advances that modeling and observations of LULCC effects 
have each substantially improved. They can be linked in a 
more comprehensive way now that their differences and 
complementarities have been identified; most notably, the 
split into local and non-local effects, a mapping of coun-
try-reported data of GHG emissions to global model esti-
mates, and the robust quantification of the loss of additional 
sink capacity have been achieved. Further methodological 
advances are needed to integrate satellite observations with 
models with respect to separating natural from anthropo-
genic drivers and including underrepresented processes 
such as degradation in models. Fundamental progress is also 
needed on accurate quantifications of land use dynamics.

Understanding and Quantifying LULCC 
Effects on Climate

Biogeochemical Effects

Despite growth in population and production per person, 
total LULCC emissions  (CO2,  CH4,  N2O) remained rela-
tively constant at ~ 11  PgCO2e  (CO2-equivalent using 100-
year Global Warming Potential) throughout the second 
half of the last century, mainly due to the higher produc-
tion efficiency of land area. However, the last two decades 
may have seen a surge in emissions per land area and across 
the globe due to cropland clearing in carbon-dense tropical 
forests [8]. LULCC is thus responsible for 25% of anthro-
pogenic (LULCC + fossil) emissions [8]. Net  CO2 emis-
sions related to LULCC conversions and forestry represent 
about half (39–61%) of all LULCC-related GHG emissions 
1961–2017—or about 10–15% of total (land use plus fossil) Ta
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anthropogenic  CO2 emissions for the last decade [10, 79]—
while  CH4 and  N2O emissions from agricultural manage-
ment make up the rest [8]. Emissions from tropical regions 
remain high due to extensive growth of agricultural produc-
tion (in particular cereals and oil crops) into often pristine, 
carbon-dense forests. Summing up all GHGs, Latin Amer-
ica, Southeast Asia, and sub-Saharan Africa cause about half 
of the net cumulative emissions in 1961–2017 [8].

Over the past half-century, LULCC caused relatively 
stable  CO2 emissions of about 1.4 ± 0.7 PgC  year−1 [10]. 
While the growth in fossil emissions has decelerated since 
the Paris Agreement, within the (large) uncertainties there 
is no evidence that LULCC emissions show a significant 
decline [10, 79, 112]. Furthermore, there are indications that 
emissions may be underestimated as the land use change 
data does not capture fully recent deforestation increases 
in Brazil; interannual variability in the agricultural areas 
underlying the land use change data may be underestimated, 
which, due to the asymmetry between fast decay and slow 
regrowth, would underestimate net emissions; degradation, 
which seems to rise in importance in terms of area and car-
bon losses recently (see Spotlight: How Can We Derive  CO2 
Fluxes Related to LULCC from Satellites?), is not fully cap-
tured by the bookkeeping models [79]. For the very recent 
years, effects of the pandemic on global land use emissions 
have yet to be determined—regional evidence suggests that 
monitoring capacities and legal enforcement of measures to 
reduce tropical deforestation have been reduced and envi-
ronmental protection policies may have been weakened in 
certain countries [79].

Further expansion and intensification of agriculture, 
anticipated in potential future scenarios [81], may again 
increase LULCC emissions. At the same time, however, 
land-based negative emissions are needed at a large scale 
[3], as creating gross  CO2 sinks on land to meet the Paris 
Agreement’s goals becomes more urgent each year. Distin-
guishing gross sinks/removals from gross sources/emissions 
is thus a priority for LULCC flux estimates (note that gross 
removals and emissions refer to  CO2 fluxes, not to whether 
the underlying LULCC transitions are net or, including sub-
grid-scale back-and-forth transitions, gross; net vs gross 
transitions are assessed in Table 1). Currently, gross emis-
sions are 2–4 times larger than the net LULCC emission 
term, showing the relevance of land management such as 
harvesting or rotational agriculture [10, 79]. Gross emissions 
remained high over the last decades, reaching 3.8 ± 0.6 PgC 
 year−1 2011–2020 [79]. Over the historical period, Erb et al. 
[113] estimated that land management (especially manage-
ment of tropical forests and grazing on natural grasslands) 
contributed 42–47% and land cover change (to artificial 
grassland and cropland) 53–58% to the total reduction in 
global terrestrial carbon stocks, from potentially 916 PgC 
to actually 450 PgC. LULCC contributes to the interannual 

variability (IAV) of terrestrial carbon stocks, with a standard 
deviation over recent decades of about 0.25 PgC  year−1 due 
to LULCC variability and the climate sensitivity of decay-
ing slash material [114] (higher, when IAV of the natural 
terrestrial sink on managed land were counted towards 
LULCC fluxes [115]). Using CMIP6 and LUMIP experi-
ments, Ito et al. [116] found only modest land use effects 
on soil organic carbon at the global scale, comparable to 
climatic and rising  CO2 impacts, but pronounced effects in 
several regions, albeit models differ in sign of the effects. In 
particular, the transition to cropland, foremost to industrial-
scale cropping, was found to be the LULCC conversion lead-
ing to most soil carbon loss [117, 118]. The GCB estimates 
include emissions from peat burning and drainage of organic 
soils, which have been estimated for 1960–2019 to glob-
ally 2.0 PgC [119] and 8.6 PgC (FAOSTAT [120]). Respe-
cively, of the total 85 ± 45 PgC LULCC emissions. Note that 
drained organic soil emissions have been below 0.2 PgC 
 year−1 in these estimates over the last decades, while other 
estimates [121] put them at 0.35 PgC in 2008 (with the larg-
est emitter Indonesia, followed by the EU) or, for cultivated 
northern peatlands alone, at 0.15 PgC  year−1 1990–2000 
[122], related to divergent estimates of drainage extent and 
emission factors. These higher estimates may challenge the 
scientific closure of the anthropogenic carbon budget [122], 
but would imply an underestimated mitigation potential for 
rewetting of agricultural areas [121] that have a massively 
overproportional  CO2 footprint per calorie [7].

The abovementioned estimates of the annual global car-
bon budgets are derived as the mean value of three book-
keeping models and the (pronounced) uncertainty depicts 
the standard deviation of an ensemble of 17 DGVMs [10]. 
The LULCC-related emission estimate from DGVMs is 
significantly larger than the bookkeeping estimate, mainly 
because the transient DGVM approach includes the LASC 
(responsible for ~ 40% of today’s global emission esti-
mate under transient environmental conditions; see Spot-
light: How Can We Derive  CO2 Fluxes Related to LULCC 
from Satellites? and [25, 123]). However, DGVMs yield 
strongly differing estimates depending on the process that 
are included: simulations that consider land use processes 
such as shifting cultivation, wood harvest, grazing and crop 
harvest, and cropland management show increased historic 
LULCC emissions by 20–30% for each of these processes 
(Table 1 [91]). In contrast, aggregated national GHG inven-
tories (under the UNFCCC) estimate much lower (or even 
negative) emissions from LULCC mainly because fluxes 
due to environmentally induced carbon stock changes on 
managed land (e.g., forest) are counted towards the land use 
sector (while the global models’ definition attributes these 
fluxes to the natural carbon sink; see Spotlight: Why Are 
Uncertainties in LULCC-Related GHG Fluxes so Large? and 
[22, 79, 102]. In line, Tubiello et al. [57], using a carbon 
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stock change approach for the period 2011–2020, found net 
removals on forest land (globally 0.9 PgC  year−1) that coun-
terbalanced the emissions from forest conversion (0.85 PgC 
 year−1).

The human production of reactive nitrogen has vastly 
accelerated over the last decades to dominate natural pro-
cesses, with severe environmental impacts [124]. Global 
human-induced  N2O emissions increased by 30% over the 
past four decades to 7.3 Tg N  year−1 (minimum–maximum 
estimates: 4.2–11.4) for the period from 2007–2016 (particu-
larly strong in the emerging economies Brazil, China, and 
India and accelerating from 2009 onward [11, 32]). The by 
far highest share of  N2O emissions is related to LULCC, and 
the relative contribution to non-CO2 GHG emissions from 
agriculture has increased since the 1960s [125]. Reviewing 
various bottom-up and top-down studies, Scheer et al. [126] 
found that agricultural activities contributed to 5.0–6.8 Tg 
N  year−1 to the current terrestrial  N2O budget, which is the 
majority of global human-induced  N2O emissions. Simi-
larly, but excluding indirect emissions downwind/down-
stream, Tian et al. [11] estimate annual average emissions 
for 2007–2016 from N additions in the agricultural sector (N 
fertilizer and animal manure) of 3.8 (2.5–5.8) Tg N  year−1. 
Thereof, 2.3 (1.4–3.8) Tg N  year−1 was direct soil emissions 
while the rest was predominantly manure left on pasture 
and with minor contributions from manure management and 
aquaculture. Climate change (particularly warming) further 
fastened this increase in soil  N2O emissions by boosted nitri-
fication and denitrification processes (terrestrial denitrifica-
tion doubled to 160 Tg N  year−1 between the pre-industrial 
state and 2005 [11, 126, 127]. Tian et al. [11,32, 127] call 
this the  N2O–climate feedback and, by using process-based 
models, found a considerably larger global agricultural soil 
emission factor of 1.8% (1.3–2.3%) than assumed in IPCC 
tier 1 (1%). Similarly, Thompson et al. [32] using three 
global atmospheric inversion frameworks found a global 
emissions factor of 2.3 ± 0.6% for combined direct and indi-
rect emissions, which is significantly larger than the IPCC 
tier 1 default of 1.375%. Additional  N2O fluxes related to 
LULCC are 0.8 (0.7–0.8) Tg N  year−1 emissions from the‚ 
post-deforestation pulse effect (temporary increase in  N2O 
emissions after deforestation) and 1.1 (1.0–1.1) Tg N  year−1 
reduced emissions from the long-term effect of reduced 
mature forest area (tropical mature forests emit comparably 
much  N2O, [11]).

Saunois et al. [12] provide the most recent and compre-
hensive estimates of global  CH4 emissions from agricul-
ture and waste, based on bottom-up estimates (process-
oriented models, inventory models, satellite-based models, 
observation-based upscaling models) and constrained by 
atmospheric inversions (top-down approach). For the last 
decades, Saunois et al. [12] found increasing  CH4 emissions 
from agriculture and waste, excluding fluxes from managed 

wetlands (partly included under UNFCCC), inland water and 
thawing permafrost, to annually averaged 206 (191–223) Tg 
 CH4 in 2008–2017, which comprises ~ 56% of total anthro-
pogenic  CH4 emissions. Thereof, the by far largest source 
was livestock, particularly cattle in intensive agricultural 
systems of wealthier and emerging economies [125], with 
estimated emissions from enteric fermentation and manure 
management (the latter causing  CH4 fluxes mainly under 
anaerobic conditions) of 111 (106–116) Tg  CH4  year−1 [12], 
which is in agreement with the recent IPCC Tier 2 estimate 
of 99 ± 12 Tg  CH4  year−1 for 2012 [128]. Rice cultivation 
contributes 30 (25–38) Tg  CH4  year−1 globally, mainly due 
to periodic flooding and aeration of paddy rice fields and fer-
tilization [12]. Asia contributes 30–50% to global  CH4 emis-
sions from rice cultivation [129], but over recent decades 
most inventories show a decreasing trend due to reduced 
areal extent, changed management, and northward shift of 
rice cultivation [12]. Field burning of agricultural residues 
is reported as a minor source of  CH4 in emission inventories.

Spotlight: How Can We Explain That Estimates 
of CDR Potentials by Afforestation/Reforestation 
(A/R) Diverge by an Order of Magnitude?

Recent reviews of A/R show CDR potentials of 0.1–2 PgC 
 year−1 (in 2050) [3] or even higher [20, 130]. This very large 
range may not be misinterpreted as uncertainty in process 
understanding since it is partly attributable to different 
scopes of the individual studies underlying these reviews. 
Their scopes differed with respect to the type of potential 
considered, i.e., whether biophysical, technical, or economic 
limitations are considered [3], and with respect to the under-
lying scenario assumptions of background climate and avail-
able land [17]. However, several other sources of uncertainty 
have received little attention so far:

While competition with food has generally been recog-
nized as a major constraint to A/R areas [131], assumptions 
vary for presumably subtle, but highly important aspects 
such as if only current cropland (about one-third of total 
agricultural area) are spared from A/R [20, 132] or also 
grazing land and areas of future cropland expansion, which 
would additionally reduce CDR potentials by 20–60% [133].

Similarly, little attention is given to the most fundamental 
question of what a forest is. Thus, in many studies, fixed 
biome-wide sequestration potentials are used [20, 132], such 
that the A/R area translates linearly to CDR. However, the 
area eligible for A/R is reduced by two-thirds, or 5 million 
 km2, when a crown cover threshold of 10% instead of 30% 
is assumed [134]. Griscom et al. [20], for example, assume 
a crown cover threshold of 25% for forests; the FAO uses the 
definition of 10% [86].

While static emission factors are a common approach to 
assess GHG fluxes from LULCC [135], fixed sequestration 
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potentials ignore that regrowth of biomass and soil carbon 
is slow and non-linear [136] and that carbon uptake per unit 
area of A/R may be much higher in the future than today due 
to beneficial  CO2 effects on plant growth [137], or lower, as 
disturbances increase [138, 139] and, under strong mitiga-
tion, ecosystems start to outgas  CO2 [140, 141].

A common misperception is a fact that the sequestra-
tion potential on a given A/R area (without product usage) 
would inevitably saturate [131], while studies show that even 
old-growth forests continue to be a carbon sink currently 
(between 1.6 ± 0.6 Mg C  ha−1  year−1 and 2.4 ± 0.8 Mg C 
 ha−1  year−1) [142, 143] in many regions in response to more 
favorable growth conditions (the same processes that are 
underlying the loss of additional sink capacity). Nonethe-
less, the magnitude of CDR potential and its persistence in 
the future under elevated  CO2 concentrations still needs to 
be analyzed in detail [144].

Lastly, the future divergence between estimates will partly 
stem from biogeophysical effects of A/R being considered 
in studies quantifying CDR potentials of A/R: if at all, in 
the past, only albedo aspects were accounted for [20, 145]; 
this was recently extended to account for all biogeophysi-
cal effects [146] on a local scale, but far-reaching climatic 
effects have to date not been considered (see Biogeophysi-
cal Effects and Spotlight: Can We Reconcile the Seemingly 
Contradicting Results of Models and Observations Concern-
ing the Cooling Effect of High-Latitude Deforestation?).

We conclude from our review of biogeochemical effects 
that a full GHG coverage has been achieved for LULCC, 
though not yet operationally each year, and can serve as 
independent data to evaluate assessments under the Global 
Stocktake. Though LULCC emissions are of secondary 
importance to fossil emissions currently, at around a quarter 
of total emissions they are large and remained high despite 
continuing international climate negotiations. Estimates of 
future LULCC effects need to consider that LULCC com-
prises many readily available CDR methods. The last years 
saw major progress in providing reviews of CDR potentials 
for a range of methods [3, 4, 20, 147]. To narrow down 
the large ranges, harmonization of fundamental differences 
(such as forest cover definition) needs to be achieved.

Biogeophysical Effects

The strength of biogeophysical LULCC effects on regional 
and global climate is still a matter of debate. Despite the 
identification of a large spread among models in LUCID 
[148] and the following substantial progress in the repre-
sentation of terrestrial processes and LULCC practices in 
models [2, 27], more recent model intercomparison stud-
ies still find that not all models agree on the sign of global 
and regional temperature changes for historical [149, 150], 
future [37], and idealized [151] LULCC scenarios. Some 

major differences between model studies with different set-
ups and between models and observations, however, could 
be attributed to different scopes of the studies (see Spotlight: 
Can We Reconcile the Seemingly Contradicting Results of 
Models and Observations Concerning the Cooling Effect 
of High-Latitude Deforestation?). We report in the follow-
ing robust conclusions of the last years and major ongoing 
research areas.

A better understanding of the effects of deforestation and 
A/R has emerged as the very distinct signals of local vs non-
local effects (Fig. 2), the latter sometimes termed “atmos-
pheric feedbacks” [42], have been recognized and meth-
odological advances allowed for their separation [15, 42]. 
A largely consistent picture of local effects across models 
and observations is an annual mean near-surface air warm-
ing effect of deforestation (or cooling for A/R) in almost 
all of the tropical and mid-latitudes, which can reach more 
than 1 °C, and a cooling effect in some or all of the boreal 
region [13, 14, 60, 149]. Deforestation amplifies the diurnal 
cycle of local surface temperature across the globe [14, 60, 
150] and increases the intensity of hot days in many regions 
[152], although models still struggle reproducing observed 
diurnal changes well [38]. The tropical and temperate warm-
ing is attributable to the decreases in turbulent heat fluxes 
due to decreased roughness and transpiring leaf area [13, 14, 
46]. In boreal regions, summer temperatures may increase 
for similar reasons, but averaged over the year a winter (and 
night-time) cooling dominates, which is attributable to 
lower roughness upon deforestation reducing the mixing in 
of warm air from the atmosphere aloft [46]. Deforestation 
in boreal regions also causes albedo to increase leading to 
a reduction in absorbed, available energy, the effect that is 
commonly assumed to be the major climate effect of boreal 
forest clearing; however, recent studies agree that the lower 
amount of absorbed energy locally is largely compensated 
for by reduced turbulent heat fluxes [13, 14, 46]. It becomes 
clear, therefore, that the common statement that albedo is 
the most important biogeophysical driver of LULCC effects 
holds only for global climate aspects [16], but not for local 
effects. Models continue to show wide divergence on the 
partitioning of turbulent heat exchange into sensible and 
latent fluxes (the “Bowen ratio”), identified for the previ-
ous generation of global climate models (LUCID [148]), for 
state-of-the-art models (CMIP6 [151]), and recently also in 
regional climate models [153]. New observations providing 
evaluation data [154] now make progress in improving the 
representation of turbulent heat exchange in models.

The earlier perception of boreal A/R being counter-pro-
ductive for mitigation because albedo-induced warming may 
be stronger than  CO2-induced cooling [155, 156] needs to be 
revisited given the recent findings of a dominance of non-
radiative terms over albedo effects in both observations [13] 
and models [46] for local effects. Indeed, the albedo cooling 
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becomes the dominant signal in most models when total 
(local and non-local) effects are considered [149], causing 
the temperature to decrease across most of the globe apart 
from the inner tropics for global large-scale and historical 
deforestation patterns [151]. This non-local albedo cool-
ing has not been attributed to individual regions yet. It thus 
seems premature that assessments of CDR potentials (e.g., 
[20, 145]) take out boreal regions entirely from A/R consid-
erations, in particular since the boreal albedo cooling, with a 
high importance of the “snow masking” effect, will become 
smaller under a warmer (and thus snow-poorer) climate.

Precipitation and other climatic effects are less well 
investigated compared to temperature responses. Precipi-
tation typically decreases globally and over the deforested 
areas, in particular in the humid tropics, in model simula-
tions of large-scale deforestation [15, 151]. This is gener-
ally in line with a smaller-scale, observational evidence for 
Europe showing increased precipitation at the locations of 
forestation, though downwind effects show a seasonally and 
regionally more specific pattern [157]. Recent research con-
firmed that the effects of deforestation on precipitation in the 
Amazon are highly scale-dependent, with kilometer-scale 
LULCC increasing precipitation [158], but large-scale clear-
ing decreasing it [159]. Due to the high rates of precipita-
tion recycling, deforestation could induce a regional tipping 
point to a drier, savanna-like ecosystem state; this is warned 
of as being imminent at current deforestation rates [160], 
but the IPCC’s assessment is of low confidence that such a 
change, driven by deforestation and climate change-induced 
drying, occurs in the twenty-first century [161]. Models also 
suggest remote effects of large-scale deforestation on mon-
soon regions, in particular of high-latitude LULCC due to 
impacts on meridional heat transport [162]. The detection of 
a robust signal from deforestation for temperature or precipi-
tation takes decades or requires large areas of removed forest 
cover, in particular when the non-local effects (which con-
tain weather noise [15]) are included, so in general longer 
temporal scales and larger spatial extent than current policy 
decision horizons [151]. This problem of signal detection 
is likely aggravated for A/R with its long timescales of 
regrowth, which will make it more difficult to draw political 
awareness to A/R as a potential land use strategy with large 
climatic benefit.

In light of choosing specific LULCC practices for climate 
mitigation and adaptation, progress is necessary for under-
standing the effects of the various types of LULCC transi-
tions. Observational datasets started to provide such splits 
[13, 14], but information on all transitions depicted in Fig. 1 
is far from complete; more research on individual land man-
agement practices is needed. Luyssaert et al. [1] showed that 
land management and land cover change impact the surface 
temperature with a similar magnitude, with land manage-
ment covering twice the area compared to land use-induced 

land cover changes. Integration of land management prac-
tices in models has thus become a key priority (Fig. 1 [2]). 
Erb et al. [163] attributed large biogeophysical effects to 
the land use practices “harvest” (of forest and crops) and 
the two more recent model developments “cropland irriga-
tion” and “choice of forest species.” While consorted model 
intercomparisons of land management practices have been 
initiated [24], individual studies suggest that irrigation at 
current levels has particularly strong effects during hot and 
dry extremes, cooling the irrigated land by 0.8 K on average 
on the hottest day of the year [164], with around one billion 
people benefitting from these dampened extreme weather 
conditions [165]. The effects on annual mean temperature 
are uncertain, with studies finding only minor impact on 
near-surface air temperature [164], but a change on the order 
of 1 K for surface temperature [13]. Although the monsoon 
precipitation in the heavily irrigated South and Southeast 
Asian region may have been decreased by the reduced land-
sea temperature contrast due to cooling by irrigation ([164, 
166], and references therein), severely dry months may also 
have decreased in number [166] and advective moisture 
transport and changes in regional circulations may have 
increased precipitation over regions not directly subject to 
irrigation such as Eastern Africa [167]. Similarly, individual 
observational studies suggest large biogeophysical effects for 
tree species selection, with an annual mean warming typi-
cally below 0.5 K for conversion of broadleaf deciduous to 
needleleaf evergreen forest in all regions of the world [13], 
attributable mostly to albedo changes [13] and associated 
with an energy shift from latent to sensible heat fluxes [14]. 
In Europe, broadleaf trees may mitigate hot extremes [168] 
and their conversion over the last centuries contributed to 
the conclusion that European forest management has not 
mitigated climate change historically [169].

The strength of biogeophysical effects is highly depend-
ent on the future scenario for several reasons: (i) As albedo- 
and snow-related cooling of deforestation diminishes in a 
warmer climate and LULCC-related decreases in turbulent 
heat fluxes may become stronger in other regions, the bio-
geophysical local warming will likely increase in the future 
[170, 171]; the relevance of background climate can also 
be inferred from today’s latitudinally differentiated climate 
response to LULCC [172]. (ii) Meanwhile, substantial parts 
of the world have experienced greening trends (increases in 
leaf area) in recent decades, with particular hotspots related 
to land management in China (mainly on forests and crop-
lands) and India (mainly on croplands [173–175]); this will 
alter the strengths of surface energy balance changes for 
related LULCC conversions. (iii) For many regions, the tem-
perature response may be strongest when starting deforesta-
tion from low forest cover fractions [171] (mixed evidence 
across models in Boysen et al. [151]), an effect that further 
agricultural expansion will enhance. (iv) LULCC effects will 
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become more important in relative terms, when fossil-fuel 
emissions decrease; e.g., Hirsch et al. [176] showed that 
comparing a 1.5 to 2 °C climate target, changes in tempera-
ture extremes may be more strongly influenced by LULCC 
than the climate target.

LULCC may further affect climate by changes in bio-
genic volatile organic compound emissions, which con-
tribute to the formation of secondary organic aerosols with 
consequences on cloud formation and radiative fluxes and 
influence  CH4 lifetime and  O3 formation. For instance, for-
est clearing has led to decreases in isoprene and monoter-
pene emissions [177]. Agriculture expansion increases dust 
formation via wind erosion, which may alter the radiative 
budget [178], as does smoke from biomass burning and 
altered fire regimes; Heald and Spracklen [179] provided a 
review of LULCC effects on air chemistry, but the scarcity 
of recent global assessments makes this topic outside the 
scope of our study.

Spotlight: Can We Reconcile the Seemingly 
Contradicting Results of Models and Observations 
Concerning the Cooling Effect of High‑Latitude 
Deforestation?

Early modeling studies suggested that large-scale deforesta-
tion leads to cooling in the temperate and boreal regions 
and concluded that boreal A/R may be counter-productive 
to mitigation efforts [155]. They attributed the cooling effect 
to the increased surface albedo of replacing dark forests 
with agricultural land, enhanced by “snow masking” [180]. 
More recent observation-based assessments [13, 14] agree 
with models that deforestation leads to surface warming in 
the tropics, but they show warming also in temperate and 
parts of the boreal regions, where models showed cooling. 
They further found that the cooling effect of forests results 
from non-radiative (roughness) changes rather than albedo 
changes—even in the high latitudes [13]. Here we resolve 
both apparent discrepancies (more widespread cooling from 
deforestation and higher importance of albedo in models 
as compared to observations) by the fact that observations 
capture only local temperature effects but exclude non-local 
effects—for example, when measurements of neighboring 
forests and grasslands are compared, any non-local effects 
cancel, because advection and atmospheric circulation affect 
neighboring regions similarly.

Splitting local from non-local biogeophysical effects of 
deforestation by a checkerboard setup in an Earth system 
model, Winckler et al. [149] have shown that the non-local 
signal of deforestation constitutes a widespread cooling 
signal across boreal and temperate regions, while the local 
effects show a warming in the temperate regions and smaller 
cooling in the boreal. The non-local effects exceeded the 
globally averaged local warming signal by a factor of three 

in their model. The dominance of non-local effects was 
found robust across several models. The different spatial 
patterns of local and non-local effects were later confirmed 
by comparing land-only simulations to simulations coupled 
to the atmosphere [42]. The apparent discrepancy of tem-
perate and boreal cooling from deforestation in models to 
temperate and, partly, boreal warming in observations is 
thus attributable to non-local effects being excluded from 
observation-derived estimates.

The fact that models attribute biogeophysically induced 
temperature change more to albedo changes in the high-lat-
itudes, while observations attribute them to non-radiative 
processes, can also be attributed to the inclusion of non-local 
effects in model simulations but not in observations. Earlier 
studies often inferred indirectly from a strong decrease in 
absorbed short-wave radiation following deforestation to a 
large importance of albedo for the climate. While albedo 
clearly influences absorption of short-wave radiation, this 
does not necessarily impact temperatures: Reduced turbulent 
heat loss due to the smoother surface may compensate for 
the cooling from reduced net short-wave radiation. That this 
is the case for deforestation has been proposed by models for 
local effects [46] (see Biogeophysical Effects). While albedo 
dominates the temperature signal for non-local processes 
[46], roughness dominates local temperature changes [13].

A further explanation for the discrepancy between models 
and observations concerning which regions are cooled or 
warmed by forest cover changes may lie in inconsistent vari-
ables (Fig. 3): Earlier model studies usually reported only 
near-surface air temperature  (T2m) as measured by weather 
stations and Fluxnet towers, while studies based on remote 
sensing data report effects on surface temperature  (Tsurf) 
[150, 181].  T2m typically shows a smaller local response 
to deforestation than  Tsurf. While the annual mean cooling 
from deforestation stretches south to 35°N for  T2m, it ends 
at 45–55°N for  Tsurf [150]. This difference may also explain 
why satellite-based studies such as Duveiller et al. [14] 
found less cooling in temperate/boreal latitudes than stud-
ies based on observations of air temperature from weather 
stations and Fluxnet towers [182].

In summary, although both Earth system models [4] and 
observations [152] differ among themselves in terms of the 
exact size of temperature changes, they are generally consist-
ent with each other concerning the spatial patterns of cooling 
or warming when their different scopes concerning non-local 
effects are taken into account. While local effects of LULCC 
are relevant for local living conditions, LULCC as a mitiga-
tion tool needs to consider non-local effects as well. While 
local effects are known to change with background climate 
such as future climate change [171], they have been shown to 
be largely independent of the extent of global LULCC [15]. 
However, non-local effects are dependent on the global sce-
nario of LULCC as atmospheric circulation changes respond 
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to LULCC worldwide; this complicates the inclusion of non-
local effects in national or local LULCC decision-making 
and only local effects are currently proposed to be included 
in policies [5], leaving the integration of non-local effects 
into policy as an emerging field.

We conclude from our review that more evidence and 
better process understanding emerged for the biogeophysi-
cal effects. Robust features are a warming in both tropical 
and temperate regions when only local effects of deforesta-
tion are considered, and new evidence for altered precipita-
tion locally and remotely emerged for several regions. The 
large model spread can now be addressed through evalua-
tion against an increasing number of observational datasets. 
General agreement between models and observations calls 
for the inclusion of local climate effects in policy-making.

Conclusions and Outlook

It is evident that LULCC plays a crucial role in future cli-
mate policies: LULCC emissions (currently 25% of all 
anthropogenic GHG emissions, see Biogeochemical Effects) 
need to be reduced as part of the larger mitigation efforts 
to achieve the Paris Agreement’s goals, which will require 
massive structural changes [183, 184]. With the most readily 

available and best-researched CDR methods, LULCC is 
in the spotlight for bearing the brunt of required negative 
emissions until technological solutions have been scaled up 
[3]. The land sector’s sustainable contribution to the global 
mitigation needed in 2050 for a 1.5 °C target has been esti-
mated to about 30% or 15  GtCO2e  year−1 [147], roughly 
half of which is attributable each to emissions reductions 
and CDR. Managed land further is a massive natural sink 
for  CO2—recognized by official country reporting under 
UNFCCC, although global carbon cycle models show that 
part of this sink is not attributable to changes in land use 
activities, but to natural changes in environmental conditions 
(see Spotlight: Why Are Uncertainties in LULCC-Related 
GHG Fluxes so Large?).

However, protecting, restoring, or sustainably manag-
ing ecosystem services with the goal of mitigating climate 
change, as “natural climate solutions” and “nature-based 
solutions” imply [20], needs to integrate these biogeochem-
ical aspects with biogeophysical ones, as well with other 
ecosystem services (which are outside the scope of this 
study). The first task is to ensure that the goal of mitigating 
global climate change is not compromised by biogeophysi-
cal effects, which via advection and circulation changes may 
affect remote areas (see Biogeophysical Effects). The sec-
ond task is to carefully consider trade-offs and ideally create 

Fig. 3  Different methods allow us to cross-check estimates of 
LULCC effects: (1) ground-based methods, such as weather stations, 
eddy covariance measurements, or forest inventories (depicted in 
black); (2) remote sensing (blue); (3) land surface modeling (brown). 
When comparing different methods, it needs to be considered that 
variables may be inconsistently defined. This is exemplified here for 
temperatures: weather stations measure temperature at 2  m height 

 (T2m) while eddy towers often measure it higher up  (Tair); models 
output only temperature at skin  (Tskin) and in the lowest atmospheric 
layer  (Tatm), and satellites measure radiometric surface temperature 
 (Trad). Models are coarse (in terms of process detail and spatial reso-
lution) but spatially comprehensive representations of reality. Satel-
lite estimates also rely heavily on model assumptions to derive water, 
energy, or greenhouse gas fluxes from radiometric information
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co-benefits between the global scale of mitigation and local 
climate change relevant for living conditions. As LULCC 
has the potential to alter local mean temperatures up to sev-
eral degrees and strongly mitigate heat extremes (see Bio-
geophysical Effects), targeted LULCC may be an efficient 
way to adapt to global climate change [185]. In order to 
assess mitigation and adaptation together, the challenge for 
future research on LULCC will lie in keeping the global 
perspective and regional setting of LULCC that determines 
non-local effects [149, 186], while moving to the fine scales 
at which micro- and meso-scale dependencies are resolved 
(including, e.g., precipitation increases for small-scale tropi-
cal deforestation) [187, 188]—possibilities that may open 
with creating a “digital twin” of Earth [189]. It is these fine 
scales, too, at which any LULCC practice is implemented 
and at which it can be sustainably maintained.

Another emerging strand of future research will thus 
focus on the integration of human decision-making and 
natural systems. LULCC has been identified as one of the 
most important reasons for strengthening the integration of 
socioeconomic and Earth system modeling [190], and the 
first approaches to capture feedbacks between management 
input, productivity, prices, and climate have been developed 
[191, 192]. The future will likely see a move towards the 
finer scales in this field as well, to capture individual behav-
ior and decision-making [193].
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