
Algorithm Selection as Recommendation:
From Collaborative Filtering to Dyad Ranking

Alexander Tornede, Marcel Wever, Eyke Hüllermeier

Heinz Nixdorf Institute and Department of Computer Science
Paderborn University

Warbuger Str. 100, 33100 Paderborn, Germany
E-Mail: {alexander.tornede,marcel.wever,eyke}@uni-paderborn.de

1 Introduction

Problem classes such as integer optimization, SAT, and classification can be
tackled by a large variety of algorithms, the performance of which may differ
depending on the concrete problem instance at hand. In fact, theoretical argu-
ments even exclude the existence of a single algorithm that is superior to all
other algorithms on all instances of a problem class [17]. Hence, compared to
using the algorithm that is best on average across an entire class of problem
instances, called the single best solver (SBS), selecting a suitable algorithm for
each instance separately should result in an increased overall performance.

This expectation has been confirmed in recent algorithm selection (AS) compe-
titions [1]. Algorithm selection seeks to support and automate the selection of
an algorithm that is most suitable for a given problem instance. Meanwhile,
quite a number of methods for AS has been proposed in the literature [8].
One interesting idea is to treat AS as a recommendation problem, and to apply
techniques such as collaborative filtering [6]. Going beyond standard collabo-
rative filtering, we propose to tackle AS as a problem of so-called dyad ranking
[13]. This approach is motivated by at least two potential advantages:

• First, treating problem/algorithm pairs as dyads allows the learner to
exploit properties (features) of both the problem instances and the can-
didate algorithms.
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• Second, providing recommendations in the form of rankings of a set of
candidate algorithms is presumably easier than evaluating each of them
in terms of a precise numerical score.

These advantages are substantiated by first experimental studies in the field
of automated machine learning, i.e., the recommendation of machine learning
algorithms for model induction on a given dataset.

2 Algorithm Selection

In the setting of (per-instance) algorithm selection, we are given a set of pro-
blem instances I , a set of algorithms A , and a performance measure m :
I ×A → R. The goal is to find an algorithm selector s : I → A such
that, for a given instance i ∈I , the selector s chooses the algorithm with best
performance according to measure m on instance i. Accordingly, the optimal
selector, called oracle, is defined by

s∗(i) = argmax
a∈A

m(i,a) (1)

for all i ∈I . For simplicity, we subsequently ignore any form of randomness
imposed by an algorithm.

In practice, the performance measure m is usually costly to compute. There-
fore, the obvious brute-force strategy of evaluating all algorithms for a given
instance and returning the one performing best according to m is infeasible.
Fortunately, we are usually provided with a subset ID ⊂ I of the instance
space for which several of the algorithms have already been evaluated accor-
ding to m. Invoking machine learning methods, this information can be used
as training data to infer an algorithm selector s : I → A approximating the
oracle (1).

Most state-of-the-art approaches to AS are complex systems that involve se-
veral steps, such as pre-solvers, portfolios, and other techniques, in addition to
their core machine learning component [18, 5]. Here, we only focus on the lat-
ter, which is typically realized in the form of a regression model
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h : I ×A → R. This model is supposed to track the performance of an
algorithm for a given instance, and hence can be seen as a form of surrogate for
m. Thus, an algorithm selector s can be constructed by returning the algorithm
a that performs best on problem instance i according to h:

s(i) = argmax
a∈A

h(i,a) (2)

Note that, in contrast to the performance measure m, the function h is usually
cheap to evaluate. In contrast to the oracle (1), the computation of (2) is
hence feasible. Nevertheless, one can also cast the learning problem in another
form, for example as a recommendation problem in the context of collaborative
filtering.

3 Algorithm Selection through
Collaborative Filtering

Preference learning methods [3] for predicting rankings of algorithms for a
given instance have recently gained attention. This is motivated by the ob-
servation that predictions of exact performances are sufficient but actually not
necessary for choosing the best algorithm from a set of candidates. Hence,
learning a regression model h : I ×A → R appears to be an unnecessarily
difficult problem.

In particular, methods related to collaborative filtering (CF) [6] have recently
been studied [9, 10, 19, 2, 15, 4], although this idea was already introduced in
[14] about a decade ago. In the standard CF setting, one is confronted with a
set of products P and a set of users U , and given a sparse |U |× |P| rating
matrix R. The value contained in R(u, p) is the rating of product p by user u.
Common tasks associated with CF include matrix completion, which has the
goal to infer the missing entries of the matrix R, and the cold-start problem,
where an entire new row in the rating matrix R has to be predicted for a new
user.
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Figure 1: Depiction of a rating matrix filled with performance values from an algorithm selection
dataset. Entries R(i,a) contain the known performance of algorithm a on instance i and
empty cells indicate unknown performances.

in a very similar way, namely by filling the matrix with the evaluations of m
available in the training data. An example of a corresponding rating matrix is
depicted in Fig. 1.

This setting has two main disadvantages. Firstly, instead of incorporating
expert knowledge about the algorithms in an explicit way, only latent charac-
teristics (if at all) are induced (as done in [9]). Secondly, precise numerical
information about the performance of algorithms is required. In practice, such
information is often difficult to obtain, whereas weaker information in the
form of qualitative comparisons between algorithms is more readily availa-
ble. Imagine, for example, a scenario in which several algorithms are run in
parallel until the first one found a solution. Then, if runtime is the performance
measure to be optimized, precise numerical information is only generated for
the first algorithm, while the knowledge that all other algorithms are worse is
not directly used.

Moving from CF to dyad ranking [13] alleviates both of these disadvantages.
Firstly, dyad ranking allows algorithm characteristics to be explicitly incor-
porated into the learning process. Secondly, dyad ranking merely requires
qualitative training information in the form of rankings rather than precise
numerical performances.
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4 Algorithm Selection through Dyad Ranking

In addition to a feature representation for problem instances, we now also
assume a feature representation for algorithms. By exploiting this informa-
tion, there is hope to either speed up the model inference process or derive a
more accuarate model. Moreover, instead of a real-valued rating matrix R, we
assume a set of rankings over algorithms for the instances in the training set to
be given. More precisely, we assume rankings over so-called dyads.

In (contextual) dyad ranking, a dyad (xxx,yyy) consists of a context xxx ∈X ⊆ Rk

from a context space X and an alternative yyy ∈ Y ⊆ Rr. The training data we
assume to be given is of the form

D =
{
(xxxi,yyyi,1)� . . .� (xxxi,yyyi,li)

}N
i=1 ⊂R(X ×Y ) (3)

and contains rankings with an underlying hidden preference relation � over
the space of dyads X ×Y , where li is the length of the ith ranking in D , and
R(X ×Y ) is the space of rankings over X ×Y . The goal is to learn a “dyad
ranker”

h : P (X ×Y )→R(X ×Y ) (4)

which, given an arbitrary set of dyads (P is the power set), ranks these dyads
according to the hidden preference relation �.

To tackle the dyad ranking problem, we make use of the PLNet algorithm, a
neural-network-based algorithm for learning a parametrized probability distri-
bution over rankings, called the Plackett-Luce (PL) model [13].

A corresponding training dataset (3) is constructed by computing the feature
representation of each algorithm and sorting the algorithms according to their
performance in each row of the rating matrix R(i, ·), pertaining to problem
instance i. Additionally using the feature representation for instances, one can
then extend the ranking to a ranking over dyads.

Problems to be considered during the construction include the sparseness of
R as well as ties among algorithms for an instance in the rating matrix. The
former can be solved by omitting algorithms with an unknown performance
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from the associated ranking. The easiest solution to the latter problem is to
treat ties of algorithms by not comparing them directly. This can be achieved
by creating a ranking ignoring n tied algorithms, copying it n times and adding
each ignored algorithm in one of these copies at the respective position.

As already mentioned, a feature representation is required for both problem
instances and algorithms. In the literature, various ways of representing instan-
ces via features have been proposed, depending on the problem domain. In the
AutoML setting considered in this work, the instances are machine learning
datasets and associated feature representations are called meta-features [11].
An example of such meta-features are landmarkers, which are performance
values of cheap-to-train algorithms on the respective dataset or a subset thereof.
As shown in [12], landmarkers can be used successfully in the context of
algorithm selection and can yield better results than statistical measures, such
as the number of classes in a dataset. Accordingly, for the experiments in this
work, we make use of landmarking features for representing datasets. More
specifically, we use 45 OpenML landmarkers [16], which are computed based
on learning algorithms such as Naive Bayes, One-Nearest Neighbour, Decision
Stump, Random Tree, REPTree and J48.

Finding a feature representation for algorithms is more difficult, and the related
literature is very sparse. We decided to represent algorithms via their parame-
ters. Given a set of algorithms, we compute the union of their parameters and
create a vector that has as many entries as the set of parameters. Then, when gi-
ven a parametrized algorithm, we set the elements of the vector corresponding
to its parameters to the respective values. Furthermore, for each component
which can be contained in an algorithm, the vector contains a binary feature
indicating whether the component is present or not. While this representation
is simple, it has the disadvantage of not generalizing well across different
algorithms that do not share any parameters, as they are essentially represented
by disjoint subvectors of the original vector.
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5 Experimental Results

We evaluated our approach in the AutoML setting, more specifically in the
multi-class classification AutoML setting. Accordingly, instances correspond
to multi-class classifcation datasets. Furthermore, the set of algorithms A

we consider is a set of machine learning (classification) pipelines. By pi-
peline we mean the sequential combination of a data preprocessing step (such
as a PCA) and a classification algorithm (such as an SVM). We considered
10 preprocessing steps and 7 classification algorithms resulting in a total of
70 classification pipelines. In addition, we considered up to 100 parame-
trizations for each of these pipelines and in total achieve an algorithm set
with 5927 elements. We evaluated each of these parametrized pipelines on
29 classification datasets from OpenML1. Due to evaluation timeouts, only
89% of the theoretical amount of performance values is used.

Based on these performance values, we randomly sampled 10 train/test
(70%/30%) splits on the datasets (i.e., each split features 20 training data-
sets and 9 test datasets). For each of these splits, we created dyad ranking
training datasets by randomly sampling rankings of pipelines of length two,
i.e., pairwise comparisons under the condition that the two pipelines do not
have the same performance on the respective dataset. In order to estimate how
much information the learning algorithm (PLNet) requires to perform well, we
evaluated different amounts of pairwise comparisons per dataset.

After training, we evaluated the approach by comparing the predicted ranking
over all pipelines (for which we have a performance value) for each test da-
taset to the ground truth ranking obtained from the true performances using
the Kendall’s τ rank correlation measure [7], which takes values in [−1,+1].
We compared our approach against two instantiations of a nearest neighbor
baseline, which, given a new dataset, computes the n closest training datasets
according to the Euclidean distance, computes the average performance of all
pipelines across these datasets and returns a ranking based on these averages.

1https://www.openml.org/
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Figure 2: Kendall’s τ rank correlation results for our dyad ranking approach based on different
training dataset sizes and several baselines. All results are averaged across the test datsets
and the train/test splits. On the x-axis, the number of pairwise rankings per training
dataset used for training the associated dyad ranker is displayed whereas the y-axis shows
the correlation measure value.

across all training datasets, and an average rank baseline which does the same
but averages the ranks instead of the performances. We averaged all results
across the test datsets and the train/test splits we sampled.

Fig. 2 shows the value of the correlation measure as a function of the amount
of training information (number of pairwise rankings per training dataset used
for training the associated dyad ranker). As the baselines always consider all
data available in the training datasets, their performance does not change with
different amounts of rankings.

As expected, the performance of the dyad ranking approach increases with
the amount of training data — quite strongly up to around 1300 rankings per
training dataset and more slowly thereafter. More importantly, the approach
surpasses all baselines with only 500 pairwise rankings per training dataset,
which is a remarkable result as the training information used by the dyad ranker
is only a tiny fraction of the information made available to the baselines.
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Table 1: This table gives the difference between the best pipeline across all pipelines (in terms of
accuracy) and the best one of the top-k pipelines returned by the different approaches.

Approach k Perf. Diff. k Perf. Diff.

DR 3 0.032 5 0.028
1-nn 3 0.045 5 0.045
2-nn 3 0.053 5 0.052

avg. rank 3 0.045 5 0.044
avg. perf. 3 0.046 5 0.046

proach to the baselines by computing the difference between the best pipeline
(in terms of accuracy) and the best one of the top-k pipelines returned by the
different approaches. This evaluation gives an idea of how much worse it is to
run the top-k pipelines returned by the ranking approach compared to running
the best pipeline (according to the oracle) only. The results of the experiment
are depicted in Table 1.

The dyad ranking approach (trained with 1400 pairwise comparisons per trai-
ning dataset for this experiment) outperforms all other baselines by at least
1.3% percent points for k = 3 and 1.6% points for k = 5. Admittedly, even the
baselines achieve a reasonable result in this experiment, as even a performance
difference of about 5% to the oracle is still very good. Nevertheless, only the
dyad ranking approach is able to achieve a considerably better result when
increasing k, which makes us believe that it approximates the ground truth
ranking better in the sense that it puts good pipelines in close proximity to
their correct rank.

For full details regarding the experiments, we refer the interested reader to the
github repository2 containing all details and code required to reproduce the
results presented here.

2https://github.com/alexandertornede/ci_2019_as_via_dyad_ranking
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6 Conclusion and Future Work

We proposed to tackle the algorithm selection problem as a dyad ranking pro-
blem and addressed key questions regarding the creation of training datasets
and feature representation for both algorithms and datasets.

Our first experimental studies show that dyad ranking outperforms the base-
lines we used for comparison. In future work, we plan to corroborate these
preliminary results by more thorough evaluations of the approach in different
scenarios as well as a comparison to state-of-the-art collaborative filtering met-
hods.
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1 Introduction

System identification is the research field of modeling dynamic systems based
solely on observed input and output data. This paper focuses on a crucial pro-
perty in nonlinear system identification which is extrapolation. Extrapolation
occurs, when the available training data does not cover the whole operating
regime, in which the model operates during testing.

The question arises, which extrapolation behavior - constant, linear, polyno-
mial, etc. - is the most desirable in black box modeling. It is obvious that there
is no universally valid answer to this question, as the desired extrapolation
behavior depends on specific properties of the system under test. Nevertheless,
the question shall be answered, if there are differences in how reasonable
a certain extrapolation behavior is in black box modeling. Therefore, the
extrapolation properties of two nonlinear state space approaches, namely the
polynomial nonlinear state space model (PNLSS) [7] and the local model state
space network (LMSSN) [9], are analyzed.

In the case of the PNLSS, polynomials are used for the approximation of
the nonlinear state and output equations of the state space model, leading
consequently to polynomial extrapolation behavior. If the degree of the
polynomials exceeds a reasonably small number, the model’s output tends
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to be erratic near the interpolation boundaries and approaches ±∞ extremely
fast, often yielding unstable models. Extrapolation can be, therefore, quite
dangerous for polynomial models [3].

In LMSSNs, affine functions approximate different partitions in the input space,
leading therefore to linear extrapolation behavior. This property seems to be
more reasonable for nonlinear dynamic models and suggests that the LMSSN is
in extrapolation "well behaved" in contrast to the PNLSS. To evaluate, whether
this assumption holds to be true, a systematic analysis of the two approaches
will be carried out on a synthetic test process.

2 Different State Space Model Architectures

A deterministic nonlinear time-discrete state space model is described by

x̂(k+1) = h(u(k), x̂(k)) (1a)

ŷ(k) = g(u(k), x̂(k)) , (1b)

with the state vector x̂(k), the input u(k), the output ŷ(k), the state equations
h(·) and the output equation g(·) at the time step k.

2.1 Local Model State Space Network

The LMSSN [9] utilizes local model networks (LMNs) for the approximation
of the state and output equation of a nonlinear state space model. The output ŷ
of an LMN is calculated by

ŷ =
nm

∑
j=1

L j
(
ũ,θ j

)︸ ︷︷ ︸
Local Model

Validity Function︷ ︸︸ ︷
Φ j
(
ũ,c j,σ j

)
, (2)

where nm is the number of local models (LMs), L j denotes an affine LM, and
Φ j the validity or activation function which is chosen as a normalized radial
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basis function (RBF). The arguments of L j are: ũ representing the extended in-
put vector1 and θ j representing the parameters of the affine LMs. The validity
functions have as arguments also the extended input vector ũ and the centers
c j and standard deviations σ j of the RBFs. The identification algorithm of
the LMSSN is based on the local linear model tree (LOLIMOT) algorithm [4]
and on the best linear approximation (BLA) [8], ensuring that all estimated
nonlinear models are at least as good as the best linear model. For a detailed
account on the LMSSN, refer to [9].

2.2 Polynomial Nonlinear State Space Models

The PNLSS was developed by Paduart [6]. It extends a linear state space model
by two additional terms which include higher order polynomials to the state and
output equation.

For SISO systems, the PNLSS model can be written as

x̂(k+1) = Ax̂(k)+bu(k)+Eζ (x̂(k),u(k)) (3a)

ŷ(k) = cT x̂(k)+d u(k)+ f T
η(x̂(k),u(k)) . (3b)

The vectors ζ (x̂(k),u(k)) and η(x̂(k),u(k)) contain nonlinear monomials in
x̂(k) and u(k) of degree two and up to a chosen degree p. The coefficients
associated with these nonlinear terms are given by matrix E and vector f T .
Note that the monomials of degree one are included in the linear part of the
PNLSS model [7]. The full identification procedure can be found in [6, 7].

Complex PNLSS models do easily become unstable in extrapolation, as a
study on the PNLSS for hysteresis identification points out [5]. For a further
developed PNLSS model, the decoupled PNLSS, the authors point out that the
amplitudes of the input signal for testing had to be smaller than for training as
otherwise extrapolation problems occurred [1, 2]. This behavior constitutes a
significant limitation to the usefulness of those methods.

1ũ denotes the input vector for the LMNs, i.e. ũ = [u x̂] to distinguish it from the dynamic model
and process input u.
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Figure 1: APRBS test signal with increasing maximum amplitude. For amplitudes with absolute
value greater than 3 extrapolation occurs.

3 Extrapolation Study on Artificial Test System

The extrapolation behavior of the LMSSN and PNLSS model will be investiga-
ted on an artificial second order Wiener test system with an arc tangent output
equation. The models will be trained with N = 2048 data samples. The model
orders are chosen according to the order of the process. For the monomials in
state and output equation of the PNLSS all different combinations with a degree
up to 5 are evaluated. In total, 256 PNLSS models are evaluated. For example,
a model which includes monomial degrees 2 and 3 in the state equation, and no
polynomial extension in the output equation will be denoted by O(ζ ) = [2 3]2

and O(η) = [ ]. Note that degree one is always included in the linear model.
The training input signal is an amplitude modulated pseudo random binary
signal (APRBS) which lies in the interval [-3,3].

What happens, if the maximum amplitude of an APRBS test signal is increased
over time from Amax = 0 (at N = 0) to Amax = 12 (at N = 8192)? The test input
signal can be seen in Fig. 1. One can see that at N = 2420 the amplitude of
the input signal is for the first time larger than the training amplitudes with
Amax ≈ 3.5. 152 out of the 256 PNLSS models produce from this point on
unstable results. 68 other models produce unstable results from N = 3210 on
where another maximum amplitude is reached of Amax ≈ 4.3. Only 16 out of

2For a process with one input u and one state x̂, this would mean that ζ = [x̂2 x̂u u2 x̂3 x̂2u u2x̂ u3].
The argument k is left out for brevity.
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Figure 2: Comparison of static behavior of the Wiener process, BLA, LMSSN, and PNLSS models.

the 256 different PNLSS models do not become unstable on this test signal.
Those are exclusively models where O(ζ ) = [ ] and, therefore, models with
linear state equations. Those models nevertheless produce highly inaccurate
results in extrapolation, but are robust against outliers. All models with po-
lynomial state equations are highly susceptible to outliers, which is a severe
limitation for practical applications of the PNLSS.

The steady state curve of the process, BLA, LMSSN, and a selection of PNLSS
models is shown in Fig. 2. It can be seen that all models match the static
process characteristics in the interpolation region quite well. It can also be
seen that the BLA is a reasonable model for the underlying nonlinear process.
The weakness of the PNLSS models (dashed lines) becomes obvious in extra-
polation. One can clearly identify the polynomial behavior and for this process
quite undesirable extrapolation behavior. The small bars at the end of some of
the PNLSS models indicate the points, from where on no stable results could
be obtained. For this Wiener process with an arc tangent output equation, the
LMSSN has the most desirable extrapolation behavior. The error gets larger
the further the input amplitude is away from the extrapolation boundaries, but
the general characteristics are captures best.
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4 Conclusion and Future Work

The extrapolation behavior of two different nonlinear state space models are
compared. On an artificial Wiener test system it is shown that the local model
state space network (LMSSN) performs superior in comparison to the polyno-
mial nonlinear state space model (PNLSS). Superior means in this case that the
LMSSN does not become unstable in extrapolation and the general behavior is
"well behaved" and reasonable. In contrast, many PNLSS trained models easily
become unstable (in 240 of 256 cases of varying polynomial degrees) if close
to the interpolation boundaries or in extrapolation. This results shows, that the
practical usefulness of the PNLSS is severely limited, while the LMSSN shows
favorable properties for real-life application.
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