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Abstract—In precision medicine, it is known that specific genes
are decisive for the development of different cell types. In drug
development it is therefore of high relevance to identify biomark-
ers that allow to distinguish cell-subtypes that are connected to a
disease. The main goal is to find a sparse set of genes that can
be used for prediction. For standard classification methods the high
dimensionality of gene expression data poses a severe challenge.
Common approaches address this problem by excluding genes during
preprocessing. As an alternative, L1-regularized regression (Lasso)
can be used in order to identify the most impactful genes.
We argue to use an adaptive penalization scheme, based on the
biological insight that decisive genes are expressed differently among
the cell types. The differences in gene expression are measured as
their discriminitive power (DP), which is based on the univariate
compactness within classes and separation between classes. ANOVA
based measures, as well as measures coming from clustering theory,
are applied to construct the covariate specific DP.
The resulting model, that we call Discriminative Power Lasso (DP-
Lasso), incorporates the DP as covariate specific penalization into the
Lasso. Genes with a higher DP are penalized less heavily and have a
higher chance for being part of the final model. With that the model
can be guided towards more promising and trustworthy genes, while
the coefficients of uninformative genes can be shrunken to zero more
reliably.
We test our method on single-cell RNA-sequencing data as well
as on simulated data. On average, DP-Lasso leads to significantly
sparser solutions compared to competing Lasso-based regularization
approaches, while it is competitive in terms of accuracy.

Keywords—Penalized Regression, Variable Selection, Clustering
validation metrics, scRNA-sequencing data.

I. INTRODUCTION

In personalized medicine, it is important to identify genes,
which can be used to accurately predict the individual
outcomes. For the development of biomarkers, a lower
number of covariates means less effort in its subsequent
clinical testing. As in high-dimensional settings many genes
are often noise, the challenge is to select only the covariates
that are relevant in terms of prognostic, predictive or biological
impact on the drug or the disease [19]. In case of non-small
cell lung cancer (NSCLC), the detection of the biomarker
EML4-ALK fusion gene [27] led to the development of
the drug crizotinib, which is used for patients carrying an
ALK-fusion. In contrast to the earlier low response, crizotinib
dramatically raised the response rate in NSCLC [19].
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In general, the transition of healthy cells into cancerous
cells affects changes in gene expression that can be measured.
It is therefore common practice to investigate single-cell RNA
sequencing data, introduced by [30], which allows insights
into the different types of single cells. In the case of a cell
cycle, the cell passes from the DNA synthesis (S-phase) to
the mitosis (M-phase), including the gap phases (G1 and G2)
in between. These different phases can be distinguished by its
measured gene expression of a synchronized cell population.
For example, a high score at the G2M checkpoint can be an
indicator of a metastasis tumor [21]. Testing whether genes
are differentially expressed among different cell types might
therefore lead to valuable insights.

From a biological point of view, it is therefore of relevance
to extract a sparse set of genes that can be used to classify
and characterize the subpopulations [11]. One common
approach is to use penalized regression models, such as
the Lasso [31] that find a trade-off between model fit and
model complexity. The advantage of the Lasso is that it
provides variable selection, by setting coefficients exactly to
zero. An extension is the adaptive Lasso [36] which uses
covariate specific penalization terms. The penalization terms
are inversely proportional to the ordinary least square (OLS)
estimates from a multivariate regression model.

In this article, we combine the concepts of regularized
regression with the biological background of differentially
expressed genes. Genes that differ univariately with respect
to the target, should be penalized less heavily.
We therefore introduce the term discriminative power (DP),
which allows a covariate specific evaluation of compactness
and separation with regard to the outcome. Discriminative
power is measured by means of clustering indices [3],
as well as by the classic concept of analysis of variance
(ANOVA) [12].

The discriminative power is directly incorporated into the
adaptive Lasso as covariate specific penalization, resulting in
our approach Discriminative Power Lasso (DP-Lasso). Using
the DP as penalization weights in a L1-regularized model can
be seen as a soft filtering as we do not exclude any covariates
before performing regression, but favour genes with good
univariate properties. The idea is to give a higher penalty to
covariates with low univariate DP and a reduced penalty to
the more promising covariates.
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This paper is structured as follows. In Section II we
introduce notations and give an overview over commonly
used regularization based methods. Section III introduces
the DP-Lasso model. In Section IV and Section V we test
the performance of DP-Lasso on scRNA-sequencing datasets
as benchmark datasets, and on simulated data. Section VI
concludes and provides an outlook.

II. METHODS

In supervised learning, the goal is to estimate the under-
lying function that maps the p-dimensional covariate space
to the outcome. As training data, we are given a matrix X ,
composed of p covariate vectors each containing the values
of the N observations. This leads to the covariate matrix
X = (x1, · · · , xp), j = 1, · · · , p, and the vector y containing
the N outcomes. xij denotes the value of observation i for
covariate j, xj the N values of covariate j, and xi· the p
dimensional observation vector for observation i. Given that
the outcome is continuous, a common approach is to estimate
the linear model

ŷi = β0 +

p∑

j=1

βjxij , (1)

where β is the p-dimensional vector of regression coefficients.
In the following, categorical outcomes y ∈ {1, · · · ,K} are
considered. In this case a generalized linear model (glm) is
appropriate, which uses a linear structure as in Equation (1)
and connects it to the target through a link function [10].
Thus, for binary outcomes y ∈ {0, 1} logistic regression is
used and for K > 2 classes the multinomial-logit model.
However, for ease of notation in the following the linear
model is used to describe the methods.

In high dimensional data and especially p >> N generalized
linear models can not be estimated reliably, due to the
problems of multicollinearity and perfect separation [1, 14].
Also glms can not deal efficiently with irrelevant predictors,
as no variable selection is performed. It is therefore common
practice to reduce the number of genes before analysis.

For this purpose, the univariate filtering approach selects
covariates based on (adjusted) p-values of univariate tests or
biological reasoning. The final result highly depends on the
researcher’s choice, because a threshold or number of genes
kept for the analysis has to be specified.

Alternatively, one can use regularized regression models, that
find a trade-off between model fit and model complexity for
parameter estimation. Regularized regression models also
lead to more stable solutions for β coefficients in p >> N ,
as extreme behavior is penalized [15]. This allows to find a
unique solution in situations where glms might fail, such as
perfect separability and multicollinearity.

In regularized regression models, the overall loss function is
decomposed into the discrepancy of the observed target and

the model prediction and a penalty term that controls the
complexity of the model. In case of the classical Lasso, the
penalty is equal to the L1-norm of the coefficients β, leading
to the overall loss function [31]

L(y,X, β, λ, w) =
N∑

i=1

(yi − xi·β)
2

︸ ︷︷ ︸
SSE

+λ

p∑

j=1

|βj |
︸ ︷︷ ︸
Penalty Term

, (2)

for linear regression. The degree of shrinkage and sparsity
is controlled by a global shrinkage parameter λ, which is
usually chosen via cross-validation.

Lasso regression allows to exactly shrink coefficients to
zero, which leads to a covariate selection. Lasso has
efficient solvers available, making it a good choice for high
dimensional datasets. However, the Lasso has the known
deficiency of over-shrinkage: To remove a large number of
uninformative covariates, a high penalty parameter needs to
be chosen. This in return will also shrink the coefficients
of informative predictors to some extent. To counteract, the
Lasso will take in correlated predictors, to substitute for
the over-shrinkage [35]. This makes the interpretation of
covariates left in the final model somewhat dubious, as it
is unclear if the covariate itself is important or just as a
substitute for the overshrinkage of another covariate.

If predictive performance is the primary objective, Ridge
regression (L2-penalty) is a popular alternative. L2-penalty
limits the influence of individual covariates, by penalizing
high β’s strongly, but shrinks no coefficient exactly to
zero [15].

The Elastic Net [37] uses a mixture of the L1-norm
(Lasso) and the L2-norm (Ridge). The loss function of the
Elastic Net can be written as

L(y,X, β, λ, w) =
N∑

i=1

(yi − xi·β)
2 + α

p∑

j=1

λj |βj |+

(1− α)

p∑

j=1

λjβ
2
j , (3)

where α is a mixing parameter that controls the proportion
of L1 and L2-penalty that is put on the coefficients.
Elastic Net often shows better predictive performance than
Lasso, while also being able to set coefficients exactly to zero.

To reduce the amount of over-shrinkage and improve
variable selection consistency, the adaptive Lasso [36] was
proposed. Instead of using the same global shrinkage λ on
every coefficient, the adaptive Lasso uses a covariate specific
shrinkage parameter λj , which allows a separate penalty for
each covariate. This leads to the loss function of the adaptive
Lasso [36]

L(y,X, β, λ, w) =
N∑

i=1

(yi − xi·β)
2 +

p∑

j

λj |βj |, (4)
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where λj = λwj is the covariate specific penalty and wj

are discount factors that increase or decrease the amount
of penalization for covariate j. In the original adaptive
Lasso, wj is calculated as the inverse of the parameter
estimates of the ordinary least squares (OLS) regression,
hence wj = 1/β̂

(OLS)
j . For this approach it can be shown

that it improves the model selection consistency under
certain assumptions [36]. More concretely this results in less
penalization of important covariates with high β̂

(OLS)
j , which

allows the final coefficients to become large, mitigating the
over-shrinkage effect. In case of p >> N , the covariate
specific weighting can be obtained by a ridge regression
instead of the OLS estimates.

Several other extensions of the Lasso have been proposed,
such as the fused Lasso [32], group Lasso [20], Bayesian
Lasso [22] and Bayesian shrinkage priors [2].

Another commonly used approach for gene selection is
the usage of tree ensembles, such as random forests [8].
Random forests [4], that combine several decision trees,
are a popular choice for genetic classification data, as they
have a strong predictive performance and do not require
further assumptions. Measures, such as (unbiased) variable
importance [29] and SHAP values [17] can be used to assess
the importance of individual covariates, to rank covariates
and to identify the most impactful genes.

III. DISCRIMINATIVE POWER LASSO

In p >> N situations, in which the number of covariates
exceeds the number of observations, there always exists an
infinite amount of solutions for the regression hyperplane
defined by the regression coefficients. While regularization
helps to promote sparsity and limits extreme behavior,
we argue that additional information can guide the model
towards more robust and reliable solutions. In contrast to
the original adaptive Lasso, we want to limit the impact
of covariates that only work well in a multivariate model,
but are not discriminative univariately. If enough data is
available, such interplay between different covariates can
be reliably estimated. However, with limited training data,
the chance of over-fitting on spurious relationships is high
when learning multivariate models. Therefore, we suggest to
promote instead genes that decompose the data into ‘natural’
groups, measured by the univariate discriminative power
based on the conditional distribution f(Xj |Y ), j = 1, ..., p.

The construction of the DP can be motivated by the
concept of analysis of variance that measures the impact of a
grouping variable on a numeric outcome by the differences of
the group means. Therefore, for the construction of the DP
we use the dependent variable y as independent variable that
we condition on to explain the differences in X . This change
in perspective adds new information that is unavailable in
a purely supervised regression approach. Secondly, cluster
validation measures that have been developed in unsupervised
clustering theory can be applied. Instead of using the

outputted cluster labels as groups, as it is usually done in
unsupervised learning, we directly use the target labels y as
grouping. The discriminative power therefore measures how
well a covariate decomposes the underlying groups in terms
of compactness and separation.

A. Target Adaptive Regularization

We implement the preference towards covariates with high
discriminative power by discounting their penalty, similar to
the adaptive Lasso. The overall loss function of DP-Lasso can
be written as

L(y,X, β, λ, w) = E(ŷ, y, β) +
p∑

j=1

λj |βj |, (5)

where E is an appropriate loss function measuring the
deviation of the fitted response vector ŷ form the true values
y, using a suitable link function. For logistic regression
deviance or log-loss are common choices for E . In case of
a linear model the model takes the form of Equation (4).
We propose to choose the covariate-specific penalty as
λ
(DP )
j := λw

(DP )
j and w

(DP )
j = 1/DPj , where DPj is the

discriminative power of gene j. This gives the model a gentle
push towards covariates that appear more natural and reliable,
based on their DP. Note that both the calculation of DP and
the following regularized regression model are based on N
observations of the training data.

Combining the DP with the supervised approach enriches
the regression model with new information. Covariates with
high DP are more likely to be selected in the final model,
whereas covariates, that only work well in a multivariate
model, but have a low individual DP are more likely to be
removed. The adaptive shrinkage parameter also counteracts
the over-shrinkage. Coefficients of covariates that work well
in the multivariate model and also appear as good candidates,
based on their DP , will be penalized less heavily and will
be allowed to become large. On the other hand, clearly
uninformative covariates with a low DP will receive an
even higher penalty and can be removed more easily in the
regularization step. Lastly, if several solutions to Equation (5)
are similarly good, our approach gives a gentle push towards
covariates that appear more trustworthy.

B. Characterization of natural groupings

This section motivates the construction of our DP mea-
sures. In general, we assume covariates Xj as more promising
for which the underlying groups y are homogeneous and well
separated from the other groups . This reflects the idea that
relevant genes should express differently among the K classes.
Figure 1 shows the distribution of two example genes from the
below used single-cell RNA-sequencing dataset EMTAB2805
of [5]. For the gene on the left side, we can see that the two
underlying classes show clear differences in their distribution.
Also the two groups are relatively compact and their group-
means well separated. For the gene on the right side, the two
groups show a stronger overlap, and they are less separated.
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Fig. 1. Univariate distributions of two genes. The colors indicate the two
groups. Left side: the two classes show clear differences in their distribution.
Right side: the distributions are strongly overlapping with no clear difference.
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Fig. 2. Univariate distributions of two genes. The colors indicate the three
groups. Left side: the three classes show clear differences in their distribution.
Right side: the distributions are strongly overlapping with no clear difference.

Therefore, the gene on the left side appears to be a more
natural candidate for a decisive gene and should have a higher
chance of being selected. The same rationale can be used for
K > 2. Figure 2 shows the univariate distributions for three
classes on the same genes, which can be used to assess the
compactness and separation.
Therefore, the idea of DP-Lasso is to prefer genes that
decompose nicely into the underlying classes with regard to
compactness and separation. We call this concept of ‘natural
grouping’ the discriminative power DP . Genes with a high
discriminative power will be favored in the regularization step
(see Section III-A).

When using for example a logistic regression model, com-
pactness of the groups (as an indication of naturality of
the group) is not directly evaluated. The same goes for the
distance between groups (or their means): As long as the
groups are perfectly separable by a hyperplane, as is the
case in p >> N , the margin to the discrimination plane is
typically not considered in the loss function. Figure 3 shows
two simulated covariates with a similar slope from a logistic
regression model. While the two classes can be separated
similarly good in both covariates, we would intuitively prefer
the covariate shown at the right side, due to its distribution.
Here the two classes express differently and the two groups are
both compact and well separated, whereas the distribution at
the left side appears more likely to be random. These descrip-
tive illustrations aim to motivate the inclusion of additional
information into the penalization by the discriminative power,
which is described in the following.

The natural decomposition can be formalized by the con-

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2
X1

P
(Y

|X
1)

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2
X2

P
(Y

|X
2)

Fig. 3. The graph shows simulated genes, that can similarly well discrimi-
nated by a logistic regression. Left side: the clusters appear unnatural. Right
side: compact groups with well separated group means.

cepts of compactness and separation with respect to the
response.

C. Measures of discriminative power (DP)
In the following we describe three interesting options to

measure the discriminative power. The goal is to capture
information about the compactness and separation between
classes in each gene. The discriminative power is therefore
calculated univariately over each covariate j using the target
variable y as grouping. In the following

x
(k)
j = {xij : yi = k}Ni=1 (6)

denotes the set of values of covariate j that belong to
observations with the target class k, and x

(k)
hj denotes the

covariate values of the h’th observation in class k.
There exist a large number of quality criteria that are
commonly used in unsupervised learning to evaluate
clustering solutions. Also the idea of discriminative power
can be interpreted as a classical test problem. The following
describes three ways to measure DP , based on these
principles.

1) ANOVA-approach: One classical way to test for
differences in group means is the analysis of variance
(ANOVA) [12]. Intuitively, the ANOVA expresses how much
of the sample variance can be explained by the grouping. More
concretely, the ANOVA tests whether there is a difference in
the means of K groups based on its F-statistic.
Let x̄(k)

j = 1
nk

∑nk

h=1 x
(k)
hj denote the class mean of covariate

j in target class k, where nk is the number of observations
belonging to class k and x̄j denotes the overall mean over
N observations. The according test statistic Fj measures the
ratio of between-group variability and within-group variablity
of covariate j via

Fj =
(N −K)

(K − 1)

∑K
k=1 nk(x̄

(k)
j − x̄j)

2

∑K
k=1

∑nk

h=1(x
(k)
hj − x̄

(k)
j )2

. (7)

The value of the F-statistic is large in case that the dis-
tances between the groups are considerably higher than the
distances within the groups. The higher the F-statistic, the
higher the proportion of variance explained by the grouping,
indicating significant differences in class means. We thus use
the value of the F-statistic as one possibility for the mea-
surement of discriminative power and determine the discount
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factor w(DP )
j for the penalization in the subsequent step with

w
(ANOV A)
j = 1/Fj . As 1/Fj can become quite large we use

a logarithmic transform to attenuate the differences in DP
between the genes and to avoid numerical instabilities.

2) Davies-Bouldin Index: The Davies-Bouldin index DB
was developed for validating the clustering quality based on
compactness and separation of the clusters [6]. As mentioned
before, instead of evaluating a cluster solution, the K classes
are evaluated. The DB index relates the compactness within the
groups to the separation between the classes. The compactness
of class k is measured by the root mean square error of
observations from class k to the class mean x̄

(k)
j of class k in

covariate j, leading to

∆DB
j (k) =

√√√√ 1

nk

nk∑

h=1

(x
(k)
hj − x̄

(k)
j )2,

which in the univariate case simplifies to the standard deviation
of observations in group k. The separation between the groups
k and l is measured via the Euclidian distance of their
respective class means x̄

(k)
j and x̄

(l)
j , which in the univariate

case simplifies to

δDB
j (k, l) = |x̄(k)

j − x̄
(l)
j |.

The overall DB index is then given as

DBj =
1

K

K∑

k=1

max
l ̸=k

{
∆DB

j (k) + ∆DB
j (l)

δDB
j (k, l)

}
, (8)

which compares each class to its closest class, as a more
pessimistic measure. The better the groups are separated and
compact, the lower the DB index and as a consequence this
covariate should be less penalized. Therefore, the discount
factor is taken as w

(DB)
j = DBj .

3) Silhouette Index: The silhouette index Sj [24] considers
the compactness and separation evaluated on the individual
level. For the construction of the ‘silhouette width’ sij the
closeness of observation i to all observations within its group
k = yi is measured via

∆Sil
j (i, k) =

1

(nk − 1)

∑

h:yh=k,h ̸=i

|xij − x
(k)
hj |, (9)

which is similar to the compactness measure in the DB
index. However, ∆Sil

j takes the closeness to each individual
observation into account, instead of measuring the deviation
from the mean.
Separation between the groups is measured via,

δSil
j (i, k) = min

l ̸=k

{
1

nl

nl∑

h=1

|xij − x
(l)
hj |

}
, (10)

which takes the minimum average distance to the members of
any other class. The silhouette width sij combines compact-
ness and separation which leads to

sij =
δSil
j (i, k)−∆Sil

j (i, k)

max{∆Sil
j (i, k), δSil

j (i, k)} . (11)

As a last step, the silhouette index Sj is calculated by
averaging over the silhouette width sij of all N individuals,

Sj =
1

N

N∑

i=1

sij ∈ [−1, 1]. (12)

Sj which can be used as a global measure of clustering quality
given the covariate j and the target classes.
The absolute silhouette index takes values close to 1, if
all observations are compact within their groups and well
separated from the other groups. The more the silhouette index
Sj approaches 0, the less compact the observations are within
their groups and the less separated among covariate j. In this
case the groupings are not nicely decomposed, and therefore
this covariate is considered as less decisive.
The higher the absolute value of the silhouette index of
covariate j, the better the distinction of the two underlying
groups. Covariates with a high absolute silhouette index should
be penalized less, therefore we set w(Sil)

j = 1/|Sj |.

IV. EMPIRICAL COMPARISON

In this section we first present the scRNA-sequencing
benchmark data and test the performance of DP-Lasso with
different choices of the DP against competing methods. For
both the binary classification, described in Section IV-C and
the multiclass classification, described in Section IV-D, we
perform a 5−times repeated 10−fold cross validation. In
contrast to unsupervised clustering models we can only predict
the number of underlying classes that are part of the training
data set as the supervised model is based on the classes present
in the training data.

A. Single-cell RNA-sequencing data (ScRNA-Seq data)

Based on the paper of [28], we use the same single-cell
RNA-sequencing datasets as [16]. As proposed by [28], we
only include genes into our analysis with read counts higher
than 1 transcript per million mapped reads (TPM) in more
than 25% of the considered cells. This leads to a differing
number of covariates p in case of the binary classification
and the multiclass classification task, as shown in Table I. For
the choice of cell types, we use the same selection as [16].
In case of the binary response, two selected cell types will
be analyzed (left side of Table I). In case of the multiclass
classification task (right side of Table I), we analyze K cell
populations. The underlying numbers of cells in case of the
binary response (K = 2) are N1 and N2, and for the multiclass
response (K > 2) the respective cell populations are denoted
with N1, · · · , NK .
In accordance with the paper of [16], we consider their
proposed binary classification tasks. However, instead of their
approach of all pairwise combinations, we use a multinomial
model for the K > 2 cases, which means one model per
dataset. In the following, the cell types of the analyzed single-
cell RNA-sequencing datasets are described. The EMTAB2805
data of [5] contain the cell cycle stages G1, S, G2M of
the mouse embryonic stem cell (mESC). For the dataset
GSE45719 [7] we include the different states of transition
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TABLE I
BENCHMARK DATA, SHOWING THE NUMBER OF COVARIATES p, NUMBER OF OBSERVATIONS N , AND THE OBSERVATIONS PER CLASS N1 VS. N2 IN THE

BINARY CLASSIFICATION TASK AND N1 VS. N2 VS. · · · VS. NK IN THE MULTICLASS CLASSIFICATION TASK

Binary Response Multiclass Response

EMTAB2805 GSE45719 GSE48968 GSE74596 EMTAB2805 GSE45719 GSE48968 GSE74596

p 13,110 10,851 7,987 6,748 12,849 11,065 7,831 7,329

Subpopulation 1 G1 mid blastocyst BMDC 1h LPS NKT0 G1 mid blastocyst BMDC 1h LPS NKT0
N1 96 60 96 45 96 60 96 45

Subpopulation 2 G2M 16-cell stage embryo BMDC 4h LPS NKT17 G2M 16-cell stage embryo BMDC 4h LPS NKT17
N2 96 50 191 44 96 50 191 44

Subpopulation 3 - - - - S 8-cell stage embryo BMDC 6h LPS NKT1
N3 - - - - 96 37 191 46

Subpopulation 4 - - - - - - NKT2
N4 - - - - - - - 68

of mid blastocyst, 8-cell stage embryo as well 16-cell stage
embryo. In case of the single-cell RNA-sequencing data of
GSE48968 bone marrow-derived dendritic cells (BMDCs)
were stimulated with three different pathogenic components,
analyzing the different responses for the dataset [25]. We will
analyze only the component Lipopolysaccharides (LPS) at
different timepoints (1h, 4h, 6h) after incubation. The data
set GSE74596 contains different types of Natural killer T
(NKT) cells extracted from the thymus. The cell types NKT1,
NKT2 and NKT17 are subtypes of the helper T cells [9]. The
objective is to determine a supervised model that can classify
the different cell types, given the expression profiles in these
datasets. Also, as a second objective it is important to find a
sparse solution to focus on the most important genes.

B. Competing Methods

The L1-regularized regression is carried out with the
R package glmnet [13]. The λ values are found via the
internal 10-fold CV approach and chosen as the value λ
leading to the smallest estimated generalization error. For
adaptive Lasso, the covariate specific penalty weights are
determined with ridge regression wj = 1/β̂Ridge

j due to the
p >> N situation. We also compare our methods to the
Elastic Net, as a baseline for good predictive performance.
The Elastic Net is fit using glmnet and α = 0.5, leading
to an equal mixture of L1 and L2-penalization (cf. Section II).

For DP-Lasso the ANOVA based DP weights are implemented
with the R package stats [23]. The Silhouette index is
calculated with the R package cluster [18] and the Davies-
Bouldin index with the package clusterSim [34]. The final
DP-Lasso model is again fit using the glmnet procedure, with
the covariate specific penalty weights derived from the DP .

C. Binary classification

In this section the results for the experiments on binary
classification tasks are presented and analyzed.

1) Accuracy – Binary: Accuracy is measured in terms
of the misclassfication rate, averaged over all folds. The
results of the empirical comparison can be found in Table II.

Overall, the Elastic Net shows the lowest misclassification
rate, however the difference to the DP-Lasso models and the
normal Lasso is only marginal. The only exception is the
adaptive Lasso, which performs clearly worse compared to
the other methods. This is likely due to the strong correlation
present in the data.
The three proposed DP-Lasso models show only minor
differences in terms of misclassification rate, with a slight
advantage for DP-LANOV A. We conclude, that the accuracy
of DP-Lasso is comparable to the competitors regardless of
the choice of the discriminative power.

2) Number of Coefficients – Binary: If the primary objec-
tive is to identify biomarkers, it is very important to find sparse
solutions, as the cost of follow up studies can be high. Next,
we therefore analyze the number of covariates selected by each
method, which is the number of non-zero coefficients left in
the regularized model. Of all methods, the Elastic Net (Enet),
as expected selects the highest number of covariates due to its
use of the L2-penalty.
In all binary classification tasks, all DP-Lasso models select
significantly fewer covariates than the competing methods. Of-
ten the difference is quite large. For example on the GSE74596
dataset DP-LANOV A selects only 4 covariates, whereas Lasso
selects 18. A likely explanation is the over-shrinkage effect
in Lasso regression, which takes in irrelevant predictors (cf.
Section II). On the other hand, DP-LANOV A is able to reduce
the penalty on the important covariates and reaches a very
sparse solution.
From the class of DP-Lasso models, DP-LANOV A is the most
selective and finds the sparsest solutions. However, DP-LDB

and DP-LSil also produce smaller model sizes compared to
the competing methods on all binary classification tasks.

D. Multiclass Classification

DP-Lasso can also be applied to multiclass (K > 2)
classification. Note, that in case of K > 2 and the
multinomial-logit model K − 1 coefficient vectors β are fit
for the different categories, whereas one category is used
as reference category. For each covariate, DP is measured
as before leading to an equal penalization for each of the
outcome categories.
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TABLE II
THE MISCLASSIFICATION RATE AND ITS STANDARD DEVIATION IN BRACKETS FOR BINARY AND MULTICLASS CLASSIFICATION ON THE FOUR

BENCHMARK DATASETS. THE BEST RESULT ON EACH DATASET (LOWEST NUMBER) IS MARKED IN BOLD.

Binary Multiclass

EMTAB2805 GSE45719 GSE48968 GSE74596 EMTAB2805 GSE45719 GSE48968 GSE74596

Lasso 0.05 (0.006) 0.01 (0.000) 0.02 (0.003) 0.00 (0.000) 0.06 (0.010) 0.03 (0.009) 0.19 (0.100) 0.01 (0.003)
Elastic Net 0.04 (0.006) 0.01 (0.000) 0.02 (0.000) 0.00 (0.000) 0.06 (0.007) 0.02 (0.005) 0.18 (0.008) 0.01 (0.004)
adaptive Lasso 0.11 (0.008) 0.02 (0.000) 0.07 (0.007) 0.15 (0.031) 0.17 (0.006) 0.10 (0.013) 0.26 (0.010) 0.28 (0.015)
DP-LANOV A 0.05 (0.006) 0.01 (0.000) 0.02 (0.004) 0.00 (0.000) 0.06 (0.009) 0.11 (0.017) 0.17 (0.009) 0.03 (0.006)
DP-LDB 0.05 (0.009) 0.01 (0.000) 0.02 (0.004) 0.01 (0.001) 0.08 (0.007) 0.07 (0.016) 0.20 (0.014) 0.03 (0.006)
DP-LSil 0.04 (0.006) 0.01 (0.000) 0.04 (0.004) 0.00 (0.006) 0.18 (0.018) 0.06 (0.008) 0.24 (0.011) 0.06 (0.013)

TABLE III
THE NUMBER OF SELECTED COEFFICIENTS AND ITS STANDARD DEVIATION IN BRACKETS FOR BINARY AND MULTICLASS CLASSIFICATION ON THE FOUR

BENCHMARK DATASETS. THE BEST RESULT (LOWEST NUMBER) ON EACH DATASET IS MARKED IN BOLD.

Binary Multiclass

EMTAB2805 GSE45719 GSE48968 GSE74596 EMTAB2805 GSE45719 GSE48968 GSE74596

Lasso 58 (1.9) 20 (0.4) 55 (0.9) 18 (0.6) 127 (3.5) 67 (1.0) 163 (5.5) 72(1.7)
Elastic Net 142 (1.8) 103 (1.1) 125 (1.2) 66 (0.5) 250 (13.1) 199 (1.5) 276 (10.2) 197 (1.9)
adaptive Lasso 38 (2.1) 13 (0.6) 48 (0.8) 27 (0.7) 65 (1.6) 36 (0.3) 84 (4.8) 52 (3.0)
DP-LANOV A 17 (0.4) 5 (0.1) 19 (0.4) 4 (0.2) 45 (0.6) 23 (1.2) 70 (1.1) 17 (0.5)
DP-LDB 25 (0.9) 9 (0.1) 30 (0.3) 7 (0.1) 71 (1.3) 39 (0.8) 125 (1.6) 37 (0.3)
DP-LSil 22 (0.5) 9 (0.3) 36 (0.6) 8 (0.4) 181 (2.2) 32 (0.8) 172 (1.8) 90 (3.3)

In contrast to the binary case, the adaptive Lasso uses a
different penalization weight for each covariate and outcome
category again resulting from the ridge estimator.

1) Accuracy – Multiclass: Accuracy is again measured as
misclassification rate. The results can be found in Table II.
Of all methods the Elastic Net shows the strongest predictive
performance, followed by the Lasso. The adaptive Lasso
again performs clearly worse on all datasets in terms of
accuracy.
From the DP-Lasso models, DP-LDB is competitive on most
datasets, and DP-LANOV A remains competitive on three
of the datasets showing significantly worse performance on
the GSE45719 data. DP-LSil performs worse overall in the
multinomial setting, but still notably better than the adaptive
Lasso.

2) Number of Coefficients – Multiclass: In terms of model
size, DP-LANOV A again uniformly produces the sparsest
solutions on all datasets. Lasso and Elastic Net keep around
3 to 10 times more non-zero coefficients in the respective
models.
DP-LDB also produces relatively small models, on par with
the adaptive Lasso, whereas DP-LSil clearly struggles on the
EMTAB2805, GSE48968 and GSE74596 datasets.

E. Empirical Results Summary

The empirical comparison on benchmark data indicates that
DP-Lasso is able to maintain a high accuracy. At the same time
DP-Lasso finds significantly smaller models, often by a factor
of 3 to 10 compared to Lasso and Elastic Net. This is due

to the incorporation of the DP into the penalization scheme,
which helps to remove uninformative genes and focus instead
on the relevant ones.
To summarise, DP-Lasso and especially DP-LANOV A pro-
duces significantly smaller model sizes, while being able to
maintain accuracy on par with current state-of-the-art regular-
ized regression approaches.

V. SIMULATION STUDY

In this section, we test our method on simulated data. The
setup is as follows. X1, ..., X10 are drawn from a normal
distribution N (−1, σ), for observations of class 1, and from
N (1, σ) for observations of class 2. This reflects the assump-
tion that relevant genes express differently between the target
groups. All additional covariates X11, ..., Xp are drawn from
N (0, σ) and can therefore be considered as irrelevant. We
test the values p ∈ {100, 1000, 5000} and σ2 ∈ {1, 2, 3} and
draw N = 100 observations in each setting. With increasing σ
the groups become more overlapping and we expect learning
to become increasingly difficult. Note that the covariates are
drawn independently, implying X ∼ Np(µ, σ

2Ip), where I
is the identity matrix, making it an ideal situation for all
methods. Each experiment is repeated 10 times and the results
are averaged.
As in this experiment the relevant covariates are known, we
measure the method’s capabilities to identify the decisive
covariates. To this end, we measure the Precision as

Precision =
||β̂true||0
||β̂||0

, (13)
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TABLE IV
THE PRECISION AND RECALL ON THE DIFFERENT SIMULATION SETTINGS, AVERAGED OVER 10 RUNS. RESULTS ARE PRESENTED AS PRECISION /

RECALL. FOR EACH SETTING THE METHOD WITH THE HIGHEST PRECISION IS MARKED IN BOLD.

σ2 = 1 σ2 = 2 σ2 = 3

p = 100 p = 1000 p = 5000 p = 100 p = 1000 p = 5000 p = 100 p = 1000 p = 5000

Lasso 0.86 / 0.99 0.60 / 0.99 0.53 / 0.98 0.45 / 0.96 0.32 / 0.96 0.23 / 0.93 0.48 / 0.95 0.37 / 0.84 0.28 / 0.84
Elastic Net 0.55 / 1.00 0.27 / 1.00 0.20 / 1.00 0.29 / 1.00 0.15 / 1.00 0.10 / 0.98 0.37 / 0.99 0.20 / 0.96 0.14 / 0.91
adaptive Lasso 0.99 / 0.97 0.97 / 0.98 0.94 / 0.95 0.88 / 0.98 0.58 / 0.96 0.37 / 0.91 0.71 / 0.93 0.35 / 0.82 0.28 / 0.85
DP-LANOV A 1.00 / 0.87 1.00 / 0.92 1.00 / 0.85 0.99 / 0.95 0.88 / 0.93 0.80 / 0.91 0.82 / 0.87 0.50 / 0.83 0.38 / 0.85
DP-LDB 1.00 / 0.95 1.00 / 0.94 1.00 / 0.92 0.92 / 0.98 0.77 / 0.94 0.50 / 0.91 0.71 / 0.94 0.35 / 0.85 0.28 / 0.84
DP-LSil 1.00 / 0.94 1.00 / 0.94 1.00 / 0.91 0.96 / 0.98 0.76 / 0.93 0.67 / 0.90 0.63 / 0.88 0.41 / 0.79 0.31 / 0.81

where ||·||0 specifies the 0-norm, which counts up the non-zero
entries and β̂true denotes the first ten entries of the coefficient
vector, which by design we know to be the correct effects.
β̂ denotes all coefficients obtained by the regularized model.
This measure is useful as the number of potential covariates is
high. However, if the model has a high Precision, the identified
genes can be trusted.
Secondly, we measure the Recall

Recall =
||β̂true||0

10
, (14)

as the fraction of the relevant covariates that was discovered
by the model.
The results are shown in Table IV. We can see that the DP-
Lasso models show significantly higher Precision compared
to Lasso and Elastic Net. The adaptive Lasso performs better
than the Lasso in this ideal setting, in contrast to the results on
the real data from the previous section. Overall DP-LDB and
DP-LANOV A show the highest Precision, even in very difficult
data situations. For instance, with N = 100, p = 5000, σ = 1,
DP-LANOV A , DP-LDB and DP-LSil are able to maintain a
100% Precision and thus are very selective and able to find
the correct covariates. DP-LANOV A has the highest Precision
in every setting.
It is also important to compare the Recall, as it reflects the
fraction of true effects that are found by a model. Elastic Net
shows the highest Recall, which is a result of the large number
of coefficients that were kept in the model. On the other hand,
all DP-Lasso models show a Recall which is typically slightly
lower but still competitive with Lasso and adaptive Lasso. This
again is due to the very selective nature of DP-Lasso.
Overall, we conclude that the non-zero coefficients found by
the DP-Lasso can be trusted more to reflect true mechanisms,
compared to its competitors. At the same time DP-Lasso is
capable to maintain a competitive Recall.
It is reassuring to note that on average the accuracy of the
methods measured by the area under the curve AUC is very
similar, with a slight edge for the DP-LDB , DP-LANOV A and
the Elastic Net.

VI. CONCLUSION

With DP-Lasso, we propose a novel regularization
based approach for covariate selection in the context of
gene expression data. Incorporating univariate measures
of discriminative power that are based on the principles

of separation and compactness enriches the model with
additional information. Our approach can also be interpreted
as soft filtering: instead of removing genes a-priori, more
promising genes are simply promoted, freeing the modeller
from ad-hoc choices, such as selecting the correct number
of genes to remove. In a broader context we argue therefore
that soft filtering instead of hard filtering also enhances
reproducibility, as it reduces the ‘researchers degrees of
freedom’ [26] involved in a study.

Empirically, we show that DP-Lasso is on par with the
popular methods Lasso and Elastic Net in terms of accuracy,
while it chooses significantly less genes. With a simulation
study we confirm that DP-Lasso is capable of ignoring a
large number of irrelevant predictors and instead focusses on
the truly relevant ones – due to the double criteria of being
relevant both univariately and in the multivariate model.
This selectiveness is very desirable in the context of gene
expression data, as both the number of candidate genes is
high and follow-up studies are costly. Therefore, a short
but confident list of very promising genes, as given by the
DP-Lasso model, is preferred in this context.

As currently the discriminative power is calculated
univariately, it does not explicitly take the correlation
structure of the covariates into account. An interesting
direction for future work would therefore be to extend the
DP-Lasso approach by considering the correlation structure
between covariates and adjust the penalization accordingly,
similar to the approach in [33].

In this article, we focused on the application for genetic
classification data, however DP-Lasso can also be applied in
other domains. As long as the classes are expected to show
differences in the univariate distribution of covariates, we
expect DP-Lasso to deliver a good predictive performance
coupled with a low number of selected covariates.
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