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Abstract 18 

The thalamus is much more than a simple sensory relay. High-order thalamic nuclei, such as 19 

the mediodorsal thalamus, exert a profound influence over animal cognition. However, given 20 

the difficulty of directly recording from the thalamus in humans, next-to-nothing is known about 21 

thalamic and thalamocortical contributions to human cognition. To address this, we analysed 22 

simultaneously-recorded thalamic iEEG and whole-head MEG in six patients (four female, two 23 

male; plus MEG recordings from twelve healthy controls) as they completed a visual detection 24 

task. We observed that the phase of both ongoing mediodorsal thalamic and prefrontal low-25 

frequency activity was predictive of perceptual performance. Critically however, mediodorsal 26 

thalamic activity mediated prefrontal contributions to perceptual performance. These results 27 

suggest that it is thalamocortical interactions, rather than cortical activity alone, that is predictive 28 

of upcoming perceptual performance and, more generally, highlights the importance of 29 

accounting for the thalamus when theorising about cortical contributions to human cognition.  30 

Introduction 31 

Thalamic contributions to cognition have been profoundly underestimated 1. Contrary to a 32 

cortico-centric view of cognition2, a whole host of cognitive phenomena rely on the thalamus 33 

and its interactions with the cortex 3,4. For example, animal models suggest that it is the 34 

interactions between the mediodorsal thalamus and the prefrontal cortex, as opposed to the 35 

actions of the prefrontal cortex alone, that dictate the outcome of tasks that have traditionally 36 

been thought of as “prefrontal-dependent” (e.g. attentional control; working memory 5–8). This 37 

thalamic dependency is not surprising considering that the prefrontal cortex has literally been 38 

defined as any frontal region that receives innervation from the mediodorsal thalamus 9,10. As 39 

such, an interaction between these two regions in service of cognition seems plausible, yet 40 

evidence for such a phenomenon in humans is conspicuously absent.  41 

It is a challenge to record human thalamic electrophysiological activity directly from the 42 

source, and this challenge is compounded by the difficulty to record such activity simultaneously 43 

with cortical activity. However, with access to simultaneous iEEG-MEG recordings, we can 44 

begin to address the relevance of thalamocortical interactions to human cognition – in this case, 45 

with a focus on visual detection. Within the cortex, visual detection has been linked to prefrontal 46 

low-frequency activity (6-14Hz) 11–16, but, as highlighted above, the prefrontal cortex doesn’t act 47 

in isolation. One could therefore postulate that these prefrontal low-frequency rhythms reflect 48 

connections to mediodorsal thalamus through so-called thalamocortical loops 17–19. To 49 

investigate this possibility, we analysed simultaneously-recorded intracranial 50 

electroencephalography (iEEG; targeting the mediodorsal thalamic nuclei) and whole-brain 51 

magnetoencephalography (MEG) in six patients (four female, two male) as they completed a 52 

visual detection task (see figure 1a-b; see methods for commentary on sample size). 53 

Additionally, we analysed MEG recordings in twelve healthy participants undergoing the same 54 

task.  55 

Results 56 

In the first instance, we asked whether the phase of ongoing low-frequency activity in the 57 

mediodorsal thalamus was predictive of visual detection. Morlet wavelets were used to extract 58 

measures of instantaneous phase, and then the phase angles for “hits” (i.e., when the correct 59 

stimulus was selected) and “misses” (i.e., when the incorrect stimulus was selected) were 60 

contrasted using the phase bifurcation index (PBI) 11. We expected to find a positive PBI, which 61 
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would indicate that there is a consistent phase angle difference between the two conditions prior 62 

to stimulus onset.  63 

Indeed, using this approach, we observed a positive PBI in the mediodorsal thalamus that 64 

was significantly greater than what would be expected by chance (peaking at 7 to 8Hz, 600 to 65 

300ms prior to stimulus onset; mean cluster t(5) = 5.90, pclus < 0.001, Bayes Factor [BF10] = 66 

Figure 1. Phase bifurcation within the mediodorsal thalamus precedes visual detection. (a) Experiment 

overview. Participants completed a visual detection screen in which an arrow (pointed left or right) was briefly 

shown before a mask appeared. Participants then indicated which direction they thought the arrow was pointing. 

(b) Deep brain stimulation electrodes were implanted in the left and right mediodorsal and anterior thalami. See 

supplementary figure 1 for visualisation of mediodorsal thalamus in the context of other thalamic nuclei. (c) Time-

frequency representation depicting mean mediodorsal thalamic phase bifurcation across patients (as measured 

with iEEG). Higher values indicate greater phase bifurcation. Time at 0s represents onset of the target. Substantial 

low-frequency phase bifurcation was observed prior to stimulus onset. (d) Bandpass-filtered (7-9Hz) mediodorsal 

thalamic signal for each participant individually (hits in red; misses in grey). The phases of the two conditions are 

opposed in all patients. (e) Patient-specific observed phase-bifurcation (black line) compared to a surrogate 

distribution (histogram) for individual peak bifurcation frequencies. The comparatively slow frequency effect of 

participant 2 did not impact the group effect (see supplementary figure 3). (f) MEG-recorded time-frequency 

representation (left) of medial prefrontal phase-bifurcation in patients and source-localisation of the peak of this 

effect (right; visualised phase bifurcation at -400ms, 10Hz; MNI: [-4, 50, -21]). (g) MEG-recorded time-frequency 

representation of medial prefrontal phase-bifurcation (left) in healthy controls and source-localisation of the peak 

of this effect (right; visualised phase bifurcation at -300ms, 11Hz; MNI: [5, 36, -24]). Figure abbreviations: iEEG – 

intracranial electroencephalography; MEG – magnetoencephalography; mPFC – medial prefrontal cortex 
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23.49; see figure 1c), indicating that there was an “optimal” mediodorsal thalamic phase for 67 

visual detection. This could be observed in every participant (see figure 1d-e). No robust phase 68 

bifurcation was observed in additional anterior thalamic recordings (t(4) = 4.20, pclus > 0.5, BF10 69 

= 5.63; though no difference in PBI was observed between the anterior and mediodorsal 70 

thalami: t(5) = 7.52, pclus = 0.094, BF10 = 25.84; see supplementary figure 2).  71 

Notably, the phase of the ongoing low frequency activity of several participants seemed to 72 

undergo a rapid shift reminiscent of a phase reset following stimulus onset (see figure 1d). To 73 

investigate this, we looked at how spectral power fluctuated as an interaction between time (pre-74 

stimulus vs. post-stimulus) and signal derivation technique (total power vs. evoked power). 75 

Previous work20 has suggested that an interaction in which evoked post-stimulus power 76 

increases relative to pre-stimulus power, but total power does not, would indicate that the phase 77 

of the signal has aligned across trials. However, we observed no such interaction (F(1, 5) = 78 

1.04, p = 0.355; see supplementary figure 5), suggesting that phase did not reorganise 79 

consistently across participants following stimulus onset.  80 

 While several studies have linked low-frequency power to visual perception 21–25, we did 81 

not observe any significant relationship between mediodorsal thalamic low-frequency power 82 

and visual detection (t(5) = 2.92, pclus = 0.453, BF10 = 2.83; see supplementary figure 4). 83 

When shifting focus from the thalamus to the cortex, we found that similar pre-stimulus 84 

phase patterns within the source-localised medial prefrontal cortex were predictive of upcoming 85 

perceptual performance (mean cluster t(5) = 10.62, pclus = 0.016, BF10 = 198.21; see figure 1f). 86 

This effect was replicated in the healthy control sample (mean cluster t(11) = 3.52, pclus = 0.031, 87 

BF10 = 10.76; see figure 1g) with highly similar spatial localisation, and conforms to earlier 88 

reports of the phase of low-frequency prefrontal oscillations predicting upcoming perceptual 89 

performance 11,12,15. While there were minor differences in the timing and spectral profile of the 90 

pre-stimulus effects in the patient and control samples, this was not significant (mean cluster 91 

t(16) = 3.15, pclus = 0.662; BF10 = 7.71). There was, however, a strong negative PBI following 92 

stimulus onset for the healthy controls relative to the patient sample (mean cluster t(16) = -6.44, 93 

pclus < 0.001, BF10 = 1558.32; see figure 1f and 1g). This negative PBI seemed to be driven by 94 

the evoked response to the stimulus (see supplementary figure 6). We were unable to ascertain 95 

why the evoked response effect was restricted solely to the healthy controls, but given that this 96 

effect is restricted solely to the post-stimulus window, and no post-stimulus effect could 97 

retroactively alter a pre-stimulus effect, we feel that this open question does not undermine our 98 

central results. 99 

Previous studies have also observed phase bifurcation over the dorsal attention network 100 

(e.g. 12,26). While the positioning of the electrode wires during the patient MEG recording 101 

prevents us from reliably probing these more posterior sources (see supplementary figure 7), 102 

the healthy control MEG recordings show analogous results to those which have been reported 103 

previously (see supplementary figure 8).  104 

Given the presence of perceptually-relevant phase separation in both the mediodorsal 105 

thalamus and the medial prefrontal cortex, we then asked whether these two regions connected 106 

on a trial-by-trial basis. To this end, we used inter-site phase clustering (ISPC [i.e., phase-107 

locking value across sites 27, where a value of ‘0’ indicates no clustering and ‘1’ indicates 108 

maximal phase clustering]) to quantify the pre-stimulus low-frequency phase consistency 109 

between the mediodorsal thalamus and every voxel of the source-reconstructed MEG signal. 110 

Across all trials, connectivity was greatest between the mediodorsal thalamus and the ipsilateral 111 

medial prefrontal cortex, at approximately 8Hz, and was significantly greater than expected by 112 
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chance (mean cluster t(5) = 19.83, pclus < 0.001, BF10 = 2,218.64; see figure 2a-c; see 113 

supplementary figure 8). This effect was substantial in all patients (see figure 2d). A link between 114 

this corticothalamic connectivity and perceptual performance was inconclusive (mean cluster 115 

t(5) = 5.37, pclus = 0.188, BF10 = 17.13; see supplementary figure 9).  116 

Figure 2. Corticothalamic connectivity precedes visual detection. (a) Time-frequency representation of phase-

based undirected connectivity between intracranial recordings of the mediodorsal thalamus and MEG recordings 

of the medial prefrontal cortex. Connectivity peaked prior to stimulus onset, at ~8Hz. (b) Pre-stimulus 8Hz phase-

based undirected connectivity between the mediodorsal thalamus and source-localised MEG signals peak in the 

ipsilateral prefrontal cortex (insert: left reflects ipsilateral hemisphere, right reflects contralateral). Green circle 

indicates approximate position of mediodorsal thalamic electrode. (c) Polar plot of mean phase lag between 

mediodorsal thalamus and medial prefrontal cortex. The dark, solid orange line indicates mean phase lag and 

mean vector length of the participant-specific phase lag angle; light, dotted orange lines indicate mean phase lag 

and mean vector length per participant). The scale ranges from zero (i.e., no consistent direction) to one (i.e., 

perfectly consistent lag across participants/trials). Note that the mean phase lag/vector length across participants 

was calculated only using the phase lags of the individual participants (that is, the calculation was not weighted by 

participant-specific mean vector length). (d) Patient-specific observed connectivity (black line) compared to 

surrogate distributions (orange histograms) for individual peak connectivity frequencies. (e) Frequency spectrum 

for pre-stimulus directed connectivity between medial prefrontal cortex and mediodorsal thalamus (hits in purple, 

misses in grey). A positive value indicates that the medial prefrontal cortex leads the mediodorsal thalamus, while 

a negative value indicates the mediodorsal thalamus leads the medial prefrontal cortex. The medial prefrontal 

cortex leads the mediodorsal thalamus uniquely for hits. (f) Patient-specific observed directed connectivity (black 

line) compared to surrogate distributions (purple histograms) individual peak directed connectivity frequencies. 

Figure abbreviations: ISPC – Inter-site phase clustering; MD – mediodorsal thalamus; mPFC – medial prefrontal 

cortex. 
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When assessing the directionality of this connectivity using the Phase Slope Index (PSI) 28 117 

across all trials, the medial prefrontal cortex appeared to “lead” low-frequency activity in the 118 

mediodorsal thalamus to a significantly greater degree than chance (mean cluster t(5) = 5.33, 119 

pclus < 0.001, BF10 = 16.73). This directed connectivity was predictive of perceptual performance, 120 

as prefrontal-to-thalamic PSI was greater for hits relative to misses (mean cluster t(5) = 8.26, 121 

pclus < 0.001, BF10 = 11.71; see figure 2e-f).  122 

Intriguingly, we also observed directed connectivity in which low-frequency activity in the 123 

mediodorsal thalamus preceded low-frequency activity posterior sources (mean cluster t(5) = -124 

8.15, pclus = 0.063, BF10 = 73.96). Given that MEG coverage of these posterior sources was 125 

inconsistent across participants (see supplementary figure 7), we have decided to avoid resting 126 

any major conclusions based on these thalamus-to-posterior cortex connections. Nonetheless, 127 

the interested reader can turn to supplementary figure 10 for more details. 128 

 Lastly, we asked whether the mediodorsal thalamus mediates prefrontal contributions to 129 

visual detection. To this end, we developed a simple mediation model where prefrontal low-130 

frequency activity could influence perceptual performance directly (see pathway c’ in figure 3a) 131 

or indirectly (i.e., via the mediodorsal thalamus; see pathway ab in figure 3a). In this model, the 132 

indirect pathway predicted perceptual performance to a degree greater than what would be 133 

expected by chance (t(5) = 3.85, p < 0.001, BF10 = 12.05; see figure 3b for participant-specific 134 

plots of the observed magnitude for the indirect pathway relative to chance). Moreover, when 135 

contrasting the magnitude of pathway c (that is: the direct influence of pre-stimulus prefrontal 136 

cortical activity on behavioural performance without accounting for thalamic activity) against 137 

pathway c’ (i.e., the direct influence of pre-stimulus prefrontal cortical activity on behavioural 138 

performance after accounting for thalamic activity), we found evidence to suggest that the direct 139 

influence of pre-stimulus prefrontal cortical activity on behavioural performance was diminished 140 

after accounting for pre-stimulus thalamic activity (t(5) = 2.26, p = 0.031, BF10 = 3.06). Similar 141 

results can be found when using partial correlations in place of a mediation model (see 142 

supplementary figure 11). This suggests that the mediodorsal thalamus mediates prefrontal 143 

activity to some degree. However, the direct effect of the medial prefrontal cortex on visual 144 

detection continued to explain the outcome to a significant degree after accounting for the 145 

Figure 3. Mediodorsal thalamic phase bifurcation mediates prefrontal contributions to visual detection. 

(a) Visualisation of the proposed mediation model. Pre-stimulus low-frequency phase patterns within the medial 

prefrontal cortex predict visual perceptual performance both directly and/or indirectly via the mediodorsal 

thalamus. Statistical analysis suggests that the indirect pathway (ab) better predicts behavioural performance 

than the direct pathway. (b) The predictive power of the observed indirect path (ab, black line) on behavioural 

performance relative to chance (histogram bars; 1,000 permutations). Figure abbreviations: MD – mediodorsal 

thalamus; mPFC – medial prefrontal cortex. 
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indirect effect (t(5) = 32.99, p < 0.001, BF10 = 33,187.91 [though this is a large Bayes Factor, 146 

this is not surprising given the region of interest was selected by identifying the where and when 147 

prefrontal rhythms best predicted visual detection prior to accounting for mediodorsal thalamic 148 

activity; see methods for details]). This suggests that the prefrontal cortex is not completely 149 

redundant in this visual detection task. Nonetheless, these results suggest that mediodorsal 150 

thalamic phase bifurcation is not simply an epiphenomenon induced by phase-based 151 

correlations with the prefrontal cortex. Rather, the mediodorsal thalamus appears to partially 152 

mediate prefrontal contributions to visual perception.  153 

Discussion 154 

In sum, we find evidence to suggest that visual detection fluctuates as a function of pre-155 

stimulus, low-frequency mediodorsal thalamic phase; a phenomenon which mirrors cortical 156 

patterns that have been reported previously (e.g. 11–13). Moreover, we find that directed coupling 157 

between the cortex and thalamus, in which prefrontal activity leads mediodorsal thalamic activity 158 

prior to stimulus onset. Critically however, it appears that the mediodorsal thalamus mediates 159 

these cortical contributions to visual detection performance (see figure 4 for visual summary of 160 

the main results).  161 

Of course, a key question remains: what do corticothalamic interactions contribute to visual 162 

detection? A recent framework 29 suggests that the thalamus acts as a “Bayesian observer”, in 163 

which high-order thalamic nuclei use sensory input to update “templates” of the environment 164 

maintained in the cortex 30,31. Based upon this, one could speculate that the mediodorsal 165 

thalamus helps contrast existing cortical templates (maintained in the prefrontal cortex 5,32,33) 166 

with current sensory input. When a mismatch arises between the current input and the prefrontal 167 

representation, the mediodorsal thalamus 168 

updates this template (e.g., by down-169 

weighting the past representation and 170 

stabilising the new representation 34), which 171 

is then acted upon 35. Notably, 172 

computational models suggest that these 173 

mechanistic interactions produce patterns of 174 

low-frequency travelling waves between the 175 

interacting regions36, which may explain why 176 

corticothalamic connectivity was most 177 

prevalent in the low frequencies. If template 178 

updating were to breakdown, one could 179 

expect that the detection of a transient 180 

change in sensory input would fail and 181 

corticothalamic low-frequency connectivity 182 

would dissipate, which may explain why the 183 

directional connectivity from the prefrontal 184 

cortex to the mediodorsal thalamus 185 

observed here was performance-186 

dependent. While the correlative nature of 187 

our data prevents us testing these ideas, 188 

future studies which disrupt corticothalamic 189 

interactions (e.g., through direct thalamic 190 

Figure 4. Visual depiction of the main findings. Successful 

detection of a visual stimulus correlates with several neural 

phenomena: (1) the stimulus being presented at the optimal, 

low-frequency phase of ongoing medial prefrontal activity 

(mPFC in purple; hits in red; misses in grey), (2) the stimulus 

being presented at the optimal, low-frequency phase of ongoing 

mediodorsal thalamic activity (mediodorsal thalamus in aqua; 

hits in red; misses in purple), and (3) directed prefrontal-to-

thalamic low-frequency connectivity (hits in red; misses [which 

displayed undirected connectivity] in grey]). Critically, the 

contribution of the prefrontal cortex to visual detection appears 

to be mediated by the mediodorsal thalamus.  
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stimulation) could directly test the causal nature of these hypotheses.  191 

An alternative explanation of the rhythmic corticothalamic interaction stems from works 192 

investigating interactions between the pulvinar and cortical attentional networks. Directional 193 

interactions between the cortical attentional network and the pulvinar (another high-order 194 

thalamic nucleus) rhythmically fluctuate at a rate similar to that which we observe here 37,38. 195 

Functionally speaking, this phase-based switching is thought to correspond to switching 196 

between cognitive tasks: namely, sampling the environment and shifting attention 39. Perhaps a 197 

similar phenomenon arises between the prefrontal cortex and mediodorsal thalamus: one phase 198 

of the oscillation favours the transfer of sensory/maintained representations to the mediodorsal 199 

thalamus, while the other phase supports the updating of the cortical template. This would 200 

translate to rhythmic fluctuations in perceptual performance, where stimuli presented during the 201 

phase optimal for cortex-to-thalamus communication are more likely to be perceived than those 202 

presented during the phase optimal for thalamus-to-cortex communication (which matches with 203 

our observation that cortex-to-thalamus directed connectivity is predictive perceptual 204 

performance). Again, future studies may turn to methods such as brain stimulation to directly 205 

test the causal nature of this hypothesis.  206 

One may be wondering why prefrontal cortical and mediodorsal thalamic phase bifurcation 207 

arose at neighbouring, rather than identical, frequencies (~11Hz and ~8Hz respectively). While 208 

the spectral smearing incurred through the use of wavelets for our measure of inter-site phase 209 

clustering and the 6Hz bandwidth used for the phase-slope index analyses provide a 210 

mathematical explanation of connectivity between the two differing frequency bands, it wouldn’t 211 

explain the physiological underpinnings of such a phenomenon. We speculate, however, that 212 

the observed connectivity in conjunction with the mild difference in frequency may relate to 213 

travelling waves (e.g. 40,41); more specifically, travelling waves that come about through weakly-214 

coupled oscillators42. Models of weakly-coupled oscillators suggest that travelling waves can 215 

couple two regions so long as the oscillator of the transmitting region has a higher intrinsic 216 

frequency than the oscillator of the receiving region. In the case of the data presented here, we 217 

would anticipate that a travelling wave would begin within the prefrontal cortex (given its higher 218 

peak phase bifurcation frequency) and propagate to the mediodorsal thalamus. Notably, such 219 

an idea neatly ties to the phase-slope index results which demonstrated directed connectivity 220 

from the prefrontal cortex to the mediodorsal thalamus. Moreover, this explanation also aligns 221 

with the “Bayesian observer” described above, and the travelling waves inherent in such a 222 

hypothesis36. Of course, this remains a speculative interpretation of the frequency differences 223 

between the two regions as very little is known about corticothalamic travelling waves in 224 

humans. Consequently, such an explanation presents a novel avenue for future research 225 

regarding corticothalamic interactions, and may provide an answer as to why two regions with 226 

differing bifurcating frequencies may relate to a shared phenomenon. 227 

Our observation of low-frequency connectivity between the mediodorsal thalamus and 228 

prefrontal cortex suggests that humans exhibit similar thalamocortical loops to those observed 229 

in animals 18,38. To date, studies of these loops in humans are scarce 43, owning to the fact that 230 

simultaneous, direct recordings of the specific thalamic nuclei and cortex are rare (see 44–47 for 231 

other examples recording from various thalamic nuclei). As such, to understand these moment-232 

by-moment dynamics, the field has had to rely on generalising earlier findings from animal 233 

models to humans, rather than studying humans directly. While these models have provided 234 

fantastic advances in our understanding of the role of the thalamocortical loops in visual 235 

perception, they do have their limitations. Firstly, many of these studies have focused on the 236 

pulvinar (e.g., 37,38), whose anatomical and functional connections to the cortex are notably 237 
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different to the cortical connections of the mediodorsal thalamus, meaning these results cannot 238 

be generalised to explain the role of the mediodorsal thalamus in visual perception. Second, 239 

animal models of the prefrontal cortex are limited in their generalisability relative to animal 240 

models of other cortical regions owning to the unique evolutionary divergence in structure of the 241 

prefrontal cortex 48, meaning prefrontal-thalamic connections in humans remain poorly 242 

understood. The data we present here helps overcome these hurdles and demonstrate how 243 

synchronised low-frequency activity facilitates interactions between the human cortex and 244 

thalamus.  245 

While numerous studies have suggested that prefrontal activity predicts 11–16, and perhaps 246 

causes 49–52, fluctuations in perceptual performance, evidence is far from consistent 21,53–56. 247 

Perhaps this is due to overlooking the role of the mediodorsal thalamus and its many 248 

connections to the prefrontal cortex. Indeed, given that we found evidence to suggest that the 249 

mediodorsal thalamus mediates prefrontal contributions to visual perception, this may explain 250 

why cortio-centric investigations of the neural correlates of visual perception produce such 251 

inconsistent results.  252 

Beyond the prefrontal cortex, numerous other cortical regions have been shown to engage 253 

in visual perceptual processes (e.g., the dorsal attention network; 12,26). Due to the positioning 254 

of the iEEG wires in the MEG, however, we were unable to reliably record signals from these 255 

regions, and hence investigate how they interact with the mediodorsal thalamus. Despite this 256 

however, we observed interesting connectivity dynamics where low-frequency thalamic activity 257 

seemingly leads low-frequency activity in the occipital cortex (see supplementary figure 10). In 258 

the context of the prefrontal connectivity patterns, one could speculate that signals from the 259 

prefrontal cortex pass to the occipital lobe via the mediodorsal thalamus, and may explain why 260 

phase opposition effects can be seen across the cortex e.g.11,12,26. Of course, given that these 261 

results depend on signals generated from sources with poor MEG sensor coverage, one must 262 

take these findings with a grain of salt. 263 

Going forth, our findings emphasise the importance of accounting for the thalamus when 264 

probing prefrontal contributions to human cognition 1,29,57, and, more generally, highlight the 265 

importance of shifting from a cortico-centric model of human cognition towards a more 266 

integrative, thalamocortical model. 267 

Methods 268 

Participants 269 

We recruited six patients (66.6% female, mean age: 41.2 ± 8.9 years, 100% right-handed) with 270 

bilateral intracranial depth electrodes implanted in the anterior nuclei of the thalamus for deep brain 271 

stimulation therapy of drug-resistant epilepsy for the experiment. We recorded electrophysiological 272 

signals from these intracranial electrodes simultaneously with those from an MEG system (see acquisition 273 

details overleaf). The measurements were approved by the Ethics Commission of the Medical Faculty of 274 

the Otto-von-Guericke University, Magdeburg.  275 

A sample size of six for an experiment such as this is small (see  https://osf.io/tyfwu/ for a constantly-276 

updating table on similar experiments; mean size: 14.8 participants; std: 6.3), though to be expected 277 

given the rarity of (i) patients being treated with deep brain stimulation of the thalamus, (ii) access to 278 

thalamic electrophysiology in these patients (DBS leads are externalized only in a minority of these 279 

patients post-surgery, allowing the present combination of intracranial thalamic recordings and cognitive 280 

experiments), and (iii) the summation of the rarity of intracranial recordings and the rarity of the possibility 281 

to simultaneously acquire MEG recordings. The problems with such samples are twofold: a heightened 282 
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likelihood of a false positive, and a heightened likelihood of a false negative. The heightened likelihood 283 

of a false positive can, in part, be attributed to the group mean being more easily swayed by a single 284 

outlier. To attenuate such a concern here, we have visualised participant-specific effects (see figures 1e, 285 

2d, 2h, 3b) to demonstrate that the effect is not driven by a single participant, but is instead a consistent 286 

trend across patients. The heightened likelihood of a false negative can be attributed to a lack of statistical 287 

power. To attenuate this concern, we have supplemented the null-hypothesis testing procedure with a 288 

report of Bayes Factor (i.e., the strength of evidence for the alternative, relative to null, hypothesis). While 289 

Bayesian analyses are not impervious to issues of low statistical power58, they can provide a better 290 

indication as to whether the absence of an effect is attributable to a genuine null effect, or insufficient 291 

power. As a heuristic, a Bayes Factor of less than 3 is considered “anecdotal evidence” for H1 relative to 292 

H0, a Bayes Factor between 3 and 10 is considered “moderate evidence” for H1 relative to H0, and a 293 

Bayes Factor greater than 10 can be consider “strong evidence” for H1 relative to H0. 294 

We recruited an additional 12 healthy controls (50% female, mean age = 27.6 ± 6.5 years, 100% 295 

right-handed), who did not suffer epilepsy and therefore had no intracranial electrodes, to complete the 296 

same task while undergoing MEG. Handedness was assessed using the Edinburgh Handedness 297 

Inventory. *https://doi.org/10.1016/0028-3932(71)90067-4). 298 

Paradigm 299 

Figure 1a illustrates the experimental procedure. Before the start of the experiment, each participant 300 

completed a staircase procedure (2-up-1 down) varying the duration of the blank interval after the stimulus 301 

to maintain a detection rate of ~71% correct trials in the actual experiment. For the experiment, 302 

participants were instructed to focus their attention on the centre of the screen in order to discriminate 303 

the direction of an arrow (left or right). They completed several practice trials to familiarize themselves 304 

with the procedure. Prior to the target stimulus, a fixation cross with a uniformly variable duration (1500-305 

1700ms) was presented. Following this, the target (an arrow pointing either to the left or the right) was 306 

presented for 1 frame (corresponding to 16.7ms [60 Hz refresh rate] for the patients and 8.3 ms [120 Hz 307 

refresh rate] for the healthy participant sample). After the arrow, a blank screen was presented. The 308 

duration of the blank screen was determined by the staircase procedure described above. At the lower 309 

end of the staircase (less than 1 frame), the blank screen was omitted. Following the blank screen, a 310 

mask consisting of an overlay of both arrows appeared for 500ms. This mask ensures that the brain 311 

perceives the stimulus for the same amount of time across trials, as the presentation of said mask 312 

minimises retinal after-effects and post-stimulus visual processing 59. Subsequently, a question mark 313 

prompted the participants to indicate the direction of the arrow by pressing one of two designated 314 

response buttons. The participants were instructed beforehand to always give a response, and in case of 315 

uncertainty, to guess. The participants were also instructed to respond as fast as possible. The response 316 

window lasted for 1500ms, limiting the time window for each response. Every participant completed 6 317 

blocks, each of which consisted of 72 trials. Participants were given the opportunity for a short break in 318 

between each block.  319 

For patients, the mean hit rate across participants was 75.9% (s.d. 14.7%), and the mean reaction 320 

time was 872ms (s.d. 203ms). For the healthy controls, the mean hit rate across participants was 80.3% 321 

(s.d. 10.3%), and the mean reaction time was 750ms (s.d. 78ms).  322 

iEEG acquisition 323 

The two thalamic depth electrodes each had four intracranial electrode contacts (platinum–iridium 324 

contacts, 1.5 mm wide with 1.5 mm edge-to-edge distance). The clinically-relevant implantation target 325 

was the anterior thalamic nucleus. However, due its small size and the implantation trajectory, a subset 326 

of the electrode contacts invariably land in the mediodorsal thalamus (see Fig. 1b). All patients received 327 

bilateral implants, resulting in eight electrode contacts in the thalamic area. iEEG was recorded by feeding 328 

the signal into auxiliary channels of the MEG system, ensuring simultaneous recordings and synchronized 329 

triggers across iEEG and MEG. All recordings were continuously sampled at 678.17 Hz.  330 
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iEEG electrode localisation 331 

We estimated the locations of these contacts using the Lead-DBS software 60. First, we co-registered 332 

the post-operative CT scan to pre-operative T1-weighted image using a two-stage linear registration (rigid 333 

followed by affine) as implemented in Advanced Normalisation Tools 61. Second, we spatially normalised 334 

these scans to MNI space based on the pre-operative T1-weighted image using the Unified Segmentation 335 

Approach as implemented in SPM12 62. Third, we reconstructed the positions and trajectories of the DBS 336 

electrodes based on post-operative CT scan. Fourth, we corrected these reconstructions for brainshift in 337 

post-operative acquisitions by applying a refined affine transform calculated between pre- and post-338 

operative scans that were restricted to a subcortical area of interest (as implemented in the Lead-DBS 339 

software). Lastly, we visually confirmed the positions of the contacts using the DISTAL Atlas 63. Full details 340 

of electrode positioning can be found in supplementary table 1. All analyses were performed separately 341 

on mediodorsal thalamic pairs, or anterior thalamic pairs.  342 

iEEG preprocessing  343 

The iEEG recordings underwent several steps to attenuate artifacts. All preprocessing steps were 344 

completed using the Fieldtrip toolbox 64. First, we downsampled the iEEG recordings to 500Hz. Second, 345 

we filtered the recordings using a 150Hz Butterworth low-pass filter (order = 6), two Butterworth band-346 

stop filters (to attenuate line noise; 49-51Hz, 99-101Hz; order = 6), and a 0.5Hz Butterworth high-pass 347 

filter (order = 6). Third, we epoched the recordings around the onset of the visual target, starting 2 seconds 348 

before target onset and ending 2 seconds after target onset. Fourth, we inspected the recordings for 349 

artifactual/epileptic activity, and any trials or channels exhibiting such activity were excluded (percentage 350 

of electrodes removed: 33.3% [+/- 21.1%]; percentage of trials removed: 15.6% [+/- 6.7%]).  351 

iEEG re-referencing  352 

Following artifact rejection, we re-referenced the iEEG recordings using a bipolar re-referencing 353 

montage to provide a measure of spatially-specific activity within the anterior and mediodorsal thalamic 354 

nuclei. All six patients had at least one bipolar-referenced electrode pair within the mediodorsal thalamus, 355 

and five of these patients had at least one bipolar-referenced electrode pair within the anterior thalamus. 356 

We first identified all bipolar pairs that would feasibly capture mediodorsal/anterior thalamic activity of a 357 

given participant, and then selected the pair which produced the cleanest mediodorsal/anterior thalamic 358 

evoked response (see supplementary figure 12 for evoked response of the selected pairs). As we used 359 

post-stimulus evoked activity as our selection criteria, and our main analyses focused on the pre-stimulus 360 

window, we can assume that this selection procedure did not introduce issues of circularity into our main 361 

analyses65. Full details of bipolar electrode positioning and pairing can be found in Supplementary Table 362 

1. 363 

Patient MEG acquisition and preprocessing 364 

We recorded MEG with a 248-channel whole-cortex magnetometer (MAGNES 3600, 4D 365 

Neuroimaging, San Diego, USA) in a magnetically shielded room. Patients sat upright in the MEG. All 366 

recordings were continuously sampled at 678.17 Hz. MEG data of patients 1,2 and 3 were DC recorded, 367 

MEG data of patients 4, 5 and 6 was recorded with a bandwidth of 0.1-200 Hz. We digitised the patients’ 368 

nasion, left and right ear canal, and head shape prior to each session with a Polhemus 3Space Fasttrack.  369 

The recordings underwent several steps to attenuate artifacts. All preprocessing steps were 370 

completed using the Fieldtrip toolbox 64. First, we downsampled the MEG recordings to 500Hz. Second, 371 

we filtered the recordings using a 150Hz Butterworth low-pass filter (order = 6), two Butterworth band-372 

stop filters (to attenuate line noise; 49-51Hz, 99-101Hz; order = 6), and a 5Hz Butterworth high-pass filter 373 

(order = 6). This high-pass filter was set at 5Hz as slower-frequency activity (i.e., <5Hz) was corrupted 374 

by movement-related artifacts introduced by the presence of iEEG recording equipment within the dewar 375 

(note: to address concerns that the phase bifurcation effect in the medial prefrontal cortex was artifactually 376 

driven by this filter, we also analysed an independent set of MEG data from healthy participants were a 377 

less aggressive filter was used [0.5Hz; see below]). Third, we epoched the recordings around the onset 378 
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of the visual target, starting 2 seconds before target onset and ending 2 seconds after target onset. 379 

Fourth, we denoised the MEG recordings by conducting PCA on reference channels (as implemented in 380 

the Fieldtrip function ft_denoise_pca). Fifth, we used ICA to detect and remove spatially-stationary 381 

artifacts including eye blinks, eye movements, cardiac artifacts, and residual motion related artifacts. 382 

Sixth, we inspected the recordings for artifactual/epileptic activity. Any trials/sensors exhibiting such 383 

activity were excluded (percentage of sensors removed: 38.6% [+/- 7.1%]; percentage of trials removed: 384 

45.0% [+/- 10.8%]; see next paragraph for notes of these high percentages). Lastly, we reconstructed the 385 

preprocessed data in source space using individual head models and structural (T1-weighted) MRI scans. 386 

We reconstructed the time-locked MEG data using a single-shell forward model and a Linearly 387 

Constrained Minimum Variance beamformer (LCMV; 66), with the lambda regularisation parameter set to 388 

5%. 389 

It is important to note that the externalised wires of the intracranial electrodes introduced substantial 390 

noise into the MEG recordings, with many posterior MEG sensors becoming saturated as a result of 391 

noise. Across patients, few sensors remained over parietal and occipital regions (see supplementary 392 

figure 7 for a topographic plot of artifactual sensors). We therefore refrain from drawing major conclusions 393 

based upon results observed in posterior sources. 394 

Healthy control MEG acquisition and preprocessing 395 

For the healthy control subjects, we recorded MEG with a 306-channel whole-cortex magnetometer 396 

(Elekta Neuromag TRIUX, Elekta, Stockholm, Sweden) in a magnetically shielded room. Participants sat 397 

upright in the MEG. All recordings were sampled at 2,000Hz and online-filtered with a pass-band of 0.1-398 

660Hz. Headshape was digitized analogue to patient’s measurements.  399 

As above, we downsampled the MEG recordings to 500Hz. Second, we filtered the recordings using 400 

a 165Hz Butterworth low-pass filter (order = 6), two Butterworth band-stop filters (to attenuate line noise; 401 

49-51Hz, 99-101Hz; order = 6), and a 0.5Hz Butterworth high-pass filter (order = 6). Third, we epoched 402 

the recordings around the onset of the visual target, starting 2 seconds before target onset and ending 2 403 

seconds after target onset. Fourth, we used ICA to detect and remove spatially-stationary artifacts 404 

including eye blinks, eye movements, cardiac artifacts, and residual motion related artifacts. Fifth, we 405 

inspected the recordings for artifactual activity. Any trials/channels exhibiting such activity were excluded. 406 

LCMV beamforming was conducted in the same manner as described above. 407 

Phase bifurcation analyses 408 

All subsequent analyses were conducted using a combination of in-house custom code (available 409 

here: https://github.com/StaudiglLab/corticothalamic-connect) and the Fieldtrip toolbox. In instances 410 

where we relied on custom code, the key equations are given. In instances where we used prebuilt 411 

Fieldtrip functions, those functions are explicitly named. 412 

In the first instance, we asked whether the phase of pre-stimulus low-frequency band activity within 413 

the mediodorsal thalamus predicts visual detection. First, we estimated the phase of the pre-processed 414 

mediodorsal thalamic recordings using 6-cycle wavelets (33 linearly spaced estimates ranging from -415 

800ms to 800ms [that is, sampled every 50ms]; for frequencies ranging from 5 to 20Hz [in steps of 1Hz]) 416 

Note that we expanded beyond the pre-stimulus window for the purpose of data visualisation (e.g., see 417 

fig 1c). Second, we split trials into two conditions based on whether the response on said trial was correct 418 

(from here on termed “hits”) or incorrect (from here on termed “misses”). Third, we computed the phase 419 

bifurcation index (PBI) as described by Busch and colleagues (2009). Here, inter-trial phase clustering 420 

[ITPC; also termed ‘phase locking value’ (PLV); see eq. (1)] for each condition was computed separately 421 

(ITPChits and ITPCmisses), as well as inter-trial phase clustering for both conditions combined (ITPCcombined). 422 

The ITPC values were then used to estimate phase bifurcation [see eq. (2)]. 423 

𝐼𝑇𝑃𝐶 =  |𝑛−1 ∑ 𝑒𝑖𝑘𝑟

𝑛

𝑟=1

|    (𝑒𝑞. 1) 424 
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where: 𝑛 = number of trials, and 𝑘 = phase angle 425 

𝑃𝐵𝐼 = (𝐼𝑇𝑃𝐶ℎ𝑖𝑡𝑠 −  𝐼𝑇𝑃𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑)  ∗  (𝐼𝑇𝑃𝐶𝑚𝑖𝑠𝑠𝑒𝑠 −  𝐼𝑇𝑃𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑)    (𝑒𝑞. 2) 426 

It is worth noting that this measure suffers a trial number bias: conditions with fewer trials see higher 427 

scores than conditions with more trials. To address this, we created a shuffled baseline in which every 428 

trial was circularly shifted in time (preserving signal autocorrelation) by a random number of samples and 429 

the phase bifurcation index was recalculated using this shuffled data (1,000 permutations). This shuffled 430 

baseline retained the trial imbalance present in the initial calculation, and retained the phase structure of 431 

every trial, but should no longer exhibit any phase clustering beyond what would be expected by chance. 432 

We then z-transformed the PBI derived from the real data using the mean and standard deviation of the 433 

permutations of the shuffled baseline to give an estimate of phase bifurcation relative to chance.  434 

For statistical analysis, we pooled together the z-transformed PBI of each patient and conducted a 435 

group-level, cluster-based, permutation test 67 (using 64 permutations; i.e., every possible permutation 436 

from a sample of six patients [26]). To aid in the interpretability of the cluster (that is, one cannot state 437 

exact when a “significant” cluster arises, only that has arisen in the time-frequency window analysed; see 438 
68), we restricted the cluster analysis to the pre-stimulus period (i.e., -800ms to stimulus onset) and to the 439 

frequency range where this effect has been observed in previous studies of the cortex (i.e., 6-14Hz; see 440 
69 for meta-analysis). Cluster analysis addressed issues of multiple comparisons across time and 441 

frequency while the spectrotemporal region of interest ensured spectral/temporal specificity to pre-442 

stimulus low-frequencies. As we only used a single mediodorsal thalamic channel (derived from a bipolar-443 

referenced electrode pair) from each participant for this analysis, there were no multiple comparisons 444 

across space. 445 

To supplement the main statistical result, we report the Bayes Factor at the peak voxel. Bayes factor 446 

was computed using the bayesFactor toolbox (https://github.com/klabhub/bayesFactor). We selected a 447 

default prior for the Bayesian t-test (i.e., the Cauchy prior [2/√2])70. 448 

To address the issue of the wavelet-induced smearing of a post-stimulus effect into the pre-stimulus 449 

window, we repeated the statistical analysis as above, but with the exclusion of any pre-stimulus sample 450 

point where the edges of the wavelet (for a given frequency) would extend into the post-stimulus window. 451 

After excluding the pre-stimulus time bins that could be compromised by wavelet-induced temporal 452 

smearing of a post-stimulus effect, phase bifurcation continued to be observed (mean cluster t(5) = 2.65, 453 

pclus = 0.047, BF10 = 22.25).  454 

We repeated the entirety of this analytical pipeline for the anterior thalamic recordings.  455 

We then applied this same approach to the source-reconstructed MEG data. As before, the z-456 

transformed phase bifurcation index for each participant was pooled and subjected to a group-level, 457 

cluster-based, permutation test (this time using the Fieldtrip function ft_sourcestatistics). When 458 

statistically appraising phase bifurcation in the patient MEG data (n=6), 64 permutations were used once 459 

again. As the function ft_sourcestatistics cannot conduct cluster analyses across time/frequency while 460 

simultaneously conducting analyses across space, we averaged the PBI values across the pre-stimulus 461 

window (i.e., -800ms to stimulus onset) and across the frequency range where this effect has been 462 

observed in previous studies of the cortex (i.e., 6-14Hz; see 69 for meta-analysis), which provided a single 463 

PBI value for each voxel of source-reconstructed MEG data. The cluster analysis was then conducted 464 

across space on this time/frequency averaged data. We repeated the process for the healthy control MEG 465 

(n=12), however, 4096 permutations were used (i.e., 212 permutations) in place of 64 permutations.  466 

Phase reset analysis 467 

To test whether the phase of ongoing activity resets following stimulus onset, we computed low-468 

frequency spectral power (6 to 9Hz; in steps of 1Hz) across the epoch (-800ms to 800; in steps of 25ms) 469 

using 6-cycle wavelets, and then took the average ‘pre-stimulus’ power just before stimulus onset (-200 470 

to 0ms) and ‘post-stimulus’ power just after stimulus onset. We conducted this spectral decomposition 471 
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twice: first, on single trials before averaging the result across trials (i.e., total power), and second, on the 472 

trial-averaged amplitude (i.e., evoked power). If phase does reset after stimulus onset, then phase should 473 

align across trials after stimulus onset, and will present as an increase in evoked power for post-stimulus 474 

activity relative to pre-stimulus activity. In contrast, no change in total power will be observed on the single 475 

trial level. To statistically appraise the effect, we conducted a 2x2 repeated measures ANOVA to probe 476 

how spectral power changed as a function of epoch (pre- vs. post-stimulus) and decomposition method 477 

(single trial decomposition vs. trial-averaged decomposition).  478 

Note that while phase clustering metrics are also sensitive to phase resets, they are not specific 479 

(that is, a spike in phase clustering after stimulus onset may reflect a phase reset, but may also reflect 480 

an evoked response). In contrast, the approach used here can is both sensitive and specific to phase 481 

resets, as the evoked response component would be consistent across the total- and evoked power 482 

metrics. 483 

Inter-site phase clustering connectivity analyses 484 

To assess whether the mediodorsal thalamus couples with the cortex prior to visual perception, we 485 

examined inter-site phase clustering (ISPC) between the thalamic recordings and the source-486 

reconstructed MEG recordings. First, we estimated oscillatory phase using wavelets (no parameters were 487 

changed from the phase bifurcation analyses described above). Second, we computed the circular 488 

distance between the instantaneous phase angle in the thalamus and the phase angle in the source-489 

reconstructed voxel (individually for every trial, timepoint, frequency and source-reconstructed voxel). We 490 

then computed ISPC clustering over trials [see eq. (3); note that this is identical to eq. (1), with the 491 

exception that it uses the phase angle difference between two regions, rather than a single, observed 492 

phase angle].  493 

𝐼𝑆𝑃𝐶 =  |𝑛−1 ∑ 𝑒𝑖𝑑𝑟

𝑛

𝑟=1

|   (𝑒𝑞. 3) 494 

where: 𝑛 = number of trials, and 𝑑 = circular distance between phase angles 495 

To examine whether the observed ISPC differed from chance, we generated a distribution of chance 496 

ISPC values by randomly shuffling the trials of the thalamus recordings relative to the MEG recordings 497 

and re-computing the ISPC (total permutations = 1,000). We then z-transformed the observed ISPC using 498 

the mean and standard deviation of the chance distribution (as done for the PBI measure). Statistical 499 

analysis matched that of the PBI analyses on the source-reconstructed MEG signal (that is: cluster-based 500 

permutation tests with a specific focus on pre-stimulus low-frequency activity).  501 

To evaluate whether this connectivity varied as a function of perceptual performance, we calculated 502 

ISPC for hits and misses separately, with a subsampling procedure used for hits to ensure trial numbers 503 

were balanced across the two conditions. We then directly contrasted the resulting ISPCs in a cluster-504 

based permutation test (again, across voxels using ft_sourcestatistics, with each voxel matching the value 505 

of the average of low-frequency [6-14Hz], pre-stimulus [-800 to 0ms] ISPC for that voxel). 506 

It is worth noting that the ISPC can be biased by volume conduction. In such instances, the phase 507 

lag between the thalamus and source-reconstructed MEG should cluster heavily around 0 or 180 508 

degrees. This was not the case in our data (see figure 2c). Residual concerns about spurious 509 

corticothalamic coupling are addressed by our “phase slope index” analysis below, which excludes zero-510 

lag angle differences from the computation. 511 

Phase slope index analyses 512 

To assess the directionality of the coupling between the mediodorsal thalamus and cortex, we used 513 

the phase slope index 28. To this end, we calculated the Fourier spectrum of the pre-stimulus signal (-800 514 

to 0ms) using a Hanning tapered FFT approach, and used the resulting signal to compute the PSI (as 515 
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implemented by the function ft_connectivity_psi in the Fieldtrip toolbox). As before, we compared the 516 

observed PSI to chance by shuffling the trials of the thalamus recordings relative to the MEG recordings 517 

and re-computing the PSI (total permutations = 200 [the number of permutations were reduced relative 518 

to the analyses above due to computational limitations]). We then z-transformed the observed PSI using 519 

the mean and standard deviation of the chance distribution (as done for the PBI and ISPC measures). 520 

Statistical analysis matched that of the PBI and ISPC analyses on the source-reconstructed MEG signal.  521 

We repeated this approach for hits and misses separately. The resulting z-transformed PSI 522 

measures were directly compared in a group-level, cluster-based, permutation test. 523 

Mediation analyses 524 

To assess the possible mediating effect of the mediodorsal thalamus, we first set out to measure 525 

phase bifurcation on the single-trial level. As the phase bifurcation index relies on data from all trials, such 526 

an approach cannot be used to create trial-level models of mediation. Instead, for a given patient, and for 527 

every pre-stimulus sample point, we took the mean phase angle across all “hit” trials, and then derived 528 

the mean resultant vector between this “hit-averaged” phase angle and the observed angle on a given 529 

trial (“hits” and “misses”). This provides a value between 0 and 1 which indicates how close the given trial 530 

was to the “optimal” phase for subsequent visual detection [the higher the value, the closer the phase] 22.  531 

We then used a series of patient-specific regression models to assess (1) whether the distance to 532 

the optimal phase within the medial prefrontal cortex predicts visual detection (independently of the 533 

mediodorsal thalamus) [see eq. 4], (2) whether the distance to the optimal phase within the medial 534 

prefrontal cortex predicts the distance to the optimal phase within the mediodorsal thalamus [see eq. 5], 535 

and (3) whether the distance to the optimal phase within both the mediodorsal thalamus and the medial 536 

prefrontal cortex, in combination, predicts visual detection [see eq. 6]. 537 

𝑌 = 𝑗1 + cX    (𝑒𝑞. 4) 538 

𝑀 = 𝑗2 + aX    (𝑒𝑞. 5) 539 

𝑌 = 𝑗3 + c′X + bM    (𝑒𝑞. 6) 540 

Where Y represents perceptual outcome (either hit or miss), X represents distance to optimal phase 541 

in the medial prefrontal cortex, M represents distance to optimal phase in the mediodorsal thalamus, and 542 

j represents the intercepts. When predicting Y, logistic models were used. When predicting M, linear 543 

models were used. As the scaling of coefficents differs between these two models, all coefficents were 544 

standardised by dividing by the standard error of fit. This brought both forms of coefficents into the same 545 

unit space. 546 

While, in theory, one can test this at every time, frequency and source-reconstructed voxel, this is 547 

prohibitively computationally expensive (~14 days on our hardware). In addition, it is debatable as to 548 

whether any meaningful measure of mediation can be derived from moments (be that timepoints, 549 

frequencies or voxels) where the independent or mediator variable does not reliably predict the dependent 550 

variable71. Therefore, for the sake of computational efficiency and statistical validity, we restricted our 551 

analyses to the moments in which phase bifurcation peaked in the medial prefrontal cortex and 552 

mediodorsal thalamus. While such an approach would inflate the likelihood of finding a link between 553 

physiology and behaviour, given that the purpose of this analysis is to compare the relative link of the 554 

mediodorsal thalamus and prefrontal cortex to behaviour (as opposed to the absolute link to behaviour), 555 

we do not believe that this is a concern. 556 

In our first test for mediation, we assessed whether the indirect effect (i.e., the ab pathway in figure 557 

3a) differed significantly from zero. The indirect pathway describes the extent to which mediodorsal 558 

thalamic phase bifurcation explains the impact of medial prefrontal cortical phase bifurcation on 559 

perceptual performance. Thus, if this is significantly greater than zero, one can conclude that the influence 560 

of the medial prefrontal cortex on perceptual performance is mediated by the mediodorsal thalamus in 561 

some way, shape or form. To this end, we operationalised the indirect effect as the product of t-statistics 562 

of a and b, normalised by the variance (see eq. 7, taken from 72).  563 
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𝑎𝑏 =  
𝑡𝑎𝑡𝑏

√𝑡𝑎
2 + 𝑡𝑏

2 + 1
 (𝑒𝑞. 7) 564 

Where ta and tb are the standardised coefficients derived from eq. 5 and eq. 6 respectively. We then 565 

z-transformed the magnitude of this effect using the mean and standard deviation of “chance-level” 566 

indirect effects (which were calculated by shuffling the trials of the mediodorsal thalamic recordings 567 

relative to the behavioural and medial prefrontal measurements and recomputing the regression models; 568 

1,000 permutations). We then pooled the z-transformed measure of the indirect effect of each patient and 569 

contrasted them against the null hypothesis that the indirect effect was no greater than chance (i.e., z = 570 

0) in a permutation-based t-test. Here, for each permutation, the sign of each patient’s z-transformed 571 

indirect effect was randomly assigned, and the t-values were recomputed. The p-value was then derived 572 

by comparing the “true” t-value to this surrogate distribution.  573 

In our second test of mediation, we asked whether the influence of medial prefrontal activity on 574 

perceptual performance is diminished after accounting for mediodorsal thalamic activity. To this end, we 575 

contrasted the “total effect” (c in eq. 4) against the “direct effect” (c’ in eq. 6). If the direct effect is 576 

significantly smaller than the total effect, one can infer that the second regressor in eq. 6 (i.e., the distance 577 

to the optimal phase in the mediodorsal thalamus) has a mediating influence over prefrontal contributions 578 

to visual detection. As above, we z-transformed the observed difference between the total and direct 579 

effects using the mean and standard deviation of “chance-level” differences (which were calculated by 580 

shuffling the trials of the medial prefrontal and mediodorsal thalamic recordings relative to the behavioural 581 

data and recomputing the regression models; 1,000 permutations). We then pooled the z-transformed 582 

difference of each patient and contrasted them against the null hypothesis that there was no difference 583 

between the total and direct effects (i.e., z = 0) in a permutation-based t-test.  584 

We supplemented the mediation analysis with an approach based on partial correlations (see 585 

supplementary figure 11). We computed the single trial measures of distance to the optimal phase as 586 

above, but rather than using logistic models to assess the relationship between brain activity and 587 

perceptual performance, we used correlations and partial correlations. Specifically, we computed a 588 

Spearman’s Rank correlation between the distance to the optimal medial prefrontal low-frequency phase 589 

and perceptual performance, and a partial Spearman’s Rank correlation between the distance to the 590 

optimal medial prefrontal low-frequency phase and perceptual performance while accounting for the 591 

distance to the optimal mediodorsal thalamic low-frequency phase.  592 

Note that, while mathematically plausible, inverting the mediation model such that the mediodorsal 593 

thalamus becomes the independent variable and the medial prefrontal cortex becomes the purported 594 

mediator would be conceptually invalid as our PSI analyses have demonstrated that the cortex precedes 595 

the thalamus, and mediation analyses rest upon the assumption that the mediator follows the independent 596 

variable in time 73. In other words, event A cannot mediate the influence of event B on event C if neither 597 

event B nor C have happened yet. 598 
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