HIGH-LET RADIATIONS
IN CLINICAL RADIOTHERAPY

SPONSORED BY THE RADIOBIOLOGICAL INSTITUTE OF THE ORGANIZATION FOR HEALTH RESEARCH TNO. RIJSWIJK, THE NETHERLANDS

Editors

G. W. BARENDSEN, RIJSWIJK
J. J. BROERSE, RIJSWIJK
K. BREUR, AMSTERDAM

PUBLISHED AS A SUPPLEMENT TO THE EUROPEAN JOURNAL OF CANCER

PERGAMON PRESS
OXFORD • NEW YORK • TORONTO • SYDNEY • PARIS • FRANKFURT
Contents

Introduction to the Proceedings
G. W. Barendsen, J. J. Broerse and K. Breur
ix

Sessions I and II. REPORTS ON CLINICAL EXPERIENCE

Second preliminary report of the M. D. Anderson study of neutron therapy for locally advanced gynecological tumors
L. J. Peters, D. H. Hussey, G. H. Fletcher and J. T. Wharton
3

Observations on the reactions of normal and malignant tissues to a standard dose of neutrons
M. Catterall
11

Results of fast neutron radiotherapy at Amsterdam
J. J. Battermann and K. Breur
17

Results of fast neutron beam radiotherapy pilot studies at the University of Washington
T. Griffin, J. Blasko and G. Laramore
23

Results of clinical applications with fast neutrons in Edinburgh
W. Duncan and S. J. Arnott
31

Fast neutron project at Fermilab
G. A. Lawrence
37

Clinical observations of early and late normal tissue injury and tumor control in patients receiving fast neutron irradiation
R. Ornitz, A. Heskovic, E. Bradley, J. A. Deye and C. C. Rogers
43

Results of clinical applications of fast neutrons at Hamburg–Eppendorf
H. D. Franke
51

Results of clinical applications of negative pions at Los Alamos
M. M. Kligerman, S. Wilson, J. Sala, C. von Essen, H. Tsujii, J. Dembo and M. Khan
61

Results of tumor treatments with alpha particles and heavy ions at Lawrence Berkeley Laboratory
67

Results of clinical applications of fast neutrons in Japan
75

Five years of clinical experience with a combination of neutrons and photons
H. J. Eichhorn, A. Lessel and K. Dallüge
79
Contents

Hyperbaric oxygen and hypoxic cell sensitizers in clinical radiotherapy: present state and prospects
S. Dische 83

Treatment at low dose rate, by low-LET radiation: present status and prospects
B. Pierquin, E. Calitchi and R. Owen 91

Combined chemo/radiotherapy of cancer: present state and prospects for use with high-LET radiotherapy
T. L. Phillips 95

Sessions III and IV. PHYSICAL ASPECTS AND RADIOBIOLOGY

Review of performance of high-LET radiation sources used in clinical applications
D. K. Bewley 105

Dose distributions of clinical fast neutron beams
B. J. Mijnheer and J. J. Broerse 109

Dosimetry intercomparisons and protocols for therapeutic applications of fast neutron beams
J. J. Broerse, B. J. Mijnheer, J. Eenmaa and P. Wootton 117

Characteristics of fast neutron sources
J. B. Smathers 125

CONTRIBUTIONS ON CHARACTERISTICS OF FAST NEUTRON SOURCES 129

Neutron dosimetry, radiation quality and biological dosimetry
J. Booz 147

CONTRIBUTIONS ON NEUTRON DOSIMETRY, RADIATION QUALITY AND BIOLOGICAL DOSIMETRY 151

Review of RBE data for cells in culture
E. J. Hall and A. Kellerer 171

RBE values of fast neutrons for responses of experimental tumours
G. W. Barendsen 175

Neutron RBE for normal tissues
S. B. Field and S. Hornsey 181

Fast neutron radiobiology
H. B. Kal and A. J. van der Kogel 187

CONTRIBUTIONS ON FAST NEUTRON RADIOBIOLOGY 193

Dosimetry and radiobiology of negative pions and heavy ions
M. R. Raju 209

CONTRIBUTIONS ON DOSIMETRY AND RADIOBIOLOGY OF NEGATIVE PIONS AND HEAVY IONS 213

The Committee on Radiation Oncology Studies plan for a program in particle therapy in the United States
J. R. Stewart and W. E. Powers 237
Contents

Sessions V and VI. EVALUATION OF PRESENT RESULTS AND FUTURE OF HIGH LET RADIOThERAPY

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of clinical experience concerning evaluation of tumour response to high-LET radiation</td>
<td>243</td>
</tr>
<tr>
<td>J. Dutreix and M. Tubiana</td>
<td></td>
</tr>
<tr>
<td>Evaluation of normal tissue responses to high-LET radiations</td>
<td>251</td>
</tr>
<tr>
<td>K. E. Halnan</td>
<td></td>
</tr>
<tr>
<td>The application of RBE values to clinical trials of high-LET radiations</td>
<td>257</td>
</tr>
<tr>
<td>H. R. Withers and L. J. Peters</td>
<td></td>
</tr>
<tr>
<td>Doses and fractionation schemes to be employed in clinical trials of high-LET radiations</td>
<td>263</td>
</tr>
<tr>
<td>J. F. Fowler</td>
<td></td>
</tr>
<tr>
<td>Review of protocols for high-LET radiotherapy in the United States</td>
<td>267</td>
</tr>
<tr>
<td>S. Kramer</td>
<td></td>
</tr>
<tr>
<td>Clinical trials with fast neutrons in Europe</td>
<td>273</td>
</tr>
<tr>
<td>K. Breur and J. J. Battermann</td>
<td></td>
</tr>
<tr>
<td>Summary of discussion on multi-centre collaboration in clinical trials with high-LET radiations</td>
<td>277</td>
</tr>
<tr>
<td>G. W. Barendsen</td>
<td></td>
</tr>
<tr>
<td>Concluding remarks on the future of high-LET radiotherapy</td>
<td>281</td>
</tr>
<tr>
<td>G. W. Barendsen, K. Breur and J. J. Broerse</td>
<td></td>
</tr>
<tr>
<td>List of participants of the 3rd meeting on Fundamental and Practical Aspects of the Application of Fast Neutrons and other High-LET Particles in Clinical Radiotherapy</td>
<td>283</td>
</tr>
</tbody>
</table>
Review of RBE data for cells in culture

ERIC J. HALL* AND ALBRECHT KELLERER†

*Radiological Research Laboratory, College of Physicians & Surgeons of Columbia University, New York, N.Y., U.S.A.
†Institut Für Strahlenkunde der Universität, Wurzburg, Germany

Abstract—The relative biological effectiveness has been compared for ten neutron facilities used for clinical radiotherapy in the United States, Japan, Continental Europe and Great Britain. Mammalian cells in culture were used and in order to exploit the precision of which the in vitro technique is capable, facilities were intercompared in pairs, within a given experiment on the same day. Tables are presented of the relative potency of the various neutron beams. Determinations of the oxygen enhancement ration (OER) have been made for a wide range of neutrons produced by cyclotrons or linear accelerators using the deuteron or proton on beryllium reactions. The OER increases with increasing energy of the charged particle used from 1.5 for 15 MeV d "→ Be to 1.9 for 101 MeV p "→ Be. For a clinically used 14-MeV d "→ T generator the OER was found to be 1.6.

Introduction

The clinical trial of neutrons involves a substantial cost and investment of effort. Consequently, the need for full cooperation between the few centers using these particles has been recognized from the outset. Each of the neutron therapy beams in clinical use is characterized by a different energy spectrum, and as a consequence there are significant variations in their biological effectiveness. To facilitate the pooling of experience and the comparison of clinical results a number of investigators have compared the various neutron beams using a variety of biological systems, and early results have already been published (Hall, 1977; Hall et al., 1978). The present report summarizes the results of a new series of biological intercomparisons performed by three groups of investigators using mammalian cells cultured in vitro.

The design of these experiments was based upon two important considerations.

(a) It is a characteristic of cell-culture experiments that variations within an experiment are much smaller than those between experiments. Consequently, to exploit the precision of which the in vitro technique is capable, neutron facilities were intercompared in pairs, within a given experiment, using cells from a common culture irradiated on the same day.

(b) A standardized treatment fixture was used at all facilities, constructed of lucite, with space for six tissue culture flasks, and provision for an ionization chamber to be inserted into the jig to determine the dose received at the position occupied by the cells. Full build-up was ensured because the cells were overlaid with 2 cm of tissue culture medium. A substantial international effort to achieve compatible dosimetry was mounted by the physicists at the various installations engaged in neutron therapy, as a consequence of which there is agreement to within ± 1.5% for dose measurements in air. The use of the standard treatment fixture was an attempt to extend the compatible dosimetry to a practical set-up for the irradiation of cell cultures.

RBE intercomparison

The neutron facilities visited, together with their principal characteristics, are listed in Table 1. For the most part, this paper will be concerned with our own experiments in the United States, Japan, Britain and Continental Europe, in which Chinese hamster V79 cells were used for RBE intercomparisons. In a typical experiment, appropriate numbers of cells were plated into Falcon tissue culture flasks and allowed to attach by overnight incubation at 37.5°C. The flasks were then filled brimful with medium, sealed, and the temperature lowered to 17°C. For each

1Based on work performed under Contract EP-78-S-02-4733 from the United States Department of Energy, and Grant Number CA-18506 awarded by the National Cancer Institute, Department of Health, Education and Welfare.
Table 1. Clinical neutron facilities intercompared

<table>
<thead>
<tr>
<th>Facility</th>
<th>Location</th>
<th>Production process</th>
<th>Energy of accelerated particle (MeV)</th>
<th>Mean neutron energy (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermilab</td>
<td>Batavia</td>
<td>p⁺→Be</td>
<td>66</td>
<td>25</td>
</tr>
<tr>
<td>Tamvec</td>
<td>College Station, Texas</td>
<td>p⁺→Be</td>
<td>66</td>
<td>25</td>
</tr>
<tr>
<td>U.S.A.</td>
<td>NRL/Manta</td>
<td>d⁺→Be</td>
<td>50</td>
<td>19.3</td>
</tr>
<tr>
<td>NASA/Glanta</td>
<td>Cleveland, Ohio</td>
<td>d⁺→Be</td>
<td>35</td>
<td>14.3</td>
</tr>
<tr>
<td>Univ. Wash.</td>
<td>Seattle, Wash.</td>
<td>d⁺→Be</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>U.K.</td>
<td>MRC, Hammersmith</td>
<td>d⁺→Be</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Edinburgh</td>
<td>d⁺→Be</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>MRC, Edinburgh</td>
<td>d⁺→Be</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Antoni van Leuwenhoek</td>
<td>d⁺→T</td>
<td>—</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Hospital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>NIRS</td>
<td>d⁺→Be</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>IMS</td>
<td>d⁺→Be</td>
<td>15</td>
<td>6</td>
</tr>
</tbody>
</table>

experiment, half of the flasks were transported to the Naval Research Laboratory (NRL) cyclotron in Washington, D.C., and half to one of the other facilities listed in Table 1. The cells were transported in insulated water-jacketed carriers, with the temperature maintained at 17°C. It was found by trial and error that this temperature prevents cell division and progression through the cycle, while maintaining a high plating efficiency (which was characteristically in excess of 80%) for a period of 24 hours. Irradiations were performed simultaneously at the two neutron facilities to be compared, and the cells returned to an incubator for 8 days to assess the proportion able to form colonies.

The data from each experiment were analysed by a new non-parametric method, which evokes no form for the dose-response relationship. The survival data for the two neutron beams to be compared were fitted by curves of the same shape, the only constraint being that the curve must be convex upwards, and the dose factor necessary to allow a common fit computed. This factor is then the best estimate of the relative potency or RBE difference between the two beams, based on the data from all dose levels studied. The results are shown in Fig. 1; the potency of each beam relative to NRL is plotted as a function of the mean neutron energy. The data points for accelerators using the d⁺→Be reaction fall close to a common line indicating a gradually increasing RBE with decreasing mean neutron energy.

The data are summarized in a way that is more widely useful in Table 2, which consists of factors relating the RBE's between pairs of machines. This table also includes a summary of data collected by two other investigators. Dr. Paul Todd, Pennsylvania State University, has used T₁ cells of human kidney origin to intercompare a number of neutron beams in clinical use. Dr. Raymond Meyn, M.D. Anderson Hospital, Houston, Texas, used CHO cells for intercomparisons. The details of the experimental methods used by these investigators have been published previously (Gragg et al., 1976; Todd et al., 1978). Both utilized a standardized treatment fixture and most of their recent experiments were designed so that pairs of machines were compared on the same day within the same experiment, though this was not true of earlier studies. The potency factors quoted were calculated at a cell survival
level of 0.3. In all cases, comparisons have been made on the basis of TOTAL DOSE, i.e. neutron and gamma-ray dose. For the European machines, consisting of a d - T generator and two lower-energy cyclotrons, the gamma-ray contribution is both larger and more variable than for the higher-energy installations in the United States.

It can be seen from Table 2 that there is, in general, close agreement between the three sets of measurements regarding potency ratios, or RBE differences, between the various neutron beams used clinically. This is particularly true for inter-comparisons between machines within the United States and also for NIRS in Japan. This reflects the greatest effort that has been made to date. By contrast, few direct Transatlantic intercomparisons have so far been completed.

The title of this paper indicates that its scope is restricted to in vitro data. However, recent reports (Hall et al., 1978) have summarized RBE intercomparisons performed with in vivo systems, such as skin and jejunal crypt cells in mice, as well as for various cultured mammalian cells. The closeness of the agreement observed bears out the suggestion made in the Part II meeting (Hall, 1977) that for intercomparing two neutron beams that differ in energy by only a modest amount, it matters little which biological system is chosen. Systems and endpoints which result in widely different values for the RBE of neutrons relative to X-rays give similar values for the RBE difference between two closely related neutron energies. Consequently, the choice of a biological system for intercomparisons should be governed largely by its portability, repeatability and convenience.

OER survey

No review of neutron data for cells in culture would be complete without reference to values obtained for the oxygen enhancement ratio (OER). During the past 2 years a standard biological technique has been used to determine the OER for neutron beams generated by the d - Be or p - Be processes, where the energy of the accelerated charged particle has ranged from 15 to 101 MeV. For these experiments hamster V79 cells were used and hypoxia produced by crowding a large number of cells into a small volume so that oxygen was consumed by respiration (Hall et al., 1974). The results are shown in Fig. 2. There appears to be a
continuous increase in OER with mean neutron energy, and our experience does not confirm the lower OER at high neutron energies previously reported (Harrison et al. 1975, 1976). Using the same biological system, it has been shown also that a collimated beam of neutrons from the \(d^+ \rightarrow T \) generator at Amsterdam is characterized by an OER equal to that of the clinically used cyclotrons in the United States. The value obtained, however, is significantly lower than the OER previously reported for 14 MeV \(d^+ \rightarrow T \) neutrons in a scatter-free environment.

Acknowledgements—The implementation of this project was totally dependent upon the cooperation and dedication of the staff at the various neutron facilities where experiments were performed. Special thanks are due to Drs. D. Bewley, J. Parnell and S. B. Field at the Hammersmith Hospital, London; Dr. Peter Bonnett at the Western General Hospital, Edinburgh; Drs. B. J. Mijnheer and K. Breur at the Antoni van Leeuwenhoek Hospital, Amsterdam; Drs. J. Broerse and G. W. Barendsen at the Radiobiological Institute TNO, The Netherlands; Drs. K. Misono, H. Ohara, T. Inada, K. Kawashima and Dr. Umegaki at NIRS, Chiba; Dr. S. Suzuki at IMS, Tokyo; Drs. Richard Theus, Leon August, and P. Shapiro at the Naval Research Laboratory, Washington, D.C.; Dr. Juri Eenmaa at the University of Washington, Seattle; Dr. James Smathers at the Texas A&M Variable Energy Cyclotron, College Station, Texas; Dr. Miguel Awschalom at the Fermilab, Batavia, Illinois; Drs. Horton and R. Antunez of the Cleveland Clinic.

References

