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Abstract. I propose a novel hyperintensional semantics for belief revision and a corre-

sponding system of dynamic doxastic logic. The main goal of the framework is to reduce

some of the idealisations that are common in the belief revision literature and in dynamic

epistemic logic. The models of the new framework are primarily based on potentially in-

complete or inconsistent collections of information, represented by situations in a situation

space. I propose that by shifting the representational focus of doxastic models from belief

sets to collections of information, and by defining changes of beliefs as artifacts of changes

of information, we can achieve a more realistic account of belief representation and belief

change. The proposed dynamic operation suggests a non-classical way of changing beliefs:

belief revision occurs in non-explosive environments which allow for a non-monotonic and

hyperintensional belief dynamics. A logic that is sound with respect to the semantics is

also provided.
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1. Introduction

The doxastic models constructed here are primarily aimed at reducing some
of the idealisations that are common in the belief revision literature. These
include the assumptions that the beliefs of an agent are closed under logical
inference rules, i.e., an agent believes, or is committed to believe, the logical
implications of her beliefs; it is therefore assumed that the agents believe all
logical truths. More radically, it is sometimes assumed that the information
of an agent, which is the foundation of her beliefs, is complete in the sense
that it says something about every aspect of the world, a feature which
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possibly passes on to her beliefs.1 I will also challenge the idea that the
primary elements of doxastic representations are the belief sets, and that
belief changes take place directly on these entities. I show that by shifting
the representational focus one step back to the possibly inconsistent and
incomplete collections of information (which are not necessarily accepted
as beliefs), and by defining changes of beliefs as artifacts of the changes of
information, we can achieve a more realistic account of belief representation
and of belief change.2

The AGM belief revision, so called after the names of the authors, and
fully formulated in Alchourrón et al. [1], has revolutionised the belief revision
literature by introducing a fully formed theory that combines non-monotonic
reasoning and belief change. It has significantly influenced the succeeding
works on belief revision especially in terms of the modelling idealisations
mentioned above. In particular, it is assumed in the AGM theory that belief
sets, before and after the revisions, are closed under classical logical im-
plication (by the closure postulate). However, considering the deductively
closed belief sets as the primary elements of doxastic representations has
been criticised as they appear to be too large to be the direct objects of be-
lief change (see [7], pp. 41–57). Together with the AGM success postulate,
the closure principle suggest that only one form of inconsistency is allowed
within the AGM framework, and that is triviality. In particular, a belief set
becomes trivial, i.e., it implies everything in the language, when it is revised
with an inconsistent sentence. In addition, the AGM theory allows merely
derived beliefs, that are, the beliefs that entirely depend on other beliefs,
to be retained even after their bases are eliminated from the belief set (by
the recovery postulate). Last but not least, the AGM change operators treat
classically logically equivalent sentences in an equal manner, hence suggest-
ing an intensional theory of belief revision (by the preservation postulate).
The AGM belief revision has been represented in the object language in
several works, establishing the Dynamic Epistemic Logic (DEL), or as it
sometimes called the Dynamic Doxastic Logic (DDL) tradition (see [23] and
[25] for the first examples of modelling the AGM belief change within the

1As noted, this is rather a radical assumption even among the highly idealised theo-
ries of belief revision. Most standard models are still able to represent belief revision via
incomplete information.

2The idea that changes of belief should take place on entities that are significantly
smaller than belief sets is one of the primary motivations behind the theories of base-
generated revisions. Rott and Hansson may be named as leading figures in the construction
of these theories in the philosophical belief revision literature [11,21].
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object language, and [24] for the full axiomatisation of the theory. See also
[26] and [28]).

The theories of base-generated revisions, put forward by Rott and Hans-
son [11,21], revoke some of these idealisations established in the AGM para-
digm. Base-generated revision models are built on possibly inconsistent sets
of beliefs that are not necessarily closed under logical implication, which
are called the belief bases. Inferential closure of a belief base still serves as
the set of sentences an agent is committed to believe.3 Most importantly,
the changes of belief take place on the belief bases. This approach allows,
for instance, agents to enjoy inconsistent pieces of information without hav-
ing trivial belief sets (via the failures of various logical closure principles).
It is also possible that agents reject making revisions with inconsistent in-
formation (by the limited success postulate in [21]). Moreover, because the
recovery postulate is not satisfied, the base-generated revisions require that
merely derived beliefs are not kept for their own sakes after their support
belief is contracted, i.e., deleted from the belief set. They offer a much more
fine-grained modelling of belief revision than the AGM models are capable
of. For instance, the syntactic structures of the belief bases matter in deter-
mining their dynamic aspects. However, they still exemplify an intensional
way of changing beliefs. Overall, the dynamic operators of base-generated
revisions are more general than the AGM change operators (e.g., while the
AGM belief revision operations do not allow iterated revisions, the base-
generated revision operators do; see Fermé and Hansson [7] for a comparison
of the two approaches), and they are more suitable to establish a ground for
a less idealised theory. There is, to my knowledge, not much work on the
representation of base-generated revision operators in the object language.4

As the present work shares many motivations and mechanisms with such
revision theories, it can be seen as a step forward to formulation of them in
the object language.

In the following, I propose a hyperintensional version of base-generated
revisions, formalised in the object language following the DEL tradition.
Hyperintensionality in the belief revision context means that (classically)
logically equivalent content may point out to different change policies of the
belief sets, depending on how they are represented in a model. For instance,

3This claim is accurate only for Rott’s theory. Hansson does not assume the closure of
belief sets under logical implications.

4Emiliano Lorini’s works on epistemic logic with belief bases has been brought to my
attention as one of the projects in this area, as they exploit the belief bases for an epistemic
logic of implicit and explicit belief [16].
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all (classical) logical tautologies and semantic or mathematical truths are
intensionally equivalent (e.g., the following sentences are pairwise intension-
ally equivalent: “either x = y or x �= y”, “all husbands are married”, ‘every
integer is the sum of four squares”). This means that, within frameworks
which are insensitive to hyperintensionality, if an agent comes to believe
that all husbands are married (she may have just learned the meaning of
the word ‘husband’), she also comes to believe that every integer is the sum
of four squares. This however is a very unrealistic form of belief dynamics,
since learning a piece of vocabulary does not necessarily provide the means
to grasp a mathematical truth. A specific form of hyperintensional belief
revision has recently been investigated by Berto and Özgün [3,20]. They ar-
gue that hyperintensionality occurs in belief revision due to subject matter
sensitivity. Berto and Özgün obtain the hyperintensionality results without
disowning classical logic, hence the works are very significant in integrating
the framing effects, or hyperintensionality, into the classical approaches of
logic of belief revision. On the other hand, I will depend on a much weaker
logic and a non-standard semantics. The framework I introduce here does
not only yield a non-classical way of revising one’s beliefs, rather it affects
the handling of the information whether or not it is accepted as belief, both
in static and dynamic scenarios.

The representation of doxastic states primarily based on possibly incom-
plete and inconsistent collections of information is motivated by the assump-
tion that prior to a belief set, an agent possesses possibly incomplete and
inconsistent information about the world. These collections of information
are formalised in the models via situations in a situation space. The use of
situations to represent incomplete sets of data can be traced back to the
Situation Semantics developed by Barwise and Perry [2], while more recent
examples of their use can be found in Fine [8] and in Leitgeb [12]. In the
following framework, the situations are characterised by a valuation function
which maps them to the literals in the language, and by a fusion function
which structures the situation space as a join semi-lattice. The fusion func-
tion represents also the dynamic dispositions of an agent by specifying the
possible ways of expanding her information. To the point of (static) charac-
terisation of the situations and the situation space, the models are based on
the HYPE semantics proposed by Leitgeb [12].

Over and above exploiting the situation semantics, the doxastic models
introduced here include (uniform) preference orderings between sets of situa-
tions. A preference ordering represents an agent’s epistemic preferences over
various collections of information. It determines which parts of the available
information are accepted as beliefs by the agent. The current formalisation
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of epistemic preferences diverges from the most common examples in the
literature due to formal concerns which will be pointed out in the next sec-
tion. Outside of this framework, they are usually defined between sets of
worlds (see Grove’s seminal work [10] in which he generalises the epistemic
preference relations, and the primary works of the DEL tradition such as
van Benthem [26]), or they are defined between possible worlds (e.g, in van
Benthem and Liu [27], where the authors model preference change).

I propose a model-shifting dynamic operation (together with its represen-
tation in the object language) to model belief revision via new information.
This operation is carried out on the possible collections of information that
an agent has, rather than on the respective belief sets. The changes in the
belief sets follow from the changes of these collections. The dynamic opera-
tion preserves the structure of the situation space along with the valuations,
however it alters the preference ordering and the information of the agent.
Keep in mind that this is rather a simple revision operation, as most of the
complexity of reasoning is sustained by the static belief modality. Supported
by the non-classical features of the static models, the revision operation sug-
gests a non-classical way of changing beliefs. In particular, belief revision oc-
curs in a non-explosive environment which also allows for a non-monotonic
and hyperintensional belief dynamics. While the belief sets that are formed
within this framework are not necessarily closed under logical implication,
the proposed system of belief revision is still subject to some idealising as-
sumptions. Most importantly, it is assumed that the belief set of an agent is
always consistent, and this is manifested by the consistency axiom for belief.
The proposed system satisfies the axiom schemas of cumulative transitivity
(cut) and cautious monotony, which are usually desired as common proper-
ties of various non-monotonic logics [9]. In this paper I will only deal with
the revisions of belief sets, i.e., adding new beliefs to a belief set. I will leave
the construction of belief contraction models for future work.
I will start the next section with a detailed definition of the static aspect of
my doxastic models, they will be called the belief base models. I will expand
these models with a revision operation in Section 2.2. The expanded models
will be called belief base revision models. In Section 3, I will give a sound
axiomatisation of the logic of belief change as determined by the belief base
revision models. Section 4 will be about some (negative) principles of belief
base revision, such as non-monotonicity, non-explosiveness and hyperinten-
sionality. Section 5 will be a conclusion of what is presented throughout the
paper.
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2. Semantics

2.1. Preliminaries

I start with the static belief base models with the intention of expanding
them to revision models later on. A static belief base model represents the
doxastic state of a single agent at a time. In this paper, a (static) doxas-
tic state is the space of possible belief states of an agent, represented by a
logical space of situations that is structured with a parthood ordering be-
tween the situations and an epistemic preference ordering between the sets
of situations. The models diverge from Leitgeb’s [12] by the added preorder,
which is an epistemic preference ordering on sets of situations.

The following set of formulas specifies the language for the static belief
base models; we will call it LB. The modal operator B is the static doxastic
(belief) operator:

• φ::=AT | ¬φ | φ ∧ φ | φ ∨ φ| φ → φ| Bφ.

• � (always true) and ⊥ (¬�) (always false).

• Lprop ⊆ LB is the sublanguage of LB in which the modal operator B
does not occur.

• l ⊆ LB is the set of literals for LB such that l = {p, p̄, q, q̄, ...}. (p̄ is used
to denote ¬p and ¯̄p denotes p again).

Definition 1. A belief base model is a tuple M = 〈S, V, ◦,⊥,≤〉 such that

• S is a non-empty and finite situation space, and the situations are denoted
by “si” with or without the subscript.

• V is a mapping from S to the power set P(l) of literals. I will also speak
of the set of literals that a situation s is mapped to (denoted by V (s)) as
the local content of that situation.

• ◦ is a binary partial function from S × S to S that satisfies the following
conditions:

· If s ◦ s′ is defined, it is required that V (s ◦ s′) ⊇ V (s) ∪ V (s′)
· s ◦ s is always defined and is equal to s (idempotence)
· if s′ ◦ s is defined, then s ◦ s′ is also defined, and s′ ◦ s = s ◦ s′ (commu-

tativity)
· if (s◦s′)◦s′′ is defined, then s◦((s◦s′)◦s′′) is defined, and s◦((s◦s′)◦s′′) =

(s ◦ s′) ◦ s′′

• ⊥ is a binary symmetric relation on S that satisfies the following condi-
tions:
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· For all v ∈ l, if v ∈ V (s) and ¬v ∈ V (s′) then s⊥s′

· if s ◦ s′′ is defined and s′ ◦ s′′′ is defined, if s⊥s′ then s ◦ s′′⊥s′ ◦ s′′′

• For all s ∈ S, there is a unique s∗ ∈ S (the star image of s) such that

· V (s∗) = {v̄|v �∈ V (s)}
· s∗∗ = s
· s∗ �⊥ s
· if s′ �⊥ s then s′ ◦ s∗ is defined, and s′ ◦ s∗ = s∗

· ≤ is a total (transitive, reflexive and connected) preorder on P(S). For
all A,B ⊆ S, if A ≤ B we say that A is at least as preferred as B.

In the above definition I use v, v̄ as metavariables for the literals of the
language. The literals that a situation is mapped to via V represent the
atomic pieces of information. The models allow mapping of a situation to a
set of contradictory literals, such as {p, p̄}. Such situations are called glutty
situations. This assumption allows us to represent real world scenarios where
agents have contradictory information about their world. It is also usually
the case that the agents have incomplete information about the world. We
permit the representation of such scenarios by allowing the existence of
gappy situations: a situation s is gappy iff for some p ∈ l, neither p nor its
negation is in V (s).

Via the fusion function, the situations may overlap with each other, be
part of other situations, or be the product of two or more situations fused
together. The fusion function determines a partial order on the situations
which structures the situation space in a join semi-lattice. In the rest of the
paper I will call the following a parthood ordering :

Definition 2. Given a belief base model M on a situation space S and the
situations s, s′ in S, s′ � s iff s ◦ s′ = s.

If s′ � s, we say that the situation s′ is part of the situation s. The
parthood ordering is reflexive, transitive and antisymmetric. For the proof
see Leitgeb [12]. In this framework, the parts of the situations are as impor-
tant as their local contents in their characterisation. That is, situations with
the same local content are not necessarily identical, they can be distinct
situations in virtue of their parts.5

The ⊥ relation is an incompatibility relation between the situations. The
incompatibility of two situations may become manifest through contradic-
tory literals (p, p̄) in their local content. The star operation is known from

5An example of such cases can be found at the end of the section, see example 5.



686 S. Bozdag

the relevance logic (see [6]). It is however not a primitive element of the mod-
els. Its existence depends on the assumption that the models are rich enough
to include s∗ whenever they include s. The star image gives the largest com-
patible situation for each situation in a model. Its existence means that the
ideal agents are capable of expanding their information to a maximally con-
sistent collection, within the limits of the language. For a detailed discussion
of the formal aspects of the star image see Leitgeb [12].

The preorder ≤ represents the epistemic preference ordering between sets
of situations. An epistemic preference ordering represents the agent’s disposi-
tions for making rational selections among collections of information. Defin-
ing the preference ordering on sets of situations, rather than on situations,
simplifies the models significantly. Reflexivity and transitivity are common
characteristics of orderings which are used for making rational choices. We
furthermore stipulate that this is a connected order. When applied to real
agents, a connected preference ordering means the agents always prefer some
collections of information over the others. On the technical aspect, it allows
us to avoid cases where the agents have access to some information yet
fail to form beliefs because of their (lack of) preferences. Lastly, the pref-
erence ordering in a belief base model is not relativized to the situations.
We represent the shifts in epistemic preferences of the agents only via the
model-shifting dynamic operations.

Example 1. The first example is a static belief base model (pictured in Fig-
ure 1) which displays the basic principles we stated for the construction of
such a model. We start with specifying the language. Let l = {p, p̄, q, q̄, t, t̄, r, r̄}
be the set of literals of interest for this example. We will construct a model
M with only six situations, hence let S = {0, 1, 2, 3, 4, 5}. Let the valuation
of the situations in S be as follows: V (0) = ∅, V (1) = {p, q̄, t, r}, V (2) =
{p, q, t̄, r}, V (3) = {p, q, q̄, t, t̄, r}, V (4) = {p, r}, V (5) = {p, p̄, q, q̄, t, t̄, r, r̄}.
Let the fusion function of M be as follows: 0◦0 = 0, 0◦4 = 4, 0◦1 = 1, 0◦2 =
2, 0◦3 = 3, 0◦5 = 5, 4◦4 = 4, 4◦1 = 1, 4◦2 = 2, 4◦3 = 3, 4◦5 = 5, 1◦1 = 1, 1◦
2 = 3, 1◦3 = 3, 1◦5 = 5, 2◦2 = 2, 2◦3 = 3, 2◦5 = 5, 3◦3 = 3, 3◦5 = 5, 5◦5 =
5. Let the incompatibility relation in the model be determined via the literals.
Thus we have 1 ⊥ 2, 1 ⊥ 3, 1 ⊥ 5, 2 ⊥ 1, 2 ⊥ 3, 2 ⊥ 5, 3 ⊥ 1, 3 ⊥ 2, 3 ⊥ 3, 3 ⊥
5, 4 ⊥ 5, 5 ⊥ 1, 5 ⊥ 2, 5 ⊥ 3, 5 ⊥ 4, 5 ⊥ 5. So, the following holds for the
star images of the situations: 0∗ = 5, 1∗ = 1, 2∗ = 2, 3∗ = 4, 4∗ = 3, 5∗ = 0.
Let the preference ordering ≤M be such that for all A,B ⊆ S it holds that
A ≤M B, i.e., all sets of situation in M are preferred equally.

Recall that situations in a belief base model represent collections of informa-
tion, and a belief base model represents the doxastic state of an agent. That
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0{∅}

4 {p, r}

1 {p, q̄, t, r} 2 {p, q, t̄, r}

3 {p, q, q̄, t, t̄, r}

5 {p, p̄, q, q̄, t, t̄, r, r̄}

Figure 1. A fraction of a belief base model. The nodes represent the

situations in the situation space S, and the arrows represent the parthood

ordering on S. The ordering should be read as transitively closed. For

instance, given that there is an arrow from 1 to 3 and from 3 to 5, it is

assumed that there is an arrow from 1 to 5

is, the situations stand for the collections of information about the world,
the agent possibly possesses. An important notion throughout this paper
is the information base of an agent. An information base consists of a set
of situations in the situation space, structured by the epistemic preference
ordering and the parthood ordering, and which has an upper bound with
respect to the latter. Consider the set of situations H = {0, 1, 4} from the
above example. The situation 1 is the upper bound of this set according to
the parthood ordering of the model since 1 ◦ (0 ◦ 4) = 1. The set of situa-
tions H = {0, 1, 4} is also ordered by the epistemic preference ordering ≤M .
Let us then call the corresponding information base H. If H is the current
information base of the agent, we say that their total information is given
in the situation 1 since by the model assumptions of the fusion function, the
local content (i.e., the propositional or non-belief content) of the situation
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1 includes the local contents of its parts.6 In the proposed framework, the
upper bound of an information base is also where the beliefs of the agent
is located, given that information base. To keep things simple, I will often
say that an information base H is determined by a situation s, if s is the
upper bound of the set of situations in the information base according to the
parthood ordering. If I intend to address only the (structured) information
of the agent at time t, I will talk about the information base at time t. If,
on the other hand, I mean to refer to the beliefs of the agent together with
their information, I will talk about their belief state at time t. In this sense, I
will also say that the belief state of the agent at time t is determined by the
situation s that is the upper bound of the set of situations in the relevant
information base. Note that, as a possible location of the total information
and beliefs of an agent, each situation s in a belief base model determines a
possible information base, hence a possible belief state of the agent.

As mentioned at the beginning of this section, the doxastic state of the
agent includes possible belief states, which may fall outside of their belief
state at time t. A belief base model may then include situations that are
not parts of the information base or the belief state of the agent at time t,
since an information base does not necessarily exhaust the situation space.
It might be that only some of the situations in the model are available to
the agent through information growth, while the others are not. In par-
ticular, the situations which are located above the information base of the
agent according to the parthood ordering partly determine the dynamics of
their belief state at time t: they indicate which collections of information
are possibly available to the agent via information growth. As for the other
situations included in a model which are not parts of the agent’s current
information base, and which are not available to the agent via information
growth (in virtue of the partialness of the fusion function), these situations
allow us to make hypothetical cases about what the agent would accept as
beliefs, and how they would change their beliefs accordingly, if their infor-
mation base is such and such. On the most basic case, we can see which
pieces of information they cannot learn, by virtue the situations which are
not connected to their current information base via the parthood ordering.7

6Note that the belief content of a situation may not include the belief contents of its
parts. This is a symptom of the non-monotonicity of the logic of belief revision determined
by the proposed framework. In particular, we will see that it is only the propositional
content that is preserved through information growth, i.e., up the parthood ordering.

7These hypothetical cases are limited by how the information is represented in the
models in terms of the situations that include the information and the parthood ordering
between these situations.
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One of the aims of this framework is to model the assignment of consistent
belief sets to possibly inconsistent information bases. Hence, the agents do
not necessarily believe everything in their information base. A consistency
aiming, cautious process for determining a belief set starts with identifying
the consistent parts of an information base. Informally, (consistent) parts
of an information base amounts to the (consistent) chunks of an agents
total information.8 Formally, a consistent part of an information base is
a pairwise consistent set of situations (i.e., for all situations s, s′ in said
set, it holds that s �⊥ s′) within the information base. We will also resort
to a maximality principle while identifying these parts in order to keep the
amount of information loss at a minimum in the transition from information
bases to the belief sets. Maximally consistent parts of an information base
are its consistent parts that cannot be expanded within the information base
by the addition of more situations without breaking the pairwise consistency.
When there are multiple maximally consistent parts of an information base,
we will make use of the preference ordering to mark off the best maximally
consistent parts of an information base.

The pieces of information which are given in all of the best maximally
consistent parts of an information base will constitute the belief set for that
base. This definition indicates that the belief operator is a box-like modal
operator, hence posing another layer of maximality.9 The following definition
formally specifies the consistency, maximality and preference requirements
mentioned above. The satisfaction clause for modal formulas resorts heavily
to this definition. The clauses in definition 4 are based on the HYPE logic
[12], except for the modal clause.

8We talk about grouping the information of an agent only in order to form consistent
chunks. One might think that reasoning also involves the parting of the information with
respect to subject matter. However plausible this assumption might be, in this paper we
focus on a very simple model of reasoning, working with relatively small collections of
information. However, a framework which involves grouping of information based on topic
might open up the discussion to another form of hyperintensional belief revision.

9In this framework, the use of maximally consistent parts of an information base trans-
forms the common diamond-like modality of belief into a box-like modality, while pro-
ducing similar semantical and logical results. For instance, B́ılková, Majer, and Pelǐs [4]
propose a diamond-like knowledge operator in a framework developed with similar mo-
tivations of reducing the idealisation of reasoning in epistemic settings. Their framework
is also based on structures such as situations - called (partial) information states and a
(parthood-like) ordering on them. However, they impose a mutual consistency requirement
while identifying the consistent parts of an information state, instead of maximal consis-
tency. The box-like belief operator is also a reminiscent of the inference operator of Rott’s
base-generated revision system [21].
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Definition 3. Given a belief base model M on a situation space S,

• A situation s ∈ S is consistent (in M) iff s �⊥ s. Otherwise it is inconsis-
tent.

• A set of situations A ⊆ S is consistent (in M) iff for all s, s′ ∈ A, s �⊥ s′.
Otherwise it is inconsistent.

• A set of situations A ⊆ S is maximally consistent with respect to a situa-
tion s ∈ S (in M) iff A is consistent, for all s′ ∈ A it holds that s′ � s, and
for all s′′ ∈ S if s′′ � s and s′′ �∈ A it holds that A ∪ {s′′} is inconsistent.

• The best sets of situations in a set I ∈ P(S) (in M) are given by the
following: min≤M

(I) = {A ∈ I|∀ B ∈ I, A ≤M B}.

• The best of a situation s (in M) is given by the following: BestM (s) =
min≤M

({A ⊆ S | A is maximally consistent w.r.t. s}).

Definition 4. Given a belief base model M on a situation space S, for all
s ∈ S, the satisfaction clauses for formulas of LB are as follows:

s |= v iff v ∈ V (s)
s |= ¬v iff ¬v ∈ V (s)
s |= ¬φ iff for all s′, if s′ |= φ then s⊥s′ 10

s |= φ ∧ ψ iff s |= φ and s |= ψ
s |= φ ∨ ψ iff s |= φ or s |= ψ
s |= φ → ψ iff for all s′, if s ◦ s′ = s′ and s′ |= φ then s′ |= ψ
s |= Bφ iff for all A ∈ BestM (s), there is s′ ∈ A, s′ |= φ
s |= �
The satisfaction of the biconditional is as usual: s |= φ ↔ ψ iff s |= φ → ψ

and s |= ψ → φ. We read s |= φ as saying that the situation s satisfies φ.
When there is need for specifying the models, we write s |=M φ and say that
the situation s satisfies φ in the model M .

Based on the definitions above, an agent’s belief set consists of the sen-
tences that are satisfied by all of the best maximally consistent sets of situ-
ations (by some situation in these sets), which are parts of her information
base. Formally, the proposed belief modality is a reminiscence of the (non-
monotonic) partial-meet operations used to define the AGM contraction
and revision, as well as the base-generated revisions and contractions by
Hansson and Rott (see [1] for the partial-meet contraction and revision op-
erations, and see [11] and [21] for their application on possibly non-closed

10Lemma 8 in Leitgeb [12] shows that s |= v̄ iff for all s′ ∈ S, if s′ |= v then s ⊥ s′.
The lemma is also satisfied in my framework.
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sets; for a more general discussion of partial-meet consequence relations and
non-monotonicity see [17]).

An important feature of the proposed belief modality is that its objects
are the collections of information, represented by the situations, rather than
the pieces of information (whereas in the above mentioned applications of
similar inference operations, the objects are singleton sentences). This, for
instance, makes the following scenario possible. Suppose that in a belief base
model, a piece of information φ is only satisfied in a ψ-situation, while φ
is not logically entailed by ψ. That is, the information that φ is available
to the agent only with the additional information that ψ. Suppose all ψ-
situations contradict with the current belief state of the agent. Hence, it
might be the case that φ is not accepted as belief only because the collection
of information of which it is a part of (the ψ-theory) is refuted. The intuition
here is that the circumstances surrounding a piece of information matters.
Acquiring pieces of information in isolation from other pieces of information
mostly occurs in idealised situations. Usually, the agents are confronted with
possibly incomplete and inconsistent theories about the world, and it is not
always reasonable to believe only a part of a refuted theory on the basis
that that particular part is not directly refuted. Some pieces of information
stand and fall together. For instance, consider reading a certain newspaper.
Suppose you are heavily set on your belief that any piece of information
given in this paper is highly doubtful, and generally incorrect. Thus, when
encountered with a piece of information φ, which looks reasonable, due to
the non-logical circumstances around this piece of information, such as other
information that comes along with it, you do not accept it as a belief.11

We can now define a unique belief set for each situation s ∈ S:

Definition 5. Given a belief base model M on a situation space S, and
s ∈ S, Ks is the set of beliefs satisfied by s:

Ks = {φ ∈ LB|s |= Bφ}

11To see the formal possibility of such scenarios, consider a belief base model M on the
situation space S = {1, 2, 3, 4}, on a language whose literals are l = {p, p̄, q, q̄, s, s̄}. Let
V (1) = {p, q, q̄}, V (2) = {p, s}, V (3) = {p, q, q̄, s}, V (4) = {p, s, s̄}. Let (1 ◦ 2) ◦ 3 = 3,
2 ◦ 4 = 4, 1 ◦ 1 = 1, 2 ◦ 2 = 2, 3 ◦ 3 = 3, 4 ◦ 4 = 4. Finally, let 1 ⊥ 1, 3 ⊥ 3, 4 ⊥ 4, 1 ⊥ 3, 2 ⊥
4, 3 ⊥ 4. Thus, it holds that 1∗ = 4 and 2∗ = 3. Given that the current information of the
agent is given in the situation 1, the agent does not believe that p (their belief set is empty)
although p is among the information of the agent. However, if the current information of
the agent is given in the situation 3, they believe that p. This is because, in the former
case, the information that p is available only as part of an inconsistent theory. Whereas,
in the latter case, it is also available as part of a consistent and unrefuted theory.
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We conclude the setting of the belief base models with the following
definition.

Definition 6. Logical consequence and truth in belief base models are de-
fined as usual:

• φ1, . . . , φn |= ψ iff for all models M = 〈S, V, ◦,⊥,≤〉, for all situations
s ∈ S, if s |= φ1, . . . , φn then s |= ψ.

• |= ψ iff for all models M = 〈S, V, ◦,⊥,≤〉, for all situations s ∈ S, s |= ψ.

Example 2. In the second example we check the belief set for the situation
3 in the above model. Suppose the agent, whose total information is given in
the situation 3 in M , is investigating the responsible person for the robbery
of a very valuable book from a personal library. Hence, we can state that her
information base is determined by the situation 3 in M , (and equally by the
set of situations {0, 1, 2, 3, 4} in S and ≤M). She then has the information
that the butler has a key to the library (p) and that there are only two keys to
the library (r) (e.g., 4 |= p ∧ r). She also has the information that the maid
has a key to the library (t), and that if the maid has a key then gardener does
not have a key to the library (e.g., 1 |= t → ¬q); but also that the gardener
has a key to the library (q), and if the gardener has a key then the maid does
not have a key to the library (e.g., 2 |= q → ¬t). Therefore, her information
about who possess a key to the library is contradictory. We now check which
part of this information she accepts as beliefs given (the relevant fraction of)
her doxastic state is represented by the model M .

We start with identifying the consistent parts of the agent’s information
base. In M , there are two maximally consistent sets of situations w.r.t. the
situation 3; these are the sets {0, 1, 4} and {0, 2, 4}. Based on the preference
ordering of M , we have {0, 1, 4} ≤M {0, 2, 4} and {0, 2, 4} ≤M {0, 1, 4}.
So, both sets are among the best of the situation 3: BestM (3) = {{0, 1, 4},
{0, 2, 4}}. By the satisfaction clause for the belief formulas, it holds that
3 |= B(p∧ r)∧B((q ∧¬t)∨ (t∧¬q)). Therefore, the agent believes that there
are only two keys to the library and the butler has a key to the library. She
also believes that either the maid or the gardener has a key, but not both.

In the rest of this section, I make some observations concerning the belief
base models and the belief sets determined via these models.

Lemma 7. (The implication lemma) Given a belief base model M on a sit-
uation space S, and φ, ψ ∈ LB, for all s ∈ S, if s |= φ → ψ then it holds
that if s |= φ then s |= ψ.
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Proof. The lemma follows from the idempotence of ◦ and the satisfaction
clause for →.

Lemma 8. (Persistency for non-modal formulas) Given a belief base model
M on a situation space S, for all s ∈ S and for all φ ∈ Lprop, if s |= φ and
s ◦ s′ = s′, then s′ |= φ.

Proof. See Lemma 9 in [12, p. 31].

Observation 9. (Non-persistency of modal formulas) The modal formulas
of the language LB are not necessarily persistent through parthood ordering
in a belief base model M .

Proof. See the model in example 1. It holds that 1 |= Bt since BestM (1) =
{{0, 4, 1}} and 1 |= t. It also holds that 1 ◦ 3 = 3, however 3 �|= Bt.

Lemma 10. Given a belief base model M on a situation space S, for all
s ∈ S it holds that BestM (s) is non-empty.

Proof. Let M be an arbitrary belief base model on a situation space S,
and let s be an arbitrary situation in this model. Suppose for some s′ ∈ S
with s′ �⊥ s′ it holds that s′ � s. That is, s has some consistent parts.
So, it follows that there is an A ⊆ S, such that A is maximally consistent
w.r.t. s and s′ ∈ A. By the assumptions for the preference ordering, either
A ∈ BestM (s) or there is an A′ ⊆ S such that A′ is maximally consistent
w.r.t. s and A′ ≤M A (and A �≤M A′). In the latter case however, it holds
that A′ ∈ BestM (s). Therefore, if s has some consistent part, it cannot be
the case that BestM (s) = ∅. Now suppose for all s′ � s it is the case that
s′ ⊥ s′. That is, s has no consistent parts. In this case, it follows from the
definition 3 that BestM (s) = {∅}. Hence, BestM (s) has the empty set of
situations as its unique member. Since M and s are arbitrary, this holds for
all belief base models.

Lemma 11. Given a belief base model M on a situation space S, for all
s ∈ S and for all φ ∈ LB, if s �⊥ s, then s |= φ iff s |= Bφ.12

12Another observation, which might be worrying to some, follows from this lemma
in combination with the satisfaction clause for disjunction. The present lemma predicts
that an agent whose total information is consistent, believes a disjunction iff she believes
one of the disjuncts, provided that both disjuncts does not involve a conditional sub-
formula. One might however think that an agent can be in a consistent doxastic state and
believe, for instance, that the butler has a key to the library or the maid has a key to
the library, without being decidedly opinionated about either of the disjuncts. Hence, the
current system puts the criteria for an agent to believe a disjunction without necessarily
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Proof. Let M be an arbitrary belief base model on a situation space S,
and let s ∈ S an arbitrary situation, such that s �⊥ s. The proof for the
direction from left-to-right is simple. Suppose s |= φ. By assumptions for
the incompatibility relation, since s �⊥ s, it follows for all s′, s′′ in S that if
s ◦ (s′ ◦ s′′) = s then s′ �⊥ s′′. Hence, there is a unique set A ∈ BestM (s),
such that for all s′ � s it holds that s′ ∈ A. Therefore, since s � s, it follows
that s ∈ A, and since s |= φ, it holds that s |= Bφ as desired.

For the direction from right-to-left, we prove by cases. For the first case
suppose φ ∈ l when l is the set of literals in LB. So, suppose s |= Bφ. Hence,
for all A ∈ BestM (s) there is an s′ ∈ A, such that s′ |= φ. Pick an arbitrary
A ∈ BestM (s) and an arbitrary s′ ∈ A with s′ |= φ. Since s′ ◦ s = s, by the
persistency lemma it follows that s |= φ as desired.

For the second case, suppose φ is in the form ¬ψ for some ψ ∈ LB. So,
suppose s |= B¬ψ. Thus, for all A ∈ BestM (s) there is an s′ ∈ A, such that
s′ |= ¬ψ. Pick an arbitrary A ∈ BestM (s) and an arbitrary s′ ∈ A with
s′ |= ¬ψ. Consider an arbitrary s′′ ∈ S, such that s′′ |= ψ. By the clause for
negation, it follows that s′ ⊥ s′′. Since s ◦ s′ = s, by the assumptions for the
incompatibility relation, it holds that s ⊥ s′′. Since s′′ is arbitrary, again by
the clause for negation, it follows that s |= ¬ψ.

For the third case, suppose φ is in the form ψ → χ for some ψ, χ ∈ LB.
So, suppose s |= B(ψ → χ). So, for all A ∈ BestM (s) there is an s′ ∈ A,
such that s′ |= ψ → χ. Pick an arbitrary A ∈ BestM (s) and an arbitrary
s′ ∈ A with s′ |= ψ → χ. For reductio, suppose s �|= ψ → χ. Hence, there is
an s′′ ∈ S, such that s ◦ s′′ = s′′, s′′ |= ψ but s′′ �|= χ. By the assumptions
for the fusion function, it also holds that s′ ◦ s′′ = s′′. So, it is the case that
s′ �|= ψ → χ. However, this contradicts with the assumption that s′ |= ψ →
χ. Therefore, it follows that s |= ψ → χ.

For the forth case, suppose φ is in the form Bψ for some ψ ∈ LB. So,
suppose s |= BBψ. Thus, for all A ∈ BestM (s) there is an s′ ∈ A, such that
s′ |= Bψ. Pick an arbitrary A ∈ BestM (s) and an arbitrary s′ ∈ A with
s′ |= Bψ. It follows that, for all A′ ∈ BestM (s′) there is an s′′ ∈ A′ such

Footnote 12 continued
believing one of the disjuncts as her having contradictory information (not necessarily
directly about either of the disjuncts). While the justification of this situation is not very
clear, one should keep in mind that completely consistent information bases is the most
idealised scenario in this framework. Moreover, an agent can still believe a disjunction
(when both disjuncts involve some conditional sub-formula) without believing one of the
disjuncts in case she has inconsistent ways of expanding her information base, i.e., if there
are inconsistent collections of information (situations) with which she can combine (fuse)
her current information base.
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that s′′ |= ψ. By the assumptions for the fusion function, it also holds that
s′′ ◦ s = s. Since s �⊥ s, there is a unique set A ∈ BestM (s) and s′′ ∈ A (see
the proof for the left-to-right direction). Therefore, s |= Bψ as desired.

The cases for formulas in the form of conjunctions and in the form of
disjunctions follow by induction using the above cases. Since M and s are
arbitrary, this holds for all belief base models.

Lemma 12. Given a belief base model M on a situation space S, for all
s ∈ S and for all φ ∈ LB, if s |= Bφ then s |= φ.

Proof. Let M be an arbitrary belief base model on a situation space S,
let s ∈ S an arbitrary situation. The proof is then similar to the proof of
right-to-left direction of lemma 11. We only modify the case for the formulas
in the form Bψ for some ψ ∈ LB. We show that if s |= BBψ then s |= Bψ.
So, suppose s |= BBψ. Thus, for all A ∈ BestM (s) there is an s′ ∈ A,
such that s′ |= Bψ. Pick an arbitrary A ∈ BestM (s) and an arbitrary
s′ ∈ A with s′ |= Bψ. Thus, for all A′ ∈ BestM (s′) there is an s′′ ∈ A′,
such that s′′ |= ψ. Consider an arbitrary A′ ∈ BestM (s′) and an arbitrary
s′′ ∈ A′ with s′′ |= ψ. We know by the assumption for the fusion function
that s′′ ◦ s = s. For reductio, suppose for some B ∈ BestM (s), s′′ �∈ B. So,
by the maximality of Best(s), it follows that there is a u ∈ B, such that
u ⊥ s′′. By the assumptions for the incompatibility relation, it follows that
also s′ ⊥ u (since s′′ ◦ s′ = s′). However, since A ∈ BestM (s) and s′ ∈ A are
arbitrary, it follows that B is inconsistent. Since this contradicts with our
model assumptions, it should be the case that s′′ ∈ B for all B ∈ BestM (s).
Therefore, s |= Bψ. Since M and s are arbitrary, this holds for all belief
base models.

Lemma 13. Given a belief base model M on a situation space S, for all
situations s ∈ S, Ks is always consistent, i.e., for all φ ∈ LB, it cannot be
the case that s |= Bφ ∧ B¬φ or that s |= B(φ ∧ ¬φ).

Proof. Let M be an arbitrary belief base model on a situation space S,
let s ∈ S an arbitrary situation. First we show that for all φ ∈ LB, s �|=
Bφ ∧ B¬φ. We proceed by induction on the complexity of the formulas of
LB. The base case is when φ ∈ l with l is the set of literals for LB. For
reductio, assume s |= Bp∧B¬p. So, it is the case that for all A ∈ BestM (s),
there is a situation u in A, such that u |= p, and also a situation u′ in A,
such that u′ |= ¬p. Since u ⊥ u′, it follows that A is inconsistent. Hence, a
contradiction follows from the requirement of the models that for all B ∈
Best(s) it holds that B is consistent. Therefore, it cannot be the case that
s |= Bp ∧ B¬p.
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Next we prove for the formulas in the form ¬ψ for some ψ ∈ LB. So,
for reductio assume s |= B¬ψ ∧ B¬¬ψ. So, it is the case that for all A ∈
BestM (s), there is a situation u in A, such that u |= ¬ψ, and also a situation
u′ in A, such that u′ |= ¬¬ψ. Pick an arbitrary A ∈ BestM (s) and arbitrary
u, u′ ∈ A with u |= ¬ψ and u′ |= ¬¬ψ. By the satisfaction clause for negation
(since u′ |= ¬¬ψ) it follows that for all s′ ∈ S, if s′ |= ¬ψ then u′ ⊥ s′. So it
follows that u′ ⊥ u and that A is inconsistent. Hence, a contradiction follows
from the requirement of the models that for all B ∈ Best(s) it holds that B
is consistent. Therefore, it cannot be the case that s |= B¬ψ ∧ B¬¬ψ. The
rest of the cases can be proved easily by the above cases. I leave them for
the reader.

To show that for all φ ∈ LB, s �|= B(φ ∧ ¬φ), we again use proof by
induction. I only state the base case and leave the rest of the cases out
for space issues. The base case is when φ ∈ l with l is the set of literals
for LB. For reductio, assume s |= B(p ∧ ¬p). So, it is the case that for all
A ∈ BestM (s), there is a situation u in A, such that u |= p ∧ ¬p. So, it
follows that u ⊥ u and A is inconsistent. Hence, a contradiction follows
from the requirement of the models that for all B ∈ Best(s) it holds that B
is consistent. Therefore, it cannot be the case that s |= B(p ∧ ¬p).

Observation 14. There is a belief base model M on a situation space S,
and a situation s ∈ S, such that s |= Bφ ∧ ¬Bφ.

Proof. Let M be a belief base model constructed on the situation space
S = {1, 2, 3}, and on a language LB with the literals l = {p, p̄}. Let V (1) =
{p, p̄, q}, V (2) = {p, q}, V (3) = {q}. Let 1 ◦ 1 = 1, 2 ◦ 2 = 2, 3 ◦ 3 = 3, 2 ◦ 3 =
2, 1 ◦ 2 = 1, 1 ◦ 3 = 1, (2 ◦ 3) ◦ 1 = 1; and let the incompatibility relation as
the following: 1 ⊥ 1, 1 ⊥ 2, 2 ⊥ 1. So, it follows that 1 = 3∗, 2 = 2∗, 3 = 1∗.
Finally, let ≤M is such that for all A,B ⊆ S, A ≤M B.

We show that 1 |= Bp ∧ ¬Bp. There is a unique maximally consistent
set of situations w.r.t. 1, that is the set {2, 3}. By the connectivity of the
preference ordering it holds that BestM (1) = {{2, 3}}. Since 2 |= p, it holds
that 1 |= Bp. It also holds that 2 |= Bp: since BestM (2) = {{2, 3}} and
2 |= p. However, since BestM (3) = {{3}} and 3 �|= p, it follows that 3 �|= Bp.
Since 1 ⊥ 1 and 1 ⊥ 2, and since 1 and 2 are all and only situations which
satisfy Bp, by the satisfaction clause for negation, it holds that 1 |= ¬Bp.
Therefore, by the satisfaction clause for conjunction, 1 |= Bp ∧ ¬Bp.

These lemmas and observations will be used to simplify some proofs in the
rest of the paper. They are more important however as indicators of some of
the consequences of the framework. The first lemma shows that the proposed
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conditional (→) appeals to the intuition of conditional reasoning.13 Lemma
8 and Observation 9 reflect the non-monotonic nature of beliefs, even though
the non-belief content is persistent through information growth. Lemma 10
shows how the trivial, or inconsistent belief sets are blocked by the models
since an empty BestM (s) for a situation s in a model M would lead to a
trivial belief set which is equal to the language LB. Lemma 11 says that
when the total information of an agent is consistent (in itself), the agent
believes every part of her information base. The equality of the information
and the beliefs is the ideal belief state in the proposed frameworks. Lemma
12 says on the other hand, regardless of the consistency of information, the
agent believes only what is part of her information. Lemma 13 indicates
the consistency of beliefs as a strong property of the proposed framework.
Lemma 14 comments on the previous one stating that “believe that φ” and
“not believe that φ” are not contradictory. What the latter means may
present a lengthy discussion, I only want to highlight that “not believe that
φ” is not same as “believing that not φ”.

2.2. Belief Revision

Recall the agent, the investigator from the examples in the previous section.
Suppose initially she believes that the butler has a key to the library (p),
that there are only two keys that could open the library (r), and also that
the maid has a key to the library (t). Hence, we assume that her information
base is determined by the situation 1 in the model M in example 1. Suppose
she thereafter learns that the gardener may have stolen the maid’s key ((q ∧
¬t) ∨ (t ∧ ¬q)). In this section, I will show how an agent should revise
her beliefs with new information, within a dynamic framework that will be
constructed based on the belief base models of the previous section. In this
context, revision means adding new beliefs to a belief set while preserving its
internal consistency.14 We will see that as the preservation of the consistency
of the belief sets is already achieved by the static aspect of the models, the
dynamic part covers the expansion of the information base with the new

13The conditional (→) is however stronger than the common intuition when the other
direction is considered, the two expressions “s |= φ then s |= ψ” and “s |= φ → ψ” are not
equivalent.

14Other common forms of belief change are belief contraction and belief expansion.
Belief expansion is the operation of adding new beliefs without a concern for restoring the
consistency of the new belief set. The current framework does not allow the construction
of inconsistent belief sets (see lemma 13). Belief contraction is the operation of eliminating
some of the beliefs from a belief set. I leave the formalisation of belief contraction via belief
base models for future work.
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information and in particular how the preference ordering is affected during
this expansion.

We construct the belief base revision models by expanding the static be-
lief base models with a revision operation. This operation is a relation from
a situation in a belief base model and a formula in the language to a new
situation in a new belief base model. In particular, the situation which de-
termines the initial information base of an agent is expanded to another
situation to incorporate the new information. In this way, a shift occurs to a
new information base. At the same time, the epistemic preference ordering
of the agent changes to ensure that the new information is accepted as a new
belief, hence the shift to a new model. In this transition, the structure of
the initial belief base model is preserved except for the preference ordering.
Since the situation space of the initial model is among what is preserved,
the existence of the expanded information base is a precondition for belief
base revision.

Various forms of revising beliefs can be defined which differ in terms of
the severity and the range of effect, particularly on the preference ordering
(see [22] for various ways of changing beliefs within the DDL framework).
I will focus on a single option in this paper. The revision operation will be
represented in the object language with a pair of dynamic modal operators.
Crucially in this setting, there may not be a unique revised model as the
result of a revision. Therefore, I will present a box-like revision operator
and a diamond-like revision operator for the belief base revision operation.
Hence, we expand the language LB with the following types of formulas, to
the new language LD:

[φ]ψ | 〈φ〉ψ.
The box-like dynamic operator means that the right-hand-side (sub)

formula is satisfied by all of the revised models after the revision with the
left-hand-side (sub)formula, and the diamond-like dynamic operator means
that the right-hand-side formula is satisfied by some of the revised models.15

15The literature on indeterministic belief change focuses on approaches of belief revi-
sion that allows revisions to result in multiple new models. The approach is motivated by
the idea that there may be more than one admissible way of changing ones beliefs, none
of whom necessarily a better option than the others. Indeterministic belief change is also
referred to as relational belief change. For various motivations leading to the investiga-
tion of relational belief change operations and indeterministic belief change see Doyle [5],
Lindström and Rabinowicz [14] and Lindström and Rabinowicz [15], and the discussion by
Olsson [19]. Hansson states that indeterministic belief change confirms most of the results
and expectations from deterministic models [11].
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I now present a pre-model, which will be specified to the belief base re-
vision models, and the semantic expansion to the semantics of belief base
models.

Definition 15. A pre-model is a tuple MP = 〈S, V, ◦,⊥,≤, R〉, such that

• M = 〈S, V, ◦,⊥,≤〉 is a belief base model and

• R is the relation from a triple 〈φ,M, s〉 to a set of pairs 〈M ′, s′〉, such that

– φ ∈ LD, M is a belief base model, such that M = 〈S, V, ◦,⊥,≤〉, and
s ∈ S

– M ′ is a belief base model, such that M ′ = 〈S, V, ◦,⊥,≤′〉, and s′ ∈ S.16

Definition 16. Given a pre-model MP and the belief base models M , M ′

on a situation space S, for all s ∈ S, the satisfaction clauses for the revision
operators in LD are as follows:

• s |=M [φ]ψ iff ∀〈M ′, s′〉 : 〈φ,M, s〉R〈M ′, s′〉 =⇒ s′ |=M ′ ψ.

• s |=M 〈φ〉ψ iff ∃〈M ′, s′〉 : 〈φ,M, s〉R〈M ′, s′〉 and s′ |=M ′ ψ.

I will introduce some specifications for the revision operation introduced
above, in order to obtain the final structure of the belief base revision models.
Some new terminology will be used in the definition of the specified revision
operation. Given a pre-model and φ ∈ LD, a basic φ-situation is a situation
which satisfies φ (a φ-situation) and which do not have any parts other
than itself which are also φ-situations. We use this terminology to mark
the smallest φ-situations in a model. We will take these situations as the
unique sources of the new information. I propose this restriction in line with
the well-known minimal change principle: while revising (and contracting)
a belief set, the changes that occur in the new belief set shall be minimal.
That is, one should only add (or delete) the beliefs which are necessary for
the intended change to be successful.

Definition 17. Given a pre-model MP = 〈S, V, ◦,⊥,≤, R〉 where M =
〈S, V, ◦,⊥,≤〉, and a situation s ∈ S, for all φ ∈ LD, s is a basic φ-situation
(in M) iff s |=M φ and for all s′ � s, if s′ �= s it holds that s′ �|=M φ.

16The current definition of the revision operation mixes syntactic aspects of a model
with the semantics. This is a choice I made, in order to have a general revision operation
rather than a family of revision operations, indexed to the formulas of the language, e.g.
R = {R′

φ : φ ∈ LD}. Application of the latter formulation could also be considered,
however it is likely to generate differences in the logic of belief revision, in particular when
nested or iterated revisions are in question.
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Definition 18. A belief base revision model is a tuple MD = 〈S, V, ◦,⊥,
≤, R〉, such that

• M = 〈S, V, ◦,⊥,≤〉 is a belief base model and

• R is the relation from a triple 〈φ,M, s〉 to a set of pairs 〈M ′, s′〉 determined
uniquely by the following:

– φ ∈ LD, M is a belief base model, such that M = 〈S, V, ◦,⊥,≤〉, and
s ∈ S

– M ′ is a belief base model, such that M ′ = 〈S, V, ◦,⊥,≤′〉, and s′ ∈ S
– ∃t ∈ S, such that t is a basic φ-situation in M and it holds that (s ◦

t) ◦ s′ = s′ such that, there is no s′′ ∈ S with s′′ �= s′, s′′ ◦ s′ = s′, and
(s ◦ t) ◦ s′′ = s′′

– for all A,B ⊆ S, if there is a u ∈ A with u |=M φ and for all u′ ∈ B,
u′ �|=M φ, then A ≤M ′ B, and if for all u ∈ A, u �|=M φ and there is a
u′ ∈ B with u′ |=M φ, then A �≤M ′ B; otherwise A ≤M ′ B iff A ≤M B.

The existence requirement in the above definition state that there is a
basic φ-situation (t) whose fusion with the initial situation (s) is defined,
and s′ is the lowest in the parthood ordering which includes the fusion
s ◦ t. Hence, s′ is the smallest situation that we can pick as the revised
situation. I will talk about the revision operation in the following manner: if
R determines a relation from the triple 〈φ,M, s〉 to the pair 〈M ′, s′〉, I write
〈φ,M, s〉R〈M ′, s′〉. When I do not need to refer to the models in a revision,
I will also use the following notation: sRφs′.

Observation 19. The revision operation R is a partial operation.

Proof. Consider a belief base revision model MD = 〈S, V, ◦,⊥,≤, R〉 on a
situation space S = {s, s′} and on the language LD whose literals are limited
to {p, p̄}. Suppose V (s) = {p} and V (s′) = {p̄}. Let M = 〈S, V, ◦,⊥,≤〉, the
fusion function ◦ be empty and let for all A,B ⊆ S it holds that A ≤M B.
Therefore, s ⊥ s′ holds in MD, and s∗ = s, s′∗ = s′. Suppose we want
to revise s with the sentence ¬p. Since there is no basic ¬p-situation in S
whose fusion with s is defined, a revised situation cannot be determined in
S. Therefore, R can not be executed on the triple 〈¬p, M, s〉.
Example 3. For the first revision example, we go back to the model pre-
sented in example 1 and the investigation on the robbery. In order indicate
how the preference order is affected by iterated revisions, I include in this
example multiple revision processes. Suppose, at the beginning, the investi-
gator is ensured by the owners (only) that there are only two keys to the
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library, and the butler has one of those. We assume at this point her infor-
mation base is determined by the situation 4 in the model M . For the current
example, we assume a different preference ordering for the model M from
the one given in example 1. Since “there are only two keys to the library”
and “the butler has a key to the library” constitute the only information the
agent has so far, we assume that her preferences are such that all sets of
situations which include a situation of (p ∧ r) are preferred over the ones
which does not include such a situation. For simplicity, we assume the rest
of the preference ordering is plain, such that all sets of situations are pre-
ferred equally. Suppose at the first phase of the investigation she is informed
that the second key is held by the maid (t). Let us see how she should revise
her beliefs accordingly, based on the belief base revision framework.

We start with identifying the basic t-situations: the situation 1 is the
unique basic t-situation in S. Since 1 ◦ 4 = 1 holds in M , the information
base of the agent after the expansion is determined by the situation 1. Her
epistemic preference order is then adjusted so the sets of situations which
include a t-situation are preferred over the ones which do not include any
t-situations, and the sets of situations which do not include any t-situations
are no longer preferred over the ones which include some t-situations. The
rest of her preferences remain as in the beginning. Let us call this new model
with the revised preference ordering M ′. For instance, when we take some
singleton sets of situations in S, the following holds: {1} ≤M ′ {4} ≤M ′

{2} ≤M ′ {4} ≤M ′ {0} while {4} �≤M ′ {1} and {0} �≤M ′ {4}.
The revised belief set is then determined by the situation 1 in M ′. There

is a unique maximally consistent set of situations w.r.t. 1: BestM ′(1) =
{{0, 4, 1}}. It follows that 1 |=M ′ B(p ∧ t) ∧ B(r ∧ ¬q). Therefore, after the
revision, the agent believes that the butler and the maid has the only two
keys to the library, while the gardener does not have a key. As M ′ is the
unique model for this revision, it follows that 4 |=M [t](B(p∧ t)∧B(r∧¬q)).

Suppose at the second phase of the investigation, the agent is told of
the owners suspicions about whether or not the gardener stole the maid’s
key. She then wants to revise her belief set with the information that either
the maid has the second key or the gardener has it. Given that her current
doxastic model is represented at M ′, there are two ways she can use this
information to change her beliefs. That is because both 1 and 2 are basic
(q∨ t)-situations in M ′. Let us call the revised models obtained by expanding
her information base with the situation 1 and with the situation 2, M1 and
M2 respectively.

At M1, her expanded information base is again determined by the situa-
tion 1 since 1◦1 = 1. According to the revised preference ordering, the sets of
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situations which include a (q∨ t)-situation are preferred over the ones which
do not include any (q ∨ t)-situations, and the sets of situations which do not
include any (q ∨ t)-situations are no longer preferred over the ones which
include some (q ∨ t)-situations. The rest of the preferences remain as in M ′.
Note that with the revision, since all t-situations are also (q ∨ t)-situations,
they remain minimal in the preference ordering on the subsets of S. How-
ever, since all q-situations are also (q ∨ t)-situations, they also move among
the most preferred in M1. There is however a unique maximally consistent
set of situations w.r.t. 1, thus, BestM1(1) = {{0, 4, 1}}. So, it is the case
that 1 |=M1 (B(p ∧ r) ∧ B(q ∨ t)) ∧ B(t ∧ ¬q).

At M2, her expanded information base is determined by the situation 3
since 1 ◦ 2 = 3. According to the revised preference ordering, the sets of
situations which include a (q∨ t)-situation are preferred over the ones which
do not include any (q ∨ t)-situations, and the sets of situations which do not
include any (q ∨ t)-situations are no longer preferred over the ones which
include some (q ∨ t)-situations. The rest of the preferences remain as in M ′.
(Hence the preference ordering of M2 is identical to that of M1.) There
are two maximally consistent sets of situations w.r.t. the situation 3, these
are the sets {0, 1, 4} and {0, 2, 4}. Based on the revised preference ordering
≤M2, we have that {0, 1, 4} ≤M2 {0, 2, 4} ≤M2 {0, 1, 4} since both 1 and 2
are (q∨t)-situations. Hence, BestM2(3) = {{0, 1, 4}, {0, 2, 4}}. So, it follows
that 3 |=M2 B(p∧r)∧B(q∨t). Therefore, after revising her beliefs, the agent
still believes that there are only two keys to the library and the butler has a
key to the library, however she no longer believes that the maid has a key
to the library. She also does not believe that the gardener has a key to the
library, while she believes that either one of them has the second key.

We express this indeterministic way of changing beliefs with the help of
the diamond-like revision operators in the language: 1 |=M ′ [q ∨ t](B(p ∧
r) ∧ B(q ∨ t)) ∧ 〈q ∨ t〉B(t ∧ ¬q). That is, after revising her beliefs with the
disjunction, the agent believes the disjunction (q ∨ t), while believing neither
q nor t, and there is a way of changing her beliefs in which she also comes
to believe that t and also ¬q as a result (as in the revised model M1).

Example 4. The following example again shows how indeterministic belief
change is interpreted within my framework. Consider a belief base revision
model MD = 〈S, V, ◦,⊥,≤, R〉 based on the situation space S = {1, 2, 3, 4}.
Let the literals of the language LD be limited to l = {p, p̄, q, q̄}. Let the
valuation of the situations in S be as the following: V (1) = ∅, V (2) =
{p, q̄}, V (3) = {p, q}, V (4) = {p, p̄, q, q̄}, and let the following fusion func-
tions be defined on S: 1◦1 = 1, 1◦2 = 2, 1◦3 = 3, 1◦4 = 4, 2◦2 = 2, 2◦3 =
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4, 2 ◦ 4 = 4, 3 ◦ 3 = 3, 3 ◦ 4 = 4, 4 ◦ 4 = 4. Let the incompatibility relation
to be given by the literals, such that 2 ⊥ 3, 2 ⊥ 4, 3 ⊥ 4 and 4 ⊥ 4. So,
the following holds: 1 = 4∗, 2 = 2∗, 3 = 3∗, 4 = 1∗. Let M = 〈S, V, ◦,⊥,≤〉.
Finally, let the preference ordering ≤M be such that for all A,B ⊆ S it holds
that A ≤M B.

Suppose the information base of the agent is determined by the situation 1
in M . Since BestM (1) = {{1}}, at this point she only has beliefs in the form
of B(φ → ψ). Suppose she learns that p. We show how she should revise her
beliefs accordingly. Given the model M , there are two basic p-situations: 2
and 3. Hence, there are two ways she can revise her belief set. Either she
expands her information base with the situation 2, or with the situation 3.
So, it follows that there are two revised models based on the model M , call
them M2 and M3 respectively. At each model, the preference ordering of the
agent shifts from the preference ordering of the model M in the way that all
sets of situations which include a p-situation are strictly preferred over all
sets of situations which do not include a p-situation.

At M2, her (new) information base is determined by the situation 2.
There is a unique maximally consistent set of situations w.r.t. 2, so, BestM2

(2) = {{1, 2}}. It follows that 2 |=M2 (Bp ∧ B¬q) ∧ B(q ∨ ¬q). At M3, her
(new) information base is determined by the situation 3. Since is a unique
maximally consistent set of situations w.r.t. 3, BestM3(3) = {{1, 3}}. It
follows that 3 |=M3 (Bp ∧ Bq) ∧ B(q ∨ ¬q). Therefore, it holds that 1 |=M

[p](Bp∧B(q∨¬q))∧ (〈p〉Bq∧〈p〉B¬q). After the revision, the agent believes
that p and that (q ∨ ¬q). However, it is indetermined whether she believes
that q or that ¬q.

Before moving to the last example of belief base revision, I want to note that
belief revision is not always successful in the current framework. That is, it
not necessarily the case that an information piece φ is accepted as a belief
after the revision with φ. In fact, neither |= [φ]Bφ nor |= 〈φ〉Bφ are valid
in this framework. After the revision of a belief set with φ, it is accepted as
a belief iff there is some consistent part of the revised information base in
which φ is satisfied by a situation. Moreover, if φ is a contradictory sentence
in the form ψ∧¬ψ for some ψ ∈ LB, the revision is bound to be unsuccessful.

Example 5. The last example indicates that representation of information
is more fine grained in the belief base revision models than it is in the
traditional belief change models. The models allow the existence of multi-
ple situations mapped to the same set of propositional letters since we do
not identify the situations with their local content. That means, these sit-
uations may differ in terms of their dynamic aspects although their local
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contents are the same. Consider the following fractions of belief base revi-
sion models; the nodes represent the situations in the situation space with
their local content given in parenthesis, and the arrows represent the part-
hood ordering, the parthood ordering should be read as transitively closed.

The local contents of the situations 3 and 7 are equal, although their
parts differ. If the belief set satisfied by the situation 3 is revised with the
information that (¬p), the revised belief set would still include q, whereas
the same revision on the belief set satisfied by the situation 7 would see both
p and q being eliminated from the new belief set.

3. Logic

The logic of the belief base revision models restricted to the sublanguage
Lprop is the logic of HYPE.17

Theorem 20. The following list of axioms and rules is sound for the system
of belief base revision (for all formulas φ ∈ LD, if � φ then |= φ):

(MP) φ, φ → ψ � ψ

(Cont)
� φ → ψ

� ¬ψ → ¬φ

(1) � �
(2) � φ → φ

(3) � (φ → (ψ → χ)) → ((φ → ψ) → (φ → χ))

(4) � φ ∧ ψ → φ

(5) � φ ∧ ψ → ψ

(6) � φ → φ ∨ ψ

(7) � ψ → φ ∨ ψ

(8) � (φ → χ) → ((ψ → χ) → (φ ∨ ψ → χ))

(9) � φ ∧ (ψ ∨ χ) ↔ (φ ∧ ψ) ∨ (φ ∧ χ)

(10) � φ ∨ (ψ ∧ χ) ↔ (φ ∨ ψ) ∧ (φ ∨ χ)

17A sound and complete axiom system for the HYPE logic is given in Leitgeb [12].



A Semantics for Hyperintensional Belief Revision. . . 705

(11) � φ → ¬¬φ

(12) � ¬φ ∨ ¬ψ → ¬(φ ∧ ψ)

(13) � ¬φ ∧ ¬ψ ↔ ¬(φ ∨ ψ)

(14) � (φ → ψ) → ((ψ → χ) → (φ → χ))

(15) � (φ → (φ → ψ)) → (φ → ψ)

(16) � Bφ → BBφ (Positive Introspection)

(17) � Bφ ∨ Bψ → B(φ ∨ ψ) (Disjunctive closure)

(18) � B(φ ∧ ψ) → Bφ ∧ Bψ (∧ distribution)

(19) � [φ]Bχ → [φ]B(ψ ∨ χ) (Disjunction)

(20) � [φ]B(ψ ∧ χ) → [φ]Bψ (Simplification)

(21) � Bφ ∧ B¬φ → ⊥ (Consistency 1)

(22) � B(φ ∧ ¬φ) → ⊥ (Consistency 2)

(CM) [φ]Bψ, [φ]Bχ � [φ ∧ ψ]Bχ

(cut) [φ]Bψ, [φ ∧ ψ]Bχ � [φ]Bχ

Proof. To prove soundness, I demonstrate the detailed proofs for selected
axiom schemas only. Let MD = 〈S, V, ◦,⊥,≤, R〉 be an arbitrary belief base
revision model on a situation space S, let M = 〈S, V, ◦,⊥,≤〉 and let s be
an arbitrary situation in S.

(11) For reductio, assume s �|= φ → ¬¬φ. So, there is an s′ ∈ S with
s′◦s = s′ and s′ |= φ, but s′ �|= ¬¬φ. Hence, there is an s′′ ∈ S with
s′′ |= ¬φ and it holds that s′ �⊥ s′′. However, since s′ |= φ, it should
be the case that s′ ⊥ s′′. Hence we have a contradiction. Therefore,
s′ |= ¬¬φ, and it follows that s |= φ → ¬¬φ. Since s and MD are
arbitrary, |= φ → ¬¬φ is true in all belief base revision models.

(16) Let arbitrary s′ ∈ S with s′ ◦ s = s′. Suppose s′ |= Bφ. So, for
all A ∈ BestM (s′), there is an s′′ ∈ A with s′′ |= φ. Consider an
arbitrary A ∈ BestM (s′) and an arbitrary s′′ ∈ A with s′′ |= φ.
Since A is consistent, it follows that s′′ �⊥ s′′. By the lemma 11,
it holds that s′′ |= Bφ. Since A and s′′ are arbitrary, it holds that
for all A′ ∈ BestM (s′) there is a u ∈ A′ with u |= Bφ. Therefore,
s′ |= BBφ. Since s′ is arbitrary, it follows that s |= Bφ → BBφ.
Since s and MD are arbitrary, |= Bφ → BBφ is true in all belief
base revision models.
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(17) Let arbitrary s′ ∈ S with s′ ◦ s = s′. Suppose s′ |= Bφ ∨ Bψ. So,
either s′ |= Bφ or s′ |= Bψ. Suppose the former. Hence, for all
A ∈ BestM (s′), there is an s′′ ∈ A with s′′ |= φ. Pick an arbitrary
A ∈ BestM (s′) and an arbitrary s′′ ∈ A with s′′ |= φ. By the
satisfaction clause for disjunction, it holds that s′′ |= φ ∨ ψ. Since
A and s′′ are arbitrary, it follows that for all A′ ∈ BestM (s′) there
is a u ∈ A′ with u |= φ ∨ ψ. Therefore, s′ |= B(φ ∨ ψ). Similarly,
if s′ |= Bψ, it follows that s′ |= B(φ ∨ ψ). Since s′ is arbitrary,
it follows that s |= Bφ ∨ Bψ → B(φ ∨ ψ). Since s and MD are
arbitrary, |= Bφ∨Bψ → B(φ∨ψ) is true in all belief base revision
models.

(18) Let arbitrary s′ ∈ S with s′ ◦ s = s′. Suppose s′ |= B(φ ∧ ψ).
So, for all A ∈ BestM (s′), there is an s′′ ∈ A with s′′ |= φ ∧ ψ.
Pick an arbitrary A ∈ BestM (s′) and an arbitrary s′′ ∈ A with
s′′ |= φ ∧ ψ. It follows that s′′ |= φ and also s′′ |= ψ. Since A and
s′′ are arbitrary, s′ |= Bφ ∧ Bψ. Since s′ is arbitrary, it follows
that s |= B(φ ∧ ψ) → Bφ ∧ Bψ. Since s and MD are arbitrary,
|= B(φ ∧ ψ) → Bφ ∧ Bψ is true in all belief base revision models.

(CM) Let M ′ be a belief base model and let s′ be a situation in S
with 〈M, s, φ〉R〈M ′, s′〉. Suppose s |=M [φ]Bψ. Since all (φ ∧ ψ)-
situations are φ-situations, and since s |=M [φ]Bψ, it holds that
the set of pairs of models and situations obtained from revis-
ing s in M with (φ ∧ ψ) constitutes a subset of the set of pairs
of models and situations obtained from revising s in M with φ
(that is, if that all sets of situations in M ′ which include some
φ-situations are preferred to the sets of situations in M ′ which do
not include any φ-situations entails that it is already the case that
all sets of situations in BestM ′(s′) also include some ψ-situations
then, provided that there are any, the maximally consistent sets
of situations under s′ with some (φ ∧ ψ)-situations are already
among the BestM ′(s′)). Therefore, if s |=M [φ]Bχ, it holds that
s |=M [φ∧ψ]Bχ. Since s and MD are arbitrary, the CM rule holds
in all belief base revision models.

(Cut) Let M ′ be a belief base model and let s′ be a situation in S with
〈M, s, φ〉R〈M ′, s′〉. Suppose s |=M [φ]Bψ. So, it holds that s |=M

[φ](φ ∧ ψ). Moreover, if all sets of situations in M ′ which include
some φ-situations are preferred to the sets of situations in M ′ which
do not include any φ-situations, then it is the case that all sets of
situations in Best(s′) also include some ψ-situations. Hence, these
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are exactly the maximally consistent sets of situations under s′

with some (φ∧ψ)-situation, provided that there are any. Therefore,
the set of pairs of models and situations obtained from revising s
in M with φ constitutes a subset of the set of pairs of models
and situations obtained from revising s in M with (φ ∧ ψ). Since
s |=M [φ ∧ ψ]Bχ holds, all members of BestM ′(s′) include also
some χ-situations. Therefore, s |=M [φ]Bχ. Since s and MD are
arbitrary, the cut rule holds in all belief base revision models.

The MP rule and the axiom schema 2 follows from the idempotence as-
sumption of ◦ and the satisfaction clause for →. The validities of axiom
schemas 3, 8, 12 - 15 can easily be shown via reductio ad absurdum. The
validity of the axiom schema 19 follows from 17 and that of 20 follows from
18. For the proofs of 21 and 22 see lemma 13. The rest can be proved using
only the satisfaction clauses. In the above theorem, when it is possible, I
stated the claims which include the belief modality and the dynamic oper-
ators in the form of axiom schemas rather than as rules. (For instance, the
rule for the positive introspection would be Bφ � BBφ.) By the implication
lemma, the proofs for the doxastic axiom schemas entail the proofs for the
respective rules.

Lemma 21. The following deduction theorem is logically valid in belief base
revision models iff the language of the models are restricted to the sublan-
guage Lprop (i.e., when φ1, ...φn, ψ, χ ∈ Lprop): φ1, ...φn, ψ � χ iff φ1, ...φn �
ψ → χ.

Proof. We use (MP) and the axioms schemas (2) and (3) from theorem 20,
together with the schema � φ → (ψ → φ). The latter is valid in the current
framework only when the models are restricted to the language Lprop.

4. More Properties of Belief and Belief Revision

In this section, I state some principles concerning the belief sets and belief
revision, which fail in the proposed framework although they are satisfied
as axiom schemas or rules in some of the more common and well-known
theories in the literature.

Theorem 22. The following list of axiom schemas and rules are not valid
in belief base (revision) models.

(1) Bφ, B(φ → ψ) |= Bψ (Modal modus ponens)
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(2) B(φ → ψ) |= Bφ → Bψ (K-rule)

(3) φ → ψ |= Bφ → Bψ (Monotonicity of belief)

(4) Bφ ∧ Bψ |= B(φ ∧ ψ) (Conjunctive closure)

(5) ¬Bφ |= B¬Bφ (Negative introspection)

(6) B(φ ∨ ψ) |= Bφ ∨ Bψ (∨ distribution)

(7)
� φ

� Bφ
(Necessitation)

schema

Proof. As a counterexample to the first four principles, consider a be-
lief base revision model MD = 〈S, V, ◦,⊥,≤, R〉 on the situation space
S = {1, 2, 3, 4, 5, 6}, and let literals of the language LD for the model MD

be l = {p, p̄, q, q̄, r, r̄, t, t̄, s, s̄}. Let V (1) = {r, t}, V (2) = {p, t}, V (3) =
{p, p̄, q, q̄, r, t, s, s̄}, V (4) = {p, q, q̄, r, r̄, t, s, s̄}, V (5) = {p, q, r, t, t̄}, V (6) =
{p, q, r, s, s̄}. Let ((1◦2)◦6)◦3 = 3, ((1◦2)◦6)◦4 = 4, (1◦2)◦5 = 5, 1◦1 =
1, 2◦2 = 2, 3◦3 = 3, 4◦4 = 4, 5◦5 = 5, 6◦6 = 6, and let the parthood relation
be transitively closed on these fusions. Let the incompatibility relation on
S be given via the literals. It follows that 1 = 3∗, 2 = 4∗, 3 = 1∗, 4 = 2∗, 5 =
6∗, 6 = 5∗. Let M = 〈S, V, ◦,⊥,≤〉 and finally, for all A,B ⊆ S, A ≤M B.

(1) We substitute the ‘φ’ in the schema with ‘p’, and the ‘ψ’ in the schema
with ‘q’. In the model M , it holds that 5 |= Bp and 5 |= B(p → q), but
5 �|= Bq.

(2) We use the same substitution of the formulas. It holds in M , that 5 |=
B(p → q), however 5 �|= Bp → Bq.

(3) Similarly, 5 |= p → q, however 5 �|= Bp → Bq.

(4) We substitute the ‘φ’ in the schema with ‘p’, and the ‘ψ’ in the schema
with ‘r’. In the model M , it holds that 5 |= Bp ∧ Br, but 5 �|= B(p ∧ r).

As a counterexample to the remaining principles, consider a belief base
model M on the situation space S = {1, 2, 3, 4}, and let literals of the
language LD for the model M ′ be l = {p, p̄}. Let V (1) = {p}, V (2) =
{p̄}, V (3) = {p, p̄}, V (4) = ∅. Let 4◦1 = 1, 4◦2 = 2, 4◦3 = 3, 1◦2 = 3, 1◦3 =
3, 2 ◦ 3 = 3, 4 ◦ 4 = 4, 1 ◦ 1 = 1, 2 ◦ 2 = 2, 3 ◦ 3 = 3. Let the incompatibility
relation of M be given via the literals, hence 1 ⊥ 2, 1 ⊥ 3, 2 ⊥ 3, 3 ⊥ 3. It
follows that 1 = 1∗, 2 = 2∗, 3 = 4∗, 4 = 3∗. Let the preference ordering of
M ′ be such that, for all A,B ⊆ S, A ≤M ′ B.
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(5) We substitute the the ‘φ’ in the schema with ‘p’. In the model M ′, it
holds that 3 |= ¬Bp, however, 3 �|= B¬Bp

(6) We substitute the ‘φ’ in the schema with ‘p’, and the ‘ψ’ in the schema
with ‘¬p’. In the model M ′, 3 |= B(p ∨ ¬p), but 3 �|= Bp ∨ B¬p.

The necessitation rule fails when for some belief base model M , for some
s ∈ S it holds that BestM (s) = {∅}. That is, when s has no consistent parts.
Because in this case, for no ψ ∈ LB it holds that s |= Bψ.

The above principles are stated in the form of rules rather than axioms
since by the contraposition of the implication lemma, their failures entail
the failures of the respective axiom schemas.

Theorem 23. The following list of axiom schemas and rules are not valid
in belief base revision models. In the following, ⇒ stands for classical logical
implication.

(1) |= [φ]B(ψ ∨ ¬ψ) (Excluded middle)

(2) [φ]Bψ, [φ]Bχ |= [φ]B(ψ ∧ χ) (Adjunction)

(3) [φ]B(ψ ∨ χ) |= [φ]Bψ ∨ [φ]Bχ (Disjunction 2)

(4) [φ]Bψ, [φ]B(ψ → χ) |= [φ]Bχ (Closure under belief implication)

(5) [φ]Bχ |= [φ ∧ ψ]Bχ (Monotony)

(6) ¬[φ]B¬ψ, [φ]Bχ |= [φ ∧ ψ]Bχ (Rational monotony)18

(7) φ ⇒ ψ |= [φ]Bψ (Intensionality)

(8) [φ]Bψ, ψ ⇒ χ |= [φ]Bχ (Right weakening)

(9) [φ]Bχ, φ ⇔ ψ |= [ψ]Bχ (Left logical equivalence)

Proof. The invalidity of the first axiom schema follows from the failure of
general excluded middle (|= φ ∨ ¬φ). The next three invalidities follow re-
spectively from the failures of conjunctive closure, ∨ distribution and modal
modus ponens in theorem 22.

To show the invalidity of the remaining principles, we construct the fol-
lowing model. Let MD = 〈S, V, ◦,⊥,≤, R〉 be a belief base revision model on
a situation space S and a language LD. Let the literals of the language be
l = {p, p̄, q, q̄, r, r̄}. Let the situation space be S = {1, 2, 3, 4, 5, 6, 7, 8}, such
that V (1) = {p, r}, V (2) = {q, r̄}, V (3) = {p, p̄, q, q̄, r, r̄}, V (4) = {p, q, q̄, r},

18The first premise of this argument could be read as the satisfaction of the negated
formula, or as the non-satisfaction of [φ]B¬ψ.
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V (5) = {p, p̄, q, r̄}, V (6) = ∅, V (7) = {p, q}, V (8) = {p, q, r, r̄}. Let the fol-
lowing fusions be defined on S: 6 ◦ 1 = 1, 6 ◦ 2 = 2, 6 ◦ 7 = 7, (1 ◦ 7) ◦ 4 =
4, (2 ◦ 7) ◦ 5 = 5, ((1 ◦ 2) ◦ 7) ◦ 8 = 8, ((4 ◦ 5) ◦ 8) ◦ 3 = 3, and let the
parthood relation be transitively closed on these fusions. Let the incompat-
ibility relation on S be given via the literals. Thus, the following holds:
1 = 4∗, 2 = 5∗, 3 = 6∗, 4 = 1∗, 5 = 2∗, 6 = 3∗, 7 = 8∗, 8 = 7∗. Let
M = 〈S, V, ◦,⊥,≤〉, and finally, for all A,B ⊆ S, A ≤M B.

(5) We substitute the ‘φ’ in the schema with ‘r’, the ‘ψ’ in the schema
with ‘q’, and the ‘χ’ in the schema with ‘(r ∧ p)’. I will state the proof
only for the current item in detail to set an example for the rest. We
will show that 6 |=M [r]B(r ∧ p), but 6 �|=M [r ∧ q]B(r ∧ p). Suppose
we revise the situation 6 in M with r. Let M ′ be the revised model.
The revised information base is determined by the situation 1 (6Rr1).
It holds that BestM ′(1) = {{1, 6}}, hence 1 |=M ′ B(r ∧ p). Therefore,
6 |=M [r]B(r ∧ p). Now suppose we revise the situation 6 in M with
(r ∧ q). There are two ways to do this since both 4 and 8 in M are
basic (r ∧ q)-situations. It suffices to show that in one of the revised
models, B(r ∧ p) is not satisfied by the revised information base. Let
M8 be the revised model through situation 8 (6Rr∧q8). It holds that
BestM8(8) = {{1, 6, 7}, {2, 6, 7}}, hence 8 �|=M8 B(r ∧ p). Therefore,
6 �|=M [r ∧ q]B(r ∧ p).

(6) It suffices that 6 �|=M [r]B¬q in addition to what we have shown above.
In fact, 6 |=M ¬[r]B¬q since [r]B¬q is not satisfied anywhere in the
model M ′. Hence we comply with the first premise in both forms of its
reading.

(7) We substitute the ‘φ’ in the schema with ‘r’, and the ‘ψ’ in the schema
with ‘(q ∨ ¬q)’. It holds that r ⇒ (q ∨ ¬q), however 1 �|=M [r]B(q ∨ ¬q).

(8) We substitute ‘φ’ in the formula with ‘r’, ‘ψ’ with ‘p’, and‘ χ’ with
‘q ∨ ¬q’. It holds that 1 |=M [r]Bp, and that p ⇒ (q ∨ ¬q), however
1 �|=M [r]B(q ∨ ¬q).

(9) We substitute the ‘φ’ in the schema with ‘p∨¬p’, the ‘ψ’ in the schema
with ‘q ∨ ¬q’, and the ‘χ’ in the schema with ‘p’. Thus, it holds that
6 |=M [p ∨ ¬p]Bp, and (p ∨ ¬p) ⇔ (q ∨ ¬q), however 6 �|=M [q ∨ ¬q]Bp.

I want to conclude this section with some remarks on the system of belief
base revision, particularly on the specific form of hyperintensionality man-
ifested in my system and the (lack of) reduction axioms. The last three
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axiom schemas of theorem 23 express the influence of classical logic on be-
lief base revision. Their invalidities indicate the hyperintensionality of the
revision system. That is, the revision operations do not respect classical log-
ical equivalences. That we formulated these schemas in the metalanguage
referring to two different logics marks an important difference between this
framework and the framework for hyperintensional belief revision presented
by Berto [3]. He formulates the intensionality, right weakening and left log-
ical equivalence rules within his object language. Therefore, the failures of
the rules indicate some limitations concerning the influence of his already
underlying (classical propositional) logic on belief revision.

My final remark is a brief discussion on why my system does not in-
clude reduction axioms of dynamic formulas to static ones. In the proposed
framework, this is a particularly challenging task. The formulation of the
conditional (→) successfully hints at some properties of belief revision as it
is a forward looking modality. Belief base revision, in most cases, causes a
shift from one situation to another. For instance, in order to revise a sit-
uation s with a piece of information φ, we move to the situations which
expand s with φ. These are (some of) the situations that are determined by
a conditional on s whose antecedent is φ. In this respect, the conditional still
underdetermines the situations relevant for the revision since when revising
s, belief base revision operations pick the situations which expand s with
basic φ-situations only. The language however is not rich enough to allow
precoding revisions completely. That is because, what is satisfied by a situa-
tion depends in part on the preference ordering of the model. It might be the
case that, for some ψ in the language, ψ is not satisfied by a φ-situation until
after the preference ordering of the model is revised. Although this is the
case in most belief revision systems which include changing the preferences,
in some of these systems, the revised models can be given as sub-models of
the original one. Hence, it is possible to give reduction axioms by referring
to a relativized version of the original model. The system presented in van
Benthem [26] is an example to this sort of preference change.

There is an exception to this hardship by the persistency lemma, which
ensures that the propositional content of a situation does not change via
model-shifts. So, we can present a reduction axiom only concerning the
formulas of Lprop: given a belief base revision model MD = 〈S, V, ◦,⊥,≤, R〉
on a situation space S, with M = 〈S, V, ◦,⊥,≤〉, for all situations s ∈ S, for
all φ ∈ LB and for all ψ ∈ Lprop, s |=M [φ]ψ ↔ (φ → ψ). For the base case
of the proof, suppose s |=M [φ]p. Hence, for all s′ ∈ S, if sRφs′, it holds that
s′ |=M p. Let arbitrary s′′ ∈ S such that s′ ◦ s′′ = s′′. By the persistency
lemma, also s′′ |=M p holds. By the assumptions for the fusion function, it
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holds that s′′ ◦s = s′′. Since s′′ is arbitrary, by the satisfaction clause for →,
it holds that s |=M φ → p. For the other direction, suppose s |=M φ → p.
That is, whenever we expand s in M with a (basic) φ-situation, satisfaction
of p follows in the expanded situation. Hence, for all s′ ∈ S, if sRφs′ then
s′ |= p. Therefore, s |=M [φ]p. The validity of the claim for non-atomic
propositional formulas of the language can be shown easily by induction on
the complexity.

5. Conclusion

I have presented a new hyperintensional semantics for belief revision, which
also allows non-monotonic and non-explosive belief revision. The non-classical
features of the revision framework principally follow from the underlying
non-classical semantics. In particular, we have formalised the dynamics of
potentially incomplete and inconsistent collections of information using a
form of situation semantics. Adoption of situations as the principle elements
of the models separates my framework from the DEL paradigm. At the same
time, the introduction of the revision operators in the object language marks
the effective difference between my semantics and the base-generated belief
revision theories in the literature. Syntactically, the underlying (proposi-
tional) logic of belief base revision is significantly weaker than classical logic.
This quality allows us to have a much adaptable logic of belief representation
and belief dynamics.

There are a number of philosophical issues which did not had enough
space in this paper. I believe these are issues that require much more space,
so I keep them for future work. I will however briefly list them here since
they add significantly to the intuitive motivation of the belief base models
presented here. My methodology had been to introduce some structure to
the models to overcome some of the idealisations in the literature, at the
same time maintaining a realistic and smooth intuition of reasoning and
a nice logical system. Hence, I have introduced some non-classical features
while developing the belief base revision models. The consequences of these
features are specifically, non-monotonicity, indeterminacy of information,
hyperintensional sensitivity, and fragmentation of information.

Non-monotonicity of the system is apparent by the items (5) and (6) of
the theorem 23. It is the belief modality that I employ here that causes
the non-monotonicity of belief. Indeterminacy of information is specifically
related to disjunctive beliefs. The item (6) in theorem 22 and its dynamic
counterpart, the item (3) in theorem 23 indicate that an agent can believe
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a disjunction without necessarily believing one of the disjuncts. However,
believing a disjunction without believing one of the disjuncts is possible
only if the agent has inconsistent information, not necessarily about the
disjunction in question.

Hyperintensionality of the logic of belief base revision is presented via the
items (1) and (7–9) in Theorem 23. It is a consequence of the partial content
of the situations. Hyperintensional sensitivity has usually been introduced
as subject-matter sensitivity. Although I do not mention subject-matters of
sentences in this paper, such a reading is also possible. One might say that
the content of a situation determines a subject-matter. Hence, although two
sentences φ and ψ are classically logically equivalent, while φ is part of the
content or the subject-matter of a situation s, ψ may not be part of the
content of the same situation. Thus, an agent, whose current belief state
is determined by the situation s may not be aware of the classical logical
entailment between the two sentences, and do not necessarily believe the
latter on the basis of the former.

Some models of hyperintensional belief revision reject also the principle
of disjunctive closure on the grounds of subject-matter inclusion require-
ment for belief entailment [3]. It follows from disjunctive closure, that if an
agent believes that φ, they also believe that φ ∨ ψ for any ψ. The subject-
matter inclusion requirement is such that, given that a sentence φ logically
entails a sentence ψ, an agent believes that ψ upon believing that φ only
if the subject matter of φ includes the subject matter of ψ. Briefly, logical
entailment of sentences with foreign subject-matters do not carry over to
the beliefs. However, disjunctive closure is a valid principle of belief base
revision framework that I presented in this work. This is because, although
the models are sensitive to the hyperintensional contexts, the requirement
for entailment in these contexts is weaker than subject-matter inclusion. In
fact, it seems that for logical entailment to carry over to the beliefs of an
agent, shared subject-matter between the two sentences suffices. That is, it
holds that the agent believes that φ ∨ ψ upon believing that φ because the
sentence φ ∨ ψ is partly about φ. A more in depth discussion of the specific
form of hyperintensionality presented here and its relation to other models
of hyperintensional contexts is left for future work.

Lastly, one of the most important features of the models is the frag-
mentation of information, due to the partial fusion function and the partial
parthood ordering of the models. The consequences of this structure are
presented in the paper as the failures of the principles of conjunctive closure
and of the principles of closure under implication, in the items (1)-(4) in
theorem 22 and in the items (2) and (4) in theorem 23. These consequences
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are quite similar to that of fragmented belief approaches, where it is allowed
that the doxastic system of an agent involves different centers of rational-
ity. Thus, the agent’s belief state is fragmented such that the agent may
believe that φ in one fragment and believe that ψ in another, and not be
able to put the two beliefs together. These systems allow also contradictory
beliefs located in different fragments. The models I present here falls short
of admitting the full consequences of fragmented belief, by virtue of the
employment of a partial-meet-consequence-like belief modality and a total
epistemic preference ordering. Although fragmentation of information is one
of the most powerful features of the belief base revision models in terms of
its consequences, the subject is far too lengthy to be included in this paper.
Hence, I leave the detailed discussion of the subject of fragmented belief
and the developments of the belief base revision models in that direction
(that is, models with a partial epistemic preference ordering and a belief
modality that does not include the meet, i.e., the intersection function) for
future work. The construction of belief contraction models and a complete
axiom system for belief base revision models are also left for future work.
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à Wlodek ; 60 Philosophical Papers Dedicated to Wlodek Rabinowicz-published as

web resource only, Department of pilosophy,Lund University,2007; http://fil.lu.se/

hommageawlodek.
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