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Abstract: We consider estimation of the location and the height of the
jump in the γ-th derivative - a kink of order γ - of a regression curve,
which is assumed to be Hölder smooth of order s ≥ γ + 1 away from
the kink. Optimal convergence rates as well as the joint asymptotic nor-
mal distribution of estimators based on the zero-crossing-time technique
are established. Further, we construct joint as well as marginal asymptotic
confidence sets for these parameters which are honest and adaptive with re-
spect to the smoothness parameter s over subsets of the Hölder classes. The
finite-sample performance is investigated in a simulation study, and a real
data illustration is given to a series of annual global surface temperatures.
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1. Introduction

Suppose that we observe data (xi, Yi), i = 1, . . . , n, from the regression model

Yi = f(xi) + εi, i ∈ { 1, . . . , n } , (1.1)

where for a given γ ∈ N and some unknown θf ∈ (0, 1), the regression function
f is assumed to be γ times continuously differentiable on [0, 1] \ {θf}, and the
one-sided limits of f (γ) at θf exist and their difference [f (γ)] is non-zero. Such a
jump discontinuity of the γth derivative is called a kink of order γ, and θf is the
location and [f (γ)] is the size of the kink. Away from the kink, f is assumed to
be Hölder smooth of some order s ≥ γ+1. Our purpose is to optimally estimate
the parameters θf and [f (γ)], and to construct joint and marginal confidence
sets which are honest and adaptive with respect to the smoothness parameter s
over suitable subsets of the Hölder classes. In model (1.1), we shall assume that
the xi,n = xi are fixed, equidistant design points.

Change points and other irregularities such as kinks are important features
of signals, and are of interest in various areas such as economics, medicine or
the physical sciences. For example, in regression discontinuity or regression kink
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designs (Card et al., 2015), the aim is to infer on the change of the level or
the slope of an outcome variable from a policy change in level or slope of an
assignment variable. For further reading on change point and edge detection and
estimation we refer to the monographs of Carlstein et al. (1994), Korostelev and
Tsybakov (1993) and Qiu (2005).

Korostelev (1988) obtained the optimal convergence rate for a change point
in the white noise model over a nonparametric class of functions which are Lip-
schitz continuous away from the change point. In indirect estimation problems
of change points, including deconvolution and kink estimation, Goldenshluger
et al. (2006), Goldenshluger et al. (2008a) and Goldenshluger et al. (2008b)
comprehensively studied optimal convergence rates over Sobolev-type classes in
the white noise model, while Neumann (1997) considered a density deconvo-
lution framework. Goldenshluger et al. (2006) construct their estimator of the
change point in a deconvolution setting based on the zero-time-crossing tech-
nique. Cheng and Raimondo (2008) transfer this estimator to first order (γ = 1)
kink estimation on compact intervals, and focus on the construction of appro-
priate kernel functions. Wishart (2009), Wishart and Kulik (2010) and Wishart
(2011) studied convergence rates of zero-time-crossing estimators under long-
range dependent errors together with corresponding lower bounds.

The asymptotic distribution of change point estimates and the construction
of confidence intervals are discussed in Müller (1992); Loader (1996) among
others for change points, and in Müller (1992); Eubank and Speckman (1994);
Mallik et al. (2013) for kink estimation, in the latter paper even with dependent
errors. In recent years, for nonparametric estimation problems the concepts
of honest and adaptive confidence sets have been developed and intensively
studied, see e.g. Li (1989); Low (1997); Cai and Low (2004); Giné and Nickl
(2010). Confidence sets are called honest if they keep the level asymptotically
uniformly over the function class under consideration, while they are called
adaptive if the width is of the order of the minimax rate of estimation, up to
logarithmic terms. For kink estimation, however, honest and adaptive confidence
sets have apparently not yet been studied.

Our contributions in the present paper are as follows. We use the zero-
crossing-time technique from Goldenshluger et al. (2006) and Cheng and Rai-
mondo (2008) to construct estimates of the location θf as well as the size [f (γ)]
of the kink in model (1.1). We derive optimal convergence rates over Hölder
smoothness classes instead of the Sobolev-type smoothness classes in Goldensh-
luger et al. (2006). The proof techniques for the upper bounds differ somewhat
from those in Goldenshluger et al. (2006), since we make more explicit use of the
zero-crossing-time property of the estimate of the location. The lower bounds
require the construction of new hypothesis functions which belong to the Hölder
smoothness class. Further, we show joint asymptotic normality of the estimates,
uniformly over the function classes, which allows for the construction of honest
confidence sets for a given smoothness parameter s. In contrast to change point
estimation, for kink estimation no additional bias arises in case of a discrete
design. Finally, following Giné and Nickl (2010), based on Lepski’s method we
construct joint and marginal confidence sets which have an adaptive length in s
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over appropriate subsets of the Hölder smoothness classes for a bounded range
of the smoothness parameter s.

The paper is structured as follows. In Section 2 we introduce the estimators
and present the optimal convergence rates. Section 3 contains the asymptotic
normality of the estimates, and the construction of honest and adaptive confi-
dence sets. In Section 4, we present results of a simulation study, and also give a
real-data illustration to a series of annual global surface temperatures. Section
5 concludes, while outlines of the proofs are collected in Section 6. Section A of
the appendix contains technical details of the proofs. In Section B we describe
the construction of appropriate kernel functions and present further simulation
results, in particular a comparison of the confidence intervals for the location
of the kink with those in Mallik et al. (2013). Finally, in Section C and D,
for the sake of completeness we recall a maximal deviation inequality for sub-
Gaussian processes from Viens and Vizcarra (2007) and also collect results on
weak convergence uniformly over families of probability measures.

2. Optimal kink estimation over Hölder classes

2.1. The function class

Let us introduce the function class over which we shall study the kink estimation
problem in model (1.1). It is an adaptation of the function classes in definitions
1 and 2 in Goldenshluger et al. (2006), where Sobolev-type smoothness of the
smooth-extension gf,γ is replaced by more conventional Hölder-smoothness.

Let Ck, k ∈ N0, denote the set of all real-valued, k-times continuously dif-
ferentiable functions on [0, 1], and write f (k)(z) = ∂kf(z)/∂kz to denote the k-th
derivative of f . Given s > 0 we let �s� = max{k ∈ N0 : k < s}, and we de-
fine the Hölder class on an interval [a, b] with smoothness parameter s > 0 and
Hölder-constant L > 0 by

Hs([a, b], L) =
{
g ∈ C(�s�) ∣∣ |g(�s�)(x)− g(�s�)(y)| ≤ L |x− y|s−�s�, x, y ∈ [a, b]

}
.

Given θ ∈ (0, 1) and a continuous function g : [0, 1] \ {θ} → R defined
on [0, 1] except at θ, we denote the one-sided limits of g at θ by g(θ+) =
limx↓θ g(x), g(θ−) = limx↑θ g(x) if these limits exist, in which case we let [g](θ) =
g(θ+)− g(θ−) denote the jump-height at θ. We write Ck({θ}c) for the k-times
continuously differentiable functions on [0, 1] \ {θ}, and for L > 0 let

Lip({θ}c, L)=
{
g ∈ C({θ}c) | |g(x)− g(y)| ≤ L |x− y|, x, y ∈ [0, 1] \ {θ},
x < y, θ �∈ (x, y)

}
.

Definition 2.1 (Regression function). Let γ ∈ N, s ∈ R with s ≥ γ + 1, let
a, L > 0 and let Θ ⊂ (0, 1) be a compact interval. Define the class of functions
f ∈ Fs = Fs(γ, a,Θ, L) by assuming that f ∈ Cγ−1[0, 1], and that there is a
unique θf ∈ Θ, called the location of the kink, such that
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(i) f (γ−1) ∈ C1({θf}c), and the jump height [f (γ)] := [f (γ)](θf ) of f
(γ) at θf ,

also called size of the kink, satisfies |[f (γ)]| ≥ a,
(iia) in case s = γ + 1, we have that f (γ) ∈ Lip({θf}c, L),
(iib) in case s > γ + 1 we actually assume that f (γ−1) ∈ C2({θf}c) with

[f (γ+1)](θf ) = 0, that the jump height of f (γ+1) is zero at θf , and that
for the function

gf,γ(x) =

{
f (γ+1)(x), x �= θf ,

f (γ+1)(θf+), x = θf ,

we have that gf,γ ∈ Hs−(γ+1)([0, 1], L).

Remark 1. For s > γ+1 our results actually can be shown over a slightly more
general class, in which (iia) is assumed to hold, but the higher-order smoothness
in (iib) is only assumed locally around the kink location θf .

2.2. The estimator

In this section estimators for the location and the size of the kink are introduced.
Recall the motivation from Goldenshluger et al. (2006) that if f (γ) has a jump in
θf , a smoothed version of f (γ) will have a large slope near θf , so that its first and
second derivatives have a local maximum respectively a zero near θf . Following
Goldenshluger et al. (2006) and Cheng and Raimondo (2008), for an appropriate
kernel K : R → R, specified in Assumption 2 below, and a bandwidth parameter
h > 0 we introduce the probe functional

ψh,f (t) = h−(γ+1)

1∫
0

f(x)K(γ+2)
(
h−1(x− t)

)
dx, (2.1)

which we estimate using a Priestley-Chao-type estimator for the fixed, equidis-
tant design xi,n,

ψ̂h,n(t) = n−1h−(γ+1)
n∑

i=1

Yi K
(γ+2)(h−1(xi − t)). (2.2)

Assumption 1 (Errors). The εi = εi,n are centered, independent and identically
distributed random variables with standard deviation σ > 0, and for any u > 0,
P (|ε1| > u) ≤ 2 exp(−2u2/σ2

g) for some σg ≥ σ. ♦
Assumption 2 (Kernel). For parameters γ, l ∈ N, suppose that the kernel K :
R → R has support supp(K) = [−1, 1], is (γ + 5)-times differentiable inside its
support and satisfies the following properties:

(i) K(j)(−1) = K(j)(1) = 0, j = 1, . . . , γ + 3,
(ii) K(1) is an odd function, in particular K(1)(0) = 0,

(iii) if l ≥ γ + 2 then
∫ 1

−1
xmK(1)(x)dx = 0 for m = 0, . . . , l − γ − 1,
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(iv) there are 0 < q∗ < ql < 1 such that K(1)(x) > 0 for x ∈ [−ql, 0) and K(1)

has a unique global maximum at −q∗,
(v) for some x∗ ∈ (0, 1) and c2 > 0 we have that |K(1)(x)| ≥ c2|x|, x ∈

[−x∗, x∗]. ♦
Remark (Discussion of Assumption 2). Assumption 2 is similar but more re-
strictive than assumption C1,s in Cheng and Raimondo (2008) or assumption 2
in Goldenshluger et al. (2006). In particular, Assumption 2, (v) determines the
separation rate, Lemma A.1. In Section B.1 we provide an explicit construction
of kernels satisfying Assumption 2 for γ = 1 and given l, and indicate how to
extend it to the case γ ≥ 2. �

For the estimation of the location of the kink we proceed in two stages.
First, an interval is constructed which contains the kink with high probability.
Second, the kink is estimated by a zero of the empirical probe functional inside
this interval.

In the following we shall always impose Assumption 1 and assume that the
regression function f in model (1.1) satisfies f ∈ Fs as specified in Definition 2.1,
and that the fixed kernel K satisfies Assumption 2 with parameters γ, l = �s�,
and q∗, ql and x∗ in (iv) and (v).

Given h > 0 we then let

t∗ = t∗(h; f) = θf + hq∗, t∗ = t∗(h; f) = θf − hq∗. (2.3)

Lemma 2.2. There is an h0 > 0 with Θ ⊂ [h0, 1− h0] such that

for h0≥h>0 there is a θ̃= θ̃h,f ∈ [t∗(h; f), t
∗(h; f)] such that ψh,f (θ̃)=0.

(2.4)

Here h0 can be chosen uniformly over f ∈ Fs and depending only on the kernel
K as well as on the Lipschitz constant L and the set Θ of Fs. In particular, we
have that |θ̃h,f − θf | = O(h) for h ∈ (0, h0), uniformly over Fs.

The proof is given in Section 6.1. Lemma 2.2 motivates the two stages of the
estimation procedure: first estimate the parameters t∗ and t∗, second estimate
the kink-location θf as a zero of the empiral probe functional in the resulting
interval. Thus, let

t̂∗ = t̂∗(h;n) = min{arg min
t

ψ̂h,n(t), arg max
t

ψ̂h,n(t)},

t̂∗ = t̂∗(h;n) = max{arg min
t

ψ̂h,n(t), arg max
t

ψ̂h,n(t)},
(2.5)

and define the estimator for the kink-location by

θ̂h,n ∈
{
{t ∈ [t̂∗, t̂

∗] | ψ̂h,n(t) = 0}, if the set is not empty,

{ t̂∗+t̂∗

2 }, otherwise.
(2.6)

In the proofs we will show that {t ∈ [t̂∗, t̂
∗] | ψ̂h,n(t) = 0} �= ∅ holds with

high probability uniformly over Fs, and consequently only this part of (2.6) is
asymptotically relevant.
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For the kink-size [f (γ)], the expansion

[f (γ)] = (−1)γ+2 h
ψ
(1)
h,f (θf )

K(2)(0)
+O(hs−γ),

see (6.5), suggests the following estimate

[̂f (γ)]h,n := h
ψ̂
(1)
h,n(θ̂h,n)

(−1)γ+2K(2)(0)
(2.7)

with deterministic version

[̃f (γ)]h := h
ψ
(1)
h,f (θ̃h,f )

(−1)γ+2K(2)(0)
, (2.8)

where θ̃h,f is defined in (2.4).

2.3. Optimal rates of convergence

To express the uniformity in the parameter f , we introduce the following nota-
tion. If ηh,f is real-valued depending on parameters f ∈ F and h ∈ (0, h0) for
some h0 > 0, and if β ∈ R, we write ηh,f = OF (h

β) if supf∈F
∣∣ηh,f ∣∣ ≤ C hβ for

some constant C > 0. Similarly, we write ηh,f = oF (h
β) if h−β supf∈F

∣∣ηh,f ∣∣ →
0, h → 0.

Let η̂h,n be random and depending on some h ∈ (0, h0) and the data in
model (1.1) for the sample size n. We denote Pf to stress the dependence of the
distribution on the parameter f . Then we write η̂h,n = OP,F (n

β hα), α, β ∈ R,
for uniform boundedness in probability, that is

lim
C→∞

lim sup
n→∞

sup
f∈F

sup
h∈(0,h0)

Pf

(∣∣η̂h,n∣∣ ≥ C nβ hα
)
= 0.

Similarly, write η̂h,n = oP,F (n
β hα) if

∀ ε > 0 : lim sup
n→∞

sup
f∈F

sup
h∈(0,h0)

Pf

(∣∣η̂h,n∣∣ ≥ ε nβ hα
)
= 0.

In the following theorem we obtain convergence rates for the estimates of the
location and the size of the kink. For two sequences (an) and (bn) we write
an ∼= bn if C1 ≤ |an/bn| ≤ C2 for n ≥ n0 and some constants 0 < C1 < C2.

Theorem 2.3. Consider model (1.1) and suppose that Assumption 1 as well as
Assumption 2 with l = �s� hold true. Then there exist finite constants h0, C > 0
depending only on the kernel K, on σ and σg in Assumption 1 as well as on
L and Θ of Fs = Fs(γ, a,Θ, L) such that if h ∈ (0, h0) and n are such that
nh2γ+1 ≥ C log(1/h), then

θ̂h,n − θf = OP,Fs(h
s−γ+1) +OP,Fs((nh

2γ−1)−1/2) (2.9)
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and

[̂f (γ)]h,n − [f (γ)] = OP,Fs((nh
2γ+1)−1/2) +OP,Fs(h

s−γ), (2.10)

where the constants in the O-terms depend only on K,σg and L, and can be
chosen uniformly over a bounded range of values of s.

Moreover, choosing h of order n−1/(2s+1) we obtain the convergence rates

θ̂h,n−θf = OP,Fs

(
n−(s−γ+1)/(2s+1)

)
, [̂f (γ)]h,n−[f (γ)] = OP,Fs

(
n−(s−γ)/(2s+1)

)
.

The proof is provided in Section 6.2. The next theorem shows that these rates
are indeed optimal.

Theorem 2.4. Let γ ∈ N, s ∈ R with s ≥ γ+1, let a, L > 0 and let Θ ⊂ (0, 1) be
a compact set. Then, in model (1.1) with εi ∼ N(0, σ2), setting w(x) = x/(1+x)
it holds that

lim inf
n

inf
θ̂

sup
f∈Fs

Ef

[
w
(
n(s−γ+1)/(2s+1) |θ̂ − θf |

)]
> 0, (2.11)

lim inf
n

inf
θ̂

sup
f∈Fs

Ef

[
w
(
n(s−γ)/(2s+1) |θ̂ − [f (γ)]|

)]
> 0, (2.12)

where w metrizes convergence in probability and the infimum is taken over all
possible estimators θ̂ respectively.

The proof is provided in Section 6.3.

Remark (Convergence rates). The convergence rates for the location of the kink
in Theorem 2.3 correspond to those in Theorem 1 in Goldenshluger et al. (2006)
for their function class in Definition 2, which instead of Hölder-smoothness re-
quires that ∫

R

|
∫
R

gf,γ(x) exp(2πωx) dx| |ω|m−1 dω ≤ L

for some m > 1. Indeed, their m− 1 (smoothness parameter) and β (degree of
ill-posedness) correspond to s− (γ+1) resp. γ in our setting, so that m = s− γ
and β = γ transforms their rate n−(m+1)/(2m+2β+1) into n−(s−γ+1)/(2s+1). Gold-
enshluger et al. (2008a) provide minimax rates for more conventional Sobolev-
type classes and attain a rate which corresponds to n−(s−γ+1/2)/2s in our setting.
As γ ≥ 1/2 this rate is inferior compared to ours, which is in line with the
difference between the optimal rates of pointwise estimation for Sobolev- and
Hölder smoothness classes. Moreover, similar considerations for our kink-size
estimate and the jump amplitude estimator in Goldenshluger et al. (2008a) lead
to related observations concerning the optimal rates. Also note that the rate
of convergence for the size of the kink corresponds to the minimax rate when
estimating the γ-th derivative at a given point.
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3. Asymptotic confidence sets

3.1. Asymptotic normality

The next theorem establishes joint asymptotic normality of the estimates of the
location and the size of the kink, (2.6) and (2.7), around their deterministic
counterparts (2.4) and (2.8), respectively.

Theorem 3.1. In model (1.1) under the Assumptions 1 and 2 with l = �s�, if
h and n are such that

nh2γ+1 log(1/h)−1 → ∞, and nh4s−2γ+1 → 0, (3.1)

then for x ∈ R2 we have that

sup
f∈Fs

∣∣∣∣Pf

[( w̃loc
n (h)−1 (θ̂h,n − θ̃h,f )

w̃size
n (h)−1

(
[̂f (γ)]h,n − [̃f (γ)]h

) )
≤ x

]
− Φ2(x)

∣∣∣∣ = o(1), (3.2)

where Φ2 denotes the bivariate standard normal distribution function and the
asymptotic standard deviations for the estimates of location and size of the kink
are given by

w̃loc
n (h) =

σ||K(γ+2) ||2√
nh2γ−1 [f (γ)] K(2)(0)

, resp. w̃size
n (h) =

σ||K(γ+3) ||2√
nh2γ+1 K(2)(0)

.

(3.3)

Here, ‖ · ‖2 denotes the L2-norm of a function on the interval [0, 1]. Section
6.4 is devoted to the proof of the theorem.

Remark (Undersmoothing). Using similar arguments as in Theorem 2.3 one
obtains the bounds

θ̃h,f − θf = OFs(h
s−γ+1), [̃f (γ)]h − [f (γ)] = OFs(h

s−γ). (3.4)

Thus, using undersmoothing, that is choosing h ∼= n−1/(2s+1) log(n)ζ for ζ < 0,
the asymptotic normality in (3.2) even holds uniformly over Fs for θ̃h,f replaced

by θf and [̃f (γ)]h by [f (γ)]. Thus, Theorem 3.1 can be directly used to construct
honest confidence sets for the parameters (θf , [f

(γ)]) over Fs.

3.2. Adaptive confidence sets

We briefly recall the definitions of honest and adaptive confidence intervals
tailored to our framework by following Li (1989) resp. Cai and Low (2004).

Let F =
⋃

s∈S Fs, with S ⊂ R. A family of random intervals
(
[Cn(α),

Cn(α) ]
)
α∈[0,1]

is called

• honest confidence interval for θf if for any α ∈ (0, 1) it holds that

lim inf
n

inf
f∈F

Pf

(
θf ∈ [Cn(α), Cn(α) ]

)
≥ 1− α. (3.5)
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• adaptive confidence interval over the parameter space F if for every s ∈ S
and ε > 0 there exists some constant C = C(α) > 0 depending only on
α ∈ (0, 1) such that

sup
f∈Fs

Pf

(
Cn(α)− Cn(α) ≥ C r̃n(s)

)
≤ ε, (3.6)

where r̃n(s) equals (up to a logarithmic term) the minimax rate of esti-
mation θf over Fs.

It is straightforward to extend the definitions to a bivariate confidence set for
the parameter pair (θf , [f

(γ)]).
Low (1997) and Cai and Low (2004) showed that honest and adaptive point-

wise confidence intervals over Hölder classes do not exist. In the context of
confidence bands, Giné and Nickl (2010) showed that the construction of hon-
est and adaptive confidence bands in density estimation becomes possible by
slightly reducing the function classes.

We shall follow their lead and construct honest and adaptive confidence sets
for the bivariate parameter consisting of location and size of the kink. To this
end, let γ ∈ N and s, s ∈ R+ be such that γ +1 ≤ s < s. Choose integers kmin,n

and kmax,n such that

2−kmin,n ∼=
( log(n)

n

) 1
2s+1

, 2−kmax,n ∼=
( log(n)2

n

) 1
2γ+1

, (3.7)

and set Kn = [kmin,n, kmax,n] ∩ N as well as

hk = 2−k, k ∈ Kn. (3.8)

Definition 3.2. Let k0 ∈ N, 0 < b1 < b2, a, L > 0 and let Θ ⊂ (0, 1) be a
compact set. Then define

F̃ = F̃(s, s, b1, b2, k0, γ, a,Θ, L) =
⋃

s∈[s,s]

F̃s(b1, b2, k0, γ, a,Θ, L), (3.9)

where

F̃s = F̃s(b1, b2, k0, γ, a,Θ, L)

= {f ∈ Fs(γ, a,Θ, L) | b1hs−γ
k ≤ |ψhk,f (θf )| ≤ b2h

s−γ
k ∀k ≥ k0}

(3.10)

and where the kernel of the probe functional in (3.10) satisfies Assumption 2

with parameters γ and l = �s�+ 1. Given f ∈ F̃ let sf be the unique value of s
for which f fulfills the bias condition in (3.10).

For wavelet density estimation over Hölder classes, Giné and Nickl (2010)
show that the minimax rates of estimation remain the same when reducing the
function class in a similar fashion as in (3.9), see also the discussion in Bull
(2012). In our present context, while a general result eludes us, in Section A.5

we show that the minimax rates over F̃s correspond to those over Fs at least
for some values of the smoothness parameter s ∈ [s, s].
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To construct confidence sets, we divide the sample Y1, . . . , Yn into the two
parts S1 = {Y1, Y3 . . . , Yn−1} and S2 = {Y2, Y4, . . . , Yn} if n is even, and simi-
larly if n is odd. In particular, the sizes nj = |Sj | satisfy nj

∼= n for j = 1, 2.
Note that over the subsamples, (1.1) still holds with an equidistant design.

We shall use S2 for selection of the bandwidth parameter h based on Lepski’s
method. For a sufficiently large constant CLep > 0 (specified in the proof of
Lemma 6.8) we let

k̂n = min{k ∈ Kn | |θ̂hk,n2
− θ̂hl,n2

| ≤ CLep

√
log(n2)/n2h

2γ−1
l ∀ l > k, l ∈ Kn}.

(3.11)

A central technical result, Lemma 6.8, states that for a function f ∈ F̃ , hk̂n
is

of order
(
log(n2)/n2

)1/(2sf+1)
with high probability uniformly over f ∈ F̃ .

We then employ undersmoothing, that is we choose the bandwidth for the
estimation of θf as hk̂n+un

, and for the estimation of [f (γ)] as hk̂n+vn
, where we

assume that

un, vn ∈ N, hun
∼= log(n)−

1/(2γ−1) and hvn
∼= log(n)−

1/(2γ+1). (3.12)

Furthermore, let σ̂n1 be an estimate of σ based on the sample S1 which
satisfies

σ̂n1 − σ = oP,F̃
(
1
)
. (3.13)

The estimates in Hall et al. (1990) or Dette et al. (1998) fulfill this assumption.
Consider the estimates

ŵloc =
σ̂n1 ||K(γ+2) ||2√

n1h
2γ−1

k̂n+un
[̂f (γ)]hk̂n

,n1
K(2)(0)

(3.14)

of the asymptotic standard deviation of the kink in (3.3), and

ŵsize =
σ̂n1 ||K(γ+3) ||2√
n1h

2γ+1

k̂n+vn
K(2)(0)

(3.15)

of the asymptotic standard deviation of the size of the kink.
Given α ∈ (0, 1) let qα(W ) denote the α-quantile of W = max{|X1|, |X2|} for

two independent standard normal random variables X1 and X2. Consider the
rectangular confidence region

Cloc
n (α)× Csize

n (α)

for the parameter (θf , [f
(γ)]), where

Cloc
n (α) =

[
θ̂hk̂n+un

,n1 − ŵloc q1−α(W ), θ̂hk̂n+un
,n1 + ŵloc q1−α(W )

]
, (3.16)

Csize
n (α) =

[
[̂f (γ)]hk̂n+vn

,n1
− ŵsize q1−α(W ), [̂f (γ)]hk̂n+vn

,n1
+ ŵsize q1−α(W )

]
.



Adaptive confidence sets for kink estimation 1533

Theorem 3.3. Consider model (1.1) under Assumption 1 and the function

class F̃ in (3.9), and let K be a kernel satisfying Assumption 2 with γ and
l = �s�+ 1. Then for any α ∈ (0, 1),

lim
n→∞

sup
f∈F̃

∣∣∣Pf

(
(θf , [f

(γ)])T ∈ Cloc
n (α)× Csize

n (α)
)
−

(
1− α

)∣∣∣ = 0. (3.17)

Furthermore, there exists a finite constant C > 0 such that

lim
n→∞

sup
f∈F̃

[
Pf

(
ŵloc ≥ C

( log(n)
n

) sf−γ+1

2sf+1
)
+Pf

(
ŵsize ≥ C

( log(n)
n

) sf−γ

2sf+1
)]

= 0.

(3.18)

The proof is provided in Section 6.5.

Remark. 1.Equation (3.17) shows asymptotic honesty of the confidence sets as
defined in (3.5), while the adaptivity of the confidence sets as defined in (3.6)
is covered by (3.18).

2. The choice of the bandwidth (3.11) is only based on the estimate of the
location of the kink, but is then also used for constructing the confidence set of
the size. This is possible since the optimal bandwidth resolution is the same for
both estimates, see Theorem 2.3.

3. Marginal adaptive confidence intervals for either θf or [f (γ)] can be con-
structed in an analogous way (see 4.1).

4. Simulations and real data illustration

In this section we investigate the finite sample properties of the confidence sets
in (3.16) as well as of the following marginal confidence intervals for θf ,

C̃loc
n (α) =

[
θ̂hk̂n+un

,n1 − ŵloc q1−α/2(N(0, 1)), θ̂hk̂n+un
,n1 + ŵloc q1−α/2(N(0, 1))

]
.

(4.1)

The kernel K is chosen as in Section B.1 with γ = 1 and l = 2 so that

K(1)(x) =
8316

832

(
− 1

12
x+

1

3
x3 − 1

2
x5 +

1

3
x7 − 1

12
x9

)
1[−1,1](x). (4.2)

Figure 1 illustrates the first three derivatives of K. Subsection 4.1 gives detailed
numerical illustrations of our methods, while Subsection 4.2 contains a real data
illustration to a series of global surface temperatures. A comparison of marginal
confidence intervals for the kink location with the method of Mallik et al. (2013)
is presented in the appendix, Section B.2.

4.1. Numerical experiments

We consider the following two regression functions

f1(x) = −2(x− θn)1[0,θn](x), θn = 1/2 + 1/3n,
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Figure 1. From left to right: K(1), K(2) and K(3) given by (4.2).

f2(x) = |f̃ (−2)
9/10,7(x− 1/3n)|, f̃c1,c2(x) =

∞∑
k=0

ck1 cos(c
k
2πx)1[0,1](x). (4.3)

Here, f1 has a kink at θn of size [f
(1)
1 ] = −2 with infinite smoothness s outside

the kink. The offset 1/3n is chosen so that the kink is not located on a design
point xk = k/n.

The regression function f2 in (4.3) is defined as the absolute value of the
second anti-derivative of the Weierstraß-function f̃c1,c2 with vanishing affine
linear part. By Hölder continuity of the Weierstraß-function with exponent 0 <

− log(c1)/ log(c2) < 1 we have that s = 2 − log(c1)/ log(c2) as well as [f
(1)
2 ] ≈

9/4.
We use errors ε ∼ SN(ζ, ω, γ), that is a skew normal distribution with shape

parameter α = −3, and choose the location parameter ζ ∈ R and the scale-
parameter ω > 0 so that E[ε] = 0 and E[ε2] = σ2 = 0.22. Figure 2 displays

Figure 2. Left: f1 with noisy observations. Right: f2 with noisy observations. The noise level
is σ = 0.2 and the grid size n = 100 respectively.
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the regression functions together with samples of size n = 100. For the Lepski-
scheme we use a grid inside the intervals [hmin,n, hmax,n] as specified in Table
1, and choose the Lepski-constants in (3.11) as CLep = 0.08 for f1 and as
CLep = 0.001 for f2. Simulations are based on a m = 10000 repetitions. The

Table 1

Choice of [hmin,n, hmax,n] for the first scenario.

n 500 1000 2000 4000 8000
f1 [0.49,0.55] [0.42,0.51] [0.39,0.45] [0.34,0.41] [0.29,0.39]
f2 [0.32,0.35] [0.31,0.34] [0.24,0.28] [0.22,0.26] [0.21,0.25]

noise-level σ2 is estimated by the simple Neumann estimator (Von Neumann,
1941)

σ̂2
n =

1

2(n− 1)

n−1∑
i=1

(Yi+1 − Yi)
2.

First we investigate the accuracy of our estimates in terms of the square roots of
the Mean Squared Error (RMSE) for the sample sizes n ∈ {500, 1000, 2000, 4000,
8000}. The results are summarized in Table 2. As can be expected from the rates
in Theorem 2.3, estimates of the location of the kink are more precise than for
its size. Further, in particular for f2 the estimate of the size converges slowly.

Table 2

RMSE of the kink-location (2.6) resp. kink-size estimate (2.7) based on the Lepski choice
for σ = 0.2.

n 500 1000 2000 4000 8000 true value
θf1 0.0065 0.0003 0.0000 0.0000 0.0000 1/2 + 1/3n

[f
(1)
1 ] 0.6821 0.1780 0.1035 0.0727 0.0529 -2

θf2 0.0004 0.0003 0.0007 0.0002 0.0001 1/2 - 1/3n

[f
(1)
2 ] 2.0778 1.3389 0.8222 0.4695 0.3001 2.25

Next we investigate the confidence sets for the location of the kink, (4.1), as
well as for the joint confidence sets for location and size in (3.16) in terms of
coverage and average length. The results are displayed in Tables 3 and 4. For
the location of the kink in Table 3, coverage is already satisfactory for both
regression functions for a sample of size n = 500. In contrast, for the joint
confidence sets, the coverage is quite below the nominal level for sample sizes
n = 500 and n = 1000, in particular for f2. Moreover, the interval for the size of
the kink is rather wide for these values of the sample size, even including zero.
For larger sample sizes, the performance improves notably.

Finally, we investigate the ratio of the empirical bias and the empirical stan-
dard deviation. In contrast to change point estimation with fixed design, for
kink estimation the discretization bias is asymptotically negligible, which can
also be seen numerically in Table 5. Note that these findings also indicate the
undersmoothing effect of the sequences un and vn.
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Table 3

Average coverage and length of the confidence intervals for the kink-location C̃loc
n in (4.1)

for f1 and f2.

n = 500
90% nominal coverage 95% nominal coverage 99% nominal coverage
coverage length coverage length coverage length

f1 0.86 0.052 0.93 0.062 0.99 0.082
f2 0.86 0.056 0.91 0.067 0.97 0.088

n = 2000
f1 0.89 0.040 0.94 0.048 0.99 0.063
f2 0.89 0.037 0.94 0.044 0.98 0.058

n = 8000
f1 0.90 0.022 0.95 0.027 0.99 0.035
f2 0.90 0.025 0.94 0.029 0.99 0.039

Table 4

Average coverage and marginal lengths of the joint confidence sets for the kink-location and
-size in (3.16) for f1 and f2.

n = 500
90% nominal coverage 95% nominal coverage 99% nominal coverage

coverage length size length kink coverage length size length kink coverage length size length kink
f1 0.69 1.914 0.062 0.91 2.197 0.071 0.99 2.737 0.089
f2 0.70 3.991 0.067 0.79 4.581 0.076 0.92 5.707 0.095

n = 1000
f1 0.88 1.538 0.063 0.93 1.766 0.072 0.98 2.120 0.090
f2 0.67 2.907 0.050 0.77 3.336 0.058 0.90 4.156 0.072

n = 2000
f1 0.89 1.262 0.048 0.94 1.448 0.055 0.99 1.804 0.069
f2 0.79 2.817 0.044 0.87 3.233 0.051 0.95 4.028 0.063

n = 4000
f1 0.89 1.040 0.036 0.95 1.193 0.041 0.99 1.487 0.051
f2 0.85 2.215 0.034 0.91 2.542 0.039 0.98 3.167 0.049

n = 8000
f1 0.89 0.859 0.027 0.94 0.986 0.030 0.99 1.229 0.038
f2 0.88 2.069 0.029 0.94 2.375 0.034 0.98 2.958 0.042

Table 5

Ratios between empirical bias and standard deviation of the estimates θ̂h
k̂n+un

and

[̂f (γ)]h
k̂n+vn

.

n 500 1000 2000 4000 8000
θf1 0.357 0.019 0.003 0.001 0.001

[f
(1)
1 ] 1.241 0.241 0.099 0.070 0.055

θf2 0.021 0.021 0.061 0.022 0.031

[f
(1)
2 ] 1.060 1.149 0.728 0.571 0.312

4.2. Illustration to series of global surface temperature

We illustrate our method in an application to a series of changes in annual
global surface temperature in degree Celsius from 1880 to 2017 relative to the
average temperature for 1951 – 1980, see Figure 3. The series is available at
https://data.giss.nasa.gov/gistemp, where further details on the data are
provided. We used a grid of bandwidths inside the range [0.05, 0.3].

The result are somewhat sensitive to the choice of the Lepski constant CLep

in (3.11). For a value between 0.2 and 0.6, the kink location is around 1984 with
a confidence interval of 11 years length at nominal level 90%, while for larger

https://data.giss.nasa.gov/gistemp
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Figure 3. Smooth line: Smoothed curve of the data points. Dotted lines: Adaptive 95 %
confidence intervals for the global surface temperature data for different choices of the Lepski
constant in (3.11).

than 1.1, the kink location is estimated at 1912, with a confidence interval of 6
years length. Results are summarized in Table 6.

Table 6

Confidence intervals C̃loc
n in (4.1) for different significance levels and choices of the Lepski

constant for the global surface temperature dataset.

CLep 90% 95% 99% [̂f (γ)]h
k̂n+vn

hk̂n

0.2 – 0.6 [1979,1989] [1978,1990] [1977,1991] 6.467 0.100
≥ 1.1 [1909,1914] [1908,1914] [1908,1915] 9.314 0.195

5. Discussion

In this paper we suggest a method to construct confidence intervals for the kink
location and kink size over Hölder classes without requiring a shape restriction
on the regression function as in Mallik et al. (2013). The rate of convergence
derived in this paper is achieved over a more conventional Hölder class which
allows for local higher-order smoothness, in contrast to the nonstandard smooth-
ness class in Goldenshluger et al. (2006) based on integrability of the Fourier
transform.

Recently, there has been quite some work on change point detection and
segmentation methods (Frick et al., 2014; Haynes et al., 2017). Analogous results
for kink detection and corresponding segmentation algorithms would be of quite
some applied interest for example in environmental or pharmacological studies,
in which the function of interest can reveal changes of trend through kinks rather
than jumps.



1538 V. Bengs and H. Holzmann

6. Proofs

We consider model (1.1) and impose the Assumptions 1 and 2 throughout this
section. We shall say that a sequence of events An holds with high probability
uniformly over Fs if

inf
f∈Fs

Pf (An) → 1, n → ∞.

6.1. Properties of the probe functional and first stage estimates

The proofs of the lemmas in this section are provided in Section A.1 in the
appendix. Recall the definition (2.1) of the probe functional ψh,f (t).

Lemma 6.1. If h0 > 0 is such that Θ ⊂ [h0, 1 − h0], then for j = 0, 1, 2 and
for h ∈ (0, h0) it holds that

ψ
(j)
h,f (t) = Lh,j(t) +Of∈Fs,t∈[h,1−h](h

s−γ−j),

Lh,j(t) = (−1)γ+1+j h−j [f (γ)]K(1+j)
(
(θf−t)/h

)
.

(6.1)

Moreover, the constant in the O-term depends only on the kernel K, parameter
L and s from Fs = Fs(γ, a,Θ, L), and this constant can be chosen uniformly
over a bounded range of values of s.

Proof of Lemma 2.2. We have for Lh,0(t) in (6.1) that due to Assumption 2, (iv),

|Lh,0(t
∗)| = |Lh,0(t∗)| =

∣∣[f (γ)]
∣∣∣∣K(1)(−q∗)

∣∣ > 0,

where [f (γ)] > 0 is as in Assumption 2.1, and that Lh,0(t
∗) and Lh,0(t∗) are

of opposite signs since K(1) is odd by Assumption 2, (ii). Therefore, from
(6.1) we have for sufficiently small h0 > 0, depending only on K,L and Θ,
that min{|ψh,f (t

∗)|, |ψh,f (t∗)|} > 0 and ψh,f (t
∗) and ψh,f (t∗) are of opposite

signs as well. The assertion follows from the continuity of the probe functional
ψh,f (t).

Next, we bound the deviation of the empirical probe functional from its
population counterpart as well as for their derivatives.

Lemma 6.2. For the probe functional (2.1) and its empirical version (2.2),
there exists h0 > 0 such that for any h ∈ (0, h0) and n ∈ N we have for
j = 0, 1, 2 that

(i) Ef [ψ̂
(j)
h,n(t)] = ψ

(j)
h,f (t) +Of∈Fs,t∈[0,1]

(
(nhγ+1+j)−1

)
, t ∈ [0, 1],

(ii) supt∈[0,1]

∣∣ψ̂(j)
h,n(t)− Ef [ψ̂

(j)
h,n(t)]

∣∣ = OP,Fs

((
log(1/h)

nh2(γ+j)+1

)1/2)
.

Consequently, for j = 0, 1, 2 we have for any h ∈ (0, h0) and n ∈ N that

sup
t∈[0,1]

|ψ̂(j)
h,n(t)− ψ

(j)
h,f (t)| = OP,Fs

(( log(1/h)

nh2(γ+j)+1

)1/2)
. (6.2)

The constants in the O-terms and the constant h0 depend only on the kernel K,
the parameter σg in Definition 1 as well as on the Lipschitz constant L of Fs
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as in Definition 2.1.

The discretization error contained in the remainder term in the lemma thus
has the rate (nhγ+1+j)−1 uniformly in f ∈ Fs and t ∈ [0, 1]. Finally, we bound
the variance of the empirical probe functional and its derivatives.

Lemma 6.3. For j = 0, 1, 2 we have that for h ∈ (0, h0) and t ∈ [h, 1− h] that

Varf (ψ̂
(j)
h,n(t)) = n−1h−2(γ+j)−1σ2||K(γ+2+j) ||22 +Of∈Fs,t∈[0,1]

(
(nhγ+j+1)−2

)
.

The constant in the O-term depends only on the kernel K and on the Lipschitz
constant L.

Next we further investigate the first stage of the zero-crossing-time-technique.

Lemma 6.4. There exist finite constants h0, C > 0 depending on K,σ, σg as
well as on L,Θ and s of Fs, such that if h ∈ (0, h0) and n are such that
nh2γ+1 ≥ C log(1/h), then

1. with high probability, uniformly in f ∈ Fs there exists a ξ ∈ [t̂∗, t̂
∗] such

that ψ̂h,n(ξ) = 0,
2. we have that |t̂∗ − t̂∗| = OP,Fs(h),
3. with high probability, uniformly in f ∈ Fs, we have that θf ∈ [t̂∗, t̂

∗].

Moreover, C can be chosen uniformly over a bounded range of values of s, while
h0 is independent of s.

6.2. Rates of convergence: Proof of Theorem 2.3

In the following we shall restrict to the event that ψ̂h,n(θ̂h,n) = 0, which by
Lemma 6.4 is fulfilled with high probability uniformly over Fs. By Taylor ex-
pansion of ψ̂h,n at θf we have that

0 = ψ̂h,n(θ̂h,n) = ψ̂h,n(θf ) + (θ̂h,n − θf )ψ̂
(1)
h,n(θ̈),

where θ̈ = ρθf + (1 − ρ)θ̂h,n for ρ ∈ [0, 1] is some (random) value between θf
and θ̂h,n, so that

θ̂h,n − θf = − h ψ̂h,n(θf )

h ψ̂
(1)
h,n(θ̈)

. (6.3)

Asymptotics of the scale terms

The following lemma establishes the asymptotic behavior of the denominator in
(6.3).

Lemma 6.5. Under the assumptions of Theorem 2.3, one has

|h ψ̂(1)
h,n(θ̈)− (−1)γ+2[f (γ)]K(2)(0)| = oP,Fs(1).
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The proof is given in Section A.2.

Proof of Theorem 2.3. Convergence rate for the location of the kink
To prove the statement for θ̂h,n, consider the right side equation in (6.3).

Since K(2) �= 0, Lemma 6.5 implies that the denominator equals a constant
unequal zero and a term of order oP,Fs(1), uniformly over Fs. For the numerator,

write ψ̂h,n(θf ) = ψ̂h,n(θf )− Ef [ψ̂h,n(θf )] + Ef [ψ̂h,n(θf )]. Then, Lemma 6.2, (i)
in combination with representation (6.1) for j = 0 in Lemma 6.1 yield for a
suitable choice of h0 (depending only on K,σg and L) that

Ef [ψ̂h,n(θf )] = OFs(h
s−γ) +OFs

(
(nhγ+1)−1

)
,

since K(1)(0) = 0 due to Assumption 2, (ii). Further, Lemma 6.3 and Cheby-

chev’s inequality imply ψ̂h,n(θf )−Ef [ψ̂h,n(θf )] = OP,Fs

(
(nh2γ+1)−1/2

)
. Hence,

h ψ̂h,n(θf )

h ψ̂
(1)
h,n(θ̈)

= OP,Fs(h
s−γ+1) +OP,Fs((nh

2γ−1)−1/2),

which yields the assertion for θ̂h,n. Note that the constants in the O-terms de-
pend only onK,σg, L as well as s and these constants can be chosen continuously
in s, see Lemmas 6.1, 6.2 and 6.3.

Convergence rate of the size of the kink

By Taylor expansion of ψ̂
(1)
h,n in (2.7) around θf ,

[̂f (γ)]h,n = h

(
ψ̂
(1)
h,n(θf ) + ψ̂

(2)
h,n(θ̀)(θ̂h,n − θf )

)
(−1)γ+2K(2)(0)

, (6.4)

where θ̀ is some value between θf and θ̂h,n. It follows from (6.1) for j = 1 that

[f (γ)] = (−1)γ+2 h
ψ
(1)
h,f (θf )

K(2)(0)
+OFs(h

s−γ). (6.5)

Subtracting this from (6.4) leads to

(
[̂f (γ)]h,n−[f (γ)]

)
=

h
(
ψ̂
(1)
h,n(θf )−ψ

(1)
h,f (θf )

)
(−1)γ+2K(2)(0)

+
h ψ̂

(2)
h,n(θ̀) (θ̂h,n−θf )

(−1)γ+2K(2)(0)
+OFs(h

s−γ).

(6.6)

Now, Chebychev’s inequality and Lemma 6.3 for j = 1 yield

h
(
ψ̂
(1)
h,n(θf )− Ef [ψ̂

(1)
h,n(θf )]

)
= OP,Fs((nh

2γ+1)−
1/2).

Further, by Lemma 6.2, (i), for j = 1 (for a suitable choice of h0 depending if
necessary on K and σg) derive

h
(
Ef [ψ̂

(1)
h,n(θf )]− ψ

(1)
h,f (θf )

)
= OFs((nh

γ+1)−1),
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such that the first term on the right-hand side in (6.6) is of order
OFs((nh

2γ+1)−1/2).
Concerning the second term, the convergence rate (2.9) of the location of

the kink together with h ψ̂
(2)
h,n(θ̀) = oP,Fs(1) (from Lemma A.6 as K(3)(0) = 0

by Assumption 2, (ii), and |θ̀ − θf | = oP,Fs(h) by Lemma A.4) yield the rate
oP,Fs(h

s−γ+1) + oP,Fs((nh
2γ−1)−1/2). In summary we obtain that∣∣[̂f (γ)]h,n − [f (γ)]
∣∣ = OP,Fs((nh

2γ+1)−
1/2) +OP,Fs(h

s−γ).

Note that the constants in the O-terms depend only on K,σg, L and on s and
these constants can be chosen uniformly over a bounded range of values of s,
see Lemmas 6.1, 6.2 and 6.3.

6.3. Lower bounds: Proof of Theorem 2.4

Proof of Theorem 2.4. We shall use the method of two hypothesis, see Theorem
2.2 in Tsybakov (2009). Fix some θ0 ∈ int (Θ), and introduce the function

Rγ(x; a) =
a

γ!
(x− θ0)

γ1[θ0,1](x). (6.7)

Let us start with (2.11). We set f0(x) = Rγ(x; a) for x ∈ [0, 1]. As f
(γ−1)
0 (x) =

a(x − θ0)1[θ0,1](x) we have that f0 ∈ Fs(γ, a,Θ, L) for any values of s ≥ γ + 1
and L ≥ 0.

As for the sequence of alternative hypotheses, let θ1 = θ0 + rn ∈ Θ, where
rn ↓ 0 will be chosen below, and consider

f1 = f0 − (v0 − vn), (6.8)

where

v0(x)=
a

γ!
(x−θ0)

γ 1[θ0,θ1](x)+a
( (θ1−θ0)

γ

γ!
+
(θ1−θ0)(x−θ1)

γ−1

(γ−1)!

)
1(θ1,1](x),

(6.9)

and

vn(x) =
1

bn

∫
v0(y)Φ

(x− y

bn

)
dy =

1

bn

∫
v0(x− y)Φ

(
y/bn

)
dy. (6.10)

Here, Φ is a smooth kernel of order γ with support [−1, 1] (Tsybakov, 2009,
p. 5), the sequence bn ↓ 0 remains to be selected, and in (6.10) we extend the
definition of v0 from (θ1, 1] to (θ1, 1+ bn]. We check the conditions (i) and (iia)
or (iib) in Definition 2.1 for f1.

(i). We have that

(f0 − v0)
(γ−1)(x) = a (x− θ1)1(θ1,1](x).
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Hence, (f0−v0)
(γ−1) ∈ C1({θ1}c) and as vn ∈ C∞ it follows that f1 ∈ C1({θ1}c).

Apparently, (f0 − v0)
(γ)(x) = a 1(θ1,1](x) and therefore [f

(γ)
1 ](θ1) = a.

(iia) or (iib). We have (f0 − v0)
(γ) ∈ Lip({θ1}c, 0) ⊂ Lip({θ1}c, L/2) if

s = γ+1 as well as [(f0−v0)
(γ+1)](θ1) = 0 and gf0−v0,γ ∈ Hs−(γ+1)([0, 1], L/2),

provided s > γ+1. Turning to νn, by differentiating �s�-times under the integral
in (6.10) we obtain∣∣v(�s�)n (x)− v(�s�)n (z)

∣∣
=

1

b
�s�−(γ−1)+1
n

∣∣∣ ∫ v
(γ−1)
0 (y)

[
Φ(�s�−(γ−1))(x− y

bn

)
− Φ(�s�−(γ−1))( z − y

bn

)]
dy

∣∣∣
=

1

b
�s�−γ+1
n

∣∣∣ ∫ v
(γ−1)
0 (bn u)

[
Φ(�s�−(γ−1))( x

bn
− u

)
− Φ(�s�−(γ−1))( z

bn
− u

)]
du

∣∣∣.
(6.11)

Now, we have that

|v(γ−1)
0 (x)| =

∣∣a (x− θ0) 1[θ0,θ1](x) + a (θ1 − θ0) 1(θ1,1](x)
∣∣ ≤ rn, (6.12)

as well as∣∣∣Φ(�s�−(γ−1))
( x

bn
− u

)
− Φ(�s�−(γ−1))

( z

bn
− u

)∣∣∣ ≤ const. · |x− z|s−�s�

b
s−�s�
n

(6.13)

for any u. Since the integral in (6.11) ranges at most over two intervals of length
at most 2 by the support of Φ, it follows that∣∣v(�s�)n (x)− v(�s�)n (z)

∣∣ ≤ const. · |x− z|s−�s� rn b
−(s−γ+1)
n .

Hence by choosing
rn ∼= bs−γ+1

n (6.14)

we obtain that v
(γ)
n ∈ Lip({∅}c, L/2) if s = γ + 1 or vn ∈ Hs([0, 1], L/2) if

s > γ + 1, so that f1 ∈ Fs(γ, a,Θ, L).
Concerning the Kullback-Leibler divergence, note that the distribution Pj of

Y1, . . . , Yn with respect to fj has the density

pj(y1, . . . , yn) =

n∏
i=1

ϕσ(yi − fj(xi)), j = 0, 1,

with respect to the Lebesgue measure on Rn. Here ϕσ denotes the normal density
with standard deviation σ > 0. Thus, the Kullback-Leibler divergence is given
by

K(P0, P1) =

n∑
i=1

∫
log

(
ϕσ(y − f0(xi))

ϕσ(y − f1(xi))

)
ϕσ(y − f0(xi)) dy

=
1

2σ2

n∑
i=1

(f0(xi)− f1(xi))
2 =

1

2σ2

n∑
i=1

(ν0(xi)− νn(xi))
2.

(6.15)
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Since v0 is a polynomial of degree ≤ γ away from θ0 and θ1, and since the
kernel Φ of order γ reproduces polynomials of degree≤ γ , we have vn(x) = v0(x)
outside of bn-neighborhoods of θ0 and θ1. Inside these neighborhoods, which
contain of the order nbn points, using Taylor-expansion up to order γ − 1 and
(6.12) yields (Tsybakov, 2009, p. 6)

|| vn − v0 ||∞ ≤ const. · rn bγ−1
n ,

so that
n∑

i=1

(ν0(xi)− νn(xi))
2 ≤ const. · n bn r

2
n b

2γ−2
n

∼= n b2s+1
n

under the choice (6.14). Choosing bn ∼= n−1/(2s+1), Theorem 2.2 in Tsybakov
(2009) implies that the minimax lower bound over the functional class Fs is of
order rn ∼= bs−γ+1

n
∼= n−(s−γ+1)/(2s+1).

Next, we verify (2.12). Let a1 > a be such that a1−a = r̃n ↓ 0, which remains
to be specified. As hypotheses functions we set

f0(x) = Rγ(x; a), f1(x) = Rγ(x; a1)− ṽn,

where

ṽn(x) =
1

bn

∫ [
Rγ(y; a1 − a)

]
Φ
(x− y

bn

)
dy =

1

bn

∫ [
Rγ(x− y; a1 − a)

]
Φ
( y

bn

)
dy,

and Φ is, as above, a smooth kernel of order γ with support [−1, 1], bn ↓ 0 and
we extend the definition of Rγ(y; a1 − a) to [θ0, 1 + bn]. Then

|ṽ(�s�)n (x)− ṽ(�s�)n (z)|

=
1

b
�s�−γ+1
n

∣∣∣ ∫ R(γ)
γ (y; a1 − a)

[
Φ(�s�−γ)

(x− y

bn

)
− Φ(�s�−γ)

(z − y

bn

)]
dy

∣∣∣
≤ a1 − a

b
�s�−γ+1
n

∫ ∣∣∣Φ(�s�−γ)
(x− y

bn

)
− Φ(�s�−γ)

(z − y

bn

)∣∣∣dy
≤ r̃n

b
�s�−γ
n

∫ ∣∣∣Φ(�s�−γ)
( x

bn
− u

)
− Φ(�s�−γ)

( z

bn
− u

)∣∣∣du
≤ const. · |x− z|s−�s�r̃n b

−(s−γ)
n

by using (6.13) in the last step, which implies that f1 ∈ Fs(γ, a,Θ, L) under the
choice

r̃n ∼= bs−γ
n . (6.16)

Outside of a bn neighborhood of θ0 we have Rγ(x; a1−a) = ṽn(x). By Taylor-
expansion up to order γ−1, using the Lipschitz continuity of Rγ(x; a1−a)(γ−1)

with Lipschitz constant a1 − a = r̃n we obtain that∣∣Rγ(x; a1 − a)− ṽn(x)
∣∣ ≤ const. · r̃n bγn.

Hence, the Kullback-Leibler divergence between P1 and P0 is of order

K(P0, P1) ∼= n bn r̃
2
n b

2 γ
n

∼= nb2s+1
n

under the choice (6.16). Inserting bn ∼= n−1/(2s+1) in (6.16) gives the result.
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6.4. Asymptotic normality: Proof of Theorem 3.1

By Taylor expansion of ψh,f at θf , 0 = ψh,f (θ̃h,f ) = ψh,f (θf )+(θ̃h,f−θf )ψ
(1)
h,f (θ̌),

for some θ̌ on the line between θf and θ̃h,f , so that

θ̃h,f − θf = − hψh,f (θf )

hψ
(1)
h,f (θ̌)

. (6.17)

Subtracting this from (6.3) and dividing by w̃loc
n (h) as defined in (3.3), we get

that

θ̂h,n − θ̃h,f
w̃loc

n (h)
=

[f (γ)]K(2)(0)

h ψ̂
(1)
h,n(θ̈)

Ŝ1(h, n) +R1(h, n), (6.18)

where

Ŝ1(h, n) :=

√
nh2γ+1 (ψh,f (θf )− ψ̂h,n(θf ))

σ ||K(γ+2) ||2
(6.19)

and

R1(h, n) :=
h [ψ̂

(1)
h,n(θ̈)− ψ

(1)
h,f (θ̌)]

√
nh2γ+1 ψh,f (θf )

h2 ψ̂
(1)
h,n(θ̈)ψ

(1)
h,f (θ̌)

· [f
(γ)]K(2)(0)

σ ||K(γ+2) ||2
. (6.20)

By Taylor expansion of ψ
(1)
h,f in (2.8) at θf ,

[̃f (γ)]h = h

(
ψ
(1)
h,f (θf ) + ψ

(2)
h,f (θ̄)(θ̃h,f − θf )

)
(−1)γ+2K(2)(0)

, (6.21)

where θ̄ is between θ̃h,f and θf . Subtracting (6.21) from (6.4) and dividing by
w̃size

n (h) leads to

[̂f (γ)]h,n − [̃f (γ)]h
w̃size

n (h)
= Ŝ2(h, n) +R2(h, n), (6.22)

where due to definition of w̃size
n in (3.3) we have

Ŝ2(h, n) :=

√
nh2γ+3

(
ψ̂
(1)
h,n(θf )− ψ

(1)
h,f (θf )

)
(−1)γ+2 σ ||Kγ+3 ||2

(6.23)

and

R2(h, n) :=
h2 ψ̂

(2)
h,n(θ̀)

√
nh2γ−1 (θ̂h,n − θf )

(−1)γ+2 σ ||Kγ+3 ||2
−

h2 ψ
(2)
h,f (θ̄)

√
nh2γ−1 (θ̃h,f − θf )

(−1)γ+2 σ ||Kγ+3 ||2
.

(6.24)

The following lemma shows the negligibility of the remainder terms in (6.20)
resp. (6.24).
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Lemma 6.6. Under the assumptions of Theorem 3.1, it holds

max{|R1(h, n)|, |R2(h, n)|} = oP,Fs(1).

The next lemma shows the joint asymptotic normality of the scores in (6.19)
and (6.23).

Lemma 6.7. Suppose the assumptions of Theorem 3.1 are fulfilled. Then, for
any x ∈ R2

sup
f∈Fs

∣∣∣Pf

((
Ŝ1(h, n) , Ŝ2(h, n)

)T ≤ x
)
− Φ(x)

∣∣∣ = o(1).

The proofs of the lemmas are provided in Section A.2.

Proof of Theorem 3.1. Deduce from Lemma 6.5 that∣∣∣ [f (γ)]2 K(2)(0)2

h2 ψ̂
(1)
h,n(θ̈)

2
− 1

∣∣∣ = oP,Fs(1).

By combining Lemma 6.7 with the uniform Slutzky Theorem D.3 in Section D
we obtain that for x ∈ R2,

sup
f∈Fs

|Pf

((
[f(γ)]K(2)(0)/h ψ̂

(1)
h,n(θ̈) Ŝ1(h, n) , Ŝ2(h, n)

)T ≤ x
)
− Φ(x)| = o(1).

With this, we conclude the proof in view of (6.18) and (6.22), Lemma 6.6 and
the uniform Slutzky theorem D.3.

6.5. Adaptive confidence sets: Proof of Theorem 3.3

From the first term in the expansion (6.3) and in Lemma 6.5, the condition for

f ∈ F̃s in (3.10) can be written as a bias condition

b̃1 h
s−(γ−1)
k ≤ |θ̃hk,f − θf | ≤ b̃2 h

s−(γ−1)
k ∀ k ≥ k0, (6.25)

where for appropriate constants Cb1 > 0 and 0 < Cb2 < aK(2)(0) we set

b̃1 =
b1∣∣[f (γ)]

∣∣K(2)(0) + Cb1

and b̃2 =
b2∣∣[f (γ)]

∣∣K(2)(0)− Cb2

. (6.26)

Recall the definitions of Kn resp. hk in (3.7) resp. (3.8) and introduce for
s ∈ [s, s]

B(k, s) = b̃2h
s−(γ−1)
k = b̃22

−k(s−γ+1), σ(n, k) =
√

k/(nh2γ−1
k ) =

√
2k(2γ−1)k/n,

as well as
k∗n(s) = min{k ∈ Kn |B(k, s) ≤ CLepσ(n2,k)/8}.

The next key lemma shows that hk∗
n(s)

is of optimal order and that under f ∈ F̃ ,

k∗n(sf ) is essentially selected by the Lepski choice k̂n.
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Lemma 6.8. We have that

hk∗
n(s)

∼=
(
log(n2)/n2

)1/(2s+1)
. (6.27)

If CLep > 0 is chosen large enough depending only on K,σ, σg as well as on L

and Θ of F̃ and if n is sufficiently large such that k∗n(s) ≥ 2 then there exists a
ρ ∈ N depending only on b1, b2, s and on CLep such that

sup
f∈F̃

Pf (k̂n /∈ [k∗n(sf )− ρ, k∗n(sf )]) = o(1),

where sf is given in Definition 3.2.

The proof of the lemma is deferred to the appendix, Section A.4.

Adaptive coverage: Proof of (3.17)

Lemma 6.9. Let ρ be as in Lemma 6.8. Then we have that

lim
n→∞

sup
f∈F̃

max
j∈{0,...,ρ}

∣∣∣Pf

(
max

[∣∣∣ θ̂hk∗−j+un
,n1 − θ̃hk∗−j+un

,n1

w̃loc
n1

(hk∗−j+un)

∣∣∣,
∣∣∣ [̂f (γ)]hk∗−j+vn

− [̃f (γ)]hk∗−j+vn

w̃size
n1

(hk∗−j+vn)

∣∣∣]≤q1−α(W )
)
−

(
1− α

)∣∣∣=0,

where we abbreviate k∗ = k∗n(sf ), and w̃loc
n1

(h) and w̃size
n1

(h) are defined in (3.3).

Proof of Lemma 6.9. In the proof we write n for n1 as only the subsample S1

is involved. Given s ∈ [s, s] consider f ∈ F̃s, so that k∗ = k∗n(s). To show that
the sequences hk∗−j+un and hk∗−j+vn , j ∈ {0, . . . , ρ}, satisfy the bandwidth
conditions of Theorem 3.1 in (3.1) it suffices to consider j = 0. Then

hk∗+un = hk∗ hun
∼= hk∗ log(n)−

1/2γ−1 ∼= log(n)ζ/n1/(2s+1),

ζ = −2(s+1−γ)/(2s+1)(2γ−1) < 0, (6.28)

due to choice of un in (3.12) and the expansion (6.27) of hk∗ , both of which hold
true in terms of n (that is n1). Therefore

nh4s−2γ+1
k∗+un

∼= log(n)(4s−2γ+1) ζ n−2(s−γ)/(2s+1) → 0,

since s ≥ s ≥ γ + 1, which is the first part of (3.1), and similarly,

nh2γ+1
k∗+un

∼= log(n)(2γ+1) ζ n
2(s−γ)/(2s+1) → ∞,

the second part of (3.1). Passing from un to vn only changes the value of ζ,
which is not relevant in the above analysis.

The lemma then follows from Theorem 3.1 together with the uniform contin-
uous mapping theorem, Theorem D.1 in Section D.
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We shall denote

ŵloc
k =

σ̂n1 ||K(γ+2) ||2√
n1h

2γ−1
k+un

[̂f (γ)]hk,n1
K(2)(0)

, ŵsize
k =

σ̂n1 ||K(γ+3) ||2√
n1h

2γ+1
k+vn

K(2)(0)
.

compare to ŵloc in (3.14) and ŵsize in (3.15), and similarly

w̃loc
k = w̃loc

n1
(hk+un), w̃size

k = w̃size
n1

(hk+vn). (6.29)

Lemma 6.10. Let ρ be as in Lemma 6.8. Then we have for each j ∈ {0, . . . , ρ}
that

θ̂hk∗−j+un
,n1 − θf

ŵloc
k∗−j

−
θ̂hk∗−j+un

,n1 − θ̃hk∗−j+un
,n1

w̃loc
k∗−j

= oP,F̃ (1),

and

[̂f (γ)]hk∗−j+vn
,n1

− [f (γ)]

ŵsize
k∗−j

−
[̂f (γ)]hk∗−j+vn

− [̃f (γ)]hk∗−j+vn

w̃size
k∗−j

= oP,F̃ (1),

where again we abbreviate k∗ = k∗n(sf ).

Proof of Lemma 6.10. Given s ∈ [s, s] consider f ∈ F̃s, so that k∗ = k∗n(s). It
will suffice to consider j = 0. Then

θ̂hk∗+un ,n1 − θf

ŵloc
k∗

−
θ̂hk∗+un ,n1 − θ̃hk∗+un ,n1

w̃loc
k∗

=
(
θ̂hk∗+un ,n1 − θf

) ( 1

ŵloc
k∗

− 1

w̃loc
k∗

)
+

θ̃hk∗+un ,n1 − θf

w̃loc
k∗

.

For the second term, from the definition of w̃loc
k∗ in (6.29) and (3.3) and from

(3.4), (
w̃loc

k∗
)−1 (

θ̃hk∗+un ,n1 − θf
)
= OF̃s

(√
nh

γ−1/2
k∗+un

)
OF̃s

(
hs−γ+1
k∗+un

)
= OF̃s

(
(logn)

−(s+1−γ)/(2γ−1)
)
,

where we inserted (6.28) in the last step. For the first term, since (6.28) implies
undersmoothing, from (2.9) in Theorem 2.3

θ̂hk∗+un ,n1 − θf = OP,F̃s

(
(
√
nh

γ−1/2
k∗+un

)−1
)
,

and therefore

(
θ̂hk∗+un ,n1 − θf

) ( 1

ŵloc
k∗

− 1

w̃loc
k∗

)
= OP,F̃s

(1)
( [̂f (γ)]hk∗ ,n1

σ̂n1

− [f (γ)]

σ

)
= oP,F̃s

(1)
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by using Theorem 2.3, (2.10), the Assumption (3.13) on σ̂n1 together with the
triangle inequality. This proves the first part of the lemma. For the second, we
note that

hk∗+vn
∼= log(n)η/n1/(2s+1), η = −2(s−γ)/(2s+1)(2γ+1) < 0 (6.30)

is still an undersmoothing bandwidth. The argument then proceeds analogously.

Proof of (3.17). Let ρ be as in Lemma 6.8, and given s ∈ [s, s] consider f ∈ F̃s,
and let k∗ = k∗n(s). Then from the definition of the confidence sets in (3.16) and
Lemma 6.8,

Pf

(
(θf , [f

(γ)])T ∈ Cloc
n (α)× Csize

n (α)
)

=
∑

k∗−ρ≤k≤k∗
Pf

(
max

[∣∣∣ θ̂hk+un ,n1
− θf

ŵloc
k

∣∣∣, ∣∣∣ [̂f (γ)]hk+vn ,n1
− [f (γ)]

ŵsize
k

∣∣∣]
≤ q1−α(W ) , {k̂n = k}

)
+ o

P,F̃s
(1)

=
∑

k∗−ρ≤k≤k∗
Pf

(
max

[∣∣∣ θ̂hk+un ,n1
− θ̃hk+un ,n1

w̃loc
k

∣∣∣, ∣∣∣ [̂f (γ)]hk+vn ,n1
− [̃f (γ)]hk+vn

w̃size
k

∣∣∣]
≤ q1−α(W ) , {k̂n = k}

)
+ o

P,F̃s
(1)

=
∑

k∗−ρ≤k≤k∗
Pf

(
max

[∣∣∣ θ̂hk+un ,n1
− θ̃hk+un ,n1

w̃loc
k

∣∣∣, ∣∣∣ [̂f (γ)]hk+vn ,n1
− [̃f (γ)]hk+vn

w̃size
k

∣∣∣]
≤ q1−α(W )

)
Pf (k̂n = k) + o

P,F̃s
(1),

where the second step follows from Lemma 6.10 and the final step from sample splitting and
the independence of the subsamples. The claim then follows from Lemma 6.9. This concludes
the proof of (3.17).

Adaptive length: Proof of (3.18).

From the definition of ŵloc in (3.14) and of ŵsize in (3.15) and the consistency

of [̂f (γ)]hk̂n
,n1

, it suffices to show that there exists a constant C̃ > 0 such that

lim
n→∞

sup
f∈F̃

Pf

(
1/

√
nh2γ−1

k̂n+un
≥ C̃

(
log(n)/n

)(sf−γ+1)/(2sf+1)
)
= 0,

lim
n→∞

sup
f∈F̃

Pf

(
1/

√
nh2γ+1

k̂n+vn
≥ C̃

(
log(n)/n

)(sf−γ)/(2sf+1)
)
= 0.

(6.31)

As for the first display, consider s ∈ [s, s] and f ∈ F̃s and set k∗ = k∗(s). From
(6.28),

1/
√

nh2γ−1
k∗+un

≤ C̃1

(
log(n)/n

)(s−γ+1)/(2s+1)
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for some constant C̃1.

Moreover, from Lemma 6.8 for some C̃2,

lim
n→∞

sup
f∈F̃s

Pf

(
1/

√
nh2γ−1

k̂n+un
≥ C̃2

1/
√

nh2γ−1
k∗+un

)
= 0.

This implies the first display in (6.31) with C̃ = C̃2 C̃1. As for the second, from
(6.30) there is a C̃3 such that

1/
√

nh2γ+1
k∗+vn

≤ C̃3

(
log(n)/n

)(s−γ)/(2s+1)

and a C̃4 such that

lim
n→∞

sup
f∈F̃s

Pf

(
1/

√
nh2γ+1

k̂n+vn
≥ C̃4

1/
√

nh2γ+1
k∗+vn

)
= 0.

The second display is then clear for C̃ = C̃3 C̃4.

Appendix A: Additional technical results

A.1. Proofs for Section 6.1 and additional auxiliary results

Proof of Lemma 6.1. Let h0 be as in the assumption and h ∈ (0, h0). Given
t ∈ [h, 1− h] let τ = (θf − t)/h. By differentiation under the integral, substitu-
tion, γ times integration by parts (note that f (γ) is absolutely continuous) and
Assumption 2, (i), for m = 2 + j, . . . , γ + 1 + j we obtain that

ψ
(j)
h,f (t) = (−1)jh−(γ+1+j)

∫
[0,1]

f(x)K(γ+2+j)(h−1(x− t)) dx

= (−1)γ+j h−j

∫
[−1,1]

f (γ)(t+ xh)K(2+j)(x) dx

= (−1)γ+j h−j

∫ τ

−1

f (γ)(t+ xh)K(2+j)(x) dx

+ (−1)γ+j

∫ 1

τ

f (γ)(t+ xh)K(2+j)(x) dx.

Further, since K(1+j)(−1) = K(1+j)(1) = 0 by Assumption 2, (i), we have that

(−1)γ+jf (γ)(θf−)

∫ τ

−1

K(2+j)(x)dx+ (−1)γ+jf (γ)(θf+)

∫ 1

τ

K(2+j)(x)dx

= (−1)γ+jK(1+j)(τ)
[
f (γ)(θf−)− f (γ)(θf+)

]
= (−1)γ+1+j [f (γ)]K(1+j)(τ).
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Thus,

ψ
(j)
h,f (t) = (−1)γ+1+j h−j [f (γ)]K(1+j)(τ)

+ (−1)γ+j h−j

∫ τ

−1

(f (γ)(t+ xh)− f (γ)(θf−))K(2+j)(x) dx

+ (−1)γ+j h−j

∫ 1

τ

(f (γ)(t+ xh)− f (γ)(θf+))K(2+j)(x) dx

=: (−1)γ+1+j h−j [f (γ)]K(1+j)(τ) + Jh,j(t).

Note that if x ∈ (−1, τ) then t + xh < θf and if x ∈ (τ, 1) then t + xh > θf .
Hence if s − (γ + 1) = 0, from the Lipschitz continuity of f (γ) outside θf we
directly obtain that |Jh,j(t)| = Of∈Fs,t∈[h,1−h](h

s−γ−j). If s− (γ +1) > 0, then

by integration by parts, K(1+j)(−1) = K(1+j)(1) = 0 and the definition of gf,γ
we obtain

Jh,j(t) = (−1)γ+1+j h1−j

∫ 1

−1

gf,γ(t+ xh)K(1+j)(x) dx

= (−1)γ+1+j h1−j

∫ 1

−1

(
gf,γ(t+ xh)− gf,γ(t)

)
K(1+j)(x) dx,

where in the second step we used that
∫ 1

−1
K(1+j) = 0. For j = 0 and j = 2

this follows since K(1) and K(3) are odd functions, for K(2) since
∫ 1

−1
K(2) =

2K(1)(1) = 0. If 0 < s− (γ + 1) ≤ 1 we can directly use the uniform Lipschitz
continuity of gf,γ to get |Jh,j(t)| = Of∈Fs,t∈[h,1−h](h

s−γ−j). If s− (γ + 1) > 1,
first note that by integration by parts and Assumption 2, (i) and (iii) we also
have ∫ 1

−1

xkK(1+j)(x)dx = 0, for k = 1, . . . , l − γ − 1 + j. (A.1)

Thus, by using Taylor expansion of gf,γ around t and (A.1), we also obtain that
by Hölder-smoothness of gf,γ ,

|Jh,j(t)| = Of∈Fs,t∈[h,1−h](h
s−γ−j).

Note that all the constants in the O-terms depend only on K, L as well as on
s, where the constants are continuous in s, due to the remaining term in the
Taylor expansion.

Proof of Lemma 6.2. (i). It holds for t ∈ [0, 1] that

Ef [ψ̂
(j)
h,n(t)] = n−1h−(γ+1+j)

n∑
i=1

f(xi)K
(γ+2+j)(h−1(xi − t))

= h−(γ+1+j)

∫
f(x)K(γ+2+j)(h−1(x− t)) dx+Rn(t, h),
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where Rn(t, h) is an error term of order Of∈Fs,t∈[0,1]

(
(nhγ+1+j)−1

)
, due to

Riemann-sum approximation. Indeed, let B(n, h) denote the index set for which
the sum in the latter display is not zero. Due to the equidistant design in model
(1.1) and the support of K in Assumption 2 it holds that |B(n, h)| ≤ 2nh. Let
Ai = [xi−1, xi) for i = {1, . . . , n− 1}, where x0 = 0 and An = [xn−1, xn], then

Rn(t, h)

≤ n−1h−(γ+1+j)
∑

i∈B(n,h)

| sup
z1∈Ai

f(z1)K
(γ+2+j)(h−1(z1 − t))

− inf
z2∈Ai

f(z2)K
(γ+2+j)(h−1(z2 − t))|

≤ 4n−1h−(γ+1+j)CL,K ,

where CL,K > 0 is the Lipschitz constant of the product of f and K(γ+2+j)

which, by definition of Fs, can be chosen uniformly in f ∈ Fs and depending
only on K and L, which concludes (i).

(ii). Consider

√
nh2(γ+i)+1

(
ψ̂
(j)
h,n(t)− Ef

[
ψ̂
(j)
h,n(t)

])
= (nh)−1/2

n∑
i=1

εiK
(γ+2+j)

(
h−1(xi − t)

)
.

Then Lemma C.3 in Section C implies that there is a constant C > 0 depending
only on K and σg such that

Ef

[
sup

t∈[0,1]

∣∣ψ̂(j)
h,n(t)− Ef [ψ̂

(j)
h,n(t)]

∣∣] ≤ C
√

log(1/h)/
√
nh2(γ+i)+1,

provided h0 > 0 is chosen appropriately (depending only on K and σg). The
claim follows by Markov’s inequality. Note that all the constants in the O-terms
depend if necessary only on K,L and σg.

Proof of Lemma 6.3. We compute

Varf (ψ̂
(j)
h,n(t)) = n−2h−2(γ+j+1)σ2

n∑
i=1

[
K(γ+2+j)(h−1(xi − t))

]2
= n−1h−2(γ+j)−1σ2

∫ [
K(γ+2+j)(x)

]2
dx

+Of∈Fs,t∈[0,1]

(
(nhγ+j+1)−2

)
,

where the order of the discretization error is derived as in the proof of Lemma
6.2, (i).

Before turning to Lemma 6.4, we require additional technical results. The
next lemma is an adaptation of Lemma 2 in Goldenshluger et al. (2006), compare
also to Lemma 1 in Cheng and Raimondo (2008).
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Lemma A.1 (Separation lemma). Let h0 > 0 be so small that Θ ⊂ [h0, 1− h0]
and h ∈ (0, h0.) Further, let q ∈ (0, x∗), where x∗ is as in Assumption 2, (v).
Given δ ∈ (0, qh), let Aδ,h,f = {t | δ < |t− θf | < qh}. Then there are constants
Ci > 0, i = 1, 2, 3, which can be chosen uniformly over f ∈ Fs, and t ∈ [h, 1−h]
such that

(i) |ψh,f (θf )| ≤ C1h
s−γ ,

(ii) if δ ≥ C2h
s−γ+1 then

inf
t∈Aδ,h,f

(|ψh,f (t)| − |ψh,f (θf )|) ≥ C3δh
−1.

Moreover, the constants Ci depend only on the kernel K as well as on the Lips-
chitz constant L and the smoothness parameter s of Fs as in Definition 2.1, and
where these constants can be chosen uniformly over a bounded range of values
of s.

Proof of Lemma A.1. (i). Since K(1)(0) = 0 we have Lh,0(θf ) = 0 in (6.1) and
it follows that |ψh,f (θf )| ≤ C1h

s−γ , where we choose C1 as the constant for the
Of∈Fs,t∈[h,1−h]-term in (6.1).

(ii). Given t ∈ Aδ,h,f , τ = (θf−t)/h satisfies q > |τ | ≥ δ/h. From Assumption
2, (v), it follows that |K(1)(τ)|[f (γ)] ≥ c2 |τ | [f (γ)] ≥ c2 h

−1δ[f (γ)], where c2 is
the kernel constant in Assumption 2, (v). From the assumption δ ≥ C3 h

s−γ+1,
(6.1) and the choice of C1 it follows that

|ψh,f (t)| ≥ c2 h
−1δ[f (γ)]− C1h

s−γ ≥ C2 δh
−1,

and in fact

inf
t∈Aδ,h,f

(|ψh,f (t)| − |ψh,f (θf )|) ≥ C2δh
−1

for C2 := c2 C3 − 2C1 > 0 for sufficiently large C3. Note that all the constants
depend only on K,L as well as s and are continuous in s, due to Lemma 6.1.

Lemma A.2. There are finite constants C,C1, C2, h0 > 0 which only depend
on K,σ, σg and on the Lipschitz constant L of Fs such that if h ∈ (0, h0), n ∈ N

and ζn > 0 are such that

ζn
√
nh2γ+1/σ − C/

√
nh ≥ ζn

√
nh2γ+1/2σ > C1

√
log(1/h) > 0,

then

Pf

(
sup

t∈[0,1]

|ψ̂h,n(t)− ψh,f (t)| ≥ ζn
)
≤ 2 exp

(
−C2ζ

2
nnh

2γ+1
)
, f ∈ Fs.

Proof of Lemma A.2. We let

Zn(t;h) =
1√
nhσ

n∑
i=1

εiK
(γ+2)(h−1(xi − t)),
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Rn(t;h) =
1√
nhσ

(
Ef [ψ̂h,n(t)]− ψh,f (t)

)
.

Then √
nh2γ+1

σ

(
ψ̂h,n(t)− ψh,f (t)

)
= Zn(t;h) +Rn(t;h),

and choosing h0 small enough (depending only on K and L) obtain by Lemma
6.2, (i), for any t ∈ [0, 1] that |Rn(t;h)| ≤ C/

√
nh, where C > 0 depends only on

K and L. Thus, for an appropriate choice of the constants in the requirements
of Lemma C.2 we have that

Pf

(
sup

t∈[0,1]

|ψ̂h,n(t)− ψh,f (t)| ≥ ζn
)

≤ Pf

(
sup

t∈[0,1]

|Zn,1(t)| ≥ ζn
√
nh2γ+1/σ − C/

√
nh

)
≤ 2 exp

(
−C1ζ

2
nnh

2γ+1
)
.

Lemma A.3. Let q ∈ (0, x∗), then there are finite constants h0, C1, C2 > 0
depending only on K,σ, σg as well as on the Lipschitz constant L, the set Θ and
the smoothness parameter s of Fs, such that if h ∈ (0, h0) and n ∈ N are such
that nh2γ+1 ≥ C1 log(1/h), then it holds that

max
{
Pf (|t̂∗(h;n)− t∗(h; f)| > hq/2), Pf (|t̂∗(h;n)− t∗(h; f)| > hq/2)

}
≤ 2 exp

(
−C2nh

2γ+1
)
.

Moreover, C1, C2 can be chosen uniformly over a bounded range of values of s,
while h0 can be chosen independently of s. In particular,

|t̂∗(h;n)− t∗(h; f)| = oP,Fs(h), |t̂∗(h;n)− t∗(h; f)| = oP,Fs(h).

Proof of Lemma A.3. We only show Pf (|t̂∗ − t∗| > hq/2), the other inequality
can be derived analogously.

Case (i): Suppose that (−1)γ+1[f (γ)] > 0.
Then by (6.1) for j = 0 it holds for sufficiently small h0 (depending on

Θ) that ψh,f (t∗) < 0 and in this case t̂∗ = arg min
t

ψ̂h,n(t). Hence, setting

B = {t ∈ [0, 1] | |t∗ − t| > hq/2}, we have that

Pf (|t̂∗ − t∗| > hq/2) ≤ Pf

(
∃t ∈ B : ψ̂h,n(t∗) ≥ ψ̂h,n(t)

)
= Pf

(
∃t ∈ B : ψ̂h,n(t∗)− ψh,f (t∗) + ψh,f (t)− ψ̂h,n(t)

≥ ψh,f (t)− ψh,f (t∗)
)

≤ Pf

(
2 sup

t∈[0,1]

|ψh,f (t)− ψ̂h,n(t)| ≥ inf
t∈B

(
ψh,f (t)− ψh,f (t∗)

))
.

From Lemma 6.1, obtain for h0 small enough (depending on Θ) that

ψh,f (t)− ψh,f (t∗) = (−1)γ+1[f (γ)]
(
K(1)(h−1(θf − t))−K(1)(h−1(θf − t∗))

)
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+Of∈Fs,t∈[h,1−h](h
s−γ),

so that for constants C̃i > 0 depending only on K,L and s we have that

inf
t∈B

(
ψh,f (t)− ψh,f (t∗)

)
≥ C̃1 inf

t∈B
(−1)γ+1[f (γ)]

(
K(1)(h−1(θf − t))−K(1)(h−1(θf − t∗))

)
− C̃2 h

s−γ

≥ C̃1 inf
x:|x−a∗|>q/2

(
K(1)(x)−K(1)(a∗)

)
− C̃2 h

s−γ ≥ C̃3,

where the second inequality follows by substitution and properties of K(1) and
the last inequality is due to Lemma A.1 by choosing h0 appropriately (depending
on Θ). Using Lemma A.2, for sufficiently small h0 (depending on K,σ, σg) and
appropriate choice of C1 in the assumption, there exists a constant C2 > 0 such
that

Pf (|t̂∗ − t∗| > hq/2) ≤ Pf ( sup
t∈[0,1]

|ψ̂h,n(t)− ψh,f (t)| ≥ C̃3/2)

≤ 2 exp
(
−C2nh

2γ+1
)
.

Note that C1 and C2 can be chosen depending only on K,σ, σg, L as well as s
and also continuous in s, due to Lemma 6.1 and A.1, while the choice of h0 is
independent of s.

Case (ii): (−1)γ+1[f (γ)] < 0, then by (6.1) for j = 0 it holds for suffi-
ciently small h0 (depending on Θ) that ψh,f (t∗) > 0 and in this case t̂∗ =

arg max
t

ψ̂h,n(t). Thus,

Pf (|t̂∗ − t∗| > hq/2) ≤ Pf

(
∃t ∈ B : ψ̂h,n(t) ≥ ψ̂h,n(t∗)

)
= Pf

(
∃t ∈ B : ψ̂h,n(t)− ψh,f (t) + ψh,f (t∗)− ψ̂h,n(t∗)

≥ ψh,f (t∗)− ψh,f (t)
)

≤ Pf

(
2 sup

t∈[0,1]

|ψh,f (t)− ψ̂h,n(t)| ≥ inf
t∈B

(
ψh,f (t∗)− ψh,f (t)

))
.

We conclude with similar arguments as in case (i).

Proof of Lemma 6.4. Let h0 > 0 be so small that Lemmas 2.2, 6.1, A.2 and
A.3 apply. Assume that (−1)γ+1[f (γ)] > 0 in which case ψh,f (t∗) < 0 and
ψh,f (t

∗) > 0. Let δ > 0, then

Pf

(
{ψ̂h,n(t̂∗) ≥ 0}

)
≤ Pf

(
{|ψ̂h,n(t̂∗)− ψh,f (t̂∗)| ≥ δ/2}

)
+ Pf

(
{|ψh,f (t̂∗)− ψh,f (t∗)| ≥ δ/2}

)
+ 1{ψh,f (t∗)≥−δ}.

By choosing ζn = 1/ log(1/h) in Lemma A.2, the first term tends to zero. By
(6.1) it follows that ψh,f is Lipschitz-continuous with constant of order h−1.
Hence the second term tends to zero by Lemma A.3. Since we consider the case
ψh,f (t∗) < 0, (compare to (6.1) for j = 0) the last term tends to zero for δ → 0.
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Hence ψ̂h,n(t̂∗) < 0, and similarly ψ̂h,n(t̂
∗) > 0 with high probability, and the

continuity of ψ̂h,n implies statement 1., since all estimates hold uniformly over
f ∈ Fs.

Statement 2. follows since the distance between t∗ and t∗ is exactly of order
h by definition (see (2.3)), and the distance t̂∗ − t∗ as well as t̂∗ − t∗ is of order
oP,Fs(h) by Lemma A.3. Finally, since θf is at distance of order h both from t∗
and t∗, statement 3. also follows from Lemma A.3.

A.2. Proofs of auxiliary results in Section 6.2 and 6.4

Notation

We extend our notation: For μ ∈ Rd and a positive semi-definite matrix Σ
let Nd(μ,Σ) be the d-dimensional normal distribution with expectation μ and
covariance matrix Σ. In this section we denote by || · ||2 the Euclidean norm on
Rd as well as the L2-norm on the square integrable functions.

Consistency of the kink-location estimate

By construction of t∗ and t∗ it holds that |θf − θ̃h,f | = OFs(h), see Lemma 2.2.

In addition, Lemma 6.4 implies |θf − θ̂h,n| = OP,Fs(h). However, we need the
following lemma to ensure a faster rate of convergence to analyze the term (6.3)
for the proof of Theorem 2.3.

Lemma A.4. It holds that

|θ̃h,f − θf | = oFs(h), and |θ̂h,n − θf | = oP,Fs(h).

For the proof of Lemma A.4, we need the following consistency result, which
is an extension of Theorem 5.9 in Van der Vaart (2000).

Proposition A.5. For f ∈ Fs define the random set Θ̂h = {w ∈ R | θf + hw ∈
[t̂∗, t̂

∗]} and let ĝn : [0, 1] → R be random functions and gf : [0, 1] → R be a
deterministic function. Suppose that

sup
w∈Θ̂h

|ĝn(w)− gf (w)| = oP,Fs(1), (A.2)

and that for sufficiently small ε > 0,

inf
f∈Fs

inf
|w|>ε

|gf (w)| > 0. (A.3)

Then, for any sequence of estimators (ŵh,n)h with ŵh,n ∈ Θ̂h and
supf∈Fs

ĝn(ŵh,n) = oP (1) it holds that

|ŵh,n| = oP,Fs(1).
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Proof of Proposition A.5. With (A.2) and the definition of ŵh,n it follows that
for any δ > 0

Pf (|gf (ŵh,n)| > δ) ≤ Pf (|ĝn(ŵh,n)| > δ/2) + Pf (|ĝn(ŵh,n)− gf (ŵh,n)| > δ/2)

≤ oFs(1) + Pf ( sup
w∈Θ̂h

|ĝn(w)− gf (w)| > δ/2) = oFs(1).

Given ε > 0 choose η > 0 as the left side of (A.3). Then,

Pf (|ŵh,n| > ε) ≤ Pf (|gf (ŵh,n)| ≥ η) = oFs(1).

Proof of Lemma A.4. Define the dilated criterion function ψ̄h,n(w) := ψ̂h,n(θf+

hw) and for f ∈ Fs define Θ̂h = {w ∈ R | θf + hw ∈ [t̂∗, t̂
∗]}. Note that

for the zeros ŵh,n of ψ̄h,n over Θ̂h and the zeros θ̂h,n of ψ̂h,n it holds that

ŵh,n = (θ̂h,n − θf )/h. For any w ∈ [0, 1] define

ψf (w) := (−1)γ+1[f (γ)]K(1)(w).

Then, by (6.1) for j = 0 in Lemma 6.1

sup
w∈Θ̂h

|ψh,f (θf + hw)− ψf (w)| = oP,Fs(1),

since Θ̂h ⊂ {w ∈ R | θf + hw ∈ [h, 1− h]}. Thus, Lemma 6.2 implies

sup
w∈Θ̂h

|ψ̄h,n(w)− ψf (w)| ≤ sup
w∈Θ̂h

|ψ̄h,n(w)− ψh,f (θf + hw)|

+ sup
w∈Θ̂h

|ψh,f (θf + hw)− ψf (w)| = oP,Fs(1).

Further, for any ε ∈ (0, x∗) Assumption 2, (v) yields

inf
f∈Fs

inf
|w|>ε

|ψf (w)| ≥ inf
|w|>ε

a c2|w| ≥ a c2ε > 0.

Apply Proposition A.5, of which we have derived the assumptions in the latter
two display by setting ĝn = ψ̄h,n and gf = ψf , to obtain

|θ̂h,n − θf |
h

= |ŵh,n| = oP,Fs(1).

The assertion for θ̃h,f follows analogously by noting that Proposition A.5 is also
true for non-random functions ĝn and deterministic ŵh,n.

Proof of Lemma 6.5

The following lemma immediately implies Lemma 6.5, due to Lemma A.4.
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Lemma A.6. Let θ̌, θ̈ ∈ Θ, where θ̈ is random and θ̌ is non-random. Then there
exists an h0 > 0 depending only on K,σ, σg, L and Θ such that if h ∈ (0, h0)
and n ∈ N, it holds for j = 0, 1, 2, that

|hj ψ
(j)
h,f (θ̌)− (−1)γ+1+j [f (γ)]K(1+j)(0)| = OFs

(
h−1|θ̌ − θf |

)
+OFs(h

s−γ),

|hj ψ̂
(j)
h,n(θ̈)− (−1)γ+1+j [f (γ)]K(1+j)(0)| = OP,Fs

(
h−1|θ̈ − θf |

)
+OP,Fs(h

s−γ)

+OP,Fs

(√ log(n)

nh2γ+1

)
.

Moreover, the constants in the O-terms depend only on the kernel K as well
as on the Lipschitz constant L and the smoothness parameter s of Fs as in
Definition 2.1, where the constants are continuous in s.

Proof of Lemma A.6. Choosing h0 appropriately, Lemma 6.1 implies

hj ψ
(j)
h,f (θ̌) = (−1)γ+1+j [f (γ)]K(1+j)(h−1(θf − θ̌)) +OFs(h

s−γ).

Now, by the mean value theorem

|K(1+j)(h−1(θf − θ̌))−K(1+j)(0)| = |K(1+j)(h−1(θf − θ̌))−K(1+j)(h−1(θf − θf ))|
≤ ||K(2+j) ||∞ OP,Fs

(
h−1|θ̌ − θf |

)
,

which yields the first assertion. Similarly, by Lemma 6.1 and equation (6.2) for a
suitable choice of h0, obtain

hj ψ̂
(j)
h,n(θ̈) = hj ψ

(j)
h,f (θ̈)) +OP,Fs

(√ log(n)

nh2γ+1

)
= (−1)γ+1+j [f (γ)]K(1+j)(h−1(θf − θ̈)) +OFs(h

s−γ) +OP,Fs

(√ log(n)

nh2γ+1

)
.

Now, using a similar argumentation as before with the mean value theorem it follows
that

|K(1+j)(h−1(θf − θ̈))−K(1+j)(0)| = OFs

(
h−1|θ̈ − θf |

)
,

which concludes the proof. Note that the constants in the O-terms depend only on
K,σg, L as well as s and these constants can be chosen continuously in s, see Lemma
6.1.

Neglibility of the remainder terms: proof of Lemma 6.6

Proof of Lemma 6.6. Let us start with R1(n, h) as defined in (6.20). Note that
the second factor in (6.20) is a constant. Thus, we only need to investigate the
first factor. By (6.2) for j = 1

h |ψ̂(1)
h,n(θ̈)− ψ

(1)
h,f (θ̈)| = OP,Fs

(√ log(n)

nh2γ+1

)
.

Next, recall Theorem 2.3 as well as (3.4) which imply

|θ̌ − θ̈| = OP,Fs(h
s−(γ−1)) +OP,Fs((nh

2γ−1)−1/2),
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where θ̌ and θ̈ as in (6.3) resp. (6.17). Therefore, by (6.1) for j = 1 we deduce
that

h |ψ(1)
h,f (θ̈)− ψ

(1)
h,f (θ̌)| ≤ [f (γ)]|K(2)(h−1(θf − θ̈))−K(2)(h−1(θf − θ̌))|+OFs(h

s−γ)

≤ [f (γ)]||K(3) ||∞
|θ̌ − θ̈|

h
+OFs(h

s−γ)

= OP,Fs(h
s−γ) +OP,Fs((nh

2γ+1)−1/2).

In summary, by the triangle inequality

h |ψ̂(1)
h,n(θ̈)− ψ

(1)
h,f (θ̌)| = OP,Fs(h

s−γ) +OP,Fs

(√ log(n)

nh2γ+1

)
.

Hence, the enumerator in R1(h, n) is of order

OP,Fs(
√
nh2s−γ+1/2) +OP,Fs

(√
log(n)h2(s−γ)

)
= oP,Fs(1), (A.4)

since
√
nh2γ+1 ψh,f (θf ) = OFs(

√
nhs+1/2) by Lemma 6.1 and the assumption on the

asymptotics of h and n in Theorem 3.1. Finally, R1(h, n) is oP,Fs(1) as the denominator
is asymptotically a constant unequal to zero by Lemma 6.5 resp. Lemma A.6 and
Assumption 2, (ii).

Similarly, the terms in R2(h, n) are oFs(1) resp. oP,Fs(1). To see this, we only
analyze the enumerators in R2(h, n) as the denominators are both constant. Theorem
2.3 implies √

nh2γ−1(θ̂h,n − θf ) = OP,Fs(
√
nhs+1/2) +OP,Fs(1).

Due to Lemma A.6 and Theorem 2.3

h2 ψ̂
(2)
h,n(θ̀) = OP,Fs(h

s−γ) +OP,Fs((nh
2γ+1)−

1/2)),

such that the first term in R2(h, n) is of the same order as in (A.4). A similar argu-
mentation shows that the second term in R2(h, n) is oFs(1).

Asymptotic normality of the score vector: proof of Lemma 6.7

Proof of Lemma 6.7. By Lemma 6.2, (i), for j = 0, 1, respectively, obtain

√
nh2(γ+j)+1 (ψ

(j)
h,f (θf )− ψ̂

(j)
h,n(θf )) = (nh)−1/2

n∑
i=1

εiK
(γ+2+j) (h−1(xi − θf )

)
+OFs((nh)

−1/2)

=: E(j)
n (f) + oFs(1),

due to the assumed asymptotics of h and n. By Theorem D.2 the terms√
nh2(γ+j)+1 (ψ

(j)
h,f (θf )− ψ̂

(j)
h,n(θf )) and E(j)

n (f)

have the same asymptotic limit distribution (provided it exists and satisfies the
assumption of Theorem D.2) for j = 0, 1 respectively. For convenience set

En(f) := Σ̃−1/2 (E(0)
n (f), E(1)

n (f))T ,
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where

Σ̃ = σ2

(
||Kγ+2 ||22 0

0 ||Kγ+3 ||22

)
.

Hence, we show for any x ∈ R2,

sup
f∈Fs

|Pf

(
En(f) ≤ x

)
− Φ2(x)| = o(1), (A.5)

which would conclude the proof. Note that En(f) depends on f only through
θf , which is by definition of Fs element of Θ, a parameter of Fs.

In order to prove (A.5), we intend to make use of the uniform version of the
Lindeberg-Feller Theorem D.4, which can be applied since Φ2(·) does not depend
on Fs and therefore (Φ2(·))f∈Fs fulfills the assumptions of the latter theorem.

Thus, we compute the asymptotic covariance matrix of
(
E

(0)
n (f), E

(1)
n (f)

)T
. By

means of Lemma 6.3 for j = 0, 1, respectively, deduce

Varf (E
(0)
n (f)) = σ2||K(γ+2) ||22 + oFs(1),

Varf (E
(1)
n (f)) = σ2||K(γ+3) ||22 + oFs(1).

Now, both E
(0)
n (f) and E

(1)
n (f) are centered such that their covariance is com-

puted to be

Ef

[
E(0)

n (f)E(1)
n (f)

]
=

σ2

nh

n∑
i=1

K(γ+2)(h−1(xi − θf ))K
(γ+3)(h−1(xi − θf )).

With a Riemann-sum approximation in a similar fashion as in the proof of
Lemma 6.2 the latter term is

σ2

h

∫
K(γ+2)(h−1(x− θf ))K

(γ+3)(h−1(x− θf )) dx+OFs((nh)
−1)

= σ2

∫
K(γ+2)(x)K(γ+3)(x) dx+ oFs(1) = oFs(1),

where the last equation holds since the function x �→ K(γ+2)(x)K(γ+3)(x) is
odd by Assumption 2, (ii). Thus,

Varf
((

E(0)
n (f), E(1)

n (f)
)T) → Σ̃

and the convergence holds uniformly over Fs. Next, for any δ > 0 we show that

sup
f∈Fs

n∑
i=1

||ai(θf ) ||22 Ef

[
ε2i 1{|| ai(θf ) ||2 |εi|>δ}

]
= o(1),

where ai(θf ) := (nh)−1/2
(
K(γ+2)(h−1(xi − θf )), K

(γ+3)(h−1(xi − θf ))
)T

and
here || · ||2 denotes the euclidean distance. Note that

sup
f∈Fs

max
1≤i≤n

||ai(θf ) ||22 ≤ (nh)−1 max{||K(γ+2) ||2∞, ||K(γ+3) ||2∞} = o(1).
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Further, the computation of the covariance matrix has shown that

n∑
i=1

||ai(θf ) ||22 → ||K(γ+2) ||22 + ||K(γ+3) ||22 < ∞

and the convergence holds uniformly in Fs. Hence, the former two displays lead
us to

sup
f∈Fs

n∑
i=1

||ai(θf ) ||22 Ef

[
ε2i 1{|| ai(θf ) ||2 |εi|>δ}

]
≤ sup

f∈Fs

max
1≤i≤n

Ef

[
ε2i 1{|| ai(θf ) ||2 |εi|>δ}

] n∑
i=1

||ai(θf ) ||22 = o(1).

A.3. An exponential inequality

The following exponential concentration inequality for the estimator of the lo-
cation of the kink will be important for the construction of adaptive confidence
sets.

Lemma A.7. Let C̄ > 0 be some finite constant and q ∈ (0, x∗), where x∗ is
as in Assumption 2, (v). There exist finite constants C,C1, C2, h0 > 0 which
only depend on K,σ, σg as well as on L,Θ and s of Fs, such that if h ∈ (0, h0),
n ∈ N and λn > 0 are such that

λn

√
nh2γ+1/σ − C/

√
nh ≥ λn

√
nh2γ+1/2σ > C1

√
log(1/h) > 0,

and C̄λn/2 < qh, then

Pf (|θ̃h,f − θ̂h,n| > C̄λn)

≤ 1{|θ̃h,f−θf |> τ C̄λn/2} + 2 exp(−C2C̄
2nh2γ−1λ2

n),

where τ ∈ (0, 1). Moreover, C,C1, C2 can be chosen uniformly over a bounded
range of values of s, while h0 is independent of s.

Proof of Lemma A.7. Define the event

Ω = {|t̂∗(h;n)− t∗| < hq/2} ∩ {|t̂∗(h;n)− t∗| < hq/2}.

Then,

Pf (|θ̃h,f − θ̂h,n| > C̄λn)

≤ 1{|θ̃h,f−θf |>τ C̄λn/2} + Pf ({|θf − θ̂h,n| > (1−τ) C̄λn/2} ∩ Ω) + Pf (Ω
c).

(A.6)

Lemma A.3 implies for sufficiently small h0 (depending only on K,σ, σg, L and
on Θ)

Pf (Ω
c) ≤ 2 exp(−C̃1nh

2γ+1), (A.7)
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where C̃1 > 0 is some finite constant uniform for Fs (depending only on
K,σ, σg, L and on Θ). Let δn = (1−τ) C̄λn/2, then on the event Ω it holds that

|θf − θ̂h,n| < hq, such that on Ω

{|θf − θ̂h,n| > δn} ⊂ {∃t ∈ Aδn,h,f : |ψ̂n,h(θf )| ≥ |ψ̂n,h(t)|},

where Aδn,h,f is defined as in Lemma A.1. The event {|ψ̂n,h(θf )| ≥ |ψ̂n,h(t)|}
can be rewritten as

{|ψ̂n,h(θf )| − |ψh,f (θf )|+ |ψh,f (t)| − |ψ̂n,h(t)| ≥ |ψh,f (t)| − |ψh,f (θf )|}.

Hence the latter event is contained in

{2 sup
t∈[0,1]

|ψ̂n,h(t)− ψh,f (t)| ≥ inf
t∈Aδn,h,f

(|ψh,f (t)| − |ψh,f (θf )|)}.

With Lemma A.1, derive for appropriate choice of h0 (depending only on Θ)
that

inf
t∈Aδn,h,f

(|ψh,f (t)| − |ψh,f (θf )|} ≥ C̃2λnh
−1

for some constant C̃2 > 0 which depends only on K,L as well as s and is
continuous in s. Thus, by means of Lemma A.2, for appropriate choice of the
constants in the claim,

Pf ({|θf − θ̂h,n| > δn} ∩ Ω) ≤ Pf (2 sup
t∈[0,1]

|ψ̂n,h(t)− ψh,f (t)| ≥ C̃2C̄λnh
−1)

≤ 2 exp(−C̃3C̄
2nh2γ−1λ2

n)

(A.8)

for some finite constant C̃3 > 0 depending only on K,σ, σg, L as well as s and
continuous in s. By assumption C̄λn/2 < qh so that one can find a suitable
constant C2 > 0 (depending only on K,σ, σg, L and on Θ) such that with (A.7)
and (A.8)

Pf (Ω
c) + Pf ({|θf − θ̂h,n| > δn} ∩ Ω)

≤ exp(−C1nh
2γ+1) + exp(−C3C̄

2nh2γ−1λ2
n) ≤ exp(−C2C̄

2nh2γ−1λ2
n),

which shows the first claim in view of (A.6). Finally, note that the choice of
h0 did not dependent on s and furthermore C,C1, C2 were chosen depending
only on K,σ, σg, L as well as s and also continuous in s, due to Lemma 6.1 and
A.1.

A.4. Proof of Lemma 6.8

Before turning to Lemma 6.8, we list some simple properties of B(k, s) and
σ(n, k).
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Lemma A.8. (i) hkmin,n > . . . > hkmax,n ,

(ii) B(·, s) is decreasing, while σ(n2, ·) is increasing,

(iii) kmin,n
∼= log(n), kmax,n

∼= log(n) and kmax,n − kmin,n
∼= log(n),

(iv) (6.27) holds true, hence and B(k∗
n(s), s) ∼= σ

(
n2, k

∗
n(s)

) ∼=
(
log(n2)/n2

) s−γ+1
2s+1 ,

(v) B(m, s) ≤ CLepσ(n2,k)/8 for k∗
n(s) ≤ k ≤ m ≤ kmax,n,

(vi) hk ≥ hkmax,n > σ(n2, k) for any k ∈ Kn,

(vii) nh2γ+1
k log(1/hk)

−1 → ∞ for any k ∈ Kn,

(viii) for any m ≤ k ∈ Kn one has B(k, s) = 2(s−γ+1)(m−k)B(m, s),

(ix) σ(n2,m) = σ(n2,m+ 1)
(
2−

2γ−1
2

√
m/(m+1)

)
.

Proof of Lemma A.8. (i), (ii), (viii) and (ix) are clear. From (3.7) obtain

kmin,n
∼= log(n/log(n))

log(2)(2s+ 1)
, and kmax,n

∼= log(n/log(n)2)

log(2)(2γ + 1)
,

which immediately implies (iii). With this it is straightforward to obtain (6.27)
by balancing the terms in the definition of k∗n(s).
(v) follows by (iv) and (ii), as k and m are assumed to be greater or equal

to k∗n(s). From (3.7) conclude that σ(n2, kmax,n) ∼=
√

log(n)/n1/(2γ+1), which is
of a smaller order than hkmax,n . This shows (vi) due to (i) and (ii). Next,
nh2γ+1

kmax,n/log(h−1
kmax,n

) ∼= log(n), so that by (i) we conclude (vii).

The following lemma is the essential step for the the proof of Lemma 6.8.

Lemma A.9. (i) If CLep is chosen large enough and depending only on K,σ,

σg as well as on L and Θ of F̃ and if n is sufficiently large, then there

exists a finite constant c1 > 0 which is uniform in F̃ , such that

Pf (k̂n = k) ≤ c12
−k/c1 , ∀k > k∗n(sf ).

(ii) If CLep is chosen large enough and depending only on K,σ, σg as well as

on L and Θ of F̃ , and also if n is large enough such that k∗n(sf ) ≥ 2, then

there exist ρ ∈ N and c2 > 0, which are both uniform in F̃ , such that

Pf (k̂n = k) ≤ c22
−k/c2 , ∀k < k∗n(sf )− ρ.

Moreover, ρ depends only on b1, b2, s and on CLep.

Proof of Lemma A.9. For convenience we write n for n2 as this lemma depends
only on the subsample S2. Using Lemma A.8, (iii), we may assume that n is so

large that k ≥ k0 for all k ∈ Kn, where k0 is the parameter in F̃ in (3.9).
From the definition of B(k, s), (6.25) can be written as

b̃1/b̃2 B(k, sf ) ≤ |θ̃hk,f − θf | ≤ B(k, sf ), f ∈ F̃ , k ≥ k0. (A.9)
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(i). Fix some k ∈ Kn with k > k∗n(sf ). From the definition of k̂n in (3.11),

Pf (k̂n = k) ≤
∑

j∈Kn: j≥k

Pf

(
|θ̂hk−1,n − θ̂hj ,n| > CLepσ(n, j)

)
. (A.10)

From now on let j ∈ Kn such that j ≥ k. Using (A.9) we estimate

|θ̂hk−1,n − θ̂hj ,n| ≤ |θ̂hk−1,n − θ̃hk−1,f |+ |θ̂hj ,n − θ̃hj ,f |+B(k − 1, sf ) +B(j, sf ).

By Lemma A.8, (ii), and the definition of k∗n(sf ) we have that

B(k−1, sf )+B(j, sf ) ≤ 2B(k∗n(sf ), sf ) ≤ CLepσ
(
n, k∗n(sf )

)
/4 ≤ CLepσ(n, j)/4.

Combining the latter two displays and Lemma A.7 with τ = 1/3 and C̄ = CLep

leads us for sufficiently large n to

Pf

(
|θ̂hk−1,n − θ̂hj ,n| > CLepσ(n, j)

)
≤ Pf

(
|θ̂hk−1,n − θ̃hk−1,f | >

3CLep

8
σ(n, j)

)
+ Pf

(
|θ̃hj ,f − θ̂hj ,n| >

3CLep

8
σ(n, j)

)
≤ 1{|θf−θ̃hk−1,f |>CLepσ(n,j)/8} + 2 exp

(
− C1C

2
Lepnh

2γ−1
k−1 σ2(n, j)

)
+ 1{|θ̃hj,f

−θf |>CLepσ(n,j)/8} + 2 exp
(
− C2C

2
Lepnh

2γ−1
j σ2(n, j)

)
(A.11)

for some absolute constants Ci > 0, i = 1, 2 depending only on K,σ, σg as well

as on L, Θ and sf of F̃s, as in (3.10). Since the constants C1 and C2 can be
chosen continuously in sf by Lemma A.7 and sf ∈ [s, s], we can choose these

constants uniformly in F̃ . Using Lemma A.8, (v), the deterministic terms in
(A.11) vanish for n large enough. For j ≥ k we have hk−1 > hj (Lemma A.8,
(i)). Hence if CLep > 0 is chosen large enough (depending only on K,σ, σg, L
and Θ), such that by Lemma A.8, (vi) in the second and (vii) in the third step
we estimate

exp
(
− C1C

2
Lepnh

2γ−1
k−1 σ2(n, j)

)
≤ exp

(
− C1C

2
Lepnh

2γ−1
j σ2(n, j)

)
≤ exp

(
− C1C

2
Lepnh

2γ+1
j

)
≤ C3 2

−j/C3 ,

for some finite constant C3 > 0 depending only on K,σ, σg as well as on L and

Θ of F̃ . Similarly we estimate the last term in (A.11).

(ii). Fix some k < k∗n(sf )−ρ, where ρ ∈ N will be chosen below. By definition

of k̂n in (3.11) and since k < k∗n(sf ),

Pf (k̂n = k) ≤ Pf

(
|θ̂hk,n − θ̂hk∗

n(sf ),n| ≤ CLepσ
(
n, k∗n(sf )

))
. (A.12)
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Further, by means of (A.9) and the reverse triangle inequality

|θ̂hk,n − θ̂hk∗
n(sf ),n|

≥
( b̃1
b̃2

)
B(k, sf )−B(k∗n(sf ), sf )− |θ̂hk,n − θ̃hk,f − θ̂hk∗

n(sf ),n + θ̃hk∗
n(sf ),f |.

(A.13)

By using Lemma A.8, (viii), twice as well as the fact that k∗n(sf ) − k > ρ and
s ≥ s yields

( b̃1
b̃2

)
B(k, sf )−B(k∗

n(sf ), sf )=
( b̃1
b̃2

2(s−γ+1)(k∗
n(sf )−k) − 1

)
B(k∗

n(sf ), sf )

=
( b̃1
b̃2

2(s−γ+1)(k∗
n(sf )−k) − 1

)
2−(s−γ+1) B(k∗

n(sf )− 1, sf )

>
( b̃1
b̃2

2(s−γ+1)(ρ−1) − 2−(s−γ+1)
)
B(k∗

n(sf )− 1, sf )

≥
( b̃1
b̃2

2(s−γ+1)(ρ−1) − 2−(s−γ+1)
)
B(k∗

n(sf )− 1, sf ).

Next, by Lemma A.8, (ii), (iv) and (ix),

B(k∗
n(sf )− 1, sf )≥CLepσ(n,k∗

n(sf )−1)/8=CLep σ
(
n, k∗

n(sf )
)
2

−(2γ+5)
2

(√
1 + k∗

n(sf )−1
)−1

≥2−(γ+3) CLepσ
(
n, k∗

n(sf )
)
,

where we used for the last inequality that due to k∗
n(sf ) ≥ 2 we have that√

(k∗
n(sf )− 1)/k∗

n(sf ) ≥ 2−
1/2.

Let

C̃ := 2−(γ+3) CLep

( b̃1
b̃2

2(s−γ+1)(ρ−1) − 2−(s−γ+1)
)
,

which can be made arbitrarily large by choosing ρ appropriately and depending only
on b1, b2, s and on CLep. In view of (A.13) we have just shown that

|θ̂hk,n − θ̂hk∗
n(sf ),n|

≥ C̃σ(n, k∗
n(sf ))− |θ̂hk,n − θ̃hk,f − θ̂hk∗

n(sf ),n + θ̃hk∗
n(sf ),f |.

(A.14)

Thus, using (A.14) to bound (A.12) yields

Pf (k̂n = k) ≤ Pf

(
|θ̂hk,n − θ̃hk,f | ≥ (C̃ − CLep)σ

(
n, k∗

n(sf )
)
/2

)
+ Pf

(
θ̂hk∗

n(sf ),n + θ̃hk∗
n(sf ),f | ≥ (C̃ − CLep)σ

(
n, k∗

n(sf )
)
/2

)
and one can proceed similarly as in the first part for the term (A.11) by choosing C̃
suitable by choice of ρ.
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Proof of Lemma 6.8. Assume that CLep and n are sufficiently large, such that
the statements of Lemma A.9 hold. Let sf be as in Definition 3.2. On the one
hand, with Lemma A.9, (i) it holds that

sup
f∈F̃

Pf (k̂n > k∗n(sf )) ≤ sup
f∈F̃

∑
k∗
n(sf )<k≤kmax,n

Pf (k̂n = k)

≤ c1
∑

k∗
n(sf )<k≤kmax,n

2−k/c1 = o(1),

as c1 is uniform in F̃ and due to the asymptotic behavior of the indices in Kn,
see Lemma A.8, (iii). On the other hand, Pf (k̂n < k∗n(sf ) − ρ) = oF̃ (1) can be
shown similarly using Lemma A.9, (ii).

A.5. Lower bounds over F̃s

Theorem A.10. Given γ, k0 ∈ N and b1, b2, s ∈ R+ with b1 < b2 consider
s ≥ γ + 1 with �s� − γ + 1 ∈ 2N0. Further, assume that the kernel K in the

definition (3.10) satisfies
∫ 1

0
x�s�−γ−1K(1)(x) dx �= 0. Then, in model (1.1) with

εi ∼ N(0, σ2) it holds for any loss function w that

(i) lim infn inf θ̂ supf∈F̃s
Ef

[
w
(
n(s−γ+1)/(2s+1) |θ̂ − θf |

)]
> 0;

(ii) lim infn inf θ̂ supf∈F̃s
Ef

[
w
(
n(s−γ)/(2s+1) |θ̂ − [f (γ)]|

)]
> 0.

Proof. We address only (i), as (ii) can be shown with a similar approach. Fix
some θ0 ∈ int (Θ), and consider the function

Ts(x) = c1 (x− θ0)
s 1[θ0,1](x),

where c1 �= 0 will be specified below. Set

f0(x) := Ts(x) +Rγ(x; a), x ∈ [0, 1], (A.15)

where Rγ as in (6.7). Here, f0 has a kink of appropriate order in θ0 because of
Rγ (see the proof of Theorem 2.4, (i)), while Ts will take care of the condition
(3.10). Choosing c1 ≤ L/(2 s!) and following the lines of proof of Theorem 2.4,
(i), it is straightforward to show with the triangle inequality that

f0 ∈ F̃s(b1, b2, k0, γ, a,Θ, L).

To verify (3.10) we show that for some suitable h0 > 0,

b1h
s−γ ≤ |ψh,f0(θ0)|, ∀h ∈ (0, h0), (A.16)

since the upper bound follows from Lemma 6.1. To this end, if (1− θ0)/h0 ≥ 1
we compute
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1

hγ+1

∫
Rγ(x; a)K

(γ+2)
(x− θ0

h

)
dx =

∫ 1

0

uγ K(γ+2)(u) du

= (−1)γ γ!

∫ 1

0

K(2)(u) du = 0 (A.17)

since K(1)(1) = K(1)(0) = 0, and

1

hγ+1

∫
Ts(x)K

(γ+2)
(x− θ0

h

)
dx

= c1 h
s−γ

∫ 1

0

us K(γ+2)(u) du

= c1 h
s−γ (−1)γ+1 s!

(s− γ − 1)!

∫ 1

0

us−γ−1 K(1)(u) du,

which by assumption on K(1) is of order hs−γ , so that (A.16) is satisfied for b1
small enough.

For the sequence of alternative hypotheses, let θ1 = θ0+rn ∈ Θ, and rn = o(1)
is of the same order as rn in the proof of Theorem 2.4, (i), and consider

f1 = f0 − (ν0 − νn) + T̃s,n, (A.18)

where ν0 resp. νn as in (6.9) resp. (6.10) and

T̃s,n(x) := c2
(
(x− θ0)(θ1 − x)

)s/2
1[θ0,θ1](x)

+ c3
(
(x− θ1)(2θ1 − θ0 − x)

)s/2
1[θ1,2θ1−θ0](x),

where c2 �= c3 > 0 are suitable constants such that the derivatives of f1 have
the appropriate Lipschitz- resp. Hölder-constant L. In the spirit of (A.16) we
check for some suitable h0 > 0

b1h
s−γ ≤ |ψh,f1(θ1)|, ∀h ≤ h0. (A.19)

Decompose the probe-functional into five parts

ψh,f1(θ1) =
1

hγ+1

∫
f1(x)K

(γ+2)(h−1(x− θ1)) dx

=
1

hγ+1

∫
Ts(x)K

(γ+2)(h−1(x− θ1)) dx

+
1

hγ+1

∫
Rγ(x)K

(γ+2)(h−1(x− θ1)) dx

− 1

hγ+1

∫
ν0(x)K

(γ+2)(h−1(x− θ1)) dx

+
1

hγ+1

∫
νn(x)K

(γ+2)(h−1(x− θ1)) dx

+
1

hγ+1

∫
T̃s,n(x)K

(γ+2)(h−1(x− θ1)) dx



Adaptive confidence sets for kink estimation 1567

=: ˜(A) + ˜(B)− ˜(C) + ˜(D) + ˜(E).

Without loss of generality assume that h0 is so small that 1−θ0/h0 ≥ 1 and
−θ0/h0 ≤ −1. Now, ˜(B) = 0 as well as ˜(C) = 0 for sufficiently small h0 can
be shown similarly as in (A.17). Since θ1 �= θ0 independently of h we have as

well that ˜(A) = 0 for sufficiently small h0. In addition, since T̃s,n is a piecewise

polynomial with a discontinuity in the s-th derivative at θ1, one can show ˜(E) ∼=
hs−γ similarly as 1/hγ+1

∫
Ts(x)K

(γ+2)
(
x−θ0
h

)
dx ∼= hs−γ above. Finally, since

νn ∈ C∞ it follows by integration by parts, Taylor expansion around θ1 and
since K(1) is of order �s� − γ (Assumption 2, (iii)) that

˜(D) = h

∫
ν(γ+1)
n (θ1 + xh)K(1)(x) dx

=
h�s�−γ+1 ν

(�s�+1)
n (θ1)

(�s� − γ)!

∫
x�s�−γ K(1)(x) dx+ o(h�s�−γ+1)

= O(h�s�−γ+1),

which is compared to O(hs−γ) of a negligible order for any s ∈ [γ + 1, s]. All
things considered we have verified (A.19) for b1 small enough.

Concerning the Kullback-Leibler distance between f1 and f0, derive similar
to (6.15) that

1

2σ2

n∑
i=1

(ν0(xi)− νn(xi)− T̃s,n(xi))
2 ≤ 1

σ2

n∑
i=1

(ν0(xi)− νn(xi))
2

+
1

σ2

n∑
i=1

T̃s,n(xi)
2.

The first term on the right-hand-side of the latter display can be dealt with as in
the proof of Theorem 2.4, (i), while the second term is asymptotically negligible.
Indeed, firstly obtain that

|| T̃s,n ||∞ = |T̃s,n

(
θ0+θ1/2

)
| ≤ max{c2, c3}

(
θ1−θ0/2

)s
= max{c2, c3}

(
rn/2

)s
= max{c2, c3}

(
C̃ bs−γ+1

n /2
)s

and secondly T̃s,n is non-zero only inside the interval [θ0, 2θ1 − θ0], which
has Lebesgue measure 2rn and consequently only up to 2nrn summands in∑n

i=1 T̃s,n(xi)
2 are not zero due to equidistant design. Therefore,

1

σ2

n∑
i=1

T̃s,n(xi)
2 ≤ const. · n b2s

2−2sγ+3s−γ+1
n ,

where the last term is O
(
nb

2(2s+1)
n

)
, since s ≥ γ+1, and consequently negligible

for the order of the Kullback-Leibler distance between f1 and f0.
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Appendix B: Construction of kernels and additional simulation
results

B.1. Construction of kernels satisfying Assumption 2

In this section we adapt and simplify the construction in Cheng and Raimondo
(2008) to kernels which shall satisfy Assumption 2 for γ = 1 and any given l.
Compared to their Cα,s, for the analysis in Lemma 6.1 in case of γ = 1 we
require the first four derivatives of K to vanish at the boundary points instead
of merely the first and second derivatives. We also indicate how to extend the
construction to the case γ ≥ 2.

The construction proceeds via the second derivative of K which corresponds
to the function L̃ in the following lemma.

Lemma B.1. For given k ∈ N let l̃ = 2k − 1. Then

L̃(x) =
(2k + 1)(2k + 2)(4k + 3)(4k + 5)(4k + 7)

22k+4(4k + 9)

×
k+3∑
i=0

(−1)k+4−i (2(k + i))!

(k + 3− i)!(k + i)!(2i)!
x2i1[−1,1](x)

(B.1)

fulfills

(i) L̃ is even,

(ii) L̃ is infinitely often differentiable inside its support [−1, 1],

(iii) L̃(j)(±1) = 0, j = 0, 1, 2,

(iv)
∫
xmL̃(x) dx = 0 for m = 0, . . . , l̃ and

∫
xl̃+1L̃(x) dx = (−1)k+1,

(v) L̃(0) < 0.

By taking an antiderivative of L̃ with value 0 at 0, we obtain the function L̄
which corresponds to K(1).

Lemma B.2. For given k ∈ N let l̃ = 2k − 1. Then

L̄(x) =
(2k + 1)(2k + 2)(4k + 3)(4k + 5)(4k + 7)

22k+4(4k + 9)

×
k+3∑
i=0

(−1)k+4−i (2(k + i))!

(k + 3− i)!(k + i)!(2i+ 1)!
x2i+11[−1,1](x)

(B.2)

fulfills

(a) L̄ is odd,

(b) L̄ is infinitely often differentiable inside its support [−1, 1],

(c) L̄(j)(±1) = 0, j = 0, 1, 2, 3,

(d)
∫
xmL̄(x) dx = 0 for m = 0, . . . , l̃ − 1,

(e) there exists x∗ ∈ (0, 1) and c2 > 0 such that |L̄(x)| ≥ c2|x| for any x ∈ (−x∗, x∗).
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Figure 4. L̄ in (B.2) for k = 1, 2, 3, 4, respectively.

Figure 4 illustrates the function L̄ in (B.2) for different values of k. Some of
the properties in the lemma are clearly visible in these plots.

Remark. The function K(1) = L̄ hence satisfies Assumption 2, (i)–(iii) and (v)
for γ = 1 and l = l̃ as well as for l = l̃ + 1. The condition (iv) of Assumption
2 is at least numerically true, as also the plots in Figure 4 suggest, though we
did not provide a rigorous theoretical argument for this condition. �

Proof of Lemma B.2. L̄ is the anti-derivative of L̃ in Lemma B.1 with L̄(0) = 0.
Therefore (i) and (ii) of Lemma B.1 imply (a) and (b).

(c). Lemma B.1 (iii) means L̄(j)(±1) = 0 for j = 1, 2, 3. Further, Lemma

B.1 (iv) for m = 0 implies 0 =
∫ 1

−1
L̃(x) dx = 2L̄(1) since L̄ is odd, hence

L̄(1) = L̄(−1) = 0.

(d). Since L̄ is odd, the even moments vanish, thus, it suffices to consider
m ∈ {0, . . . , l̃} odd. Then from Lemma B.1 (iv) we obtain

0 =

∫ 1

−1

xm+1L̃(x) dx = xm+1L̄(x)
∣∣∣x=1

x=−1
− (m+ 1)

∫ 1

−1

xmL̄(x) dx

= −(m+ 1)

∫ 1

−1

xmL̄(x) dx,

since xm+1L̄(x) is odd.

(e). As L̃(0) �= 0 we can find x∗ ∈ (0, 1) and c2 > 0 such that |L̄(x)| ≥ c2|x|
for any x ∈ [−x∗, x∗].
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Proof of Lemma B.1. We shall show that considering the expansion

L̃(x) =

k+3∑
i=0

p2i P2i(x), (B.3)

on [−1, 1], where Pi denotes the i-th Legendre polynomial, that is

Pi(x) = 2−i

�i/2�∑
j=0

(−1)j
(2i− 2j)!

j!(i− j)!(i− 2j)!
xi−2j1[−1,1](x), (B.4)

and requiring the conditions (i)-(v) leads to the expression in (B.1), which then
actually does satisfy (i)-(v). Since the Legendre polynomials are orthogonal in
L2([−1, 1]) and the first m Legendre polynomials span the space of polynomials
of degree ≤ m − 1, the moment condition (iv) will be satisfied if p2i = 0,
i = 0, . . . , k − 1, so that

L̃(x) =

k+3∑
i=k

p2i P2i(x) = c
(
P2k(x) + c1 P2k+2(x) + c2 P2k+4(x) + c3 P2k+6(x)

)
(B.5)

under the assumption that p2k = c �= 0. We shall arrange the coefficients ci,
i = 1, 2, 3 so that the boundary condition (iii) is satisfied. By (odd or even)
symmetry, it suffices to satisfy the condition at x = 1. We have that

P2i(1) = 1, P
(1)
2i (1) = 2i(2i+1)/2, P

(2)
2i (1) = (2i−1)2i(2i+1)(2i+2)/23 (B.6)

Indeed, (B.6) is easily verified using Rodriguéz formula

P2i =
1

22i(2i)!

∂2i

∂x2i

(
(x+ 1)2i(x− 1)2i

)
.

For example, for the second derivative compute

∂2P2i(x)

∂2x

∣∣
x=1

=
1

22i(2i)!

2i+2∑
j=2

(
2i+ 2

j

)
(2i)!

(2i− j)!
(x+ 1)2i−j (2i)!

(j − 2)!
(x− 1)j−2

∣∣
x=1

=
(2i− 1)2i(2i+ 1)(2i+ 2)

23
,

since only the term of j = 2 in the sum is non-zero. Now, to obtain L̃(1) = L̃(1)(1) =
L̃(2)(1) = 0, insert (B.6) into (B.5) and solve the resulting linear system to obtain

c1 = −3(4k + 5)

4k + 9
, c2 =

3(4k + 3)

4k + 11
, c2 = − (4k + 3)(4k + 5)

(4k + 9)(4k + 11)
. (B.7)

Finally, the factor c in (B.5) is determined by the normalization in (iv),

(−1)k+1 =

∫ 1

−1

xl̃+1L̃(x) dx = c

∫ 1

−1

x2kP2k(x) dx
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which using (B.4) and ||P2i ||22 = 2/(4i+ 1) yields

c = (−1)k+1 (4k + 1)!

22k+1((2k)!)2
,

so that explicitly

L̃(x) =
(4k + 1)!

22k+1((2k)!)2

(
P2k(x)−

3(4k + 5)

4k + 9
P2k+2(x)

+
3(4k + 3)

4k + 11
P2k+4(x)−

(4k + 3)(4k + 5)

(4k + 9)(4k + 11)
P2k+6(x)

)
.

(B.8)

Inserting (B.4) into (B.8) gives the formula (B.1). Finally, using the recursion formula

P2i+2(0) = −2i+ 1

2i+ 2
P2i(0), i ∈ N,

implies that

L̃(0) =
(4k + 1)!

22k+1((2k)!)2
(−1)k+1P2k(0)

(
1 +

3(2k + 1)(4k + 5)

(2k + 2)(4k + 9)

+
3(2k + 1)(2k + 3)(4k + 3)

(2k + 2)(2k + 4)(4k + 11)
+

(2k + 1)(2k + 3)(2k + 5)(4k + 3)(4k + 5)

(2k + 2)(2k + 4)(2k + 6)(4k + 9)(4k + 11)

)
.

Now, signP2k(0) = (−1)k, so that L̃(0) < 0 as required.

Remark. By using a sum from k to k+γ+2 in (B.5) the method can be extended,
and (iii) can be satisfied for γ ≥ 2.

B.2. Comparison with Mallik et al. (2013)

We compared our proposed confidence intervals for the kink-location with those
of Mallik et al. (2013) by simulating observations within the same setting as
in Section 5 of their paper. In particular, we considered the regression function
f(x) = (2(x− 0.5))1(0.5,1](x) and normally distributed noise variables with zero
mean and standard deviation σ = 0.1. The function has a kink of first order in
θ = 0.5. As in Mallik et al. (2013) we applied our method for over 5000 repli-
cations, where we used a grid Kn for every scenario such that the bandwidth
values are inside an interval [hmin,n, hmax,n], where the values of hmin,n resp.
hmax,n are given in Table 7. For the Lepski-constant we used CLep = 0.03. The
results can be found in Table 8, where we also display the results of Mallik
et al. (2013) for comparison. As expected, our method (denoted by OCI) yields
confidence intervals which are narrower than those of Mallik et al. (2013) (de-
noted by MCI) since they have milder assumptions on the smoothness of the
regression function for their method. Nevertheless, f fulfills the assumptions of
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Table 7

Choice of [hmin,n, hmax,n] for the second scenario.

n = 100 n = 500 n = 1000 n = 2000
[0.52,0.57] [0.44,0.48] [0.36,0.41] [0.29,0.33]

Table 8

Coverage probability and width (in parentheses) of the kink-location CI based on (3.16)
(denoted by OCI) and the method of Mallik et al. (2013) (denoted by MCI) for the

regression functions f for different grid sizes n.

n
90 % CI 95 % CI 99 % CI

MCI OCI MCI OCI OCI
100 0.939 (0.448) 0.811 (0.060) 0.972 (0.559) 0.883 (0.071) 0.962 (0.093)
500 0.922 (0.258) 0.888 (0.039) 0.965 (0.346) 0.943 (0.047) 0.987 (0.061)

1000 0.911 (0.197) 0.897 (0.030) 0.959 (0.265) 0.951 (0.036) 0.989 (0.047)
2000 0.903 (0.153) 0.896 (0.024) 0.954 (0.205) 0.946 (0.028) 0.985 (0.037)

Mallik et al. (2013) as well as the assumptions for our setting and therefore, it
seems reasonable to use our method in such cases.

Appendix C: Sub-Gaussian processes

Following Viens and Vizcarra (2007) we call a centered random variable ξ sub-
Gaussian relative to the scale M, if for all u > 0

P (|ξ| > u) ≤ 2 exp
(
− 2u2

M2

)
. (C.1)

Let (ξi)i=1,...,n be an i.i.d. sequence of random variables such that E[ξ1] = 0,
E[ξ21 ] = σ2 and ξ1 is sub-Gaussian relative to the scale σg with σg ≥ σ > 0.
Define the process

Zn(t;h) := (nh)−1/2
n∑

i=1

ξi K(h−1(xi − t)), t ∈ [0, 1],

where h < 1 and K : R → R is a function with the following properties:

1. K is bounded and Lipschitz continuous with Lipschitz constant CK > 0.
2. supp(K) = [−1, 1].

Define the semi-metric ρn,h : [0, 1]2 → R+ by ρ2n,h(s, t) = E[(Zn(s;h)−Zn(t;h))
2].

In the following we suppress the dependency of ρn,h on n in the notation and just
write ρh. This is due to our upper bound in (C.3) below. We write N(ρh, T, ε)
to denote the smallest number of ρh-balls of radius ε needed to cover T ⊂ (0, 1).

Lemma C.1. The following statements are valid.

(i) There exists a constant cg > 0 depending only on K and σg such that for
any s, t ∈ [0, 1] the random variable cg

(
Zn(t;h)−Zn(s;h)

)
is sub-Gaussian

relative to the scale ρh(s, t).
(ii) diamρh

[0, 1] ≤ 2σ2
g ||K||2∞.
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(iii) For any T ⊂ [0, 1], there exist some finite constants C, h0 > 0 depending
only on K and σg such that if h ∈ (0, h0)∫ ∞

0

√
log(N(ρh, T, x)) dx ≤ C

√
log(1/h).

Proof of Lemma C.1. Ad(i).

It holds that

ρh(s, t)
2 = E[|Zn(s;h)− Zn(t;h)|2]

= σ2(nh)−1
n∑

i=1

|K(h−1(xi − t))−K(h−1(xi − s))|2.
(C.2)

Let s, t ∈ [0, 1] and u > 0. By means of the general Hoeffding inequality for
sums of independent sub-Gaussian random variables (see for instance Theorem
2.6.3 in Vershynin (2018)) obtain

P (|Zn(s;h)− Zn(t;h)| > u) ≤ 2 exp
(
− C

u2

ρh(s, t)2

)
,

where C > 0 is some finite constant depending only on K and σg. Therefore,
choosing cg > 0 appropriately and depending only on K and σg we can observe
from the latter display that

P (cg |Zn(s;h)− Zn(t;h)| > u) ≤ 2 exp
(
− 2

u2

ρh(s, t)2

)
.

This shows (i) in view of (C.1).

Ad(ii).

Now, the right-hand side of (C.2) can be bounded in two ways. On the one
hand, let A(n, s, t) denote the set of indices for which the latter sum is not
zero. Due to the compact support of K and the design assumption we have that
|A(n, s, t)| ≤ C nh, for some finite constant C > 0. Thus, with the Lipschitz
continuity of K

ρh(s, t)
2 ≤ h−2 C C2

K |t− s|2σ2
g ,

since σg ≥ σ. On the other hand, since K is bounded and due to the cardinality
of A(n, s, t) one has that ρh(s, t)

2 ≤ 2σ2
g ||K||2∞. Hence,

ρh(s, t)
2 ≤ 2σ2

g ||K||2∞ ∧ h−2 C2 C2
K |t− s|2σ2

g , ∀s, t ∈ [0, 1]. (C.3)

This yields diamρh
[0, 1] ≤ 2σ2

g ||K||2∞.

Ad (iii).

Since the latter display relates the ρ-distance of s and t to their absolute
distance it follows that for any ε ∈ (0, diamρh

[0, 1]) and any T ⊂ [0, 1] one has
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N(ρh, T, ε) ≤ C1 λ1(T ) (hε)
−1 for some appropriate constant C1 > 0 depend-

ing only on K and σg. With this and if h0 > 0 is chosen appropriately small
depending on diamρh

[0, 1] deduce for any h ∈ (0, h0)∫ ∞

0

√
log(N(ρh, T, x)) dx =

∫ diamρh
[0,1]

0

√
log(N(ρh, T, x)) dx

≤
√
log(1/h) diamρh

[0, 1]

+

∫ diamρh
[0,1]

0

√
log(C1λ1(T )x−1) dx

≤ C2

√
log(1/h),

for some finite constant C2 > 0 depending only on K and σg. In view of (ii), the
choice of h0 depends only on K and σg as well which concludes the proof.

Lemma C.2. There exist constants C1, C2, h0 > 0 depending only on K and
σg, such that for any λ > 0 and h ∈ (0, h0) such that λ > C1

√
− log(h), it holds

that

P

(
sup

t∈[0,1]

|Zn(t;h)| ≥ λ

)
≤ 2 exp

(
− C2 λ

2
)
.

Lemma C.3. There exist constants C, h0 > 0 depending only on K and σg,
such that if h ∈ (0, h0) then

E
[

sup
t∈[0,1]

|Zn(t;h)|
]
≤ C

√
log(1/h).

To prove Lemma C.2 resp. Lemma C.3 we make use of Theorem 3.1 resp.
Corollary 3.3 in Viens and Vizcarra (2007), of which we derived the requirements
in Lemma C.1.

Proof of Lemma C.2. First, note by the triangle inequality that for any t0 ∈
[0, 1] holds

P
(

sup
t∈[0,1]

|Zn(t;h)| ≥ λ
)
≤ P

(
sup

t∈[0,1]

|Zn(t;h)− Zn(t0;h)| ≥ λ/2
)

+ P
(
|Zn(t0;h)| ≥ λ/2

)
.

(C.4)

Since Zn(t0;h) is the sum of independent sub-Gaussian random variables, we
can apply the general Hoeffding inequality (see for instance Theorem 2.6.3 in
Vershynin (2018)) to obtain

P (|Zn(t0;h)| ≥ λ/2) ≤ 2 exp(−C̃λ2), (C.5)

where C̃ > 0 is a finite constant depending only on K and σg. Next, the process
Z = (cg Zn(t;h))t∈[0,1] is separable and by Lemma C.1, (i), a sub-1th-Gaussian
chaos field (see Definition 2.3 in Viens and Vizcarra (2007)) with respect to ρ.
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Without loss of generality let us assume that the constant cg in Lemma C.1, (i),

is one. Otherwise, we consider the random process Z̃n(t, h) = c−1
g Zn(t, h) and

incorporate the constant cg within the constants C1 and C2. Thus, by Theorem

3.1 in Viens and Vizcarra (2007) for any λ > C̃1M, where C̃1 > 0 is a finite
constant depending only on K and σg and M =

∫∞
0

√
log(N(ρh, T, x)) dx it

holds for a suitable finite constant C̃2 > 0 depending only on K and σg that

P

(
sup

t∈[0,1]

|Zn(t;h)− Zn(t0;h)| ≥ λ/2

)
≤ 2 exp

(
− C̃2λ

2
)
, ∀t0 ∈ [0, 1].

(C.6)

In view, of Lemma C.1, (iii), M ≤ C
√
log(1/h) if h < h0, where h0, C > 0 are

finite constants depending only on K and σg. Hence, choose C1 := C C̃1 and

C2 := C̃ + C̃2 to conclude the proof, due to (C.4), (C.5) and (C.6).

Proof of Lemma C.3. As in the proof of Lemma C.2 we can assume without loss
of generality that the constant cg in Lemma C.1, (i), is one. Using Corollary
3.4. in Viens and Vizcarra (2007) yields the assertion by using the bound on the
covering entropy in 3. of Lemma C.1.

Appendix D: Uniform weak convergence theory

We use the following notation in this section adapted from Bengs and Holzmann
(2019). By FX we denote the cumulative distribution function of a random
vector X and by PX its law. Let φX be the characteristic function of a random
vector X.

Moreover, we assume for this section that Θ is some arbitrary set and for any
ϑ ∈ Θ, (Xϑ

n )n∈N is a sequence of real-valued random vectors in Rd. Likewise,
for any ϑ ∈ Θ, let Xϑ be random vectors in Rd with continuous distribution.
We introduce some definitions for the remainder of this section.

Uniform convergence in distribution

We write Xϑ
n

D,Θ
=⇒ Xϑ if

sup
ϑ∈Θ

|FXϑ
n
(x)− FXϑ(x)| = o(1), ∀x ∈ Rd.

In this case we say that Xϑ
n converges uniformly over Θ in distribution to Xϑ.

We say that (PXϑ)ϑ∈Θ is uniformly absolutely continuous over Θ with respect to
some continuous probability measure Q, if for any ε > 0 there exists a δ > 0 such
that for any measurable A ⊂ Rd with Q(A) < δ one has that supϑ∈Θ PXϑ(A) <
ε. Note that by continuous probability measure we mean that the measure of
singletons is zero, i.e. Q({x}) = 0 for any x ∈ Rd.
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Uniform weak convergence

Likewise, we define uniform weak convergence for probability measures. Let
(X , d) be some metric space and let A be its Borel σ-algebra. Let for any ϑ ∈ Θ,
(μϑ

n)n∈N be a sequence of probability measures on (X ,A). Similarly, for any
ϑ ∈ Θ, let μϑ be a probability measure on (X ,A). In the same manner as for
the law of random vectors we define uniform absolute continuity over Θ for
(μϑ)ϑ∈Θ, that is (μ

ϑ)ϑ∈Θ is uniformly absolutely continuous over Θ with respect
to some continuous probability measure μ if for any ε > 0 there exists a δ > 0
such that for any A ∈ A with μ(A) < δ it follows that supϑ∈Θ μϑ(A) < ε.
Eventually, we say that μϑ

n converges uniformly weakly over Θ to μϑ and write

μϑ
n

w,Θ
=⇒ μϑ if and only if

sup
ϑ∈Θ

∣∣∣ ∫ g dμϑ
n −

∫
g dμϑ

∣∣∣ = o(1)

for any real-valued, bounded and continuous function g : X → R. Proofs for the
following results are provided in Bengs and Holzmann (2019).

Theorem D.1 (Uniform continuous mapping theorem). Let H : Rd → Rs be
continuous. If (PXϑ)ϑ∈Θ is uniformly absolutely continuous over Θ with respect

to some continuous probability measure Q and Xϑ
n

D,Θ
=⇒ Xϑ, then

H(Xϑ
n )

D,Θ
=⇒ H(Xϑ).

Theorem D.2. Let for any ϑ ∈ Θ, (Y ϑ
n )n∈N be a sequence of real-valued random

vectors in Rd. Suppose that Xϑ
n

D,Θ
=⇒ Xϑ and ||Y ϑ

n − Xϑ
n ||2 = oP,Θ(1) and in

addition (PXϑ)ϑ∈Θ is uniformly absolutely continuous over Θ with respect to
some continuous probability measure Q. Then,

Y ϑ
n

D,Θ
=⇒ Xϑ.

Theorem D.3 (Uniform Slutzky’s Theorem). Let for any ϑ ∈ Θ, (Y ϑ
n )n∈N be a

sequence of real-valued random vectors in Rd and (cϑ)ϑ∈Θ be deterministic real
vectors in Rd with Y ϑ

n = cϑ + oP,Θ(1). Furthermore, suppose (PXϑ)ϑ∈Θ is uni-
formly absolutely continuous over Θ with respect to some continuous probability

measure Q, and Xϑ
n

D,Θ
=⇒ Xϑ, then

Xϑ
n + Y ϑ

n
D,Θ
=⇒ Xϑ + cϑ and Xϑ

n · Y ϑ
n

D,Θ
=⇒ Xϑ · cϑ,

where the multiplication is to be understood componentwise.

Theorem D.4 (Uniform Lindeberg-Feller Theorem). For each n ∈ N and ϑ ∈ Θ
let Xϑ

n,i, 1 ≤ i ≤ n be centered and independent random vectors in Rd. Assume
that (PXϑ

n,i
)ϑ∈Θ is uniformly absolutely continuous over Θ with respect to some

continuous probability measure Q. Moreover, suppose that
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1. supϑ∈Θ ||
∑n

i=0 E
[
Xϑ

n,i

(
Xϑ

n,i

)T ] − Σ ||2 = o(1), for some semi-positive-

definite matrix Σ ∈ Rd×d;
2. For any ε>0 it holds that lim supn supϑ∈Θ

∑n
i=1 E

[
||Xϑ

n,i ||22 1||Xϑ
n,i ||2>ε

]
=

0;

Then,

sup
ϑ∈Θ

∣∣P (
Xϑ

n,1 + . . .+Xϑ
n,n ≤ x

)
− ΦΣ(x)

∣∣ = o(1),

where ΦΣ is the cumulative distribution function of N(0,Σ).
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