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Abstract
The same method that creates adversarial examples (AEs) to fool image-classifiers 
can be used to generate counterfactual explanations (CEs) that explain algorithmic 
decisions. This observation has led researchers to consider CEs as AEs by another 
name. We argue that the relationship to the true label and the tolerance with respect 
to proximity are two properties that formally distinguish CEs and AEs. Based on 
these arguments, we introduce CEs, AEs, and related concepts mathematically in a 
common framework. Furthermore, we show connections between current methods 
for generating CEs and AEs, and estimate that the fields will merge more and more 
as the number of common use-cases grows.
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1  Introduction

Machine Learning (ML) is transforming industry, science, and our society. Today, 
ML algorithms can fix a date at the hairdresser (Leviathan and Matias 2018), deter-
mine a protein’s 3D shape from its amino-acid sequence (Senior et al. 2020), and 
even write news articles (Brown et  al. 2020). Taking a sharp look at these devel-
opments, we observe a tendency towards more and more complex models. Differ-
ent ML models are stacked together heuristically, with limited theoretical backing 
(Hutson 2018). In some applications, complexity may not be an issue as long as the 
algorithm performs well most of the time. However, in socially, epistemically, or 
safety-critical domains, complexity can rule out ML solutions—think of e.g. autono-
mous driving, scientific discovery, or criminal justice. Two of the major drawbacks 
of highly complex algorithms are the opaqueness problem (Lipton 2018) and adver-
sarial attacks (Szegedy et al. 2014).
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The opaqueness problem describes the limited epistemic access humans have 
to the inner workings of ML algorithms, especially concerning the semantic inter-
pretation of parameters, the learning process, and the human-predictability of ML 
decisions (Burrell 2016). This lack of interpretability has gained a lot of attention 
recently, which gave rise to the field eXplainable Artificial Intelligence (XAI; Doshi-
Velez and Kim 2017; Rudin 2019). Many techniques have been proposed to gain 
insights into ML systems (Adadi and Berrada 2018; Došilović et al. 2018; Das and 
Rad 2020). Especially model-agnostic methods have gained attraction since, unlike 
model-specific methods, their application is not restricted to a specific model type 
(Molnar 2019). Global model-agnostic interpretation techniques like Permutation 
Feature Importance (Fisher et al. 2019) or Partial Dependence Plots (Friedman et al. 
1991) aim at understanding the general properties of ML algorithms. On the other 
side, local model-agnostic interpretation methods like LIME (Ribeiro et al. 2016) or 
Shapley Values (Štrumbelj and Kononenko 2014) aim at understanding the behavior 
of algorithms for particular regions. One way to explain a specific model-prediction 
is a Counterfactual Explanation (CE; Wachter et al. 2017). A CE explains a predic-
tion by presenting a maximally close alternative input that would have resulted in a 
different (usually desired) prediction. CEs are the first class of objects we study in 
this paper.

The problem of adversarial attacks describes the fact that complex ML algo-
rithms are vulnerable to deceptions (Papernot et al. 2016a; Goodfellow et al. 2015; 
Szegedy et al. 2014). Such malfunctions can be exploited by attackers to e.g. harm 
model-employers or endanger end-users (Song et  al. 2018). The field that investi-
gates adversarial attacks is called adversarial ML (Joseph et al. 2018). If the attack 
happens during the training process by inserting mislabeled training data, the attack 
is called poisoning. If an attack happens after the training process, it is commonly 
called an adversarial example (AE; Serban et al. 2020). AEs are inputs that resemble 
real data but are misclassified by a trained ML model, e.g., the image of a turtle is 
classified as a riffle (Athalye et al. 2018). Hence, misclassified means here that the 
algorithm assigns the wrong class/value compared to some (usually human-given) 
ground-truth (Elsayed et al. 2018). AEs are the second class of objects relevant to 
our study.

Even though the opaqueness problem and the problem of adversarial attacks 
seem unrelated at first sight, there are good reasons to study them jointly. AEs show 
where an ML model fails, and examining these failures deepens our understanding 
of the model (Tomsett et al. 2018; Dong et al. 2017). Explanations on the other hand 
can shed light on how ML algorithms can be improved to make them more robust 
against AEs (Molnar 2019). As a downside, explanations may enclose too much 
information about the model, thereby allowing AEs to be constructed and the model 
attacked (Ignatiev et al. 2019; Sokol and Flach 2019). CEs are even stronger con-
nected to AEs than other explanations. CEs and AEs can be obtained by solving the 
same optimization problem1 (Wachter et al. 2017; Szegedy et al. 2014):

1  x describes the original input, x′ the counterfactual/adversarial vector, f the ML model, ydes the desired 
classification, d(⋅, ⋅) and d�(⋅, ⋅) distances, and � a trade-off scalar. For details, see Sect. 4.3.
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Term 1 has led to various confusions concerning the relationship between CEs and 
AEs in the research community.2 We aim to resolve them and give a detailed analy-
sis of the relationship between the two fields.

The aim of the present paper is twofold. Our first goal is the clarification of con-
cepts. Commonly used concepts such as CE/AE, flipping/misclassifying, process/
model-level, and closeness/distance are often misunderstood or not clearly defined. 
We define these terms properly in one mathematical framework, aiming for more 
clarity and unification. The second goal is to familiarize researchers of each of the 
respective fields with its neighboring area. Even in one of the fields, it is hard to 
keep track of developments and new ideas, in both it is worse. Since there are many 
ways in which each of the fields can profit from the other, both methodologically 
and conceptually, we aim to provide a guide connecting the two literatures.

We will start by providing an intuition to the reader with two standard use cases 
of CEs/AEs and give an overview of relevant other applications in Sect.  2. In 
Sect. 3, we present the (historical) background of CEs and AEs, including the cur-
rent debate around their relationship. Next, we present arguments in what sense the 
current understanding of the relation between CEs and AEs is flawed in Sect. 4.1. 
In Sect. 4.2, we will argue that the notions of misclassification and maximal prox-
imity are the central properties that distinguish CEs from AEs. Based on that, we 
introduce in Sect.  4.3 our more fine-grained formal definitions of CEs, AEs, and 
related concepts. In Sect. 5, we discuss connections between the solution approaches 
for finding CEs/AEs in the literature. We conclude in Sect. 6 by discussing the rel-
evance and limitations of our work.

2 � Examples and Use Cases

Before we get into the technical and conceptual details, let us look at two use cases 
where both CEs and AEs have been successfully deployed. This provides an intui-
tion to the reader and will moreover serve explanatory purposes in the later sections. 
The first example is among the most prominent use-cases of CEs, automated lend-
ing. The second example shows one prominent use-case of AEs, image-classifica-
tion of hand-written digits.

Loan Application imagine a scenario where person P wants to obtain a loan and 
applies for it through a bank’s online portal. She has to enter several of her proper-
ties into the user-interface e.g. her age, salary, capital, number of open loans, and 
number of pets. The portal uses an automated, algorithmic decision system, which 
decides that P will not receive the loan. However, she would have liked to obtain it 
and therefore demands an explanation. An example of a potential CE would be:

(1)argmin
x�∈X

d(x, x�) + � d�(f (x�), ydes).

2  We discuss these confusions in more detail in Sect. 4.1.
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If P had a 5, 000 €  p.a. higher salary and an outstanding loan less, her loan appli-
cation would have been accepted.

She can use this information to guide her future actions or potentially to contest the 
algorithmic decision. Clearly, CEs are not restricted to that setting. If P were the 
model engineer instead of the customer, she could also use the explanation to raise 
her understanding of the model or to debug it.

Now, suppose that P wants to trick the system to get the credit. Assume the deci-
sion system was constructed from an ML algorithm, trained on historic data of the 
companies loan admission policy. From the data, the algorithm has learned that the 
number of pets is positively associated with repaying the credit and consequently the 
system uses the information in its decision making.3 One potential way to trick the 
system with an AE in such a case could for example look as follows:

P indicates two more pets on the application form than she actually has to obtain 
the loan.

P has changed a feature that the model deems causally relevant for creditworthiness 
but which is only spuriously correlated, thus, P has tricked the model. Moreover, she 
probably does not even have to prove the feature to the bank as there is often no offi-
cial legal document for the ownership of e.g. fish or birds. This change allowed her 
to obtain the loan, even though none of her properties have changed.

Hand-Written Digits Recognition imagine a simplified scenario in which a postal 
service employs an image recognition algorithm. This algorithm takes as input 
gray-scale 28 × 28 pixel images and assigns them the number between 0 and 9 they 
depict. This procedure eases the work of the postal service a lot. Cases of errors are 
rare but costly, as the postal service must pay the sender 5€  if a letter or package is 
sent to the wrong address. Therefore, the postal service is interested in improving 
the algorithm.

One way of improving the system would be to generate CEs for specific instances, 
evaluate how useful they are, and adjust the algorithm. Such CEs can be found in the 
first two columns of Fig. 1. One can see e.g. that the images in the first row show 
that the algorithm assigns major importance to the lower-left line to distinguish 
between a six and a five. The postal service might derive that the algorithm already 
has a robust understanding of digits.

Now, assume we take the perspective of an attacker who is interested in exploit-
ing the 5€  per error system. Such an attacker will be interested in generating AEs, 
put them on letters/parcels and gain money. Examples of such AEs are presented 
in the last column of Fig. 1. One can see e.g. that the system has problems when 
random dots appear around a 0 and misclassifies the input as the number 5. While 
the attacker will aim to accomplish many successful attacks, the postal service will 

3  Reasons for such an association in the data might be that pets are expensive and hence associated with 
capital/salary or that people with more pets have also kids and are therefore more reliable. The example 
is inspired by Ballet et al. (2019).
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try to limit the deceivability of its algorithm by making it more robust or excluding 
unrealistic outliers in classification.

The Relevance of These Use-Cases loan applications are among the most popular 
example use-cases in the CE literature (Wachter et al. 2017; Dandl et al. 2020; Grath 
et al. 2018). The example is particularly valuable as it describes a technically and 
ethically complex decision situation, in which explanations are a requirement. Inter-
estingly, the lending use-case gains more and more interest also in the AE literature 
since it depicts the safety troubles of ML systems. Ballet et al. (2019) introduce a 
new notion of imperceptibility for these scenarios which got quickly picked up by 
others (Cartella et al. 2021; Hashemi and Fathi 2020).

Hand-Written-Digits classification is the classical use-case among all image-
classification tasks. Many methods to generate AEs discuss it at least as a test case 
(Wang et al. 2019; Szegedy et al. 2014; Papernot et al. 2017). The feature space is 
comparatively small and the problem itself well studied, therefore, generating AEs 
is computationally cheap and conceptually informative. However, security threats 
cannot be as easily depicted from this use case (that is why we created the fictional 
scenario from above). Because of its simplicity, it has also been used as a starting 
point in the CE literature. The difficulty lies here in finding semantically meaningful 
notions of similarity for images. Three papers proposed approaches to that problem, 
Van Looveren and Klaise (2019) use prototypes to generate realistic CEs, Poyiadzi 
et  al. (2020) use allowed paths, and Goyal et  al. (2019) use differently classified 
images to identify regions that shift the classification.

Other Use Cases there are common use-cases for CEs other than loan approval, 
such as university applications, diabetes diagnosis (Wachter et  al. 2017), adult-
income prediction (Mothilal et al. 2020), or predicting student performances in law-
school (Russell 2019). Most of the common use-cases focus on tabular data settings, 
as it is easier to make sense of CEs in these scenarios (Verma et al. 2020). Changes 
in semantically meaningful variables are easy to convey. Moreover, the scenarios 
considered often describe high-stakes decisions with an ethical dimension. There 

Fig. 1   The images are taken from Van Looveren and Klaise (2019) and Papernot et al. (2017). They are 
generated from CNNs trained on the MNIST dataset. The first an the third column depict original images 
from the MNIST dataset. Column two depicts the corresponding CEs and column four shows the cor-
responding AEs
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are few non-classification, non-tabular settings in which CEs have been applied, 
such as image recognition (Goyal et al. 2019; Van Looveren and Klaise 2019), NLP-
tasks (Akula et al. 2019), regression problems (Anjomshoae et al. 2019) and non-
supervised learning settings (Olson et al. 2021).

The AE community on the other hand has largely focused on image classifica-
tion tasks (Serban et al. 2020). Many AEs focus particularly on the state-of-the-art 
image classifiers from Google, Amazon, or Facebook (Serban et  al. 2020). Well-
known examples include AEs on road signs (Eykholt et al. 2018), the 3-D print of 
a turtle classified as a rifle (Athalye et al. 2018), and the adversarial patch, a sticker 
that fools image recognition software into classifying it as a toaster (Brown et  al. 
2017). One reason why image classifiers lie at the center of the study of AEs is that 
the imperceptibility of changes and the true class label are easy to define (Ballet 
et al. 2019). Moreover, since image recognition models focus on models like CNNs, 
AEs help to assess the limitations of opaque deep learning algorithms. However, 
there is also work on AEs in other task environments e.g. audio/video-classification 
(Carlini et  al. 2016; Carlini and Wagner 2018; Wei et  al. 2018), regression prob-
lems (Balda et al. 2019), and non-supervised learning settings (Behzadan and Munir 
2017; Huang et al. 2017).

3 � Background on CEs and AEs

This section provides a background on where CEs and AEs have historically come 
from, discusses their roles in ML, and presents the discussions about the relation-
ship between the two. The historic background and roles of CEs/AEs provide the 
basis for understanding the discussions around the relationship between the two 
fields, which motivate our proposal.

3.1 � Historic Background

History of CEs CEs have their roots in Philosophy as so-called subjunctive counter-
factual conditionals. They describe conditionals of the form

where S and Q are events. Importantly, event S did not in fact occur. The truth-con-
dition for conditional 2 is hotly debated in philosophy until today (Starr 2019). The 
approach that was taken up by the XAI community (Wachter et al. 2017) builds on 
the work of Lewis (1973) and Stalnaker (1968). In their framework, conditional 2 
holds if and only if the closest possible world4 �� ∈ � to the actual world � ∈ � 
in which S is the case5 also Q is the case. The notion of similarity between possi-
ble worlds is critical in assessing a counterfactual conditional and Lewis discusses 

(2)If S was the case Q would have been the case,

4  � denotes the set of possible worlds.
5  S is false in �.
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similarity in more detail in Lewis (1979). He argues that between close worlds laws 
of nature must be preserved, widespread, diverse violations should be avoided, and 
facts stay congruent for maximal time. Particular facts on the other side can be 
changed without significantly increasing dissimilarity. Despite these specifications, 
Lewis himself admits that the under-specified notion of similarity between possible 
worlds remains the crucial weak-spot of his framework (Lewis 1983).

It is very important to keep in mind that Lewis aimed to describe causal depend-
ence via counterfactual conditionals (Menzies and Beebee 2019). The idea is that Q′ 
causally depends on S′ if and only if, if S were not the case Q would not have been 
the case.6 Even though CEs are not necessarily causal (Reutlinger 2018), the con-
nection to causality is the main factor that underlies the explanatory force of CEs in 
XAI. We can see a textual CE in XAI as a true counterfactual conditional in which 
the antecedent describes a change in input features and the consequent a correspond-
ing change in the classification.

Research on CEs in Psychology concerning human-to-human interaction is 
another root and inspiration of the discussion in XAI (Byrne 2016; Miller 2019). 
Humans use CEs in their daily life when they explain behavior or phenomena to 
each other, often in the form of a contrastive explanation highlighting the differ-
ences to the real scenario. Byrne (2019) summarized the central findings on CEs in 
Psychology and evaluates their relevance to XAI. She points out that people tend to 
create CEs that: add information rather than delete, show better rather than worse 
outcomes, identify relevant cause–effect relationships, and change antecedents that 
are exceptional, controllable, action-based, recent, and not highly improbable.

Using Lewis’s account of counterfactuals for generating explanations for the deci-
sions of ML algorithms was first proposed by Wachter et al. (2017) who also drew 
the connection to the philosophical/psychological tradition of CEs. They argue that 
CEs have three intuitive functions: raise understanding, give guidance for future 
actions, and allow to contest decisions.7 Also, they highlighted the legal relevance 
of CEs and argued that they satisfy the requirements proposed in the so-called ’right 
to explanation’ as it is defined in Recital 71 of the European General Data Protection 
Regulation (GDPR). This law guarantees European citizens the right to obtain an 
explanation in cases they are subject to the fully automated decision-making of an 
algorithm (Voigt and Von dem Bussche 2017).

History of AEs AEs have a less rich philosophical tradition, but instead a strong 
history in the robustness and reliability literature in computer science (Joseph et al. 
2018). Fernandez et al. (2005) describes robustness as “the ability of a software to 
keep an ‘acceptable’ behavior [...] in spite of exceptional or unforeseen execution 
conditions.” The reliability and robustness of computer systems have always been 

6  Interestingly, Pearl (2009) turns this story around and defines counterfactuals via causal graphs. 
Instead of comparing similar worlds, he directly focuses on the underlying mechanisms defined by a 
structural equation. However, as Woodward (2002) and Hitchcock (2001) pointed out that is a matter of 
interpretation as we can instead also understand Pearl’s structural equations as sets of primitive counter-
factuals. Also, Pearl’s notion has found its way into the XAI literature in the form of algorithmic recourse 
(Karimi et al. 2020c, b).
7  It is not necessarily the case that all of these functions are or can be satisfied by one CE (Russell 2019).
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major concerns, especially in safety-critical applications such as health or the mili-
tary sector. Critical elements can be the human interactors, hardware (e.g. sensors, 
hard drives, or processors), and the software. All kind of software is prone to errone-
ous behavior (Kizza et al. 2013), however, adversarial ML focuses particularly on 
the robustness of ML software.

For classical ‘rule-based’ software, the robustness can often be tested by formal 
verification (D’silva et  al. 2008). This becomes more difficult if systems interact 
dynamically with their environment or learn from data. Statistical Learning The-
ory tries to extend the idea of formal verification to statistical learning methods and 
gives theoretical guarantees for the performance of specific model-classes (Vapnik 
2013). Unfortunately, good guarantees become unattainable for very broad and pow-
erful model-classes such as for Deep Neural Networks and learning procedures like 
Stochastic Gradient Descent (Goodfellow et  al. 2016). What is special about the 
robustness of complex ML algorithms compared to others is that they are vulner-
able to attacks even if common errors in model-selection have been avoided (Bishop 
2006; Claeskens et al. 2008; Good and Hardin 2012). Moreover, the kind of attacks 
they are vulnerable to is highly unexpected, which even has led to the question of 
whether they learn anything meaningful at all (Szegedy et al. 2014). The study of 
adversarial ML is not restricted to Deep Learning but also applies to classical ML 
models e.g. logistic regression (Dalvi et al. 2004).

The research in adversarial ML focuses on attacks on ML models by manipulated 
inputs and the defenses against such attacks. An AE describes an input to a model 
that is deliberately designed to effectively “fool” the model into misclassifying8 it. 
AEs occur even for ML algorithms with strong performances in testing-conditions. 
Since the changes from the original to the adversarial input are mostly impercepti-
ble to humans, AEs have been compared to optical illusions tailored to ML models 
(Elsayed et al. 2018).

Szegedy et al. (2014) and Goodfellow et al. (2015) contributed milestones in the 
literature on AEs by not only providing ways to generate AEs but also attempting to 
explain their existence. Szegedy et al. (2014) argued that AEs live mainly in spaces 
of low probability in the data-manifold. Therefore, they do not appear in either the 
training or the test dataset. Hence, artificial neural networks (ANNs) can have a low 
generalization error despite the existence of AEs. Goodfellow et  al. (2015) refuse 
this thesis and argue that AEs arise instead due to the linearity of many ML models 
including ANNs with semi-linear activations. Tanay and Griffin (2016) disagree and 
show that linearity is neither sufficient nor necessary to explain AEs. Instead, they 
claim that AEs lie slightly outside the real-data distribution close to tilted decision 
boundaries. They argue that the decision boundary is continuous outside the data-
manifold and can therefore easily be crossed by AEs. A radically different view is 
proposed by Ilyas et al. (2019) who show that AEs arise from highly predictive but 
non-robust features present in the training data. Hence, AEs are a human-centered 

8  From now on, we will mainly talk about misclassification and classifying. However, this is only to 
simplify our language usage. AEs are not restricted to classification tasks but also work on regression 
problems.
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phenomenon, the ML models, however, just rely on useful information in the data 
humans do not use.9

3.2 � Role in ML

Due to the theoretical foundation, practical applicability, and legal significance, the 
CE approach was quickly adopted by the XAI community as one method to explain 
individual predictions of ML models to end-users (Verma et al. 2020). Nevertheless, 
the method remains controversial and has often been accused of giving misleading 
explanations (Laugel et al. 2019a; Barocas et al. 2020; Páez 2019).

The trust we have in AI systems is and will be closely linked to the extent to 
which adversarial attacks are possible (Toreini et  al. 2020). On the negative side, 
AEs can cause severe damage and security threats (Eykholt et  al. 2018). On the 
positive side, AEs can help us understand how the algorithm works (Ignatiev et al. 
2019; Tomsett et al. 2018) and therefore to understand what it has actually learned 
(Lu et al. 2017a). AEs can even concretely improve models (Bekoulis et al. 2018; 
Stutz et al. 2019).

Both CEs and AEs play a great role in the ML landscape, namely for the trust 
people have in ML (Shin 2021; Toreini et  al. 2020). CEs and AEs contribute to 
improving model understanding, identifying biases, and even offer methods to elim-
inate these biases through adversarial/counterfactual-training (Bekoulis et al. 2018; 
Sharma et  al. 2020). However, while improving understanding and highlighting 
algorithmic problems is usually only a byproduct of AEs, it is the focus of CEs. 
The deception of a system, on the other hand, is essential for AEs, but a potential 
byproduct of CEs in cases where they disclose too much information about the algo-
rithm (Sokol and Flach 2019).

3.3 � The Relation Between CEs and AEs

As mentioned in Sect. 1, CEs and AEs derive from solutions to the same optimiza-
tion problem 1. While the close mathematical relationship between CEs and AEs 
has been frequently pointed out, their exact relationship remains controversial and 
there are a variety of opinions on the matter we present here in more detail.

In one of the early papers on CEs, Wachter et al. (2017) note that an AE can be 
described as “a counterfactual by a different name” (Wachter et al. 2017, p. 852). 
They see one difference between counterfactuals and adversarials in the applied 
notion of distance arising from the misaligned aims, e.g. sparsity vs. impercep-
tibility. The other difference they argue for is that while counterfactuals ought to 

9  Since it is extremely controversial why AEs exist, it is also hard to defend a system against them. It is 
even difficult to formulate the desired property an ML model should have concerning AEs (Bastani et al. 
2016; Biggio and Roli 2018). Classical verification methods have to be modified because they explode 
computationally in the high-dimensional input spaces we are dealing with in ML. Since defense tech-
niques are not relevant for CEs, we will not discuss them in the present paper. We advise the interested 
reader to Serban et al. (2020).
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describe closest possible worlds, AEs often result from ‘impossible worlds’ in the 
Lewisian sense i.e. unrealistic data-points. Additionally, they hint at methodologi-
cal synergies between the two approaches, especially with respect to optimization 
techniques.

Browne and Swift (2020) reject the two difference makers between CEs and AEs 
highlighted by Wachter et al. (2017) (distance metrics, possibility of worlds) as not 
definitional. They argue that using the “wrong” notion of distance may favor less rel-
evant counterfactuals, but these are still ultimately potential explanations. Moreover, 
they reject the claim that adversarials must describe impossible worlds by pointing 
out that adversarial attacks can be carried out in real-world settings. Instead, they 
view counterfactuals and adversarials as formally equivalent. They argue that the 
key difference between CEs and AEs is not mathematical, but relies on the semantic 
properties of the input space. They point out that: “Mathematically speaking, there 
is no difference between a vector of pixel values and a vector of semantically rich 
features” (Browne and Swift 2020,  p. 6). They highlight the role of semantics in 
human-to-human explanation and claim that this difference makes CEs for image-
data adversarials as AEs cannot be conveyed to an explainee in human-understand-
able terms.

Verma et  al. (2020) see the terms CE and AE as non-interchangeable due to 
the different desiderata they must account for. They highlight tensions between 
the adversarial desideratum of imperceptibility and counterfactual desiderata like 
sparsity, closeness to the data-manifold, and actionability. According to Grath 
et al. (2018) CEs and AEs are similar as both are example-based approaches. They 
describe the distinction between CEs and AEs as the difference between flipping and 
explaining decisions. They remark that CEs inform about the changes, while AEs 
aim at hiding those. Laugel et al. (2019b) agree that the two concepts show strong 
mathematical similarities. However, they also point to the difference in purpose 
and application. They note that CEs are mainly considered in the context of low-
dimensional tabular data scenarios, whereas AEs are considered in less-structured 
domains like image/audio data. Dandl et al. (2020) and Molnar (2019) describe AEs 
as special CEs with the aim of deception. Sokol and Flach (2019) discuss CEs in the 
context of AI safety. They make the case that CEs can disclose too much informa-
tion about the model and thereby lead to AEs.

4 � Defining Concepts

This section consists of three parts: (1) a critical assessment of the accounts from 
Sect. 3.3; (2) our conceptual proposal; (3) our formal proposal. In the first part, we 
will argue why none of the afore-mentioned accounts can properly explain the dif-
ference between CEs and AEs. As we will point out, one problem is that they focus 
on the optimization problem  1 as the defining mathematical term for CEs/AEs. 
Instead, we will explain why solving Eq. 1 leads to counterfactuals in tabular set-
tings and adversarials in the image-domain. Moreover, we propose that the relation 
of the counterfactual/adversarial to the true label and the proximity to the original 
data-point present the definitional distinction between CEs and AEs. Since these 
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two distinguishing properties are not captured by Eq. 1 we will consequently present 
novel mathematical definitions of CEs/AEs in part three.

In our arguments, we assume that the reader is familiar with the ideas behind 
decision boundaries, data manifolds, meaningless/unrealistic/unseen inputs, and 
distance metrics. For readers who are not familiar with these concepts, we have pro-
vided a short glossary in Appendix A where we explain these concepts with an illus-
trative example.

4.1 � Conceptual Discussion of Other Accounts

Two Names for the Same Objects Taking the optimization problem from Eq. 1 as 
definitional, Wachter et al. (2017) and Browne and Swift (2020) conclude that they 
are the same mathematical objects. To evaluate this claim, imagine a model, e.g. an 
image classifier that, for all inputs for which a ground truth exists, assigns exactly 
this ground truth. Now, consider a particular prediction of this perfect algorithm. Via 
solving the optimization problem in Eq. 1 we can generate counterfactuals. The CEs 
would be pointing to another input that receives a different assignment e.g. instead 
of the original image of a 3, it shows a 9 looking similar to that 3. However, the sys-
tem cannot be fooled by a modified image because it is always correct. Therefore, no 
AEs exist in that case and none of the generated counterfactuals is an AE. The case 
of a perfect algorithm shows that there are models for which we can reasonably gen-
erate CEs but no AEs. Consequently, they cannot generally be the same objects with 
different names. This shows that while there may be some cases where a vector can 
be called both counterfactual and adversarial, there must be a definitional difference 
between the two concepts.

The Two Differ in AimsVerma et al. (2020) point out that the terms are not inter-
changeable because “while the optimization problem is similar to the one posed in 
counterfactual-generation, the desiderata are different” (Verma et al. 2020, p.4). By 
desiderata they mean additional requirements that are enforced on adversarials (like 
imperceptibility) or counterfactuals (e.g. sparsity, closeness to the data-manifold and 
feasibility. See also Sect. 5). These different desiderata are realized in the different 
distance metrics applied. This difference in aims corresponds to what Wachter et al. 
(2017) mean by claiming that AEs are not making use of appropriate distance met-
rics. So even though counterfactuals and adversarials share the same formal defini-
tion, they can be distinguished by their notion of distance i.e. the applied metric.

We agree with Browne and Swift (2020) that the applied distances do not indicate 
a definitional difference between CEs/AEs. We contend that whether the desiderata 
overlap or not, depends on the respective aims the user has with a CE/AE. Agents 
might also be interested in generating CEs to get guidance on how to deceive the 
system (Sokol and Flach 2019). In such cases, imperceptibility will indeed be rel-
evant, while sparsity or closeness to the data-manifold will be less relevant. Moreo-
ver, attackers could be interested in creating realistic AEs because they are harder to 
detect. In such scenarios, closeness to the data-manifold or feasibility constraints are 
desirable properties of AEs. Also, both CEs and AEs can be relevant to better under-
stand the model at hand and to improve it.
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If the desiderata are similar, so is the mathematical approach. In such scenar-
ios, good counterfactuals and adversarials may actually align and describe the 
same objects. However, a proper definitional distinction between concepts should 
be universal, objective, and independent of the agent’s intentions. It requires neces-
sary (and sufficient) criteria that make an object an instantiation of one object-class 
rather than another. The various desiderata are insufficient to account for differences 
between counterfactuals and adversarials in this strong sense.

Flipping and ExplainingGrath et  al. (2018) draws the distinction between CEs 
and AEs as the difference between explaining and flipping a decision. While CEs 
point to changes in a meaningful way, AEs try to hide those. We think that this is a 
solid observation, however, it shows a difference in presentation and not in defini-
tion. If the presentation style would be the whole difference, we would agree that 
CEs and AEs could mathematically be described as the same objects by a different 
name.

Low vs. High-Dimensional Use CasesLaugel et al. (2019b), Wachter et al. (2017), 
and Browne and Swift (2020) highlight the difference in use-cases. They argue, that 
while for CEs mainly low-dimensional and semantically meaningful features are 
used, AEs are mostly considered for high-dimensional image data with little seman-
tic meaning of individual features. Therefore, the difference is not a difference of 
mathematical objects but rather a difference of semantic structure of the input space 
provided to generate an explanation/attack. In that sense, an AE is a CE that points 
to semantically non-interpretable factors.

However, as discussed in Sect. 2 the use-cases are increasingly overlapping. So, 
if Browne and Swift (2020) would be right that the provided semantics in the input 
spaces is the crucial difference, authors studying AEs in low-dimensional setups 
would just directly use the approaches from the CE literature instead of develop-
ing new methods. According to their argumentation, the two approaches should be 
equivalent for low-dimensional setups. But, what we can notice is that e.g. Ballet 
et  al. (2019) uses expert knowledge to generate imperceptible AEs for structured 
data by asking for features they find irrelevant for the decision at hand. Moreover, 
Goyal et al. (2019) and Poyiadzi et al. (2020) manage to give, as it seems, meaning-
ful CEs also for high-dimensional input spaces without making use of higher-level 
semantic concepts the model creates while Browne and Swift (2020) thought this is 
inevitable. These examples show that the semantic structure of the input space can-
not account for a definitional distinction. Nevertheless, we agree that the difference 
between CEs and AEs is semantic in nature.

4.2 � Our Proposal

After our critical assessment, we found that all approaches so far have failed to 
show definitional differences between counterfactuals and adversarials. This is not 
surprising bearing in mind that all of them take Eq. 1 as definitional for CEs and 
AEs. If one starts with the same definition for both approaches, one can either claim 
that counterfactuals and adversarials are identical or point to the elements within 
the optimization problem that differ such as the applied distances (i.e. the aims) or 
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the structure of the input space. However, just because two object classes contain 
solutions to the same optimization problem, does not mean that they are identical.10 
We propose two definitional differences between CEs and AEs that have so far been 
overseen. Moreover, we argue why nevertheless Eq. 1 can generate both CEs and 
AEs in different contexts.

Misclassification one obvious distinction that has largely been overseen by 
researchers is that adversarials must be necessarily misclassified while counterfac-
tuals are agnostic in that respect. A correctly classified counterfactual is acceptable 
and often even desirable. On the other hand, if an adversarial were correctly classi-
fied, no one would call it an adversarial as it would provide no means to attack a tar-
get system. Consequently, misclassification is a necessary condition that any object 
called an adversarial must meet. This is different from the desiderata discussed 
above, which depend only on the goals of the agent with a CE or AE. Misclassi-
fication as a definitional distinction has been overseen since CEs and AEs can be 
generated by solving the same optimization problem 1. How can it be that the same 
optimization problem is used to generate CEs for tabular-data models and AEs for 
image-data models? This is the crucial question that has to be assessed. It is strongly 
connected to the riddle the existence of AEs poses as discussed in Sect. 3.1, there-
fore, our analysis bases on the ideas of Szegedy et al. (2014) and Tanay and Griffin 
(2016).

We must look at image-classification models to answer why solutions to Eq. 1 are 
mostly misclassified in that scenario. Complex image classifiers perform reasonably 
well on training data and highly similar inputs. In “unseen regions”, on the other 
hand, they have to extrapolate and therefore perform worse. Since the input space 
is incredibly high-dimensional, the training data and therefore the data-manifold 
the algorithm approximates is comparably tiny. That means, there are many more 
meaningless, unrealistic, and unseen inputs than there are points in the training-data. 
The assignment of these inputs is not trustworthy and does not necessarily match 
the assignment of other nearby inputs. At the same time, there is usually a strongly 
limited number of classes that inputs are assigned to. Moreover, the training-data 
assigned to different classes have great distances. Hence, if we search for an input 
from another class but close to a given input, the probability is high that it is an input 
the algorithm has not seen, is unrealistic, or is meaningless and therefore where the 
algorithm is not reliable. Thus, the model will with high probability misclassify this 
input. Often these close inputs are neither unrealistic nor meaningless as thought by 
Wachter et al. (2017), but realistic. Completely unrealistic or meaningless inputs are 
at greater distance from the original input. Realistic but unseen data-points make up 
the dangerous AEs.

This explains why misclassified adversarials are generated in input spaces with 
high-dimensionality and little structure. The effect is even stronger if distances 
are applied that do not reflect what humans consider to be close inputs in the 
high-dimensional case. Minimal changes according to conceptually less-justified 

10  For example, both local maxima and minima minimize the absolute derivative of a differentiable func-
tion. Nevertheless, the two object classes can be formally distinguished.
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distances break the dependencies between variables present in the real world and 
therefore search for inputs in regions with less training-data support. This line of 
thought might suggest that the main reason why mostly adversarials are obtained 
by Eq. 1 for image-classification is the use of distance metrics with little conceptual 
justification. Whether the right distance metric would yield fewer adversarials is, in 
our opinion, an empirical question that we cannot settle here. However, we will pre-
sent our thoughts on this in Sect. 6.2.

There are several reasons why counterfactuals generated in structured, low-
dimensional input spaces are not generally adversarials. First, the models are often 
more robust and extrapolate better in unseen regions, also because background 
knowledge can more easily enter the model. Second, the real-world variables have 
a much simpler dependence structure compared to the high-dimensional image-data 
case. Additionally, as distances are chosen that favor sparse rather than distributed 
changes, these dependencies are often preserved by the manipulations to the input 
vectors. Third, often additional constraints are added that make sure that the gener-
ated input stays close/within the data-manifold i.e. in regions where the model per-
forms well (further discussions of these constraints can be found in Sect. 5.2).

Summed up, both counterfactuals and adversarials can be generated using the 
same method. However, that does not entail that they describe the same object class. 
Counterfactuals are agnostic with respect to the true label, whereas adversarials 
must be misclassified. From this perspective, counterfactuals could be considered 
the more general object-class. However, this conclusion would be drawn too early, 
since there is a second definitional difference.

Proximity to the Original Input additionally to misclassification, we want to high-
light a second, minor distinction between counterfactuals and adversarials, which is 
their tolerance with respect to proximity to the original input.

Closeness to the original input is usually a benefit for adversarials to make them 
less perceptible. However, an adversarial can still be used to attack a system if it is a 
little bit more distal to x than another adversarial (Goodfellow et al. 2015). Depend-
ent on the aim of the attacker, this might even be desirable. Adversarials with greater 
distance to the decision boundary transfer better between different models, are often 
more effective, or more meaningful (Zhang et al. 2019; Elsayed et al. 2018).

For counterfactuals on the other side, closeness to the original input plays a sig-
nificant role in the causal interpretation as discussed in Sect. 3.1. Without maximal 
closeness, a counterfactual shows only a sufficient scenario for a different classifica-
tion but not a necessary one. For example, assume we are in the loan-application set-
ting from Sect. 2, where one point describes a maximally close counterfactual and 
the other a relatively close alternative input to x, both assigned to the same class. 
Assume moreover that the only difference between them is a change in gender from 
female to male. Then, even though such a change in gender would not impact the 
model-prediction, it would appear as a cause for the explainee receiving the alter-
native input. Such alternative inputs are less valuable than actual counterfactuals 
not only to data-subjects but also for model-developers examining the model. Thus, 
accepting ’close enough’ but not maximally close inputs with a different classifica-
tion as counterfactuals means either ignoring better CEs or admitting that the used 
distance is not perfectly adjusted for relevance in the given context.
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Despite that difference in their tolerance with regards to proximity, we do not see 
this difference as equally essential as misclassification. If closeness is handled more 
loosely to generate “CEs”, we might not gain real CEs, but still possibly relevant 
explanations. Thus, we do not entirely leave the category of objects. If on the other 
side we generate correctly classified inputs, we left the realm of attacks.

4.3 � Our Definitions

As we argued, we must not take Eq. 1 as definitional for CEs/AEs. To account for 
the definitional differences we proposed in Sect.  4.2, we require novel definitions 
that include misclassification and the tolerance with respect to proximity to the orig-
inal input. The definitions we will offer satisfy these requirements, offer useful con-
ceptual extensions, and are grounded in the recent literature (e.g. Verma et al. 2020; 
Stepin et  al. 2021 for CEs and Szegedy et  al. 2014; Serban et  al. 2020 for AEs). 
We try to be maximally inclusive to the usage of the terms in the general literature, 
however, due to the great number of papers on both fields (Yuan et al. 2019; Verma 
et al. 2020; Serban et al. 2020; Stepin et al. 2021) our framework will probably not 
be able to cover all usages.

Before we can define CEs and AEs, we need to know what we aim to explain or 
attack, namely ML models or the processes in which they are employed. We will 
restrict ourselves here to the highly common supervised learning setup. Moreo-
ver, we will focus on classification tasks. These restrictions have mainly the pur-
pose to keep the analysis accessible. Many notions can be easily extended to other 
learning-paradigms.

Machine Learning Algorithms and Models assume we consider the relation of 
variables X ∶= X1 ×⋯ × Xn and a (often one-dimensional) variable Y . We can 
see these variables as random variables standing in a causal relation to each other. 
Let X and Y denote the co-domain of X  respectively Y . A (supervised) ML algo-
rithm � is a procedure that based on a set of models M , a labeled training dataset 
DTr ∶= {(x1, y1),… , (xn, yn)} with n ∈ ℕ , some hyperparameters H , an optimization 
method O , and a loss function L outputs a model f ∈ M . This procedure � intui-
tively speaking searches for a model f in the set M , using method O and hyperpa-
rameters H , that has a low prediction loss L on the training dataset DTr.

The model f ∈ M that is obtained by running the procedure � on a given input 
is called the machine learning model. It can be described as a function f ∶ X → Y  . 
This model ideally has a low bias measured by the loss function on the training 
dataset DTr and, moreover, a low generalization error on an unseen test dataset 
DTe ∶= {(xn+1, yn+1),… , (xl, yl)} with l > n . That means that f does predict values of 
Y from X  in cases it has seen the correct assignment, but also for cases that have not 
been part of the training dataset DTr.

Counterfactuals and Adversarials unlike other authors, we distinguish between 
the mathematical objects that induce a CE/AE and the explanations/examples 
themselves. First, we will define the mathematical objects. For all the following 
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definitions, assume we consider a fixed ML model f, a particular vector11 x ∈ X that 
is mapped by f to a value f (x) ∈ Y  , and a semi-metric12 d(⋅, ⋅) on space X.

Definition  We call x� ∈ X an alternative to x if f (x�) ≠ f (x).

In simple terms, x′ is an alternative to x if it gets a different assignment by f.

Definition  Let 𝜖 > 0 . We call x′
�
 an �-alternative to x if

We can think of x′
�
 as a step away from x for which we cross a decision boundary 

of the model but stay within a local �-environment around x.

Definition  We call cx ∈ X a counterfactual to x if

Staying in the narrative, a counterfactual describes the shortest13 step that crosses 
a decision boundary. Notice that this closest vector does not have to be unique, there 
might exist a variety of vectors in equal distance.

A true label yx�,true ∈ Y  for a vector x� ∈ X describes the objectively correct label 
that the input-vector x′ should be assigned to. This ground-truth is often given by 
expert human evaluation. Not for all inputs there exists such a true label. The reason 
might be that the correct assignment is controversial even among expert evaluators 
or the considered input is unrealistic. Why are such unrealistic inputs relevant? As 
introduced above, image(X) ⊆ X . That means that in cases where the subset-relation 
is strict, our model f is defined on data-points that do not realistically occur in the 
real world.

Definition  We call a vector x� ∈ X misclassified if f (x�) ≠ yx�,true.

A misclassification describes a mistake made by the algorithm relative to an 
expert-human assignment.

Definition  Let 𝜖 > 0 . We call ax,� ∈ X an adversarial to x if

In the literature, no clear definitional distinction is drawn between counterfac-
tuals and adversarials. However, as we have argued in Sect. 4.2, we believe that 
the distinctions we have introduced are conceptually necessary. The definitions 

d(x�
𝜖
, x) < 𝜖 and x�

𝜖
is an alternative to x.

d(cx, x) is minimal subject to f (cx) ≠ f (x).

ax,�is an �-alternative and misclassified.

11  This vector x describes mostly a real-data instance.
12  A semi-metric on a space X is a function d ∶ X × X → ℝ such that for all x, x� ∈ X d(x, x�) ≥ 0 , 
d(x, x�) = 0 ⇔ x = x� , and d(x, x�) = d(x�, x).
13  With respect to d(⋅, ⋅).
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of counterfactuals and adversarials differ in two aspects: the relation to the true 
instance label and the constraint of how close the respective data-point must be. 
The misclassification of adversarials enters the definition by enforcing it as an 
additional necessary condition. Note that this entails that only inputs for which a 
ground-truth exists can in our definition be called adversarials.

The second definitional difference we introduce is that counterfactuals must be 
maximally close data-points, while adversarials need only be within an �-environ-
ment around the original input x. This relaxed condition on adversarials is intro-
duced via defining them as �-alternatives. This means, whether an input is called 
an adversarial or not, depends on how close the attacker requires the input to be. 
If the constraint is put too strong i.e. if � is too small, there might not exist any 
adversarials within that environment. If, on the other side, the constraint-parame-
ter is set very high, even inputs rather dissimilar to the original input can count as 
proper adversarials. Unlike adversarials, counterfactuals always exist as long as 
there exists an alternative to x. Moreover, only maximally close alternatives count 
as proper counterfactuals.

Especially counterfactuals, but also adversarials are often targeted i.e. the gen-
erated vector should not only be assigned to a different class than the original 
vector but to a specific desired class. The desired class imposes an additional 
relevance constraint. For counterfactuals, this may be from the perspective of the 
end-user who wants to get her loan application accepted rather than rejected or 
the model-engineer who wants to check whether the model can distinguish an 
input from other inputs of a specific object-class. For adversarials, this may be 
the desired classification from the perspective of the attacker of the system (e.g. 
Whatever is next to this sticker is a toaster Brown et al. 2017). In cases where a 
desired class exists and is imposed, we talk about targeted ( �)-counterfactuals/
adversarials. More formally, let ydes ∈ Y  with f (x) ≠ ydes denote the desired out-
come of a stakeholder given such a desired outcome exists.

Definition  We call an alternative x� ∈ X to x ydes-targeted if f (x�) = ydes.

The notion of targeted vectors has relevance when it comes to generating coun-
terfactuals/adversarials (see Sect. 5). Moreover, we can see the ydes-targeted prop-
erty as a further specification of a counterfactual/adversarial that informs about 
the relevant class. In the case of counterfactuals, targetedness also has defini-
tional relevance. Not every ydes-targeted counterfactual is also a “normal” coun-
terfactual. There are cases where cx is a vector with minimal distance to x that 
belongs to class ydes , however, there still exist inputs x′ closer to x than cx that 
change the classification to a different class f (x) ≠ f (x�) ≠ ydes . Consider a loan 
application scenario in which a poor rejected applicant does not only want to get 
his loan accepted but be classified as a high-credibility premium client with bet-
ter conditions. In such a case, the targeted counterfactual would not be among the 
more realistic “normal” counterfactuals. For adversarials on the other side, every 
targeted adversarial is also a “normal” adversarial given we consider the same � 
environment.
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CEs and AEs so far, we have only discussed vectors living in a space X. How do 
we get from these vectors to explanations or attacks?

Definition 

–	 A contrastive explanation (CON) is a presentation of an alternative x′ in contrast 
to x understandable to a human agent.

–	 A counterfactual explanation (CE) is a presentation of a counterfactual cx under-
standable to a human agent.

–	 An adversarial example (AE) is the depiction of an adversarial ax.

Notice that while every counterfactual and every adversarial describes an alterna-
tive, not every CE or AE is a CON. CONs must be presented as a contrast between 
x′ and x. Possible presentation styles for CEs/AEs include the presentation in form 
of an (English-)conditional of type III for tabular data, an image for visual-data, or a 
sound for auditory-data. For tabular data, we use the property that the input features 
in such scenarios are interpretable. That means they have semantic meaning and can 
be expressed by human language concepts.

Assume we are in such a tabular-data scenario where x = (x1,… , xn) describes 
the original vector and cx = (cx1 ,… , cxn ) one of its targeted-counterfactuals. Now, 
consider the vector cx − x . p ≤ n of this vector’s values will be non zero. Assume 
k1,… , kp describe the names of these non-zero entries of the vector and ek1 ,… , ekp 
their respective values. The (contrastive) CE in this scenario would be:

If P had a ek1 ,… , ekp higher/lower value in k1,… , kp , she would have reached her 
desired classification instead of f(x).

For image-data, we can use the fact that vectors in such spaces can be visualized 
directly in their image representation. Examples have been shown both for CEs and 
AEs in Sect. 2. The same holds for auditory data-inputs which can be presented as a 
sound.

As mentioned above, often there is not one unique counterfactual to a given vec-
tor x. Therefore, there is not one unique correct CE. Worse, often different CEs 
are incompatible. The fact that there are several equally “good” explanations for 
the same prediction is called the Rashomon effect (Molnar 2019). Several ways 
to deal with this problem have been proposed. Mothilal et al. (2020), Moore et al. 
(2019), Wachter et  al. (2017), and Dandl et  al. (2020) propose to present various 
CEs dependent on the specific aim of a user. However, then the question arises, how 
many and which ones? Others propose to select a single CE according to relevance 
(Fernández-Loría et al. 2020) or a quality standard set by the user, such as complex-
ity (Sokol and Flach 2019). We think the question the Rashomon effect poses is still 
open to debate. AEs are unique neither. However, as AEs must not cohere, nor be 
necessarily presented to humans, this plays no role.

Model-Level and Real-World one distinction that is often overlooked is the 
difference between an explanation/attack on the model-level and the real-world. 



95

1 3

The Intriguing Relation Between Counterfactual Explanations…

We need to be clear about whether we want to explain/attack the model or the 
modeled process. Generally, the former is much easier to accomplish than the 
latter. We can only move from a model explanation/attack to a process explana-
tion/attack if the model itself, and also the translation of our inputs, preserve the 
essential structure of the process (Molnar et al. 2020). There are two scenarios for 
which the distinction between the two levels is relevant: it is relevant for CEs if a 
user is interested in recourse to attain a desired outcome (Karimi et al. 2020c). It 
is relevant for AEs if an attacker aims to deceive an ML system deployed in the 
physical world (Kurakin et al. 2016).

To give two examples that highlight the difference between model-level 
and real-world explanations/attacks, we reconsider the examples from Sect.  2. 
The presented CE in the loan application setting was: “If P had a 5, 000 €   p.a. 
higher salary and an outstanding loan less, her loan application would have been 
accepted.” This explanation clearly tells us something about the employed model, 
namely about the assignment for a particular alternative. However, P could take 
this as an action recommendation in the sense that if she raises her salary and 
paid her outstanding loan, she will receive the loan she applied for. Unfortunately, 
things are not that simple in the real world. P has to work hard to raise her salary 
and pay her open loan, this does not happen in zero time. By the time she reaches 
the required threshold, she may be five years older and her loan application will 
be rejected again, this time due to her advanced age or because a different algo-
rithm is now used (Venkatasubramanian and Alfano 2020). So the transfer from 
the model explanation to an action recommendation for recourse is not as easy.

A similar example can be shown for AEs. Consider the Hand-Written Digits 
Recognition Scenario from Sect.  2 where an attacker aims to money-pump the 
postal service. The AEs presented are clearly inputs that trick the model. How-
ever, if she now aims to make the step to a real-world fraud, she has to print them 
out. A bad printing, different colors, alternative background, changed angles, or 
the camera employed by the postal service will impact which input the model 
receives. Thus, the AE might not work in the postal-service hand-written digits 
recognition service but only in the artificial setting where we can directly manip-
ulate the input the model receives.

For both CEs and AEs, we need to know the employment context and the 
required functionality in order to be clear about what level we are dealing with. 
The work of Karimi et  al. (2020c) and Mahajan et  al. (2019) on algorithmic 
recourse and the work of Kurakin et  al. (2016), Lu et  al. (2017b), and Athalye 
et  al. (2018) AEs in the physical world have alerted the CE and AE communi-
ties to the importance of the two different levels. The two levels collapse only for 
artificial settings in which the model perfectly matches the process (Karimi et al. 
2020c) and the interventions truly lead to improvements in the target (König et al. 
2021).

Definition  We say a CE/AE operates at the real-world level if it describes changes 
in X  that result in changes in Y . We say that a CE/AE operates at the model-level if 
it describes changes in X that result in changes in Y.
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5 � Generation of CEs/AEs

So far we have motivated and discussed the formal definitions of CEs/AEs. 
Now, we move from the definition to their generation. Again, we will focus on 
the connections between the two fields. Before we start, it is important to note 
that the generation methods for AEs do generally not guarantee success i.e. it is 
unclear whether the generated input vector is misclassified. Instead, misclassi-
fication is particularly in image-classification still often reached accidentally as 
discussed in Sect. 4.2.

5.1 � General Approaches

Optimization Problem the most common approach to find CEs/AEs is to formu-
late and solve an optimization problem. Such a problem formulation is already 
present in the definition of CEs/AEs, however, this is an optimization under side 
conditions and therefore not easy to solve. Instead, the standard formulation as 
a single objective optimization problem is Eq. 1 that led to the confusions dis-
cussed in Sect. 4.1.

For both (targeted/untargeted) CEs and AEs there exist many other formulations 
as an optimization problem (Serban et al. 2020; Verma et al. 2020). For example, for 
CEs Poyiadzi et al. (2020), Kanamori et al. (2020), and Van Looveren and Klaise 
(2019) add additional terms to Eq. 1 encoding further desiderata (see aims and dis-
tances below), Dandl et  al. (2020) instead add these desiderata by formulating a 
multi-objective optimizations problem, and Karimi et al. (2020a) formulate a search 
for the smallest intervention on the variables needed to attain a change in classifica-
tion. Similar to the former formulations for CEs, there exist approaches to AEs like 
(Carlini and Wagner 2017; Moosavi-Dezfooli et al. 2017) which modify the objec-
tive from Eq. 1 to obtain desired properties like computational efficiency or univer-
sality of an AE. Other optimization problems also take into account transformations 
of background or objects and generate AEs whose classification is invariant under 
such transformations (Eykholt et al. 2018; Brown et al. 2017; Athalye et al. 2018).

Generative Networks a second way to generate CEs/AEs that has been fruit-
fully applied is the use of generative networks that generate CEs/AEs for a given 
input. This technique is widespread for both AEs (Goodfellow et al. 2014; Zhao 
et al. 2017; Yuan et al. 2019) and CEs (Mahajan et al. 2019; Van Looveren and 
Klaise 2019; Pawelczyk et al. 2020).

Sensitivity Analysis a third approach that is almost exclusively used by the AEs 
community is sensitivity analysis. Information about the gradient (Goodfellow et al. 
2015; Lyu et  al. 2015) or Jacobian (Papernot et  al. 2016b) of the function in the 
specific input is used to make a step in the direction of the decision boundary to a 
different class. Moore et al. (2019) is the only example we are aware of who use this 
approach to generate CEs. One reason why such approaches have probably not been 
picked up in the CE-literature is that it has limited conceptual justification, e.g. with 
respect to minimal distance, as we discuss in Sect. 6.
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5.2 � Distances

All approaches to generate AEs necessitate an underlying notion of distance, mainly 
for the inputs space but often also for the output space. Researchers worked with a 
high variety of distances. Often the distances encode specific desiderata research-
ers want CEs/AEs to satisfy. For both fields, the question for the right distance for 
a given use-case is considered an open problem (Serban et  al. 2020; Verma et  al. 
2020). Since every norm induces a metric, we will use the names of the norms and 
generally talk about distances.

Sparsity and Imperceptibility since explanations often need to be understand-
able to people with limited time and cognitive resources, it is desirable for CEs to 
point out only few relevant features. Therefore, distances are preferred that take into 
account sparsity. For adversarials on the other side, a common aim is imperceptibil-
ity. Changes from the original input to the modified input should be hard to grasp 
for human observers. While these desiderata often lead to conflicting notions of dis-
tance, they also can coincide. For example, the L0 and L1 norm have both been fruit-
fully been applied to generate sparse counterfactuals (Dandl et  al. 2020; Wachter 
et al. 2017) and imperceptible AEs (Su et al. 2019; Tramer and Boneh 2019; Pawel-
czyk et al. 2020).

However, some distances to attain sparsity of counterfactuals have not been used 
to reach imperceptibility of AEs. One way by which sparsity can be guaranteed is to 
explicitly put a constraint on the number of features allowed to change (Kanamori 
et al. 2020; Ustun et al. 2019; Sokol and Flach 2019). Another is to constrain the 
number of actions that can be taken, but not the number of the corresponding feature 
changes (Karimi et al. 2020c). To attain imperceptibility of AEs, the distances are 
more diverse. Common examples are the L2 (Moosavi-Dezfooli et al. 2016) and L∞ 
(Goodfellow et  al. 2015; Elsayed et  al. 2018) norm for distributed changes which 
often makes AEs look identical to the input they origin from. Other norms, more 
inspired by human perception are the Wasserstein-distance (Wong et al. 2019), using 
physical parameters underlying the image formation process (Liu et al. 2018), or the 
Perceptual Adversarial Similarity Score (Rozsa et al. 2016).

Plausibility and Misclassification in many contexts, end-users want to use expla-
nations for guiding their future actions. In such scenarios, CEs should not present an 
entirely unrealistic alternative scenario to the explainee. Instead, the recommended 
alternative should be within reach and if possible it should be feasible for agents to 
perform actions based on these alternatives. This often means that the counterfactual 
lies in the natural data-distribution. AEs must by definition be misclassified, which 
as discussed in Sect. 4.2, is often easier to reach on the edges or slightly outside the 
natural data-manifold. We see an antagonism between the goal of realism of CEs 
and the misclassification of AEs. Thus, progress in one of them (especially concern-
ing the applied distances) can easily inform progress in the other, only with reversed 
sign in the optimization.

One common way to attain plausibility is to take into account the distance of 
the CE to the closest training-datapoint (Kanamori et al. 2020; Dandl et al. 2020; 
Sharma et al. 2020) or the allowed path to the counterfactual (Poyiadzi et al. 2020). 
Often, additional constraints are posed such that only actionable features should be 
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changed to avoid non-helpful recommendations (Ustun et al. 2019). Another way is 
to take into account the causal structure of the real-world features. If a counterfac-
tual arises realistically from an intervention on some of these features, the corre-
sponding CE is plausible (Mahajan et al. 2019; Karimi et al. 2020c).

To attain misclassified inputs, it is generally reasonable to search in low-probabil-
ity areas of the data-manifold (Szegedy et al. 2014) or even outside of it (Tanay and 
Griffin 2016). Therefore, most distances for AEs do not respect the causal structure 
between the corresponding real-world variables. Some even act directly against the 
causal structure and modify only irrelevant features (Ballet et al. 2019) or, just as 
for CEs, put constraints on the potential changes (Cartella et al. 2021). Particularly 
noteworthy is the distance of Moosavi-Dezfooli et al. (2017) who encode the robust-
ness of the flip in classification and also the work of Carlini and Wagner (2017) who 
compare the misclassification between different applied distances. Interestingly, it 
has been found that a greater distance to the given decision boundary guarantees 
more robustness of misclassification, hence, many do not search for minimal but 
only close adversarials (Zhang et al. 2019).

Contestability and Misclassification CEs should allow explainees to detect 
adverse or wrong decisions. If the explainee is an end-user, this could be the case if 
she feels judged unfairly (Kusner et al. 2017; Asher et al. 2020). On the other side, 
if the explainee is the model-engineer, this could mean CEs reveal bugs. Again, AEs 
must be misclassified. Decision-making mistakes are the common denominator of 
the contestability reached by CEs and misclassification provided by AEs. Various 
ways have been proposed to encode these aims.

Russell (2019) provide contestability by presenting a range of diverse CEs in 
which different features were modified. This increases the chance that some CEs are 
presented that provide grounds to contest the decision. Sharma et al. (2020) define 
protected properties like ethnicity and focus on changes in these features in their 
distance. Laugel et al. (2019b) discuss how standard norms like L1 can lead to unjus-
tified CEs since they arise from inputs outside the training-data. Hashemi and Fathi 
(2020) combines CEs and AEs to evaluate the weaknesses of a given model. They 
use both, the L0 and L2 norm plus focus on protected features in search for realistic 
but misclassified counterfactuals. In a similar vein, Ballet et al. (2019) assign impor-
tance weights to features and through these weights they define weighted Lp norm 
where changes in more important features have a lower weight and are therefore 
more likely to change in the optimization process. Cartella et al. (2021) extend their 
work and put additional constraints to keep the adversarials realistic but still fraudu-
lent. Especially the last three examples show the great overlap between the goals of 
contestability and misclassification.

5.3 � Model‑Access

As we have discussed above, we do not need to define an optimization problem to 
generate counterfactuals or adversarials. However, different solution methods dif-
fer in the degree of model-access they need. We distinguish between black-box and 
white-box scenarios. In a black-box scenario, explainers/attackers can only query 
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the model for some inputs they provide and receive the corresponding output. In a 
white-box scenario, the explainer/attacker has full model access. We can further dis-
tinguish between methods that only work for a particular model-class and methods 
that are model-agnostic. All black-box solvers work for any model. For white-box 
solvers, some only need access to gradients and therefore require a differentiable 
model and those that are specific to a particular model-class e.g. linear models but 
can therefore often handle mixed-data. Interestingly, even though white-box scenar-
ios are more realistic for explainers and black-box scenarios more commonly occur 
for attackers, the literature shows tendencies in the opposite directions.14

Many solvers rely on access to the models gradients e.g. for CEs (Wachter et al. 
2017; Mothilal et al. 2020; Pawelczyk et al. 2020; Mahajan et al. 2019) or for AEs 
(Szegedy et  al. 2014; Athalye et  al. 2018; Brown et  al. 2017; Ballet et  al. 2019). 
Other solvers for CEs are model-specific and require full model-access such as 
mixed-integer linear program solvers (Ustun et  al. 2019; Russell 2019; Kanamori 
et al. 2020) or solvers tailored for decision trees (Tolomei et al. 2017). For AEs some 
solvers require neural network feature representations (Sabour et  al. 2016). How-
ever, several solvers can deal with a black-box setup. Common in both literatures 
are evolutionary algorithms e.g. for CEs (Sharma et al. 2020; Dandl et al. 2020) and 
for AEs (Guo et al. 2019; Alzantot et al. 2019; Su et al. 2019). Very prominent for 
AEs are also the approximation of gradients by symmetric differences (Chen et al. 
2017) and the usage of surrogate models (Papernot et al. 2017). Especially the latter 
approach is interesting as it is based on the transferability of AEs between different 
models optimized for the same task.

We see that many solvers are fruitfully used in both domains. It will be seen 
whether surrogate model-based approaches also find their way into the CE literature. 
We find the use of them for CEs conceptually controversial as the faithfulness to the 
model is more critical for an explanation than for an attack (also see Sect. 6 for a 
short discussion of this point)).15

6 � Discussion

In this paper, we discussed the relationship between CEs and AEs. We argued that 
the definitional difference between the two object classes consists in their relation 
to the true data labels (i.e. adversarials must necessarily be misclassified) and their 
proximity to the original data-point (i.e. counterfactuals must be maximally close 
to the original input). Based on this, we introduced formal definitions for the key 
concepts of the fields. In addition, we have highlighted similarities and differences 
between the two fields in terms of use cases, solution methods, and distance metrics.

14  See Serban et al. (2020) and Verma et al. (2020) who notice the respective tendencies in their surveys. 
They explain this by the chances to explore more in white box settings and the computational problems 
of black-box attacks in high-dimensional use cases (see Sect. 2).
15  A first approach to use a surrogate model to generate similar explanations to CEs was proposed by 
Guidotti et al. (2018).
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6.1 � Relevance

Our work adds a new viewpoint to the discussion of the relationship between CEs 
and AEs. Eventually, we hope that our work can form the basis for merging the two 
fields. Based on our arguments and the formal definitions inspired by them, adver-
sarials can be seen as special cases of (more distal) misclassified counterfactuals. 
Especially when it comes to CEs for which misclassification is a desirable property, 
such as CEs for contesting adverse decisions, detecting bugs, or improving model-
robustness, we see potential synergies. We believe that a solid conceptual discussion 
becomes more important as these functions of CEs are emphasized and as applica-
tion domains overlap (e.g., AEs in lending, CEs for image classification).

Our work also has a clear practical relevance. The conceptual arguments for 
the maximal proximity of counterfactuals make clear that generating counterfactu-
als via sensitivity analysis, as proposed by Moore et al. (2019), or using surrogate 
model approaches could be problematic. In the case of sensitivity analysis, maximal 
proximity to the original input is not guaranteed and hence the corresponding CEs 
have less explanatory power. Surrogate models might not be sufficiently faithful to 
the original model and therefore lead to bad/misleading explanations. As we dis-
cussed, solution methods to find CEs can also generate AEs, but the reverse can be 
problematic.

What we have shown in terms of the current literature is that there is a large 
amount of overlap. We have also suggested which parts are good candidates for 
transfers. However, as we have made clear, such transfers of mathematical frame-
works or approaches require conceptual justification. While transferring gradient-
based solution techniques from the AE literature to generate counterfactuals, as pro-
posed by Wachter et al. (2017), is conceptually unproblematic, using counterfactuals 
to measure the robustness of a model, as suggested by Sharma et al. (2020), will not 
work for tabular data scenarios.

6.2 � Limitations and Open Problems

Misclassification Formalized our work points to an important weak spot of the 
current AE literature: misclassification is achieved more or less by accident in the 
image domain, but is not clearly formalized. Such a formalization of misclassifica-
tion would greatly advance the merging process between CEs and AEs. It may be 
considered a limitation of our work that we have not provided this formalization but 
instead referred to the true data-labels, which are either expensive to obtain or sim-
ply unknown. Nevertheless, we want to provide a roadmap of what such a formaliza-
tion might look like.

We believe that Ballet et  al. (2019) made the first solid contributions to a for-
mal representation without requiring the ground-truth data labels. In our opinion, a 
good candidate framework for generalizing their approach is causal modeling (Pearl 
2009). If we have a true causal model, misclassification is obtained by modifying a 
correctly classified input sufficiently to change the classification, but in a way that 
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violates the causal structure. We suggest that adversarials can be viewed as small 
modifications in causally irrelevant features that unjustly influence the prediction.

Unfortunately, approaching the problem of misclassification from a causal mod-
eling perspective also comes with strong requirements: we need a structural causal 
model or at least a causal graph. Obtaining such models is extremely difficult (Pearl 
2009; Schölkopf 2019), and when dealing with conceptually lower-order features 
such as pixels or sounds, causal models might even be the wrong descriptive lan-
guage. Still, we think that even limited causal knowledge about, e.g. parts of the 
causal graph or some of the structural equation, might suffice in many contexts to 
prove that a change in classification is unjustified. Moreover, for conceptually less-
structured feature spaces, higher-order causal models (Beckers and Halpern 2019) 
where features such as objects are supervened by lower-order features such as pixels 
may provide the right level of description to define misclassification.

Distances on Unstructured Spaces in our discussion in Sect. 4.2 on misclassifica-
tion, we gave reasons why most inputs that solve Eq. 1 are misclassified. We argued 
that theoretically poorly justified distance metrics are one of the reasons for this phe-
nomenon. However, we did not address whether this might be the only reason for 
this behavior and whether this would still be the case if we had conceptually well-
justified distances on high dimensional spaces with little semantics such as pixel 
spaces.

We believe that this is an empirical question we could not settle in this paper. The 
standard way for approaching it would be to move the distances from raw features 
such as pixels to higher-order features such as object properties. It has often been 
pointed out that deep-learning algorithms based on convolutional neural networks 
(CNNs; Goodfellow et al. 2016) automatically find semantically meaningful features 
in layers close to the output space (Zhang and Zhu 2018; Bau et al. 2017). For exam-
ple, one could define a distance function on the feature space just before the so-
called dense layer in CNNs, which is responsible for classification.

While we consider this a promising direction for future research, there are good 
reasons to remain skeptical. First, unfortunately, it is not so easy to assign specific 
semantic meaning to these high-level features, since some of them are poly-seman-
tic and are triggered by quite different inputs (Olah et al. 2020). Distance measures 
on such features may therefore also be conceptually unjustified and the problem 
remains. Second, examples of AEs, such as those given by Szegedy et al. (2014) or 
Goodfellow et al. (2015), seem to show images that are almost identical to the origi-
nal image. Hence, conceptually well-justified distance functions should also assign a 
low distance to these images, and consequently they will still be generated by solv-
ing Eq. 1. Following (Ilyas et al. 2019), we think that AEs are generated by Eq. 1 not 
only because we apply the wrong distance function, but also because the ML model 
has not really learned the robust concepts that humans use to distinguish objects.

Explanations and Deceptions we have not discussed the conceptual relationship 
between illusions and explanations more generally (e.g. the relation between every-
day life explanations and cognitive biases or optical illusions), but have focused only 
on CEs/AEs in ML. In what sense can an illusion explain a phenomenon? How can 
an explanation lead to a deception? Is there an underlying conceptual or even cogni-
tive connection between explaining and deceiving? We do find these questions, and 
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the possible embedding of our CE/AE discussion within them, intriguing. For now, 
however, we leave these deep and difficult philosophical/psychological questions to 
other researchers.

Glossary

We will shortly explain the following terms with the help of the example depicted in 
Fig. 2. As in Sect. 4.3 we call f ∶ X → Y  the classifier, X the input space, and Y the 
output space.

Decision boundary in the example, the decision boundary is described by the 
blue line. All inputs above the decision boundary are labeled “approved”, all inputs 
below the blue line are labeled “rejected”. Crossing the decision boundary means 
that a point is moved from one side of the decision boundary to the other. For exam-
ple, the individual represented by the black “x” at position (1, 28) might cross the 
decision boundary by moving his salary up 1000€  or by buying two more pets.

More generally, we can describe a decision boundary as a hypersurface in space Y 
that separates one class from another. These hypersurfaces are induced by the clas-
sification model f ∶ X → Y .

Data-Manifold in our example, the green and red points lie within the data-mani-
fold of realistic data samples. However, there is no point number or negative number 
of pets, so such instances would lie outside the data-manifold.

Fig. 2   This figure depicts the decision behavior of a simple classifier. It describes the scenario from 
Sect.  2, which is inspired by Ballet et  al. (2019). The classifier uses two features, salary and number 
of pets, to decide whether to approve or reject a loan application. The green dots are the training data 
labeled as approved, the red dots are the training data labeled as rejected. The blue line describes the 
decision boundary of the classifier
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More generally, a data-manifold describes a subset (often a hypersurface) of the 
spaces X × Y  that arises naturally from a data-generating mechanism. A data-mani-
fold encompasses the statistical population. The training and test data are usually a 
sample from this population.

Meaningless, unrealistic, or unseen inputs:

–	 Meaningless an example of a meaningless input in our scenario would be a per-
son with a negative number of pets. It describes an input that makes no sense to 
us, but is contained in the space X.

–	 Unrealistic an example of an unrealistic input in our scenario would be a person 
with five million pets. It describes an input we can understand, but that most 
likely does not occur in the real world.

–	 Unseen but realistic an example of an unseen input in our scenario would be a 
person who earns 29,000€  and has four pets. It describes an input that may real-
istically occur in the real world, but was not part of the training data.

Conceptually (un-)justified distance metrics conceptually unjustified distance met-
rics assign small distances to inputs that are not similar from a conceptual stand-
point. In our example, a distance function might assign a small distance to the points 
x1 = (0, 10) and x2 = (22, 10) . This would make x2 , which lies far outside the data 
manifold and is assigned to the “approved” class by the model, a potential counter-
factual for x1 . However, x2 is highly unrealistic as 20 pets are a lot and it breaks the 
dependence that 20 pets are probably too expensive for an income of 10,000€  per 
year. This dependency problem is more severe for pixel spaces, since pixels have 
strong dependencies in the real world with their neighboring pixels. Moreover, an 
image in the form of a set of pixels represents an image of objects to humans, a fact 
that is difficult to account for with a metric.
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