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Abstract
Existing ordinal trees and random forests typically use scores that are assigned to the
ordered categories, which implies that a higher scale level is used. Versions of ordinal trees
are proposed that take the scale level seriously and avoid the assignment of artificial scores.
The construction principle is based on an investigation of the binary models that are implic-
itly used in parametric ordinal regression. These building blocks can be fitted by trees and
combined in a similar way as in parametric models. The obtained trees use the ordinal scale
level only. Since binary trees and random forests are constituent elements of the proposed
trees, one can exploit the wide range of binary trees that have already been developed. A fur-
ther topic is the potentially poor performance of random forests, which seems to have been
neglected in the literature. Ensembles that include parametric models are proposed to obtain
prediction methods that tend to perform well in a wide range of settings. The performance
of the methods is evaluated empirically by using several data sets.

Keywords Recursive partitioning · Trees · Random forests · Ensemble methods · Ordinal
regression

1 Introduction

There is a long tradition of analyzing ordinal response data by using parametric models,
which started with the seminal paper of McCullagh (1980). Overviews on developments
that include nonparametric approaches have been given, for example, by Agresti (2010) and
Tutz (2020). More recently, recursive partitioning method have been developed that allow
to investigate the impact of explanatory variables on ordinal responses by nonparametric
tools. Single and random forests for ordinal responses have several advantages, they can be
applied to large data sets and are considered to perform very well in prediction.

A problem with most of the ordinal trees is that they assume that scores are assigned to
the ordered categories of the response. The assignment of scores can be warranted in some
cases, in particular if ordinal responses are built from continuous variables by grouping.
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However, it is rather artificial and arbitrary in genuine ordinal response data, for example, if
the response represents ordered levels of severeness of a disease. Then, one can not choose
the midpoints of the intervals from which the ordered response is built as suggested by
Hothorn et al. (2006) since no continuous variable is observed. If nevertheless scores are
assigned they can affect the prediction results although that has not always to be the case
(see also Janitza et al., 2016).

The packages rpartOrdinal (Archer, 2010) as well as the improved version rpartScore
(Galimberti et al., 2012), which are based on the Gini impurity function, use assigned scores.
The same holds for the random forests proposed by Janitza et al. (2016) and the ordinal
version of conditional trees of the package party (Hothorn et al., 2006; Hothorn & Zeileis,
2015). The random forest approach proposed by Hornung (2020) is somewhat different, it
also translates ordinal measurements into continuous scores but optimizes scores instead of
using a fixed score. Sciandra et al. (2017) investigated the correspondence between ranked
preferences and data on an ordinal scale in the case of multivariate ordinal data. Versions of
random forests without scores were proposed more recently by Buri and Hothorn (2020).
They use the ordinal proportional odds model to obtain statistics that are used in splitting.
The trees proposed by Cappelli et al. (2019) are based on the so-called CUB model, which
has been reviewed by Piccolo and Simone (2019). An alternative semiparametric approach
that uses parametric models has been proposed by Simone and Tutz (2020).

In the following alternative trees and random forests that take the scale level of the
response seriously are proposed. The main concept is that ordinal responses contain binary
responses as building blocks. This has already been implicitly used in parametric modeling
approaches. For example, the widely used proportional odds model can be seen as a model
that parameterizes the split of response categories into two groups of adjacent categories.
But the principle also holds for alternative models as the adjacent categories model and the
sequential model (see Tutz, 2020 for an overview and a taxonomy of ordinal regression
models). The proposed trees explicitly use the representation of ordinal responses as a set of
binary variables. Random forests for the binary variables are used to obtain random forests
for ordinal response data.

For random forests it is important that they provide good performance in terms of
prediction. They are commonly considered as being very efficient. However, as will be
demonstrated this does not hold in general. In many cases simple parametric models turn
out to be at least as efficient and sometimes more efficient than the carefully designed ran-
dom forests. Typically, when ordinal forests are propagated the accuracy is investigated for
versions of random forests only but they are not compared to parametric competitors. In
the following we propose the use of ensembles that include parametric models to provide a
stable prediction tool that works well in all kinds of data sets. For overviews on ensemble
methods and multimodel inference (see, for example, Polikar, 2009; Burnham & Anderson,
2002).

The paper has two objectives, introducing score-free recursive partitioning and random
forests, and proposing ensembles that include parametric models. In Section 2 the repre-
sentation of ordinal responses as a sequence of binary responses is briefly considered. It
makes clear that specific binary responses can be seen as building blocks of classical para-
metric models. In Section 3 it is shown how these building blocks can be used to construct
score-free trees and random forests. In addition, more general ensembles are considered. In
Section 4 the performance of the ensembles is investigated by using real data sets. Section 5
is devoted to importance measures, which are an essential ingredient of random forests since
the impact of variables on prediction in random forests is not directly available.
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2 Binary Representations of Ordinal Responses

In the following the representation of ordinal response as a collection of binary responses
is considered. It can be seen as being behind the construction of parametric ordinal models
and will serve to construct a novel type of recursive partitioning that does not use assigned
scores.

Let the ordinal response Y take values from {1, . . . , k}. Although these values suggest
a univariate response the actual response is multivariate since the numbers 1, . . . , k just
represent that outcomes are ordered but distances between numbers assigned to categories
should not be built in an ordinal scale because they are not interpretable.

A multivariate representation of the outcome can be obtained by using binary dummy
variables. Natural candidates for dummy variables are the split variables

Yr =
{
1 Y ≥ r

0 Y < r,
(1)

r = 1, , k, where category 1 serves as a reference category, and Y1 ≡ 1. Then, Y = r is
represented by a sequence of r − 1 ones followed by a sequence of zeros,

(Y2 . . . , Yk) = (1, . . . , 1, 0, . . . , 0).

The vector (Y2 . . . , Yk) can be seen as a multivariate representation of the response. The
dummy variables that generate vectors of this form, which are characterized by a sequence
of ones followed by a sequence of zeros have also be referred to as Guttman variables
(Andrich, 2013).

Classical ordinal regression model use these dummy variables but are most often derived
from the assumption of an underlying continuous variable, and the link to split variables
is ignored. The most widely used proportional odds model, also called cumulative logistic
model, has the form

P(Y ≥ r|x) = F(β0r + xT β), r = 2, . . . , k. (2)

where x is a vector of explanatory variables and F(η) = exp(η)/(1+ exp(η)) is the logistic
distribution function. For the parameters one has the restriction β02 ≥ · · · ≥ β0k . The model
explicitly uses the dichotomizations given by (1). Since Y ≥ r iff Yr = 1 the model can
also be given as

P(Yr = 1|x) = F(β0r + xT β), r = 2, . . . , k. (3)

Thus, the proportional odds model is equivalent to a collection of binary logit models that
have to hold simultaneously. The model implies that the effect of covariates contained in
xT β is the same for all dichotomizations. That means if one fits the binary models (3) sepa-
rately one should obtain similar values for estimates of β. This restriction can be weakened
by using the partial proportional odds model, in which the effect of variables may depend
on the category, that is, the linear term xT β in (2) is replaced by xT βr . However, as will be
discussed later the parameters βr can not vary freely.

Model (2) is a so-called cumulative model since on the left hand side one has the sum
of probabilities P(Y ≥ r|x). Cumulative models form a whole family of models, whose
members are characterized by the choice of a specific strictly increasing distribution func-
tion F(.). They have been investigated and extended, among others, by McCullagh (1980),
Brant (1990), Peterson and Harrell (1990), Bender and Grouven (1998), Cox (1995), and
Kim (2003) and Liu et al. (2009).
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An alternative ordinal regression model is the adjacent categories model, which has the
basic form

P(Y ≥ r|Y ∈ {r − 1, r}, x) = F(β0r + xT β), r = 2, . . . , k. (4)

Since P(Y ≥ r|Y ∈ {r −1, r}, x) = P(Y = r|Y ∈ {r −1, r}, x) it specifies the probability
of observing category r given the response is in categories {r − 1, r}. Because of the con-
ditioning it can be seen as a local model. The interesting point is that it also uses the split
variables. It is easily seen that it is equivalent to

P(Yr = 1|Yr−1 = 1, Yr+1 = 0, x) = F(β0r + xT β), r = 2, . . . , k − 1,

P (Yk = 1|Yk−1 = 1, x) = F(β0k + xT β).
(5)

Thus, it specifies the binary response variable Yr conditionally in contrast to cumulative
models, which determine the binary response directly in an unconditional way. But as for
cumulative models it is assumed that the binary models (5) hold simultaneously.

The adjacent categories logit model may also be considered as the regression model that
is obtained from the row-column (RC) association model considered by Goodman (1981a),
Goodman (1981b), and Kateri (2014). It is also related to Anderson’s stereotype model
(Anderson, 1984), which was considered by Greenland (1994) and Fernandez et al. (2019).
It has been most widely used as a latent trait model in the form of the partial credit model
(Masters, 1982; Masters & Wright, 1984; Muraki, 1997).

An advantage of the adjacent categories model is that one can replace the parameter
vector β by a category-specific parameter vector βr without running into problems. In
cumulative models one has the restriction P(Y ≥ 2|x) ≥ · · · ≥ P(Y ≥ k|x), which
can yield problems, in particular when fitting the binary models (3) with category-specific
parameter vectors βr . For overviews of parametric ordinal models (see, for example,
Agresti, 2010; Tutz, 2012). They also include a third type of ordinal model, the sequential
model, which is a specific process model, which could also be extended to tree type models.
But because of its specific nature we do not consider it explicitly.

The main point is that binary models are at the core of parametric classical ordinal mod-
els. There is a good reason for that because the splits represent the order in categories
without assuming more than an order of categories. In the next section this is exploited
to construct trees that account for the ordering of categories. It should, nevertheless, be
noted that alternative models for ordinal responses have been proposed (see, for example,
Biernacki & Jacques, 2016; Ursino & Gasparini, 2018; Piccolo & Simone, 2019).

It should be noted that the approach of dichotomizing outcomes has been used before
for continuous outcomes, an early reference is Foresi and Peracchi (1995). It allows flex-
ible models for conditional distribution functions to be fitted by application of relatively
simple models for binary outcomes, and can be used in regression models that aim at esti-
mating the whole conditional distribution (see, for example, Chernozhukov et al., 2013).
The approaches typically use unconditional binary models. The strength of the model-
ing approach used here is that conditional binary models avoid the need for an explicit
monotonicity constraint.

3 Recursive Partitioning Based on Splits

The crucial role of split variables in modeling ordered response can be used to obtain non-
parametric tree models that use the ordering efficiently. There are basically two ways to
do so, one is by using the split variables directly, which corresponds to cumulative type
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models, the other approach is to use them conditionally, which corresponds to the adjacent
categories approach.

3.1 Trees for Split Variables

Split variables are binary, and therefore, binary trees can be fitted. Let the tree for Yr be
given by

log
P(Yr = 1|x)

P (Yr = 0|x)
= tr r (x), r = 2, . . . , k, (6)

where tr r (x) denotes the partitioning of the predictor space, that is, the tree. Then, one
obtains for the probabilities

P(Yr = r|x) = P(Y ≥ r|x) = exp( tr r (x))

1 + exp( tr r (x))
.

The corresponding trees are called split-based trees. Split variables are a formal tool
to group categories but have substantial meaning in many applications. For example,
in the retinopathy data set (Bender & Grouven, 1998), which will also be considered
later, the response categories are (1) no retinopathy, (2) nonproliferative retinopathy, and
(3) advanced retinopathy or blind. Thus, the split between categories {1} and {2, 3} dis-
tinguishes between healthy and not healthy, whereas the split between {1, 2} and {3}
distinguishes between serious illness and otherwise. It is crucial that explanatory variables
may play different roles for different splits. In the retinopathy data set, with explanatory
variables smoking (SM = 1: smoker, SM = 0: non-smoker), diabetes duration (DIAB) mea-
sured in years, glycosylated hemoglobin (GH), measured in percent, and diastolic blood
pressure (BP) measured in mmHg, one obtains for the two splits the trees shown in Fig. 1
(fitted by using ctree, Hothorn et al. (2006)). It is seen that trees are quite different, which
means that explanatory variables play differing roles when used to distinguish between
healthy and not healthy and between serious illness and less serious illness.

3.2 Trees for Conditional Splits

Instead of the unconditional split variables considered previously let us consider the
conditional binary variables

Ỹr =
{
1 Y ≥ r given Y ∈ {r − 1, r}
0 Y < r given Y ∈ {r − 1, r}, (7)

r = 2, . . . , k. The variables are conditional versions of split variables. More concrete, Ỹr

represents Yr |Yr−1 = 1, Yr+1 = 0. The main difference between Ỹr and Yr is that the for-
mer is a conditional variable. This is important since fitting a tree to Ỹr means one includes
only observations with Y ∈ {r − 1, r}. The corresponding tree can be seen as a nonpara-
metric version of the adjacent categories model and is called an adjacent categories tree.
The corresponding trees are local, they reflect the impact of explanatory variables on the
distinction between adjacent categories.

Adjacent categories trees have a different interpretation than trees for split variables. For
illustration, Fig. 2 shows the fitted trees for the retinopathy data. It is seen that diabetes
duration (DIAB) has an impact in both trees. In the split between categories 1 and 2 the
only other variable that is significant is glycosylated hemoglobin while in the split between
categories 2 and 3 it is blood pressure. Trees are smaller than split-based trees since due
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Fig. 1 Conditional trees for retinopathy data, upper panel: split between {1} and {2, 3}. lower panel: split
between {1, 2} and {3}

to conditioning the number of observations is smaller. From a substantial point of view it
might be most interesting to combine trees from the different splitting concepts. The first
tree in Fig. 1 distinguishes between {1} and {2, 3}, that is between healthy and non healthy.
The second tree in Fig. 2 shows which variables are significant when distinguishing between
categories 2 and 3 given the response is in categories {2, 3}, that is, which variables are
influential given the patient suffers from retinopathy.
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Fig. 2 Conditional trees for retinopathy data, left: split given Y ∈ {1, 2}, right: split given Y ∈ {2, 3}

3.3 From Trees to Random Forests

Single trees can be informative for researchers that want to investigate which variables have
an impact on specific dichotomizations. If one has prediction in mind a better choice are
random trees, which are much more stable and efficient than single trees (Breiman, 1996;
2001; Bühlmann et al. 2002). Then, it is necessary to combine the results of single trees in
a proper way.

Let us first consider split-based trees. They face the problem familiar from cumulative
models with category-specific effects that specific constraints have to be fulfilled. More
specifically, for all values of x the constraint P(Y ≥ 2|x) ≥ · · · ≥ P(Y ≥ k − 1|x)

has to hold, which is equivalent to P(Y2 = 1|x) ≥ · · · ≥ P(Yk−1 = 1|x). However,
for separately fitted trees the corresponding condition tr 2(x) ≥ · · · ≥ tr k−1(x) does no
necessarily hold. The same problem occurs in partial proportional odds model, for which
β02 + xT β2 ≥ · · · ≥ β0k + xT βk has to hold.

Let π̂(x)(r) = P̂ (Y ≥ r|x) denote the estimated cumulative probabilities resulting
from the tree for the split variable Yr . Then, probabilities are obtained by P̂ (Y = r|x) =
π̂(x)(r) − π̂(x)(r+1) if π̂(x)(r) ≥ π̂(x)(r+1) for all r . If the latter condition does not hold
cumulative probabilities π̂(x)(r), . . . , π̂(x)(k) are fitted to be decreasing by using mono-
tone regression tools. Alternative approaches to obtain compatible estimators have been
considered in the machine learning community, for example, by Chu and Keerthi (2007).

An advantage of adjacent categories trees is that no monotonization tools are needed
since estimated probabilities are always compatible. Let the adjacent categories trees be
given by

log
P(Ỹr = 1|x)

P (Ỹr = 0|x)
= t̃r r (x), r = 2, . . . , k, (8)

where t̃r r (x) denotes the partitioning of the predictor space. It is not hard to derive that the
probability of an response in category r given the representation (8) holds has the form

P(Yr = r|x) = exp(
∑r

s=2 t̃r s(x))∑k
s=1 exp(

∑s
l=2 t̃r s(x))

, (9)

where
∑1

l=2 t̃rs(x)) = 0. The representation (9) holds for any values of t̃r 2(x), . . . , t̃r k(x),
no specific restriction has to be fulfilled.

Random forests are obtained by combining not only the trees for split variables but
averaging over a multitude of trees generated by randomization. More concrete, for the
split variables binary random forests are fitted and the prediction is combined by using
(8) and (9), respectively. The approach exploits the role of the split variables as building
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blocks for ordinal responses, and can be seen as a split variables based approach, which is
unconditional in split-based trees and conditional in adjacent categories trees.

3.4 Ensemble Learners Including Parametric Models

Before investigating the proposed random forests in detail let us point out a problem
with ordinal trees that is often ignored. Most presentations of ordinal trees focus on the
development of novel trees but do not compare the performance of random forests to the
performance of simple parametric models as the proportional odds model. That leaves the
impression that random forests are the most efficient tools. As will be demonstrated in the
following sections parametric models should not be ignored, in many applications they can
perform as well as random forests or even better. The use of parametric ordinal models for
the prediction of ordinal responses has some tradition (see, for example, Rudolfer et al.,
1995; Campbell & Donner, 1989; Campbell et al., 1991; Anderson & Phillips, 1981).

Trees themselves are ensemble methods that combine various splits to obtain a good
approximation of the underlying response probabilities. To exploit the potential strength of
parametric models we propose an ensemble that includes these models. When estimating
response probabilities we will use the ensemble

P̂ (Y = r|x) =
M∑

j=1

wj P̂j (Y = r|x), (10)

where P̂j (Y = r|x) are estimated probabilities for the j th learner. Learners can be random
forests but also parametric models. The weights wj are chosen according to the prediction
performance of the j th learner. More concrete, let s1, . . . , sM denote error scores for the M

models or estimation methods. With min = min{s1, . . . , sM }, max = max{s1, . . . , sM } the
un-standardized weight for method i is defined by

w̃i = a × (si − max) + min,

where a = min×(1−M)/(max−min), such that the method with the largest error obtains
weight min, and the method with the smallest value obtains weight M × min. The final
weight is the standardized version wi = w̃i/

∑
j w̃j . As error score we used the quadratic

or Brier score, which is explicitly given in Section 4.1. For concrete data sets the weights
are determined by splitting the data set several times into a learning data set that contains
70% of the data and using the rest of the data as validation sample in which the error scores
and the weights are computed. Averaging of weights yields the final weights. We used only
three splits, since higher numbers of splits did not improve the performance.

The ensemble efficiently uses different types of learners. By combining them it yields
more stable predictions than single learners and automatically gives more weight to the
best learner in the ensemble. One might use different error scores and different weighting
schemes, but the weighting scheme used here which lets the un-standardized weights vary
between min and M × min showed rather good performance.

Typically, in classification predictions of single trees from an ensemble are combined by
voting. Each subject with given values of the predictor is dropped through every tree such
that each single tree returns a predicted class. The prediction of the ensemble is the class
most trees voted for. One obtains a majority vote, which has also been called a committee
method. It should be noted that the ensembles proposed here combine probabilities. They
are not ensembles that use majority votes to combine class predictions obtained for each sin-
gle learner. We also considered majority votes that combine the votes on splits but the results
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were distinctly inferior to using probabilities. By computing the predicted class probabili-
ties one can use more general accuracy measures that also take into account the precision
of the prediction and obtain a better approximation to the true conditional distribution of
responses.

While the use of parametric models in ensembles seems to have been neglected, there
are several proposals how to form ensembles from tress (see, for example, the weighted
random forests proposed by Winham et al. (2013) and the ensembles considered by Khan
et al. (2020)). Also the generalized random forests proposed by Athey et al. (2019) combine
alternative estimators, in their case forest-based estimates are obtained by local estimating
equations, which uses that random forests can be viewed as locally weighted estimators as
suggested by Hothorn et al. (2004) and also used by Meinshausen (2006).

4 Ordinal Random Forests and Prediction

4.1 Measuring Accuracy of Prediction

One way to investigate the power of a model is to investigate its ability to predict future
observations. In discriminant analysis one often uses class prediction as a measure of per-
formance. Class prediction in the considered framework comes in two forms. As predicted
class one may use the mode of the response, Ŷ = mod (x), which is in accordance with
the Bayes prediction rule, or the median Ŷ = med(x), which makes use of the ordering
of categories. Then, for a new observation (Y0, x0), one typically considers the 0-1 loss
function

L01(Y0, Ŷ0) = I (Y0 �= Ŷ0),

where I (.) is the indicator function. One obtains 1 if the prediction is wrong, and 0 if the
prediction is correct. The average over new observations yields the 0-1 error rate.

Rather than giving just one value as a predictor for the class it is more appropriate to

consider the whole vector p̂i
T
(x) = (π̂1(x), . . . , π̂k(x)), where π̂r (x) = P(Yr = r|x) is

the probability one obtains after fitting a tree. The vector p̂i(x) represents the predictive
distribution. As Gneiting and Raftery (2007) postulated a desirable predictive distribution
should be as sharp as possible and well calibrated. Sharpness refers to the concentration of
the distribution and calibration to the agreement between distribution and observation.

Since the response is measured on an ordinal scale an appropriate loss function derived
from the continuous ranked probability score (Gneiting and Raftery (2007)) is

LRPS(Y0, p̂i) =
k∑

r=1

(π̂(r, x0) − I (Y0 ≤ r))2,

where (Y0, x0) is a new observation and π̂(r, x0) = π̂1(x0)+· · ·+ π̂r (x0) is the cumulative
probability. It takes the closeness between the whole distribution and the observed value
into account (see Gneiting and Raftery (2007) for a discussion of its properties).

Further measures that use more information than the simple misclassification rate are
the quadratic and the logarithmic score. The quadratic score, which is also known as Brier
score, is given by

LB(Y0, p̂i) = (1 − π̂Y0(x0))
2 +

∑
r �=Y0

πr(x0)
2.
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It also measures the discrepancy between the true response and the estimated probabilities
taking into account all of the k estimated probabilities. It is the empirical version of the
quadratic loss function L2(pi, p̂i) = ∑

r (πr − πr)
2, where piT = (π1, . . . , πk) is the

vector of true probabilities and p̂i = (π̂1, . . . , π̂k) is the vector of estimated probabilities.
The quadratic score results when using the degenerate vector piT = (0, . . . , 0, 1, 0, . . . , 0),
which contains a single 1 in the observed category. For simplicity, in LB(Y0, p̂i) the obser-
vation that generates the degenerate vector of probabilities is used as argument. There is a
strong link to the ranked probability score LRPS(Y0, p̂i), which can be seen as a sum of
quadratic scores for the split variables.

A measure, which has also been used to evaluate the performance of predictors, is the
logarithmic score given by

Llog(Y0, p̂i) = − log(π̂Y0(x0)).

It is the empirical version of the Kullback-Leibler distance LKL(pi, p̂i) =∑
r πr log(πr/π̂r ). While the Kullback-Leibler distance uses the whole distribution, the

empirical version uses only the estimated probability of the observed category.
In the evaluations we use the measures that use the estimated probabilities since they

contain more information than the simple 0-1 loss that yields the misclassification rate.
The discrepancy between observations in the validation sample and estimated probabilities,
which are obtained from the learning sample, always uses the estimated vector of proba-
bilities. That means, in particular, that in the ensemble methods the probabilities (10) are
used.

4.2 Data Sets

4.2.1 Heart Data

This data set includes 294 patients undergoing angiography at the Hungarian Institute
of Cardiology in Budapest between 1983 and 1987, and is included in the R package
ordinalForest (Hornung, 2020). It contains ten covariates and one ordinal target variable.
Explanatory variables are age (age in years), sex (1 = male; 0 = female), chest pain (1
= typical angina; 2 = atypical angina; 3 = non-anginal pain; 4 = asymptomatic), trestbps
(blood pressure in mm Hg on admission to the hospital), chol (serum cholestoral in mg/dl),
fbs (fasting blood sugar > 120 mg/dl, 1 = true; 0 = false) restecg (resting electrocardio-
graphic results, 1 = having ST-T wave abnormality, 0 = normal), thalach (maximum heart
rate achieved), exang (exercise induced angina, 1 = yes; 0 = no), oldpeak (ST depression
induced by exercise relative to rest). The response is Cat (severity of coronary artery disease
determined using angiograms, 1 = no disease; 2 = degree 1; 3 = degree 2; 4 = degree 3; 5 =
degree 4).

4.2.2 Wine Data

We use the wine quality data (winequality-white) available from the UCI Machine Learning
Repository (see also Cortez et al., 2009). The response is the quality in wine in ordered cat-
egories. Explanatory variables are fixed acidity, volatile acidity, citric acid, residual sugar,
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chlorides and free sulfur dioxide. The original scoring of the quality is between 0 and 10,
but not all of the categories have been used leaving 5 response categories.

4.2.3 Housing Data

We use the housing data for 506 census tracts of Boston in the version BostonHousing2,
which contains the corrected version of the original data by Harrison and Rubinfeld (1978)
and included additional spatial information. It is included in the R package mlbench. As
categorical response we use the corrected median value of owner-occupied homes in USD
1000’s (cmedv) by binning the variable according to the cutoffs: 15, 19, 22, 25, and 32.
Explanatory variables are crim (per capita crime rate by town, var 1), lstat (percentage
of lower status of the population, var 2) zn (proportion of residential land zoned for lots
over 25,000 sq. ft, var 3), nox (nitric oxides concentration inparts per 10 million, var 4),
rm (average number of rooms per dwelling, var 5), dis (weighted distances to five Boston
employment centres, var 6), rad (index of accessibility to radial highways, var 7), tax (full-
value property-tax rate per USD 10,000, var 8), ptratio (pupil-teacher ratio by town, var 9),
b (proportion of blacks by town, var 10), indus (proportion of non-retail business acres per
town, var 11), age (proportion of owner-occupied units built prior to 1940, var 12).

4.2.4 Birth Weight Data

The lobwt data set contained in the R package rpartOrdinal has been used in several random
forest papers. As categorical response we use the birth weight by binning the variable bwt
according to the cutoffs: 2500,3000, and 3500 (see also Galimberti et al., 2012). Explana-
tory variables are age (age of mother in years), lwt (weight of mother at last menstrual period
in Pounds), smoke (Smoking status during pregnancy, 1: No, 2: Yes), ht (history of hyper-
tension, 1: No, 2: Yes), ftv (number of physician visits during the first trimester,1: None, 2:
One, 3: Two, etc)

4.2.5 Retinopathy Data

In a 6-year follow up study on diabetes and retinopathy status reported by Bender and
Grouven (1998) the interesting question is how the retinopathy status is associated with
risk factors. The considered risk factor is smoking (SM = 1: smoker, SM = 0: non-smoker)
adjusted for the known risk factors diabetes duration (DIAB) measured in years, glyco-
sylated hemoglobin (GH) which is measured in percent and diastolic blood pressure (BP)
measured in mmHg. The response variable retinopathy status has three categories (1: no
retinopathy, 2: nonproliferative retinopathy, 3: advanced retinopathy or blind).

4.2.6 Medical Care

Deb and Trivedi (1997) analyzed the demand for medical care for individuals, aged 66 and
over, based on a data set from the U.S. National Medical Expenditure survey in 1987/88.
The data (“NMES1988”) are available from the R package AER (Kleiber & Zeileis, 2008).
We consider the number of physician/non-physician office and hospital outpatient visits as
outcome variable binning the variable according to the cutoffs: 0, 1, 3, 6, 8 and 11. The
covariates used in the present analysis are the number of emergency room visits (emer-
gency), the number of hospital stays (Hosp), the self-perceived health status (Health; 0:
poor, 1: excellent), the number of chronic conditions (Numchron), a factor (adl) indicating
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whether the individual has a condition that limits activities of daily living (“limited”) or not
(“normal”). age, maritial status (Married; 0: no, 1: yes), is the individual African-American
(afam), emlpoyment satus(employes), and is the individual covered by private insurance
(insurance). Since the effects vary across gender, we consider male patients only. F

4.2.7 GLES Data

The GLES data stem from the German Longitudinal Election Study (GLES), which is a
long-term study of the German electoral process (Rattinger et al., 2014). The data consist
of 2036 observations and originate from the pre-election survey for the German federal
election in 2017 and are concerned with political fears. In particular the participants were
asked: “How afraid are you due to the use of nuclear energy? The answers were measured
on Likert scales from 1 (not afraid at all) to 7 (very afraid). The explanatory variables
in the model are Abitur (high school certificate, 1: Abitur/A levels; 0: else), Age (age of
the participant), EastWest (1: East Germany/former GDR; 0: West Germany/former FRG),
Gender (1: female; 0: male), Unemployment (1: currently unemployed; 0: else).

4.2.8 Safety Data

The package CUB (Iannario et al., 2020) contains the data set relgoods, which provides
results of a survey aimed at measuring the subjective extent of feeling safe in the streets. The
data were collected in the metropolitan area of Naples, Italy. Every participant was asked to
assess on a 10 point ordinal scale his/her personal score for feeling safe with large categories
referring to feeling safe. There are n = 2225 observations and five variables, Age, Gen-
der (0: male, 1: female), the educational degree (EduDegree; 1: compulsory school, 2: high
school diploma, 3: Graduated-Bachelor degree, 4: Graduated-Master degree, 5: Post gradu-
ated), WalkAlone (1 = usually walking alone, 0 = usually walking in company), Residence
(1: City of Naples, 2: District of Naples, 3: Others Campania, 4: Others Italia).

4.3 Ensembles at Work

In the following the accuracy of prediction in the data sets described above is investigated.
The data sets were split repeatedly into a learning set with sample size nL and a validation
set built from the rest of the data (number of splits: 30). The learning set was used to fit the
method under investigation, the accuracy of prediction is then computed in the validation
set. We use all the accuracy measures that contain more information than simple class pre-
dictions. In addition, we give, for simplicity, the Euclidean distance between the predicted
class and the true class, where the predicted class is determined by the median of the esti-
mated probabilities. The latter measure is an indicator how far the prediction is from the
true class.

The fitting of split-based and adjacent categories random forests can be based on dif-
ferent random forest methods for binary responses. In particular one can use ordinalForest
(Hornung, 2020), randomforest (Liaw et al., 2015), or conditional trees as provided by cfor-
est (Hothorn & Zeileis, 2015). Figure 3 shows the averaged ranked probability scores for
fitted adjacent categories random forests when using ordinalForest (OrdRF), randomfor-
est (RF), and cforest (CRF) for the housing data and the GLES data. The differences in
performance are negligible. Therefore, in the following we use only one method to gen-
erate split-based and adjacent categories random forests, namely randomforest, which is
computationally quite efficient.
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Fig. 3 Ranked probability scores for housing data (left) and GLES data (right) when fitting the adjacent
categories random forest with ordinalForest (OrdRF), randomforest (RF), and cforest (CRF)

The methods to be considered in the following are:

• Pom: fitting of a proportional odds model,
• Adj: fitting of an adjacent categories logit model,
• RFord: fitting of an ordinal forest with ordinalForest as proposed by Hornung (2020),
• RFT: Ordinal random forest based on transformation models using traforest from

package trtf, proposed by Buri and Hothorn (2020),
• RFSp: split-based ordinal random forest using randomForest to fit the binary random

forests,
• RFadj: fitting of an adjacent categories random forest using randomForest to fit the

binary random forests,
• Ens3: weighted ensemble including the proportional odds model, ordinalForest fit and

adjacent categories random forest,
• Ens5: weighted ensemble including the proportional odds model, the adjacent cat-

egories model, ordinalForest fit, and adjacent categories and split-based random
forest.

The first two methods use parametric models. The methods RFord and RFT are ordi-
nal trees that have been proposed more recently. The next two methods, RFSp and RFSp
are split based, which combine random forests for split variables. The last two methods are
ensemble methods that include parametric models. Ens3 is built from one parametric model,
an ordinal random forest, and the adjacent categories random forest, whereas Ens5 contains
in addition the adjacent categories model and the split-based random forest. The ensem-
ble built from three methods serves to demonstrate that it is essential to combine ordinal
random forests and parametric models. The inclusion of further models will be shown to
improve the performance only slightly. Since the number of tuning parameters vary across
methods optimization of tuning parameters might favor the ones that allow for more tuning
parameters. Therefore, we use for the methods the default values.

Figures 4, 5, 6, 7, 8, 9, 10 and 11 show the accuracy measures obtained for the validation
data. For the unconditional split approach RFSp log scores are typically not available since
estimated probabilities for some of the categories are close to zero, and therefore are not
shown. It is seen from the plots that ordinal random forests outperform parametric models
for the first two data sets. In both data sets random forests perform distinctly better. Among
the methods proposed in the literature more recently RFord shows better performance than
RFT. For the first data set the new split-based procedures performs as well as RFord, in the
second the performance is closer to RFT.

In the next four data sets the performance of all the methods is comparable. In particular
the parametric models do not perform worse or better than random forests approaches. In
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Fig. 4 Results for housing data (nL = 400, six response categories)

two of the data sets, retinopathy and medical care, the methods RFord and RFT tend to
perform slightly better than the split-based approaches.

In the third group of data sets, the GLES and the safety data, the parametric models show
much better performance than the random forests methods. The random forests method that
comes closest to the performance of the parametric model is RFT. There is a good reason
for that since RFT implicitly uses a cumulative model. Therefore, in cases in which the

Fig. 5 Results for wine data (nL = 160, five response categories)
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Fig. 6 Results for birth data (nL = 160, four response categories)

cumulative model performs better than most random forests the RFT method should also do
well. In particular split-based approaches are not the best choice if parametric models show
good performance.

As far as parametric models and random forests are concerned, the performance depends
on the data set. There are data sets in which the random forests have distinct advantages over
parametric models. Then, split-based approaches show good performance. In surprisingly

Fig. 7 Results for heart data (nL = 200, five response categories)
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Fig. 8 Results for retinopathy data (nL = 500, three response categories)

many data sets considered here random forests had no advantage over parametric models
and there is not too much difference in the performance of methods. In a third type of data
parametric models are distinctly to be preferred, both data sets for which this was found
were questionnaire data.

Fig. 9 Results for medical care data (nL = 300, seven response categories)
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Fig. 10 Results for GLES data (nL = 300, seven response categories)

The best and most stable performance is seen for the ensemble methods that combine
parametric and nonparametric methods. Their prediction performance can be considered
equivalent to the best method for a particular data set. They seem to efficiently combine the
best of two worlds yielding small errors for all data sets. Thus, if one wants to avoid ending

Fig. 11 Results for safety data (nL = 400, ten response categories)
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up with an inferior prediction tool one should consider not only trees or parametric models
but use a combination of these methods.

For illustration we give the average weights in the ensemble Ens5 for two data sets. For
the housing data, in which the parametric models showed poor performance, the weights for
the proportional odds model, the adjacent categories model, ordinalForest fit, and adjacent
categories and split-based random forest were 0.146, 0.084, 0.250, 0.279, 0.240. Weights for
the parametric models were distinctly smaller than weights for the random forest methods.
For the GLES data the corresponding weights were 0.299, 0.303, 0.199, 0.118, and 0.077;
thus, the parametric models, which showed better performance, obtained much higher
weights than the other methods.

In the evaluations the split-based random forests utilize the randomForest method to
fit the contained binary trees. Very similar performance is found when using alternative
methods to fit binary trees, like ctree or ordinalForest. These alternative methods yield
different trees. When investigating single trees the choice of the method definitely makes a
difference, and specific trees may offer advantages, for example conditional trees, which use
tests in the splitting procedure, are able to control the significance level and avoid selection
bias (Strobl et al., 2007; Hothorn et al., 2006) making them an attractive choice. However,
for ensembles of trees as random forests the performance is very similar, at least in the case
of split-based based and adjacent categories forests.

5 Importance of Variables

While single trees for split variables are easy to interpret this does not hold for ensembles of
trees. Since variables appear in different trees at different positions the impact of variables
is hard to infer from plots of hundreds of trees. On the other hand random forests allow for
complex effects of predictors, which makes it a flexible prediction tool.

There is a considerable amount of literature that deals with the development of impor-
tance measures for random forests (see, for example, Strobl et al., 2007; Strobl et al.,
2008; Hapfelmeier et al., 2014; Gregorutti et al., 2017; Hothorn & Zeileis, 2015). A naive
measure simply counts the number of times each variable is selected by the individual
trees in the ensemble. Better, more elaborate variable importance measures incorporate a
(weighted) mean of the individual trees’ improvement in the splitting criterion produced
by each variable. An example for such a measure is the “Gini importance” available in the
randomForest package. It describes the improvement in the “Gini gain” splitting criterion.
Alternative, and better variable importance measures are based on permutations yielding
so-called permutation accuracy importance measures (Strobl et al., 2007). By randomly per-
muting single predictor variables Xj , the original association with the response Y is broken.
When the permuted variable Xj , together with the remaining un-permuted predictor vari-
ables, is used to predict the response, the prediction accuracy is supposed to decrease if
the variable Xj had an additional impact on explaining the response. The difference in pre-
diction accuracy before and after permuting Xj yields a permutation accuracy importance
measure.

In the following we use the heart data to illustrate how importance measures can be
obtained for split-based and adjacent categories random forests. Of course it depends on the
algorithm that is used to grow binary trees which importance measure can be computed.
Figure 12 shows the Gini importance when using randomForest to fit the binary random
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Fig. 12 Gini importance for heart data; variables 1 to 10: chest pain, oldpeak, age, trestbps, chol, thalach,
exang, sex, fbs, restecg (randomForest fit); left upper panel: importance for conditional splits in adjacent
categories RF, right upper panel: importance for splits in split-based RF, lower panel: averaged importance
measures for splits in adjacent categories and split-based RF (lower curves) and multi-categorical fit of
randomForest (upper curve)

forests. In the upper panels one sees the importance measures obtained for the split vari-
ables, that is, for conditional splits in adjacent categories RF on the left, and direct splits for
split-based RF on the right. The numbers 1 to 4 indicate the splits. For example, 3 means
that the split is between categories {1, 2, 3} and {4}. It is seen that the first six variables
show strong importance with the importance being stronger for lower categories splits and
weaker for higher category splits. The lower panel shows the importance measures aver-
aged across the splits. The lower curves, which are almost identical, show the average for
the adjacent categories and split-based random forest. It shows, in addition, the Gini impor-
tance for the multi-category random forest obtained from randomForest. It is seen that the
importance measures have the same order for all the fitted random forests. That the values
of importance for the multi-category random forest is higher than for the other two forests
is merely a scaling effect.

Figure 13 shows the corresponding picture if conditional trees (cforest) are used , which
compare binary predictions before and after permuting. Conditional trees avoid the bias
that is found if categorical variables with varying numbers of categories and a mixture
of categorical and continuous predictors are used (see, for example, Strobl et al., 2007).
Consequently, the obtained importance measures differ from the Gini importance mea-
sures. It is seen that variables 1, 2 and 7 are very influential. In particular the importance
of variable 1, which is a categorical variable, is more distinct than in Gini importance
measures.
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Fig. 13 Importance for heart data; variables 1 to 10: chest pain, oldpeak, age, trestbps, chol, thalach, exang,
sex, fbs, restecg (cforest fit); left upper panel: importance for conditional splits in adjacent categories RF,
right upper panel: importance for splits in split-based RF, lower panel: averaged importance measures for
splits in adjacent categories (lower curve) and split-based RF (upper curve)

6 Concluding Remarks

The split variables, which are the building blocks of ordinal models, have been used to
develop ordinal trees and random forests. The basic concept can also be used to generate
alternative parametric or nonparametric classification methods that account for the order in
responses. One can, for example, use two-class linear discriminant analysis or binary mod-
els with variables selection by lasso in the case of many predictors, or use nonparametric
methods as the nearest neighborhood classifier for two classes. All of these methods can
be used to model the split variables conditionally or unconditionally. In the present paper
we restricted consideration to random forests since the objective was to construct score-free
random forests.

Also the more recently proposed ordinal random forests are in some way inspired by
parametric ordinal models but in a different way than the split variables approach propa-
gated here. The score-free random forests proposed by Buri and Hothorn (2020) follow a
quite different strategy to obtain random forests. They fit a cumulative logit model and use
the likelihood contributions of the observations to obtain test statistics. The core idea is
to regress the obtained partial derivatives of the log-likelihood on prognostic variables. By
using the cumulative model the order of categories is used without the need for assigned
scores. But it should be noted that the “pure” cumulative model is fitted in subpopulations
without including predictors. The ordinal forest propagated by Hornung (2020) also uses
the cumulative logistic model. It exploits the latent continuous response variable underly-
ing the observed ordinal response variable by explicitly using the widths of the adjacent
intervals in the range of the continuous response variable. These intervals are considered
as corresponding to the classes of the ordinal response variable. That means, “the ordinal
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response variable is treated as a continuous variable, where the differing extents of the indi-
vidual classes of the ordinal response variable are implicitly taken into account” (Hornung,
2020). The approach is closely related to conventional random forests for continuous out-
comes but optimizes the assigned scores instead of considering them as given, and therefore
is score-free in a certain sense.

The accuracy measures obtained for the data sets suggest that one might distinguish
between three types of data sets data, data for which the parametric models perform dis-
tinctly better, data sets where there is not much difference between approaches, and data
sets, for which parametric models clearly outperform random forests. In particular the lat-
ter type of data suggests that one should not rely on random forests to always perform
well. Split-based random forests seem to compete well with the ordinal forests that have
proposed recently in the literature only in cases where it is sensible to use random forests
since they are stronger than simple parametric models. In cases where there is not much to
gain from using random forests all the random forests approaches tend to have compara-
ble performance. If parametric models clearly outperform random forests the best random
forests methods is the RFT method. The most stable performance can be expected from the
ensemble methods, which tend to perform at least as well as the best method.
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