
Automatic Machine Learning: Hierarchical
Planning Versus Evolutionary Optimization

Marcel Wever1, Felix Mohr2, Eyke Hüllermeier3

Paderborn University
Warburger Str. 100, 33098 Paderborn

1E-Mail: marcel.wever@uni-paderborn.de
2E-Mail: fmohr@uni-paderborn.de

3E-Mail: eyke@upb.de

Abstract

These days, there is a growing need for machine learning applications,
coming with the quest to automate parts of the process of engineering
machine learning tools and algorithms. This development has triggered
the emergence of automated machine learning (AutoML) as a new sub-
field of machine learning. In AutoML, the selection, composition and
parametrization of machine learning algorithms is automated and tailored
to a specific problem, resulting in a machine learning pipeline. Current
approaches reduce the AutoML problem to optimization of hyperpara-
meters. Based on recursive task networks, in this paper we present one
approach from the field of automated planning and one evolutionary
optimization approach. Instead of simply parametrizing a given pipeline,
this also includes the structure optimization of machine learning pipelines.
We evaluate the two approaches in an extensive evaluation, finding both
of them to have their strengths in different areas. Moreover, the two
approaches outperform the state-of-the-art tool Auto-WEKA in many
settings.

1 Introduction

While the demand for machine learning functionality is growing quite
rapidly these days, end users in application domains are normally not
machine learning experts. Therefore, there is an urgent need for suitable
support in terms of tools that are easy to use. Ideally, the induction of

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 149



models from data, including the data preprocessing, the choice of a model
class, the training and evaluation of a predictor, the representation and
interpretation of results, etc., could be automated to a large extent [7].
This has triggered the field of automated machine learning (AutoML),
which has developed into an important branch of machine learning rese-
arch in the last couple of years. Given a specific problem (data set), the
goal of AutoML is to automatically set up a suitable machine learning
pipeline, comprising the aforementioned steps of model induction.
In spite of quite impressive first results, state-of-the-art tools such as Auto-
WEKA [13] and Auto-sklearn [4] are still limited in scope and restricted
to rather simple learning problems such as classification, essentially
because automated machine learning is reduced to the optimization of
hyperparameters. In this paper, we address the additional problem
of optimizing the structure of a machine learning pipeline, instead of
simply parametrizing a given one. We consider structure optimization
as an important prerequisite for the application of automated machine
learning to learning problems more complex than standard (binary)
classification or regression, such as multi-target prediction or structured-
output prediction. More specifically, we compare two approaches for
optimizing machine learning pipelines, which are based on two different
principles for searching the space of configurations.
Our first approach is based on the idea to consider the machine learning
problem as a planning task. This idea is arguably quite natural: what
the machine learning expert has to do is to devise a plan determining
which data processing steps are to be executed in which order, and how
the different steps shall be configured or parametrized. More specifically,
we make use of recursive task networks for hierarchical planning [9],
which offers a versatile approach for the configuration of machine learning
pipelines.
As an alternative to the systematic search strategy realized by hierarchical
planning, we make use of an evolutionary approach that is based on
recursive task networks as well. To this end, the evolutionary algorithm
maintains a population of individuals which represent a single path in the
network and thus a machine learning pipeline including hyperparameters
being set. We apply multi-objective optimization to assess the fitness
of ML pipelines considering the generalization behavior of a pipeline
in different stages of the learning process, i.e. for different proportions
of training-validation splits, in order to prevent the optimized machine
learning pipelines from overfitting the provided data.

150 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



2 An HTN-Based Search Graph

2.1 Hierarchical Task Networks

A hierarchical task network (HTN) is a partially ordered set 𝑇 of tasks.
A task 𝑡(𝑣0, .., 𝑣𝑛) is a name with a list of parameters, which are variables
or constants from ℒ. For example, configureC45 (𝑐) could be the task
of creating a set of options for a decision tree and assigning them to
the concrete decision tree object 𝑐. A task named by an operator (e.g.,
setC45Options(c, o)) is called primitive, otherwise it is complex. A task
whose parameters are constants is ground.
We are interested in deriving a plan from a task network. Intuitively,
we can refine (and ground) complex tasks iteratively until we reach a
task network that has only ground primitive tasks, i.e., a set of partially
ordered actions. While primitive tasks can be realized canonically by a
single operation, complex tasks need to be decomposed by methods. A
method 𝑚 = ⟨𝑛𝑎𝑚𝑒𝑚, 𝑡𝑎𝑠𝑘𝑚, 𝑝𝑟𝑒𝑚, 𝑇𝑚⟩ consists of its name, the (non-
primitive) task 𝑡𝑎𝑠𝑘𝑚 it refines, a logic precondition 𝑝𝑟𝑒𝑚 ∈ ℒ, and a
task network 𝑇𝑚 that realizes the decomposition. Replacing complex
tasks by the network of the methods we use to decompose them, we
iteratively derive new task networks until we obtain one with ground
primitive tasks (actions) only.
To get an intuition of this idea, consider the (totally ordered) task
networks in the boxes of Figure 1 as an example. The colored entries are
the tasks of the respective networks. Orange tasks are complex (need
refinement), and green ones are primitive. The tree shows an excerpt of
the possible refinements for each task network. The idea is very similar to
derivations in context free grammars where primitive tasks are terminals
and complex tasks are non-terminal symbols. The main difference is that
HTN considers the concept of a state, which is modified by the primitive
tasks and poses additional constraints on the possible refinements.
The definition of a simple task network planning problem is then straight
forward. Given an initial state 𝑠0 and a task network 𝑇0, the planning
problem is to derive a plan from 𝑇0 that is applicable in 𝑠0. A simple
task network planning problem is then a tuple ⟨𝑠0, 𝑇0, 𝑂, 𝑀⟩, where 𝑂
and 𝑀 are finite sets of operators and methods, respectively.
The HTN problem definition induces a search graph (a tree) that can
be searched with standard search algorithms such as depth first search,

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 151



Figure 1: Task networks allow not only more flexible pipelines but even to configure
its elements.

best first search, etc.. The graph in Figure 1 sketches (an exerpt of) such
a search graph for the AutoML problem. Every node corresponds to a
partially defined pipeline (complex tasks are partially defined aspects
that still require refinement). The root node corresponds to the pipeline
with the initial complex task, and goal nodes are nodes that have fully
defined pipelines. Usually, there is a one-one correspondence between
search space elements, e.g., the machine learning pipelines, and the goal
nodes.
A typical translation of the HTN problem into a graph is to select the
first complex task in the network of a node and to define one successor
for each ground method that can be used to resolve the task. This
technique is called forward-decomposition. While it is also possible to
derive graphs with other structures for the same HTN problem, we adopt
forward-decomposition in this paper.

2.2 The AutoWEKA-Simulation Search Graph

The search graph is induced by the description of a task network problem.
As described above, we adopt forward-decomposition, i.e., a node has

152 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



successors iff it has at least one complex task, and there is one successor
for each method or operator that can be used to refine the first task in
the network. The complete problem description is very technical, so we
focus on giving an intuition. The full formal specification is available
with our implementation2.
The root node is a task network consisting of three tasks createRawPP,
setupClassifier, refinePP. The first task can be refined to the existing
preprocessing algorithms without parametrizing them. There is one met-
hod for each classifier to refine the second task setupClassifier. Each
of these methods refines the task to a network of the form setupParam1,
..., setupParamN for all of the 𝑁 parameters of the respective classifi-
cation algorithm, so the network enforces that a decision is made for
each of the parameters. For each of the parameters, there are methods
that induce primitive tasks either setting or not setting the respective
parameter, i.e., leaving it at the default value. The same technique is then
applied to refine refinePP and thereby to configure the initially chosen
preprocessor (if any). We support the same preprocessors, classifiers, and
parameters as used in AutoWEKA.
This modeling technique induces a tree with two regions, which are
separated in a relatively low depth of the search tree, say 𝑑. This is
because the whole construction process encodes the idea of (i) selecting the
preprocessor, (ii) selecting the classifier, (iii) parametrizing the classifier,
(iv) parametrizing the preprocessor. Partial solutions of nodes in the
shallower region (up to a depth of 𝑑) define the algorithms that will be
used but have not yet made any decision about parametrization, i.e.,
the steps (i) and (ii). All nodes in depth of at least 𝑑 deal with the
parametrization, i.e. correspond to decisions either in phase (iii) or (iv).
Numerical parameters are discretized either on a linear scale or a log
scale. The discretization technique for a parameter is not a choice point
but is fixed in advance.

2.3 Potential of HTN Planning for AutoML

Given one concrete example of how to create ML pipelines using HTN
planning, we stress that we are not committed to one particular HTN
problem definition. In fact, there are many different HTN problems that
can cover exactly the same search space. So apart from any questions

2Attached as supplementary material during review phase.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 153



related to heuristics, node evaluation, etc., the mere way of how the
HTN problem is formulated can have a tremendous impact on the search
efficiency. Just to give an example, we could use a two-step network where
we first choose and configure the preprocessor (or choose to not use any)
and then choose and configure the classifier. Yet, we may also interleave
these configurations and first choose the preprocessor and the classifier,
and then configure both of them. While this looks like a trivial change
that does not affect the set of constructible pipelines, it has important
consequences on the structure of the search tree.
The dominating expressiveness of HTN techniques for AutoML is not
only reflected in the ability to construct pipelines of arbitrary lengths
but also in that they can configure complex elements within it. For
example, the right branch of Figure 1 shows that we can configure a
neural network. Note, once again, that even though the figure does not
show any parameters, we cannot only control the number of layers but
also their connections.
Another important advantage of HTN for AutoML is its ability to encode
reduction. Reduction or decomposition techniques such as one-versus-
rest [11], all-pairs [5], or error correcting output codes [3] are quite
popular in machine learning. For example, instead of solving the multi-
class classification problem directly on the set of 𝑘 classes, we can first
separate two sets of classes from each other. This induces two reduced
classification problems, which can be solved either directly or again by
recursing in the same way (unless there are only two classes left), and
this is a very natural use case of HTN planning.

3 ML-Plan: AutoML through HTN Planning

ML-Plan directly solves the HTN problem defined above using an HTN
planner. For a specific problem type, e.g., classification, the HTN problem
that needs to be solved is usually fixed. The variety for different queries
arises from the fact that a plan (composition) performs differently on
different data sets. The data set is then used to guide the search.
We adopt a best first search algorithm in order to identify good pipelines.
A best first search algorithm assigns a number to each node and always
chooses the node with the currently lowest known value for expansion.

154 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



Since the prediction error as the solution quality does not decompose over
the path (necessary for A*), we adopt a randomized depth first search
similar to the one applied in Monte Carlo Tree Search to inform the
search procedure. Given the node for which we need a score, we choose
a random path to a goal node. This is achieved by randomly choosing
a child node of the node itself, then randomly choosing a child node of
the child node, etc. until a goal node is reached. We then compute the
solution “qualities” of each of 𝑛 such random completions and take the
minimum as an estimate for the best possible solution that can be found
under that node.
The qualities of the completed solutions are determined by computing a
𝑘-step Monte Carlo Cross Validation. That is, a fixed portion of the data
initially provided to the search algorithm is allocated for node evaluation;
in our implementation we used 70% of the data. To evaluate a single
solution, this portion is then partitioned 𝑘-times into a stratified training
and validation set; here, we also chose a split of 70% for training and 30%
for validation and 𝑘 = 5. For each of the 𝑘 splits, the solution pipeline is
trained with the respective training set and tested against the validation
set. The mean 0/1-loss of this evaluation is the score of that solution.
Since the node evaluation function actually computes solutions, we propa-
gate these solutions to the search algorithm. More precisely, we propagate
the best of the 𝑛 solutions drawn for each node to the search routine.
This way, we can always return solutions even if the main search routine
did not already discover any goal node.
In order to make this strategy more reliable, in the upper region of
the search graph, we use a biased breadth first search instead. This
is to avoid that the randomized depth search averages over too many
heavily distinct solutions. The bias within a layer is towards the nodes
corresponding to frequently well-performing algorithms: KNN, random
forests, voted perceptron, SVM, logistic regression (in this order). This
arbitrary preference is hard-coded, but we plan to make it data-dependent
in a follow-up version.
Since evaluating the solution candidates is very costly, we use a reduced
version of the originally given dataset. For a number 𝑛 of classes, we
reduce the number of examples to at most 250 × 𝑛 (stratified removal)
and the number of features to at most 5 × 𝑛 using principal component
analysis. Of course, this reduction only needs to be computed once in a
preprocessing step of the overall search process. In [10], we do not make
this simplification.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 155



4 EvoML-Plan: Genetic HTN Planning

As an alternative to the systematic search strategy realized by hierarchical
planning, we make use of a so-called messy genetic algorithm [6]. In
contrast to classical genetic approaches that take a fixed length of the
genotype for granted, messy genetic algorithms allow for variable length
strings of genes. The variable length of genestrings is crucial for solving
HTN planning problems as the length of plans may vary substantially.

4.1 Genetic Representation

Each individual represents one possible plan derived from the hierarchical
task network (HTN). In order to derive plans from the HTN, complex
tasks need to be refined to primitive tasks until finally a concrete plan
is obtained. As for a refinement different choices might be eligible, we
can define our genetic representation to encode these choices. Since the
length of concrete plans may have an arbitrary length and moreover may
vary for different plans, the number of choices to be made are varying
accordingly. Moreover, the genetic representation must not be fixed
to a certain length since otherwise it could not represent each possible
solution.
Therefore, we choose the genetic representation to be a list of non-negative
integers. For each refinement, the possible refinement options are listed
and the next gene is taken as the index in this list. If the value of this
gene exceeds the number of possible options, genes will get skipped until
we finally reach a gene in this range. Note that the genetic representation
does not take any semantics into account. Therefore, the i-th gene may
represent for instance the choice of a parameter value or a particular
algorithm.
Due to the variable length of chromosomes, an individual might be
over- or underspecified. While we can deal with over-specification by
simply ignoring the remaining part of the chromosome, the other scenario
requires additional genetic material to be added dynamically. To this
end, we extend the chromosome by randomly drawing new genes until
the plan is entirely specified.
Another problem using this genetic representation arises from the appli-
cation of genetic operators such as mutation and crossover. As a small
change in a single gene may lead to dramatic changes since all the choices

156 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



Figure 2: Genotype for the representation of ML pipelines

4.2 Genetic Operators

For the variation of individuals, on one hand, we use standard mutation
for single genes. On the other hand, we use an instantiation of n-point
crossover fitted to our genetic representation. Meaning, the crossover
takes the semantics of the ML pipelines into account, exchanging only
entire building blocks of the pipeline. An example for the genetic operator
recombining two individuals is presented in Figure 3. In the example
figure the crossover is a two-point crossover. Generally, the crossover
operator is not fixed to two intersection points. Depending on the order
of the codons and depending on how many building blocks a ML pipeline
may involve, the crossover can be adapted to exchange the entire feature

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 157

made subsequently lose their previous semantics, we divide the overall
genotype into so-called codons. A codon represents a cohesive sequence
of genes that is inherited by offspring en bloc. More specifically, for each
complex task, we use a distinct codon of variable length.
Considering our scenario of configuring ML pipelines, the chromosome is
divided into codons describing the feature preprocessor, the classifier, the
classifier’s parametrization, and the parameters chosen for the feature
preprocessing. An example is illustrated in Figure 2. Due to this segmen-
tation, changing a gene for the choice of the feature preprocessor does no
longer influence the decisions for the classifier and its parametrization at
all. Still the codon for the parametrization of the feature preprocessor
adopt its semantics according to the feature preprocessor.
The segmentation into codons allows a variable length of the chromosome
while isolating semantic structures in order to facilitate the exchange
of partial solutions without changing other components. In particular,
with this technique it is possible to swap the feature preprocessors of two
individuals only.



Figure 3: Crossover of two ML pipeline individuals

preprocessing or one to multiple codons. The only important criterion
for the crossover is to exchange codons for the selection of an algorithm
and its parametrization together.

4.3 Multi-Objective Optimization

Optimizing for the best or most accurate ML pipeline comes also with
a high danger for overfitting the data. Therefore, we choose a multi-
objective optimization approach in order to have a more differentiated
look at the generalization behavior of each evaluated ML pipeline. To
this end, we use repeated random sub-sampling validation, aka. Monte
Carlo cross-validation, creating repeatedly stratified splits at random
[1, 12]. Since the data contained in the training and validation set varies
with each split and evaluation, we prevent the ML pipelines from getting
to specialized for a certain partitioning.
More specifically, we evaluate each individual performing 5-fold Monte
Carlo cross-validation for 50:50, 67:33, and 80:20 splits of training and
validation data. Taking the average error rate for the different split
proportions as an individual fitness function, we use these as objectives
in the multi-objective evolutionary algorithm NSGA-II (see [2]) in ge-
neral. However, the evaluation of an individual is rather costly, and an
individual’s evaluation might take several minutes. Due to this and since
the main reason for multiple objectives is to prevent the individuals from
overfitting, we only use the error rate for the 80:20 splits as a fitness
function if a timeout of less the 5 minutes is given.

158 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



Selection is done via tournament selection involving 2 individuals, where
these two are compared primarily whether the fitness values of one
individual dominate the other one’s fitness values. If this is not the
case for one of the two individuals, a crowding distance comparator is
taken into account. The crowding distance comparator calculates how
close other individuals are to the considered individuals, and it prefers
individuals that are more different from the remaining population.
In order to support diversification of the population, we reinitialize the
population every 5 generations with random individuals, keeping only
the elite of the current population.

4.4 Solution Selection

The result of NSGA-II is represented by a Pareto set of non-dominated
individuals. Therefore, we still need to select a single individual as
the final result of the genetic algorithm. As usual in multi-objective
optimization, the selection of a particular candidate from a Pareto set
is a non-trivial decision. We proposed three fitness functions evaluating
an ML pipeline on different splits of the given dataset. Interpreting the
three fitness values as a vector in the three-dimensional space, we choose
the solution which is closest to the optimum, i.e. the solution with the
smallest distance to the origin.
Moreover, this rather simple selection method allows us to always main-
tain the best solution seen so far. Hence, in the face of timeouts the
algorithm is always able to immediately return a solution even if the algo-
rithm is currently processing a generation. However, as a prerequisite for
returning a solution, a valid individual, i.e., an ML pipeline that can be
applied to the particular problem, must have been already evaluated.

5 Evaluation

We evaluate the two approaches on a selection of 21 datasets from
the UCI repository. In our evaluation we compare the two proposed
approaches EvoML-Plan and ML-Plan to each other and additionally to
the state-of-the-art tool Auto-WEKA.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 159



5.1 Experimental Setup

For the comparison of the three approaches, we carried out 25 runs for
each of the approaches on the 21 datasets for timeouts of one minute and
one hour, yielding a total number of 3,150 experiments. The timeout for
the evaluation of a single individual in EvoML-Plan resp. the internal
evaluation of a single solution in ML-Plan was set to 10s for a timeout of
one minute. In the case of a timeout of one hour, the internal evaluation
timeout was set to 5 minutes. For all the runs, 70% of a stratified split of
the entire data were provided to the algorithms as training data and 30%
were used for testing. The computations were executed on 200 Linux
machines in parallel with 8 cores (Intel Xeon E5-2670, 2.6GHz) and 32GB
memory each.
Runs exceeding the timeout limit or the resource limitations of the nodes
were canceled and their results are disregarded in the following discussion.
Nevertheless, the algorithms were admitted an extra amount of time so
that they were killed after taking 110% of the set timeout. Moreover,
the algorithms were killed when consuming more resources (CPU and
memory) than allocated, which happens because in the implementation
controlling the CPU and memory consumption of forked subprocesses is
rather hard.
For significance testing, we use the Mann-Whitney-U Test [8], and we
denote significant improvements respectively degradation if 𝑝 < 0.05.

5.2 Results

In Tables 1 and 2 the results of the runs with a timeout of one minute
respectively one hour are presented. In the tables, for each dataset and
each approach, the number of returned solutions (n) and the average test
set loss (0/1-loss) plus or minus the standard deviation is shown. Furt-
hermore, for each row the best performing approach is highlighted with
bold letters and non-significant degradations are highlighted underlining
these values.
The results in Table 1 show that EvoML-Plan as well as ML-Plan clearly
outperform Auto-WEKA for all the evaluated datasets. As Auto-WEKA
does not even return a solution in the given timeout for some datasets, we
can conclude that both proposed approaches find solutions at least faster
than Auto-WEKA does. Furthermore, in settings where Auto-WEKA
returned solutions, our approaches return solutions that are significantly

160 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



Table 1: Experimental results (mean 0/1-losses±std) for a timeout of 1 minute

Dataset n EvoML-Plan n ML-Plan n Auto-WEKA
abalone 23 73.94 ± 0.59 19 73.33 ± 0.60 12 74.94 ± 1.25
amazon 14 90.41 ± 5.28 0 ? 0 ?
car 24 5.05 ± 1.56 19 3.40 ± 0.74 12 7.18 ± 1.00
cifar10 4 86.34 ± 6.33 16 68.82 ± 6.15 0 ?
cifar10small 16 84.81 ± 7.89 20 69.98 ± 6.71 0 ?
convex 12 47.65 ± 0.34 18 27.71 ± 0.19 0 ?
dexter 20 24.88 ± 9.90 0 ? 0 ?
dorothea 17 26.81 ± 10.32 0 ? 0 ?
germancredit 24 27.52 ± 1.46 20 24.83 ± 0.83 12 28.64 ± 0.72
gisette 13 35.65 ± 15.93 17 3.65 ± 0.15 0 ?
kddcup09appe 6 1.77 ± 0.00 3 2.47 ± 0.92 0 ?
krvskp 25 1.15 ± 0.44 20 5.09 ± 1.76 12 1.60 ± 1.64
madelon 25 27.74 ± 2.47 18 39.83 ± 2.12 12 30.35 ± 2.49
mnist 6 35.88 ± 11.67 20 6.50 ± 0.23 0 ?
mnistrotatio 11 88.76 ± 0.00 9 74.88 ± 2.93 0 ?
secom 25 6.42 ± 0.00 19 6.44 ± 0.06 12 6.57 ± 0.27
semeion 24 12.69 ± 2.53 20 10.49 ± 0.86 12 14.0 ± 0.79
shuttle 24 0.11 ± 0.06 15 0.02 ± 0.01 12 0.14 ± 0.01
waveform 25 13.92 ± 1.13 16 13.71 ± 0.27 12 15.14 ± 1.54
winequality 25 38.86 ± 2.89 20 32.43 ± 0.60 12 36.56 ± 0.30
yeast 22 40.29 ± 1.31 19 40.14 ± 1.32 12 42.17 ± 1.77

better than Auto-WEKA’s solutions in 7 out of 11 cases. Comparing
EvoML-Plan and ML-Plan, we can observe that best performances alter-
nate for the different datasets. While EvoML-Plan leads to significantly
better performing results in 5 datasets and ML-Plan in 7 datasets, for
the remaining the performances are competitive to each other.
After a timeout of one hour (see Table 2), the two proposed approaches
still perform better than Auto-WEKA for many datasets. However,
the clear dominance is diminishing but still Auto-WEKA yields better
results only in 5 out of 21 cases, where a significant improvement over
both EvoML-Plan and ML-Plan is achieved only once. Considering the
performance of our two approaches, we notice alternating significant
improvements. While ML-Plan yields superior results in 8 cases, EvoML-
Plan returns significantly better solutions for 6 datasets. The remaining
7 datasets indicate competitiveness of the two approaches.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 161



Table 2: Experimental results (mean 0/1-losses±std) for a timeout of 1 hour

Dataset n EvoML-Plan n ML-Plan n Auto-WEKA
abalone 22 72.93 ± 0.61 10 73.12 ± 0.13 25 73.49 ± 0.76
amazon 23 51.31 ± 10.84 18 31.15 ± 1.32 24 51.44 ± 1.61
car 23 2.59 ± 1.12 4 0.83 ± 0.38 24 0.65 ± 0.23
cifar10 20 77.04 ± 7.03 2 60.73 ± 1.80 0 ?
cifar10small 21 72.19 ± 6.92 4 60.11 ± 0.77 1 70.23 ± 0.00
convex 24 44.28 ± 5.10 12 27.7 ± 0.22 25 46.86 ± 0.25
dexter 23 9.81 ± 2.43 4 19.1 ± 2.32 11 11.24 ± 0.51
dorothea 24 9.58 ± 2.54 0 ? 0 ?
germancredit 22 25.5 ± 1.09 9 24.94 ± 0.42 25 26.81 ± 1.04
gisette 23 4.21 ± 1.49 5 5.00 ± 1.84 23 3.93 ± 0.29
kddcup09appe 19 1.77 ± 0.00 3 1.78 ± 0.01 17 1.77 ± 0.00
krvskp 25 0.73 ± 0.24 10 1.73 ± 0.44 24 2.27 ± 2.28
madelon 25 26.65 ± 2.99 9 39.89 ± 0.44 24 26.11 ± 2.31
mnist 17 12.59 ± 1.40 5 7.21 ± 1.70 25 7.21 ± 0.12
mnistrotatio 22 73.27 ± 6.65 3 62.95 ± 0.38 25 78.61 ± 0.27
secom 25 6.42 ± 0.00 8 6.53 ± 0.11 25 6.52 ± 0.25
semeion 19 7.44 ± 0.87 13 10.0 ± 0.48 18 13.01 ± 2.02
shuttle 24 0.06 ± 0.05 5 0.05 ± 0.05 25 0.12 ± 0.04
waveform 24 13.24 ± 0.57 11 14.51 ± 0.50 25 13.26 ± 0.40
winequality 22 35.66 ± 2.27 15 32.89 ± 0.69 22 33.34 ± 1.11
yeast 21 40.26 ± 1.59 11 40.23 ± 0.68 23 39.87 ± 1.36

162 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017

To sum up, we notice that the two approaches already lead to promising
results comparing to the state-of-the-art Auto-WEKA. Especially, in a
timeout of one minute, it becomes clear that the two proposed approaches
perform faster. Even for a timeout of one hour, EvoML-Plan] and ML-
Plan continue to perform better than Auto-WEKA. For both timeouts
and all the datasets, we observe competitiveness for the two approaches
and find that both have their individual strengths, albeit we notice
ML-Plan to have a slight edge over EvoML-Plan.



6 Conclusion and Future Work

We proposed two new approaches to the AutoML problem, both being
based on hierarchical planning. While on one hand, we made use of a
classical planning approach, as an alternative search strategy, we applied
a multi-objective evolutionary algorithm to the same problem. In our
evaluation, we found significant performance improvements over the
state-of-the-art. Moreover, we have seen that both strategies have their
advantages becoming evident in better performance compared to the
other approach.
In our evaluation, we limited the configured machine learning pipelines to
a length of two, i.e. incorporating a feature preprocessor and a classifier, in
order to remain comparable to Auto-WEKA. However, by this limitation
we did not even leverage the full potential of HTN, and thus, exploiting
the latter is an important point for future work. Moreover, there were
datasets where worse results have been obtained in the run with a
timeout of one hour compared to the ones returned after one minute.
This indicates that the solutions returned after one hour tend to overfit
the data, requiring a mechanism to deal with this problem.

Acknowledgment

This work is part of the Collaborative Research Centre “On-the-Fly
Computing” at Paderborn University, which is supported by the German
Research Foundation (DFG).

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 163



References

[1] P. Burman. A comparative study of ordinary cross-validation, v-
fold cross-validation and the repeated learning-testing methods.
Biometrika, 76(3), 1989.

[2] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans.
Evolutionary Computation, 6(2):182–197, 2002.

[3] T. Dietterich and G. Bakiri. Solving multiclass learning problems
via error-correcting output codes. Journal of Artificial Intelligence
Research, 2:263–286, 1995.

[4] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter. Efficient and robust automated machine learning. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28,
pages 2962–2970. Curran Associates, Inc., 2015.

[5] J. Fürnkranz. Round robin classification. Journal of Machine
Learning Research, 2:721–747, 2002.

[6] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms:
Motivation, analysis, and first results. Complex Systems, 3(5), 1989.

[7] J. R. Lloyd, D. K. Duvenaud, R. B. Grosse, J. B. Tenenbaum,
and Z. Ghahramani. Automatic construction and natural-language
description of nonparametric regression models. In Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence, July
27 -31, 2014, Québec City, Québec, Canada., pages 1242–1250, 2014.

[8] H. B. Mann and D. R. Whitney. On a test of whether one of two
random variables is stochastically larger than the other. Ann. Math.
Statist., 18(1):50–60, 03 1947.

[9] F. Mohr, T. Lettmann, and E. Hüllermeier. ITN planning: Planning
with independent task networks. In Proceedings KI-2017, 40th
German Conference on Artificial Intelligence, Dortmund, Germany,
2017.

[10] F. Mohr, M. Wever, and E. Hüllermeier. ML-Plan: Automated ma-
chine learning via hierarchical planning. Submitted for publication,
2018.

164 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



[11] R. Rifkin and A. Klautau. In defense of one-vs-all classification.
Journal of Machine Learning Research, 5:101–141, 2004.

[12] J. Shao. Linear model selection by cross-validation. Journal of the
American Statistical Association, 88(422):486–494, 1993.

[13] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-
weka: Automated selection and hyper-parameter optimization of
classification algorithms. CoRR, abs/1208.3719, 2012.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 165


	M. Wever, F. Mohr, E. Hüllermeier

