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Zusammenfassung

Das Ziel des automatisierten maschinellen Lernens (AutoML) ist es, zugeschnitten auf
einen gegebenen Datensatz, Algorithmen für das maschinelle Lernen (ML) zu wählen,
zu konfigurieren und in Form von ML-Pipelines zu kombinieren. Für überwachte
Lernaufgaben, insbesondere binäre und multinomiale Klassifikation, auch als Single-
Label-Klassifikation (engl.: single-label classification; SLC) bezeichnet, haben solche
AutoML-Ansätze vielversprechende Ergebnisse geliefert. Die Aufgabe der Multi-
Label-Klassifikation (engl.: multi-label classification; MLC), bei der Datenpunkte
mit einer Menge von Klassenlabels anstelle eines einzelnen Klassenlabels assoziiert
werden, hat bisher deutlich weniger Aufmerksamkeit erhalten. Im Kontext der Multi-
Label-Klassifikation ist die datenspezifische Auswahl und Konfiguration von Multi-
Label-Klassifikatoren selbst für Experten auf diesem Gebiet eine Herausforderung,
da es sich um ein hochdimensionales Optimierungsproblem mit hierarchischen
Abhängigkeiten über mehrere Ebenen hinweg handelt. Während der Raum von
ML-Pipelines für SLC bereits äußerst viele Kandidaten umfasst, übertrifft die Größe
des MLC-Suchraums die des SLC-Suchraums um mehrere Größenordnungen.

Im ersten Teil dieser Arbeit wird ein neuartiger AutoML-Ansatz für Single-Label-
Klassifikationsaufgaben entwickelt, der ML-Pipelines optimiert, die aus maximal
zwei Algorithmen bestehen. Dieser Ansatz wird dann erweitert, um zunächst
Pipelines von unbegrenzter Länge und schließlich die komplexen hierarchischen
Strukturen von Multi-Label-Klassifikatoren zu konfigurieren. Außerdem untersuchen
wir, wie gut Ansätze, die den Stand der Technik im Bereich AutoML für Single-Label-
Klassifikationsaufgaben bilden, mit der erhöhten Komplexität des AutoML Problems
für Multi-Label-Klassifikation skalieren.

Im zweiten Teil wird untersucht, wie Methoden für SLC und MLC flexibler konfiguri-
ert werden können, um die zur Verfügung stehenden Daten besser zu generalisieren,
und wie die Effizienz von ausführungsbasierten AutoML-Systemen mit Hilfe von
Laufzeitvorhersagen für ML-Pipelines gesteigert werden kann.
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Abstract

Automated machine learning (AutoML) aims to select and configure machine learn-
ing algorithms and combine them into machine learning pipelines tailored to a
dataset at hand. For supervised learning tasks, most notably binary and multinomial
classification, aka single-label classification (SLC), such AutoML approaches have
shown promising results. However, the task of multi-label classification (MLC),
where data points are associated with a set of class labels instead of a single class la-
bel, has received much less attention so far. In the context of multi-label classification,
the data-specific selection and configuration of multi-label classifiers are challenging
even for experts in the field, as it is a high-dimensional optimization problem with
multi-level hierarchical dependencies. While for SLC, the space of machine learning
pipelines is already huge, the size of the MLC search space outnumbers the one of
SLC by several orders.

In the first part of this thesis, we devise a novel AutoML approach for single-label
classification tasks optimizing pipelines of machine learning algorithms, consisting
of two algorithms at most. This approach is then extended first to optimize pipelines
of unlimited length and eventually configure the complex hierarchical structures of
multi-label classification methods. Furthermore, we investigate how well AutoML
approaches that form the state of the art for single-label classification tasks scale
with the increased problem complexity of AutoML for multi-label classification.

In the second part, we explore how methods for SLC and MLC could be configured
more flexibly to achieve better generalization performance and how to increase the
efficiency of execution-based AutoML systems.
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1Introduction

Within the past decade, the demand for artificial intelligence and, in particular,
machine learning (ML) functionality has grown exceedingly fast and is still growing
steadily. Certainly, this can be attributed to relevant and media-effective break-
throughs that have achieved superhuman performance: In 2011, for example, IBM’s
Watson already beat two champions in Jeopardy [Fer12; Fer+13], machine facial
recognition managed to achieve an accuracy of more than 97% in 2014 [Tai+14],
and in 2016 AlphaGo was the first computer program to beat professional human
Go players [Sil+16; Sil+17]. Beyond that, machine learning applications can be
found in more and more parts of society and the economy [RW14; JM15; ID20].

However, the engineering of such applications is a non-trivial endeavor and requires
expertise in machine learning that end users typically do not have. More specifically,
there exists a plethora of different machine learning algorithms which work differ-
ently well, depending on the tasks and data. Additionally, most of these algorithms
expose parameters, so-called hyper-parameters1, which need to be tuned to the data
at hand to achieve the best possible performance [Wev+20; Riv+20]. To bridge the
gap between supply and demand, the field of automated machine learning (AutoML)
emerged to help non-experts access machine learning technology on the one hand
and, on the other hand, to support machine learning experts in their work relieving
them of some of the tedious tasks.

AutoML is the vision of automating as much of the data science process as possible,
starting from raw data and providing a complete pipeline of machine learning algo-
rithms. Such a pipeline may comprise algorithms for pre-processing the (raw) data,
constructing or selecting features, and ultimately learning a model. The problem of
AutoML was first formally stated in [Tho+13] as the combined algorithm selection
and hyper-parameter optimization (CASH) problem, optimizing for the generaliza-
tion performance of the respective algorithm choice and its configuration. Provided
a CASH problem specification in terms of (i) a model of the search space, describing
the space of available machine learning pipelines, and (ii) an evaluation function to
assess the quality of solution candidates, the problem is usually treated as a sampling-

1Hyper-parameters are parameters to control the learning process, e.g., the number of neurons in a
neural network. In turn, the learning process induces the parameters of a model from data, e.g., the
weights of a neural network. For example, the learning rate is a hyper-parameter of the learning
process for neural networks.
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based black-box optimization problem. More specifically, an optimization algorithm
is employed to traverse the search space in a trial-and-error fashion by executing
solution candidates, i.e., machine learning pipelines, on the particular data. First
approaches to AutoML are based on random search [Ber+11], Bayesian optimization
[Tho+13; Kot+17; Feu+15], or genetic programming [Ols+16; Sá+17].

While these AutoML systems show promising performances for regression and
binary or multi-class classification tasks, in the following referred to as single-label
classification (SLC), where each data point is associated with a numeric value or a
class label respectively, the task of multi-label classification (MLC) received far less
attention. In MLC, instead of only a single class label, each data point is associated
with a (sub-)set of class labels. MLC tasks can be found in various domains such as
text categorization [SS00; Nam+14; MF08], image processing [Cab+11; Xue+11],
video annotation [Qi+07], music classification [SZ11], bioinformatics [BST06], and
medicine [Hei+13].

Generalizing the single-label classification setting, MLC methods often perform a
problem transformation, reducing the original MLC task to a (set of) single-label
classification problem(s) [TKV09; ZZ14]. Therefore, such problem transformation
methods can be seen as a kind of meta-learner that can be configured with one or
multiple SLC methods as a base learner. Moreover, since there are also meta-learners
for MLC that require MLC methods in turn as base learners, this results in a nested
configuration structure. The nesting causes the search space over the configuration
options for MLC methods to be several orders of magnitude larger than search
spaces for SLC or regression, thus, representing a particular challenge for AutoML
systems [Wev+21]. Additionally, compared to SLC, solution candidates in MLC
are often more expensive to execute. This requires AutoML systems that work in a
trial-and-error fashion to be even more efficient.

The motivation for considering the AutoML problem in this thesis is rooted in the
broader context of ”On-The-Fly Computing“ [Hap+13] which is also the name of
the collaborative research center (CRC) 901. It deals with the automatic provision
of IT services that are composed and configured on the fly out of base services
which in turn are available on worldwide markets. Focusing on services that provide
machine learning functionality, the role of this work is to provide a domain-specific
configuration algorithm that is able to configure and tailor machine learning services
to the data provided by a user.

In this thesis, we devise a novel approach to AutoML based on hierarchical task
network planning [GNT04], a technique from the field of AI planning, which can
naturally model hierarchical dependencies between algorithms as well as hyper-
parameters. Hence, it is flexible enough to represent complex machine learning
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pipelines and learner structures, as it is necessary for MLC. Employing a best-first
search for a greedy traversal of the resulting search space model, our approach
compares well with state-of-the-art AutoML systems in the SLC setting and especially
scales with the increased search space complexity in the MLC case.

In Section 1.1, we give an overview of the structure and the contributions of this
thesis. Section 1.2 presents a running example.

1.1 Thesis Structure

The remainder of the thesis is structured as follows. Chapter 2 is dedicated to the
methodological and general background for this thesis introducing fundamental
concepts of automated machine learning and multi-label classification.

This Ph.D. thesis consists of the following contributions, which are presented in
Chapters 3 to 9, respectively:

1. Felix Mohr, Marcel Wever, and Eyke Hüllermeier. „ML-Plan: Automated
machine learning via hierarchical planning“. In: Mach. Learn. 107.8-10
(2018), pp. 1495–1515. DOI: 10.1007/s10994-018-5735-z

2. Marcel Dominik Wever, Felix Mohr, and Eyke Hüllermeier. „ML-Plan for unli-
mited-length machine learning pipelines“. In: ICML 2018 AutoML Workshop.
2018. URL: https://docs.google.com/viewer?a=v&pid=sites&srcid=
ZGVmYXVsdGRvbWFpbnxhdXRvbWwyMDE4aWNtbHxneDo3M2Q3MjUzYjViNDRhZTAx

3. Marcel Dominik Wever, Felix Mohr, Alexander Tornede, and Eyke Hüllermeier.
„Automating multi-label classification extending ml-plan“. In: ICML 2019
AutoML Workshop. 2019. URL: https://www.automl.org/wp-content/
uploads/2019/06/automlws2019_Paper46.pdf

4. Marcel Wever, Alexander Tornede, Felix Mohr, and Eyke Hüllermeier. „AutoML
for Multi-Label Classification: Overview and Empirical Evaluation“. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 43.9 (2021), pp. 3037–
3054. DOI: 10.1109/TPAMI.2021.3051276

5. Marcel Wever, Alexander Tornede, Felix Mohr, and Eyke Hüllermeier. „LiBRe:
Label-Wise Selection of Base Learners in Binary Relevance for Multi-label Clas-
sification“. In: Advances in Intelligent Data Analysis XVIII - 18th International
Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April
27-29, 2020, Proceedings. Vol. 12080. Lecture Notes in Computer Science.
Frontier Prize. Springer, 2020, pp. 561–573. DOI: 10.1007/978-3-030-
44584-3_44
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6. Marcel Wever, Felix Mohr, and Eyke Hüllermeier. „Ensembles of evolved nested
dichotomies for classification“. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. ACM,
2018, pp. 561–568. DOI: 10.1145/3205455.3205562

7. Felix Mohr, Marcel Wever, Alexander Tornede, and Eyke Hüllermeier. „Predict-
ing Machine Learning Pipeline Runtimes in the Context of Automated Machine
Learning“. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
43.9 (2021), pp. 3055–3066. DOI: 10.1109/TPAMI.2021.3056950

In principle, these contributions can be divided into two parts.

In the first part of this thesis (Chapter 3 to Chapter 6, contributions 1.-4.), we
devise a novel approach to AutoML that leverages techniques from AI planning to
model the space of machine learning pipelines in terms of a search tree amenable to
standard graph search algorithms, such as a best-first search. In contrast to previous
works, this method can naturally reflect hierarchical dependencies of machine
learning pipelines, respectively a multi-label classifier, in the search space model,
and additionally allows one to systematically search the space via a global search.
After a first version, which is able to configure machine learning pipelines consisting
of one learner and at most one preprocessor, which is competitive to the state of
the art, we demonstrate the flexibility and scalability of the approach, configuring
machine learning pipelines of unlimited length. Subsequently, we transfer this
method to the MLC setting and show that our approach is flexible and efficient
enough to scale with the more complex search space. Moreover, we compare our
approach to other state-of-the-art AutoML approaches that we either adapt to the
MLC setting or that have already been explicitly proposed for MLC. In an extensive
empirical study, we find that our method is indeed very well suited for the MLC
setting and compares favorably with the other considered methods.

The second part of this thesis is concerned with the configuration of learners to
increase their effectiveness (Chapters 7 and 8, contributions 5 and 6) and how meta-
learning can improve the efficiency of AutoML systems (Chapter 9, contribution 7).
To this end, we first consider the internal structure of a classifier, so-called nested
dichotomies, which recursively decomposes the original learning problem into smaller
sub-problems, thereby forming a tree-like model structure. We demonstrate that
optimizing this tree structure can lead to improved generalization performance and
thus increase the effectiveness of this learner.

Second, we consider binary relevance learning, a multi-label classifier that transforms
an MLC problem into a set of binary classification problems, one per label, and em-
ploys SLC methods for the problems obtained. While previous literature configures
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the SLC method jointly for all labels, we show that the effectiveness of this learner
can be increased by tailoring the choice of the SLC method to each label.

Third, we show how meta-learning for predicting the runtime of machine learning
pipelines can be helpful to render AutoML systems more efficient. More specifically,
we provide empirical evidence for significant savings in wasted computation time for
AutoML systems that evaluate candidate pipelines on the given data and impose a
limit on the time for this evaluation. The presented method succeeds in using runtime
prediction to avoid timeouts in the evaluation of machine learning pipelines.

In Chapter 10, the thesis is concluded, and an outlook on future directions and open
questions is given. Last but not least, since this work has been done in the context of
the aforementioned CRC 901 “On-The-Fly Computing”, Chapter 11 is dedicated to
the vision of On-The-Fly Machine Learning, which refers to the on-demand provision
of customized machine learning services.

1.2 Running Example

Throughout the preliminaries in the following chapter, a continuous example is used
to illustrate definitions and concepts. Suppose we are provided a set of landscape
pictures such as shown in Figure 1.1, and we want to classify them by what is
shown. Suppose that we want to label each picture with the help of the class labels
L = {MOUNTAIN, SEA, FOREST, BEACH}, depending on what is visible on the picture.

When looking at the pictures in Figures 1.1a to 1.1d, each of them can clearly be
associated with one of these class labels. More specifically, Figure 1.1a shows a
BEACH, Figure 1.1b a FOREST, Figure 1.1c a MOUNTAIN, and Figure 1.1d the SEA.

However, considering pictures as shown in Figures 1.1e to 1.1f, it is not that clear
anymore. These images can no longer be assigned to a unique class label since
they can be associated with multiple class labels simultaneously. In Figure 1.1e,
both BEACH and SEA is shown, whereas MOUNTAIN and SEA are visible in Figure 1.1f.
Furthermore, Figure 1.1g pictures three of the four class labels, namely FOREST,
MOUNTAIN, and SEA. Figure 1.1h can be associated with the full set of class labels.

1.2 Running Example 5



(a) BEACH (b) FOREST

(c) MOUNTAIN (d) SEA

(e) BEACH SEA (f) MOUNTAIN SEA

(g) FOREST MOUNTAIN SEA (h) BEACH FOREST MOUNTAIN SEA

Figure 1.1: Each of the landscape pictures is associated with class labels BEACH, FOREST,
MOUNTAIN, and SEA. While the first four pictures can be related to one label
exclusively, more than one class label is relevant for the last four pictures. The
corresponding sets of labels are detailed in the captions.

6 Chapter 1 Introduction



2Preliminaries

In this chapter, we provide a general overview of the field of automated machine
learning (Section 2.1) and the learning problem of multi-label classification (Sec-
tion 2.2).

2.1 Introduction to Automated Machine Learning

Automated machine learning (AutoML) refers to the vision of automating the process
of selecting and configuring machine learning algorithms, composing them into so-
called machine learning pipelines, tailored to a given task, i.e., a dataset and a target
loss function. While AutoML was primarily intended to meet the substantial increase
in demand for machine learning functionality, it indeed benefits experts in the field
as well. Especially in multi-label classification, the variety of options to configure a
multi-label classifier is overwhelming (cf. Section 2.2.6). Hence, a systematic and
targeted optimization appears to be hardly possible, even for experts.

The formal definition of the AutoML problem, also referred to as combined algo-
rithm selection and hyper-parameter optimization (CASH) [Tho+13], as the name
suggests, is composed of the respective individual optimization problems: algorithm
selection (AS) and hyper-parameter optimization (HPO).

Given an instance space X and a target space Y, let

• A = {A(1), . . . , A(n)} be a set of algorithms with corresponding hyper-para-
meter spaces Λ(1), . . . ,Λ(n),

• D = (X,Y ) ⊂ (XN × YN ) ⊂ D a labeled data set from the data set space D,
• and L : Y × Y 7→ R a target loss function to be minimized.

In the context of machine learning, an algorithm A : Λ× D×X S −→ YS refers to
a learning algorithm that can be configured with a hyper-parameter configuration
λ ∈ Λ (we write Aλ in the following). Furthermore, A takes a data set D ∈ D and
a batch of instances Xtest ⊂ X S of size S as arguments. The data set D is used by
A internally as training data to induce a hypothesis ĥ from some hypothesis space
H ⊆ {h | h : X −→ Y}. This hypothesis ĥ is then used to produce predictions on a
batch of test instances Xtest ⊂ X S of size S by applying ĥ to each of the x ∈ Xtest

individually. Eventually, A returns the concatenation of all predictions Ŷ ∈ YS .
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We further assume that every algorithm A has a default parameterization λdef ∈ Λ.
For convenience, if λ corresponds to the default parameterization λdef, we write A
instead of Aλdef .

Then, in AS, the task is to select the most suitable algorithm A∗ with respect to the
target loss function L, i.e.,

A∗ ∈ arg min
A(i)∈A

∫
X×Y

L(y, A(i)(D,x))P (x,y) dxdy , (2.1)

where P (·, ·) is a joint probability distribution for x and y. The selection is only
made over the finite set of algorithms A. Thus, in this sense, it does not consider
different parameterizations of an algorithm. However, by considering multiple hyper-
parameter configurations of an algorithm A again as a distinct algorithm [TWH20a],
it is possible to include the optimization of hyper-parameters at least to a (very)
limited extent.

In turn, the HPO problem fixes an algorithm A in advance and deals with the
optimization of the respective hyper-parameters. Given the hyper-parameter space
Λ of A, the optimization problem can be stated as follows.

λ∗ ∈ arg min
λ∈Λ

∫
X×Y

L(y, Aλ(D,x))P (x,y) dxdy (2.2)

However, the specific algorithm is fixed in this problem, and only its hyper-pa-
rameters are considered for optimization. Therefore, in CASH, as stated first in
[Tho+13], the two optimization problems are combined into a joint one, where we
seek to find an algorithm A∗ together with its hyper-parameter configuration λ∗,
minimizing the target loss L:

A∗λ∗ ∈ arg min
A(i)∈A, λ∈Λ(i)

∫
X×Y

L
(
y, A

(i)
λ (D,x)

)
P (x,y) dxdy . (2.3)

In the subsequent Section 2.1.1, we deal with the concept and different shapes of ma-
chine learning pipelines, which are subject to optimization in AutoML. Furthermore,
since the introduction of the CASH problem in 2013 [Tho+13], a variety of methods
have been developed more or less following a general schema which is described
in Section 2.1.2. These methods can be divided into three major groups: Reducing
the CASH problem to the HPO problem, using grammar-based search approaches,
and leveraging meta-learning techniques. We provide details on these three groups
in Sections 2.1.3, 2.1.4, and 2.1.5 respectively. Going beyond CASH, we discuss a
sub-field of AutoML called neural architecture search (NAS) in Section 2.1.6, which
deals exclusively with the optimization of neural networks. For a more detailed and
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Figure 2.1: Visualization of different machine learning pipeline topologies. On the left-hand
side, a sequential pipeline is shown. The center of the figure presents a tree-
shaped pipeline topology, and on the right-hand side, the pipeline structure
represents a directed acyclic graph.

in-depth overview of AutoML, we refer the interested reader to surveys shedding
light on the field from diverse perspectives [Van18; Yao+18; ZH21; HZC21].

2.1.1 Machine Learning Pipelines

To achieve the best possible performance for a given data set, several machine
learning algorithms are often combined into a so-called machine learning pipeline. In
its simplest form, a machine learning pipeline consists solely of a learning algorithm,
and the provided data set is directly used for training. However, depending on
the shape of the data and properties of the data and the learning algorithm, some
preprocessing of the data might become desirable.

For example, in the case of image tagging, as described in Section 1.2, the pictures
may need to be preprocessed to make the data amenable to machine learning
algorithms since most of these algorithms cannot deal with image data directly.
In this case, we would need a machine learning pipeline including an algorithm
transforming images into, for instance, a vector representation. Furthermore, it may
prove beneficial to “manipulate” the images beforehand, e.g., by applying a grey-scale
filter, Gaussian filter, or an edge detection algorithm. What kind of preprocessing is
needed depends on the data, the task, and also the learning algorithm. For example,
neural networks may be directly applied to the pictures, whereas a support vector
machine will probably require a more sophisticated preprocessing to perform well.
However, preprocessing is not only required for such unstructured data. If the
learning algorithm cannot deal with nominal features, but the data contains such
features, it is inevitable to preprocess the data making it amenable to this learning
algorithm. In this case, a preprocessing algorithm could be applied to encode the
nominal features in terms of numeric values, e.g., by mapping each attribute value
to a specific number.
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Modern machine learning libraries, such as WEKA [EHW16], sckit-learn [Ped+11],
or mlR [Bis+16], comprise a variety of such preprocessing algorithms. In fact,
even learning algorithms can be used as a preprocessor to augment the dataset
by predictions of this learning algorithm as yet another feature. An application of
preprocessing algorithms can be done both sequentially and in parallel.

Figure 2.1 shows different types of pipeline structures: A sequential, tree-shaped,
and a DAG-shaped1 pipeline are visualized. When executing a pipeline, as a first step,
as many copies of the data are created as there are algorithms without a predecessor,
i.e., nodes with no incoming edge. After applying the respective algorithm, the
preprocessed data is forwarded to the algorithms that are referenced via an outgoing
edge. If there are multiple incoming edges, the union of all incoming data is taken.
Eventually, the preprocessed data arrives at the learning algorithm, which, in the
figure, is highlighted in orange.

2.1.2 General Structure of AutoML Systems

The majority of AutoML systems consist of three main components: A specification of
the search space that encodes what solution candidates are available, an optimization
algorithm, and a function to evaluate solution candidates. Provided a task as an
input, which is specified via a data setD and a target loss function L, the optimization
algorithm traverses the search space to find a machine learning pipeline that is most
suitable for the given task. Eventually, the best-found machine learning pipeline is
returned to the user. An illustration of this general structure is shown in Figure 2.2.

Generally speaking, the search space representation describes which algorithms are
available for selection, which hyper-parameters they expose, and how they can be
combined into a machine learning pipeline. Note that the search space representation
is a model of the actual search space, i.e., some information or properties of the
search space might not be reflected in the search space representation. Hence, the
search space representation can also artificially add information or structures to
make the optimization algorithm more effective or efficient, e.g., by grouping similar
algorithms. Typically, the search space representation is designed by an expert and
is an integral part of the respective AutoML system.

The optimization algorithm operates on the search space representation and seeks to
identify the most suitable solution candidate. For strategically traversing the search
space, the optimization algorithm requires some kind of feedback on the solution
quality of candidate machine learning pipelines. As specified in the problem of
Equation (2.3), we seek the machine learning pipeline that generalizes best, i.e.,

1DAG: directed acyclic graph.
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Figure 2.2: Generic illustration of the AutoML framework. Receiving a task as an input
containing a training data set D and a target loss function L, the AutoML system
aims to identify a machine learning pipeline that generalizes well beyond the
provided training data. To this end, AutoML systems usually comprise three
major components: a search space representation, an optimization algorithm
operating on this search space representation, and a candidate evaluation
module to assess the solution quality of candidates. Typically, the candidate
evaluation uses the provided dataset and the target loss to estimate a candidate’s
generalization performance.

minimizes the risk. However, since the out-of-sample error cannot be computed, we
estimate a machine learning pipeline’s generalization performance with the help of
the provided data set D. To this end, once commonly splits the data set (randomly)
into training Dtrain, which is used by the algorithm to induce a hypothesis ĥ, and
validation data Dval = (Xval, Yval) for estimating the quality of predictions. The
observed loss on the validation data is returned as feedback to the optimization
algorithm. In fact, we thus solve the optimization problem

A∗λ∗ ∈ arg min
A(i)∈A, λ∈Λ(i)

EDtrain,Dval

[
L
(
Yval, A

(i)
λ (Dtrain, Xval)

)]
(2.4)

as a surrogate for the actual problem (2.3). Here, the expectation accounts for
any randomness of algorithms A(i)

λ , the data itself, and the precise way how the
algorithms are validated, e.g., via k-fold cross-validation, a hold-out set, etc.

As already mentioned, to determine the loss of algorithm A
(i)
λ , it is typically executed

on the given data. Specifically, this means that executable implementations of
the respective algorithms are required to run the optimization process. Therefore,
the search space descriptions are usually based on software libraries for machine
learning such as scikit-learn [Ped+11; Var+15], WEKA [EHW16], or in the case of
multi-label classification MEKA [Rea+16] and Mulan [TKV09].
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2.1.3 Reduction to Hyper-Parameter Optimization

While the very first attempt to AutoML was made in [Ber+11] employing a random
search, the first AutoML systems going beyond a simple random search perform a
reduction from CASH to HPO [Tho+13; Kot+17; Feu+15], making it amenable to
well researched and sophisticated HPO approaches, such as Bayesian optimization,
multi-armed bandits, or genetic algorithms. To this end, the choice of algorithms
is encoded as yet another (categorical) hyper-parameter and combined into a joint
hyper-parameter vector together with all the hyper-parameters exposed by the
respective algorithms.

In terms of the HPO problem (2.2), we consider an (artificial) meta-algorithm Â with
hyper-parameter space Λ̂ = {λA | λA ∈ {1, . . . n}} × Λ(1) × . . . × Λ(n). Depending
on the concrete choice of the algorithm via the categorical hyper-parameter λA, only
a small subset of hyper-parameters is relevant for optimization, namely the ones
belonging to the selected algorithm A(λA). In the following, we refer to these hyper-
parameters interchangeably as active hyper-parameters. Which hyper-parameters
are considered active is usually modeled in an auxiliary conditional structure.

Random search Arguably, the simplest and most straightforward way of approach-
ing the HPO problem is via random search [Ber+11; Gil+18; LP20]. In random
search, solution candidates λ ∈ Λ̂ are sampled randomly and evaluated with re-
spect to the given task. Despite its simplicity, a random search can yield reasonably
good results [Gij+19]. Another advantage of random search is that it can be paral-
lelized arbitrarily, making it particularly appealing for distributed systems and cloud
environments.

Bayesian Optimization Bayesian optimization (BO) [Fra18] is an often-used ap-
proach for HPO, not least because of its efficiency and theoretical guarantees of con-
vergence. Generally speaking, BO is a technique for optimizing black-box functions
f : U −→ R, where U denotes some input domain (e.g., RN) and the evaluation of
f is assumed to be expensive. Furthermore, it does not require additional knowledge
about f , such as gradients, convexity, linearity, etc.

The optimization procedure of BO, as depicted in Figure 2.3, comprises mainly
two components: (i) a surrogate f̂ of f , which is cheap to evaluate, and (ii) an
acquisition function forming the basis for decisions on which input to evaluate
the actual function f next. The surrogate is represented by a probabilistic model
estimated from the actual function evaluations of f that have been observed so far.
The most commonly used models are Gaussian processes [SLA12], random forests
[HHL11], and Tree-structured Parzen Estimator [BYC13; HHL11]. An essential
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Figure 2.3: Illustration of an AutoML system employing Bayesian optimization. Solution
candidates are represented in terms of a hyper-parameter vector. The surrogate
model f̂ models the actual evaluation function f to be optimized. Furthermore,
f̂ is used by the acquisition function to decide, which hyper-parameter configu-
ration λ to sample next. Prior to evaluation, the chosen λ is translated into a
machine learning pipeline. Then, f(λ) augments the set of observations of f ,
which in turn updates the surrogate model f̂ .

capability of these surrogate models is to provide information about the expected
values – and thus possible optima of f – and quantify their uncertainty about these
predictions. Based on this information, the acquisition function is tasked to trade-off
exploration and exploitation to sample f efficiently. Here, exploration refers to
“exploring” configurations for which the predictions of the surrogate f̂ has high
uncertainty, whereas exploitation means to evaluate configurations for which the
surrogate model predicts a high performance.

In the context of HPO, the black-box function f of interest is the (estimated) perfor-
mance of a hyper-parameter configuration in terms of a loss function L. Producing
this information involves fitting and validating the algorithm with the respective
hyper-parameter configuration, which can indeed be considered expensive as it can
take up to minutes or even several hours. Consequently, the number of function
evaluations that can be afforded is generally very limited.

An example of such an acquisition function is the expected improvement (EI) [Moc77;
JSW98]. The basic idea of EI is to evaluate the hyper-parameter configuration next,
which maximizes the improvement over the previous best solution candidate, as
would be expected according to the surrogate model. Formally, the EI for a hyper-
parameter configuration λ with respect to the best hyper-parameter configuration
λ̂∗ observed so far can be computed via

EI (λ) = E
[
max

(
f(λ̂∗)− f(λ), 0

)]
, (2.5)

where f(λ̂∗) is the result of executing f for the hyper-parameter configuration λ̂∗,
i.e., the best outcome observed so far, f(λ) is a random variable with an unknown
outcome at the time of the computation of EI (λ). Practically, in order to compute
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EI(λ), we make use of the surrogate model f̂ to estimate the mean and the variance
of f(λ).

Based on BO, several approaches to AutoML have been proposed. Probably the better-
known representatives of these AutoML systems are Auto-WEKA [Tho+13; Kot+17]
and auto-sklearn [Feu+15]. However, various extensions and enhancements have
been proposed [Zha+16; FH18; MS19; KBE19] but also specializations focusing on
single algorithms [TCB18; JSH19].

Multi-Armed Bandits Formalizing the problem as a multi-armed bandit (MAB)
problem [Sli19] is another way of tackling the CASH problem as a reduction to
HPO. MAB denotes a sequential decision-making problem in which an agent must
repeatedly select options from a given set of alternatives in an online setting. The
metaphor of the eponymous slot machines in casinos associates the available options
with the “arms” of the slot machine that are “pulled”, i.e., the respective option is
selected. By pulling an arm, the agent is provided a reward signal as feedback on the
quality of his or her choice. Typically, only one arm is pulled at a time, and the goal
is to optimize a certain evaluation criterion, e.g., maximizing the cumulative reward.
To achieve such a goal, the agent must carefully balance exploration, to possibly find
a better arm, but at the same time risking to draw arms yielding less reward, with
exploitation, to take advantage of the arms already known to yield high rewards.

Instantiating the MAB problem for HPO, each arm represents a hyper-parameter
configuration, and the aim of the agent is to identify the best arm. Moreover,
the reward signal for pulling an arm is provided by evaluating the corresponding
hyper-parameter configuration for a particular budget b, e.g., time or number of
observations used for training. The agent may choose and adapt the budget b for
a hyper-parameter configuration over time. Consequently, this requires that the
candidate evaluation function f needs to be parameterizable in the budget b.

Based on the MAB setting, an approach to HPO is proposed in [JT16] applying
the successive halving (SH) algorithm [KKS13]. Theoretically and empirically,
the proposed approach is shown to yield good performance. Initially sampling
a representative set of hyper-parameter configurations at random, as the name
suggests, it successively disregards half of the worse performing configurations,
based on the observed average performance after a certain amount of the available
budget is reached. An illustration of this approach is provided in Figure 2.4.

Note that the set of all hyper-parameter configurations is usually huge, if not infi-
nite, which is already the case as soon as real-valued parameters are considered.
However, in [JT16], this problem is addressed by sampling a predefined number
of configurations, thus, only presenting a finite set of configurations to SH. After
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Figure 2.4: Illustration of an AutoML system, employing a successive halving algorithm for
optimization with a budgeted candidate evaluation function fb(·). After picking
an initial set of configurations and initial budgets, the algorithm iteratively
evaluates configurations for the current budget b, discards the worse half of
configurations, and re-evaluates the remaining for an increased budget. This
process is run multiple times, varying the initial budget and the size of the initial
set of configurations.

each halving, the remaining configurations are evaluated for an increased budget. In
this way, SH allows for wasting less budget on poorly performing configurations and
for allocating more budget for the more promising ones, finding the best arm after
dlog2(N)e iterations, where N is the number of initially sampled hyper-parameter
configurations.

However, defining the value of N has a practical impact on the choice of the final
arm [Li+17]. Mainly, this is due to (i) sampling too few configurations may lead to
missing good ones, and (ii) sampling too many configurations decreases the budget
initially assigned for evaluation such that configurations that perform better on larger
budgets are disregarded early. Hence, the number of initially sampled configurations
is a crucial hyper-parameter to the optimization algorithm. Depending on the
maximum allocatable budget, in [Li+17], the authors propose a heuristic, which they
dub Hyperband, to run SH for different numbers of initially sampled configurations
repeatedly. As an optimization algorithm of an AutoML system, Hyperband performs
competitively to systems based on Bayesian optimization [DSR18].

Hybrid Bayesian Optimization and Multi-Armed Bandits A significant disadvan-
tage of Hyperband is that knowledge about already observed performances from
previous iterations is not incorporated for sampling new sets of initial configurations.
To overcome this limitation, the idea of Hyperband is integrated with the Bayesian
optimization approach leading to a hybrid algorithm called Bayesian Optimization
and Hyperband (BOHB) [FKH18]. In fact, the random sampling procedure of Hyper-
band is (mostly) substituted by sampling configurations according to the surrogate
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Figure 2.5: Illustration of an AutoML system combining Bayesian optimization and Hyper-
band (BOHB) into a hybrid optimization algorithm leveraging the best out of the
two worlds: Successive halving as in Hyperband together with a model-based
sampling of promising candidates when reinitializing the set of configurations.

f̂ and an acquisition function. Due to technical reasons, some of the configurations
are still sampled at random to ensure convergence. The combination of BO and
Hyperband is visualized in Figure 2.5. It has been applied to address the AutoML
problem in [Swe+17] and [Feu+18].

Others Beyond the discussed methods, other approaches reducing the AutoML
problem to HPO exist, for example, by using standard genetic algorithms [SPF17;
WMH18b], or via grid search to successively build a stacking ensemble [Eri+20].

Another interesting approach is presented in [Liu+20], leveraging the alternating di-
rection method of multipliers (ADMM) algorithm, where a bipartition of the numeric
and categorical hyper-parameters is created. Thereby, the original optimization prob-
lem is decomposed into simpler sub-problems (concerning the number of variables),
containing only variables of a single type. Furthermore, the ADMM framework
allows for introducing additional (external) constraints on the optimization problem,
such as fairness or robustness constraints.

2.1.4 Grammar-Based Search

The reduction of the CASH to the HPO problem has a considerable disadvantage
with regard to more flexible machine learning pipelines. When working with a hyper-
parameter vector as a search space representation, its size is fixed, and therefore also
a maximum length or number of components within the pipeline is predetermined.
Another branch of AutoML systems emerged to overcome this limitation that uses
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Figure 2.6: Illustration of an AutoML system employing genetic programming as an op-
timization algorithm. As common in evolutionary algorithms, genetic pro-
gramming maintains a population of solution candidates, also referred to as
individuals. The fitness values f(·) computed for individuals are used to select
more promising ones and use them as input for recombination operators. The
distinctive feature of genetic programming is that individuals are represented
in the form of trees. In the AutoML domain, these trees are derivation trees of
some context-free grammar describing the space of potential machine learning
pipelines.

a grammar-based representation of the search space. This representation does
not impose any limitations on the maximum length or the number of components
contained in a machine learning pipeline. Furthermore, it allows for describing
different shapes of machine learning pipelines – e.g., sequential, tree-shaped, and
even in the shape of a directed acyclic graph – compared to a fixed structure as
predefined in the reduction to HPO.

Another advantage of grammar-based approaches is that they can also naturally rep-
resent recursive dependencies. The configuration of learning algorithms, especially
meta-learning algorithms, can become quite complex. This is because it requires
the configuration of a base algorithm which in turn is a learning algorithm exposing
hyper-parameters and needs to be configured by the AutoML system as well.

Grammar-Based Genetic Programming Grammar-based optimization approaches
are pretty prevalent in the field of evolutionary algorithms, especially in the sub-
field of grammar-based genetic programming (GGP) [Koz95; McK+10]. In the
original sense, genetic programming is about synthesizing software with the help
of evolutionary algorithms [Cra85], assessing the fitness f(·) of individuals, for
example, in terms of test coverage to verify that the program works as expected.
Instead of representing individuals in terms of gene strings, GGPs employ a formal
language or grammar to describe the space of solutions, and individuals are derived
based on this grammar. More precisely, individuals in GGPs describe a derivation
tree for this grammar.

Using GGPs for AutoML has the advantage that the grammar allows much more flex-
ible structures for machine learning pipelines than a fixed-length hyper-parameter
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vector as needed when applying BO. An illustration of a genetic programming Au-
toML system is given in Figure 2.6. AutoML systems based on genetic programming
support tree-shaped pipelines [Ols+16; Sá+17] and even support representations
for more complex structures such as pipelines involving feature extraction [Tor+21]
or pipelines exhibiting a directed acyclic graph structure [Che+18]. Moreover, GGPs
also natively allow for recursive structures as in the case of configuring multi-label
classifiers [SFP18]. However, as is typical for evolutionary algorithms, GGPs maintain
a population of individuals of a specific size. On the one hand, parallel processing
of the individuals is trivial, but on the other hand, the size of the population is
also a crucial hyper-parameter that needs to be chosen with care. While a smaller
population allows for faster processing of generations, initializing a population that
covers the search space in a sufficiently representative way is difficult. A larger
population, in turn, may provide better coverage of the search space, but on the
other hand, it also increases the computational costs for evaluating the offspring of
each generation. Moreover, the next generation does not begin until the previous
one is complete, so single expensive-to-evaluate individuals may stall the entire
evolution. This is especially an issue when dealing with larger data sets where the
evaluation of single candidates does not take seconds but rather minutes or hours.

To overcome these limitations and to improve the scalability of TPOT [Ols+16], it
has been extended to leverage successive halving for fitness evaluations [Par+19]
and to include a feature set selector as another algorithm that can be used in a
candidate pipeline [LFM20]. Another work addresses the issues of waiting for a
generation to finish before beginning a new one employing an asynchronous GGP
variant [GV19]. More specifically, this GGP continuously recombines and evaluates
individuals without the synchronization barriers of generations.

AI Planning and Graph Search Hierarchical task network (HTN) planning [GNT04]
originates from the field of automated planning and scheduling, sometimes simply
referred to as AI planning, and deals with the automated production of plans, i.e.,
sequences of actions, that are typically executed by an (intelligent) agent. In HTN
planning, the idea is to structure the search space hierarchically based on a logic
language and operators defined on that language.

A plan or a solution is derived in HTN planning by refining so-called tasks arranged
in a partially ordered set of tasks, also referred to as task network. Tasks can either
be complex or primitive. While the latter represent actionable items, i.e., actions that
the agent can execute, the former needs to be refined until only primitive tasks are
left. Complex tasks can be viewed as a composition of simpler tasks and thus need to
be refined via so-called methods into those simpler tasks, which can be again complex
or primitive. The way the search space is described is strongly reminiscent of context-
free grammars, with complex tasks corresponding to non-terminals, primitive tasks
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Figure 2.7: Creation of pipelines with hierarchical planning. Top: A binary relevance (BR)
learning classifier is configured with a decision tree, which is called J48 in
WEKA, as a base learner. Bottom: First, a meta multi-label classifier expectation
maximization (EM) is selected and configured with a binary relevance learning
classifier as a base learner, which in turn employs a bagged SMO classifier
ensemble as a base learner for the individual labels.

to terminals, and methods to production rules. However, the difference here is that
methods can impose additional constraints in the form of preconditions that must be
satisfied for the method to be applicable to a particular state.

To solve HTN-planning problems, they are usually reduced to graph search problems,
making them accessible to standard graph search algorithms, such as breadth-first or
depth-first search. This reduction is often made by forward-decomposition [GNT04],
which selects the first complex task in the network of a node to be refined. The
node’s successors are then obtained, considering each method that can be applied to
refine the selected task. In this way, every inner node of the induced search graph
corresponds to a plan prefix, i.e., the primitive tasks that have already been fixed,
and to a task network containing the remaining complex tasks that still need to be
refined. Hence, the start node represents an empty plan prefix and a task network
containing the initial complex task. Leaf nodes, in turn, represent complete plans
and empty rest networks. In Figure 2.7 a concrete example is depicted, where the
initial complex task “MLClassification” is decomposed in plan prefixes. Already fixed
primitive tasks of the plan prefixes are shown in green, whereas complex tasks are
colored in blue. The next complex task to be refined is highlighted in dark blue.

In the context of automating data mining and machine learning, HTN planning,
respectively an extension of HTN planning called programmatic task network (PTN)
planning [Moh+18a], has been used for modeling algorithm choices and hyper-
parameter values in terms of primitive tasks and introducing complex tasks as
abstraction layers for grouping different kinds of algorithms and defining structures
such as the topology of a machine learning pipeline [Kie+12; WMH17; MWH18b;
WMH18c; Kat+20]. In [MWH18b; WMH18c] (Chapters 3 and 4), we propose an
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AutoML system named ML-Plan, applying a best-first search to the resulting search
graph which requires each node to be assigned a heuristic score. Since an inner node
of the search graph corresponds to an incomplete specification of a machine learning
pipeline and thus, cannot be evaluated as a candidate, random completions are
drawn to leaf nodes. The machine learning pipelines represented by the respective
leaf nodes are then evaluated, and the observed performances are aggregated at
the inner node, e.g., taking the minimum. The number of random completions
affects the trade-off between exploration and exploitation. While a larger number
promotes exploration, a smaller number reinforces the greediness of the search and
consequently exploitation.

Beyond single-label classification, HTN planning was also used in extensions of
ML-Plan to other types of tasks, such as remaining useful lifetime estimation in the
problem domain of predictive maintenance [Tor+20b], and multi-label classification
(Chapters 5 and 6) [WMH18a; Wev+19; Wev+21].

Representing the search space as a search graph or a search tree, other heuristic
graph search methods can be successfully applied as optimization algorithms of
AutoML systems. For example, in [RSS19] a Monte-Carlo tree search is applied
along with a progressive widening strategy [Cha+08] to make the high branching
factor manageable. In [MBH21], the authors suggest the use of a Plackett-Luce
model [CML13] to improve Monte-Carlo tree search for single-player games, e.g.,
AutoML. An adaptation of AlphaZero [Sil+17], which also employs a Monte-Carlo
tree search, is proposed in [Dro+18]. Another approach combines reinforcement
learning for selecting algorithms with Bayesian optimization for configuring the
hyper-parameters of machine learning pipelines [SLB19; Lin19]. During a hyper-
parameter optimization phase, the best performance is fed back as a reward to the
reinforcement learning algorithm.

2.1.5 Meta-Learning

A major criticism of AutoML systems is that they are too resource-intensive in terms
of both computational power as well as time. Following the common design scheme,
as shown in Figure 2.2, AutoML systems heavily rely on actually executing candidate
machine learning pipelines in order to estimate their generalization performance
for the given task. Besides the high computational costs, the execution of machine
learning pipelines takes some time ranging from milliseconds to hours or even days –
depending on the data and algorithms contained in the candidate pipelines. Hence,
also the AutoML process can be pretty time-consuming.
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Figure 2.8: AutoML systems using meta-learning for recommending machine learning
pipelines usually require a feature representation of datasets which needs to
be computed for the given dataset D, before the meta-model m̂ can be queried
to obtain a recommendation. Note that this AutoML system does not involve a
candidate evaluation, which would require the machine learning pipelines to be
executed for the given data set D.

One possible way to address these issues is through meta-learning. Inspired by
the way humans learn, meta-learning (also known as “learning to learn”) aims to
accumulate experience (metadata) on already solved tasks to accomplish future tasks
faster and/or more accurately. Transferred to the AutoML problem, this translates
to observing performance data of machine learning pipelines on training data sets
and, based on this, estimating a model to make recommendations for unseen data
sets. On the one hand, meta-learning can be used to support and speed up existing
AutoML systems, e.g., by first evaluating the best machine learning pipelines known
for similar (already examined) datasets, as it is done in [Feu+15; MS19]. Moreover,
in Chapter 9, we advocate the use of meta-learning for predicting runtimes of
machine learning pipelines to decide whether a pipeline should be evaluated or not.
Avoiding evaluations of machine learning pipelines that take too long significantly
improves the efficiency of AutoML systems [Moh+21]. Alternatively, one may
think of substituting the entire AutoML system with a predictor that recommends a
machine learning pipeline for a new (unseen) data set.

Rather than treating each dataset independently, as suggested by the original problem
statement in Equation (2.3), with the help of a trial-and-error-based AutoML system,
we seek to learn a mapping ϕ̂ from the space of datasets to the space of algorithms
and their parameterizations, as defined in the introduction of Section 2.1.

ϕ̂ : D −→ {(A(i), λ) | A(i) ∈ A and λ ∈ Λ(i)}

ϕ̂ represents a surrogate of the underlying ground truth function ϕ, assigning each
dataset the best machine learning pipeline. Note that, in general, ϕ cannot be
observed as the ground truth assignment of a machine learning pipeline to a data
set can usually not be determined with absolute certainty since only estimates on the
generalization performance are observable.
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By simplifying the CASH problem to algorithm selection and covering different
parametrizations in terms of (many) “different” algorithms, the problem can be
solved, for example, by probabilistic matrix factorization [FSE18; Yan+19] or by
leveraging learning algorithms, in turn, to predict performances of machine learning
pipelines [TWH20a]. In the latter work, we use a dyadic feature representation,
comprising a feature representation of data sets and a feature representation of
algorithms, allowing the model to generalize across both dimensions data sets and al-
gorithm parametrizations. While in the first place, this dyadic feature representation
improves data efficiency of the meta-learner, i.e., only a few training observations are
required to make highly accurate predictions, in principle, it technically allows for
making predictions on unknown parametrizations of the already known algorithms.
However, whether these meta-models generalize well to unknown parametrizations
is still an open question.

A key role for good generalization performance, and thus, the successful application
of such meta-models lies in the informativeness of the so-called meta-features, i.e.,
features describing properties of the data sets and – in the case of a dyadic feature
representation – algorithms. Often, statistical features (such as the number of
instances, features, classes, etc.) and performances of fast-to-evaluate learners, also
known as landmarking features, are used to describe datasets. A more sophisticated
way is proposed in [Dro+19] leveraging deep language models to transform natural
language descriptions of data sets into a numeric feature representation. Although
natural language embeddings seem promising [JSG21], coming up with a suitable
feature representation is still an open research area.

2.1.6 Neural Architecture Search

Neural architecture search (NAS) denotes a particular branch of AutoML committed
to and specialized in optimizing neural networks, especially on optimizing the topol-
ogy of neural networks. Initial work in this sub-field of AutoML uses evolutionary
algorithms for optimization and introduces an abstraction layer by defining building
blocks also known as cells that can be composed to obtain the final architecture
[Rea+17]. Although they are evolved from scratch, neural networks optimized via
NAS manage to match the performance of highly sophisticated neural networks
designed by human experts. Since the seminal work [Rea+17], a plethora of other
approaches and improvements have been proposed to make the search for neural
architectures more resource-efficient or to reduce the number of internal parame-
ters while maintaining a competitive generalization performance [Wis18; Zhu+19;
Xie+20]. Besides, NAS has also been used for optimizing neural networks for multi-
label classification [PN19]. For a more comprehensive overview of NAS, we refer
the interested reader to overview papers on NAS [EMH19; WRP19; Ren+20].
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Although the increased interest in NAS – presumably due to the success of neural
networks in image classification – seems rather recent, the optimization of neural
network architectures has already been a topic of interest in the evolutionary com-
putation community since the 80s and 90s [HSG89; Gru94]. For example, in the
field of evolutionary robotics, controllers for robots are implemented via neural
networks, which are optimized by evolutionary algorithms [NF00]. The optimization
involves the internal parameters and the neural network architecture, i.e., individual
neurons and connections between neurons. However, for image classification tasks,
the neural network architectures are larger by several orders of magnitude, and a
key component for making NAS approaches succeed is to work with the abstract
entity of cells instead of the neurons and connecting edges directly.

2.2 Introduction to Multi-Label Classification

Multi-label classification (MLC) refers to a special form of a multi-target prediction
problem [WKH19], where data points (instances) are associated with binary targets
denoting the “relevance” or the “irrelevance” of a specific property of interest,
which is represented by a class label. Moreover, it generalizes the more common
classification tasks of binary and multi-class classification, where only a single such
class label is associated with each instance. In MLC we aim to learn a predictor,
mapping instances to subsets of (presumably) relevant labels. As an example, consider
the image tagging example of Section 1.2 where a picture can be associated with
multiple labels, e.g., BEACH, FOREST, MOUNTAIN, and SEA, at the same time. For a
more comprehensive and in-depth overview of multi-label classification, we refer
the interested reader to the survey articles [TKV10] and [ZZ14].

Subsequently, we give a formal definition of the MLC learning problem in Sec-
tion 2.2.1. Furthermore, we elaborate on how single-label classification, i.e., binary
and multi-class classification, can be framed as a special instance of MLC in Sec-
tion 2.2.2. In Section 2.2.3, we discuss various loss functions that are typically used
for assessing the quality of predictions. Then, we give an overview of different ways
of approaching the MLC learning problem in Section 2.2.5. After elaborating on
the concept of label dependence in more detail in Section 2.2.4, we conclude this
introduction by elaborating on the challenge of configuring multi-label classifiers in
Section 2.2.6.

2.2.1 Problem Definition

Let X denote the space of instances and L = {l1, . . . lm} a finite set of m labels. In
MLC, we assume each instance x ∈ X to be (non-deterministically) associated with
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a subset of labels L ⊆ L via a joint probability distribution P (·, ·) for x and L. We
call L the set of relevant labels and its complement L \L the set of irrelevant labels.

The set of relevant labels L can be conveniently represented in terms of a binary
vector y = (y1, . . . , ym), where yi = 1 if the label li is considered to be relevant, i.e.,
li ∈ L. Alternatively, if a label li belongs to the set of irrelevant labels, i.e., li ∈ L \L,
we set yi = 0. In terms of this representation, we can denote the set of all possible
label combinations by Y := {0, 1}m.

Based on this, we can define a multi-label classifier h as a function h : X −→ Y . This
function takes an instance x ∈ X as input and returns a binary vector (prediction)

h(x) =
(
h1(x), . . . , hm(x)

)
,

indicating the relevance of each label, where hi(x) represents the i-th entry of the
vector returned by applying h(·) to x. Furthermore, we denote as

H ⊆ {h | h : X −→ Y}

the hypothesis space specifying the available multi-label classifiers h.

Provided a finite set of N observations

Dtrain := (Xtrain, Ytrain) = {(xi,yi)}Ni=1 ⊂ XN × YN

as training data, we aim for inducing such a multi-label classifier h : X −→ Y,
generalizing well beyond this finite set of observations. More specifically, we seek
to find a classifier h∗ ∈ H from a hypothesis space H that, after fitting the training
data Dtrain, minimizes the risk with respect to a target loss function L : Y × Y −→ R
(cf. Section 2.2.3)

h∗ ∈ arg min
h∈H

∫
X×Y

L(y,h(x))P (x,y) dxdy , (2.6)

where P (· , ·) refers to a(n) (unknown) joint probability distribution for x and y.

2.2.2 Single-Label Classification

Standard classification tasks, in the following referred to as single-label classification
(SLC), such as binary or multi-class classification problems, can be understood as
special cases of MLC. While limiting the number of labels m to 1 yields a binary
classification task, we can derive the multi-class classification problem by imposing
a constraint of mutual exclusiveness on the labels. More specifically, for any set of
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relevant labels L ⊆ L, we restrict the size of L to be |L| = 1. Following the notation
of the binary vector y, this constraint can be formulated by the sum of its entries yi
being equal to 1, i.e.,

∑m
i=1 yi = 1.

2.2.3 Loss Functions

Over time, a wide array of loss functions has been proposed to quantify the quality
of predictions, many of which generalize or adapt losses that are well-known in the
literature on single-label classification (SLC). This section presents a subset of these
loss functions, most commonly used in the literature. For a more comprehensive
overview, we refer the reader to [WZ17].

To estimate the generalization performance of a multi-label classifier, let

Dtest := (Xtest, Ytest) = {(xi,yi)}Si=1 ⊂ X S × YS (2.7)

be a test set of size S.

For convenience, we interpret Ytest in the following as a matrix

Y =


y1
y2
. . .

yS

 =


y1,1 . . . y1,m

y2,1 . . . y2,m

. . . . . . . . .

yS,1 . . . yS,m


where yi,j denotes the ground truth relevance of a label j for observation i.

Similarly, we can write the predictions of a multi-label classifier h on Xtest as a
matrix Ŷ :

Ŷ =


h(x1)
h(x2)
. . .

h(xS)

 =


h1(x1) . . . hm(x1)
h1(x2) . . . hm(x2)
. . . . . . . . .

h1(xS) . . . hm(xS)

 =


ŷ1,1 . . . ŷ1,m

ŷ2,1 . . . ŷ2,m

. . . . . . . . .

ŷS,1 . . . ŷS,m

 =


ŷ1
ŷ2
. . .

ŷS


Here, an entry ŷi,j represents the prediction of h for label j of observation i. Hence,
each row represents the predictions for an observation, and vice versa, each column
for a specific label. Then, an MLC loss function can be defined as L : YS × YS −→
[0, 1].2

2More generally, MLC loss functions may take a matrix YS for the ground truth labels and a matrix
RS×m representing the predictions of h as arguments since various multi-label classifiers produce
label relevance scores ranging in [0, 1] instead of sharp assignments of 0 or 1. Again other classifiers
may yield unbounded relevance scores. Via a threshold τ such scores can be transformed into 1 if
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The generalization or adaptation of SLC losses to the MLC setting can be classified
into three categories.

macro instance-wise In macro instance-wise multi-label loss functions, the loss
function is first computed for each observation (row) individually and sub-
sequently aggregated across all observations, e.g., by taking the mean. By
computing the loss for each observation first, more emphasis is put on predict-
ing all the labels of an instance correctly.

macro label-wise Here, the SLC loss function is first computed for each label,
i.e., individually for each column. The losses obtained in this manner are
then aggregated, e.g., via the mean. Thus, in contrast to the macro instance-
wise losses that emphasize making correct predictions for instances, in macro
label-wise loss functions, the focus is on predicting labels correctly.

micro Lastly, rather than reinforcing better predictions for either instances or labels,
any prediction ŷi,j can be considered equally important. To this end, micro
loss functions arrange the entries of the matrices Y respectively Ŷ in terms of
vectors before computing the loss.

For example, the subset 0/1 loss is a macro instance-wise generalization of the
well-known error rate. It considers the predicted and expected label subsets as a
whole and considers the entire prediction for an instance to be wrong whenever the
two sets do not coincide:

L0/1(Ytest, Ŷ ) := 1
S

S∑
i=1

q
yi 6= ŷi

y
, (2.8)

where J·K is the indicator function. Although it is frequently used in the literature,
one could criticize it for penalizing mistakes in the prediction overly stringent. In
particular, there is no difference between almost correct and completely wrong
predictions since the label sets need to match completely. Consequently, observed
values for the subset 0/1 loss are usually relatively high and often close to 1.

The Hamming loss represents another extreme as a generalization of the error rate,
counting the number of entries in Ŷ deviating from the expected values in Y and
dividing by the total number of entries.

LH(Ytest, Ŷ ) := 1
S

S∑
i=1

1
m

m∑
j=1

q
yi,j 6= ŷi,j

y
. (2.9)

the score exceeds the threshold τ and 0 otherwise. When dealing with classifiers producing scores,
for the sake of simplicity, we assume these scores to be thresholded in the following.
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Note that the Hamming loss does not fall into one of the three categories exclusively
but can be seen as a representative of all three categories. Nevertheless, we write
it here in the form of an instance-wise loss function. As the subset 0/1 loss, the
Hamming loss behaves rather extreme, and its usefulness for real-world applications
might appear debatable. This is because, in practice, the number of irrelevant labels
often outnumbers the number of relevant labels, i.e., the label matrix is usually very
sparse, which in turn results in a very low loss. Hence, even a constant classifier
always predicting all labels to be irrelevant has a Hamming loss close to 0.

To find a compromise between these two extremes, a generalized family of instance-
wise loss functions, building on so-called non-additive measures, can be considered
to interpolate between Hamming and subset 0/1 loss [Hül+22]. For this purpose,
this interpolation considers all possible subsets of labels with a certain size and
evaluates the average subset 0/1 loss for all the subsets. Hamming and subset 0/1
loss can be derived as special cases of this generalized family of loss functions if all
subsets of size 1 or |L| are considered, respectively. Obviously, the latter considers
the predicted and expected label sets as a whole. The former, in turn, considers |L|
many subsets of size 1, thus, considering each label of an instance individually and
counting the errors. In between, more emphasis is put on getting subsets of labels
with a specific size correctly and thereby allows for interpolating between Hamming
and the subset 0/1 loss.

As already mentioned above, in practice, one can frequently observe that the irrele-
vant labels outnumber the relevant ones by a large margin. To address this problem
of class imbalance, the F1-measure can be considered as it is defined as the harmonic
mean of precision and recall. Note that the F1-measure is not a loss function but
rather a measure of accuracy and thus to be maximized3. It has been adapted to the
MLC setting in the spirit of all three categories, i.e., as an instance-wise, label-wise,
and micro loss function which are defined as follows:

F1I(Ytest, Ŷ ) := 1
S

S∑
i=1

2
∑m
j=1 yi,j ŷi,j∑m

j=1(yi,j + ŷi,j)
(2.10)

F1L(Ytest, Ŷ ) := 1
m

m∑
j=1

2
∑S
i=1 yi,j ŷi,j∑S

i=1(yi,j + ŷi,j)
(2.11)

F1µ(Ytest, Ŷ ) :=
2
∑m
j=1

∑S
i=1 yi,j ŷi,j∑m

j=1
∑S
i=1(yi,j + ŷi,j)

(2.12)

While the instance-wise F1-measure accounts for the imbalance between relevant
and irrelevant labels for every observation, the label-wise F1-measure considers
each label column individually and accounts for imbalance in terms of the respective

3Obviously, since F1 ranges between 0 and 1, it can be translated into a loss function by taking 1−F1.
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label being rarely relevant or irrelevant. F1µ does not distinguish between labels
or instances and more generally emphasizes predicting the relevant labels correctly.
Nevertheless, good performance in terms of the F1-measure requires both a high
true positive rate, i.e., predicting relevant labels correctly, and a high true negative
rate, meaning to predict irrelevant labels correctly. Thus, as opposed to LH , the
constant “always positive” or “always negative” predictor will be assigned the worst
performance.

As can already be seen from the example of the constant predictor, the perception
regarding the quality of predictions depends significantly on the considered per-
formance measure. More specifically, a classifier performing best in terms of one
loss function does not necessarily perform best for another loss function [Hül+22].
Consequently, this also means, in particular, that the choice and configuration of an
MLC classifier need to be tailored to the loss function in question.

2.2.4 Label Dependence

One of the major themes and, arguably, the driving force in the multi-label classifica-
tion literature deals with the development of methods that can exploit so-called label
dependence to improve the generalization performance. Label dependence refers to a
stochastic correlation between labels, such as labels being positively correlated and
thus more likely to occur together.

To give an intuition of what is meant by label dependence, consider again the
example of Section 1.2. Arguably, the class label BEACH is positively correlated with
the class label SEA since beaches are usually located by the sea. The two class labels
are positively correlated. To put it differently, if the label BEACH is positive, i.e., a
beach is on a picture, then the label SEA is likely to be positive as well. Hence, in this
case, a multi-label classifier should be able to acknowledge this correlation and be
more reluctant to predict BEACH without SEA, whereas none of the two labels, only
SEA, and both labels simultaneously seem to be reasonable predictions.

Formally, label dependence can be distinguished into two categories: conditional and
marginal (unconditional) label dependence [Dem+12]. While the former refers to a
dependence between labels conditioned on a particular instance x, the latter is of a
more general type and can be seen as a kind of expected label dependence across the
entire instance space.

Following the definitions of conditional and marginal label dependence by Dem-
bczyński et al. [Dem+12], let Y = {0, 1}m be a label space with m labels. Fur-
thermore, let Z = (Z1, . . . , Zm) denote a random vector of labels for a probability
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distribution P (·, ·) on X×Y , as in Section 2.2.1. In this context, y ∈ Y is a realization
of this random vector Z.

For a given instance x ∈ X , a random vector of labels Z is called conditionally
independent, if

P (Z | x) =
m∏
i=1

P (Zi | x) .

With P (Z | x) we denote the conditional probability of observing a random vector
Z given the instance x. Hence, if the probability of the random vector Z given an
instance x is equal to the product of the probabilities of the individual labels given
instance x, the labels are stochastically independent. Vice versa, this means that if
this equality does not hold, we observe a conditional label dependence.

Marginal (unconditional) label dependence can be defined similarly. A random
vector is called marginally independent, if

P (Z) =
m∏
i=1

P (Zi) .

Note that for marginal label dependence the probability is not conditioned on any
instance x. Likewise, we observe a marginal label dependence if the equation does
not hold.

Furthermore, the two definitions are closely related to each other. As already briefly
mentioned before, marginal label dependence can be seen as a kind of expected label
dependence. This is because we obtain the definition of marginal label dependence
by averaging conditional label dependence over the instance space X :

P (Z) =
∫
X
P (Z | x) dµ(x) ,

where µ(·) denotes the probability distribution on X according to the joint probability
distribution P (·, ·). However, despite this relation, Dembczyński et al. [Dem+12]
prove that neither dependence implies the other.

While multi-label classifiers can be more or less suitable for either type and may
exploit this information, it is not necessarily important to do so for risk minimization.
Depending on the target loss function, an optimal prediction might or might not
require taking label dependence into account. For example, if the loss function is
label-wise decomposable, i.e., the loss is first computed over all observations for
each label individually and then aggregated, from a theoretical perspective, there
is no need to consider label dependencies [Dem+12]. Instead, it suffices to know
(learn) the marginal distributions for the corresponding labels in order to make
a risk-minimizing prediction. Examples of such loss functions are the Hamming
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loss and the label-wise F1-measure. Conversely, exploiting label dependence may
indeed be advantageous in terms of generalization performance or even necessary
to produce risk-minimizing predictions, especially when considering instance-wise
loss functions such as the subset 0/1 loss.

To illustrate the impact of the target loss function on the optimality of a prediction,
we consider a simple example, based on our running example of Section 1.2. Let
L = {BEACH, FOREST, MOUNTAIN, SEA} denote the label space of the m = 4 labels
and Y = {0, 1}4 correspondingly. Furthermore, given an observation x, let the
(conditional) ground-truth distribution on Y be as follows:

BEACH FOREST MOUNTAIN SEA P (y |x)

0 0 0 0 3/12

0 1 1 1 1/12

1 0 1 1 2/12

1 1 0 1 2/12

1 1 1 0 2/12

1 1 1 1 2/12

Any other label combination is assigned a probability of 0 and the label dependence
is captured via P (y|x). Note that label dependence is encoded here in terms of the
probabilities of the respective label sets, i.e., given instance x, the most probable label
set is (0, 0, 0, 0) with a ground truth probability of 3/12. However, a 1 is observed with
a ground truth probability of 8/12 for BEACH and 7/12 for all the remaining labels.

In this example, one can easily see that the Bayes-optimal prediction, which mini-
mizes the loss in expectation, for subset 0/1 loss is h(x) = (0, 0, 0, 0), i.e., the set
of relevant labels is empty (Lx = ∅). However, the Bayes-optimal prediction with
respect to the Hamming loss is obtained through h(x) = (1, 1, 1, 1), i.e., all class
labels Lx = {BEACH, FOREST, MOUNTAIN, SEA} are relevant. Hence, for minimizing
the risk in terms of the subset 0/1 loss, it is crucial to consider the joint mode of
the distribution and thus the label set (0, 0, 0, 0) as a whole. On the contrary, for
an optimal prediction with respect to the Hamming loss, we examine each label
individually and thereby ignore the relevance of other labels. In extreme cases, as in
this example, the optimal predictions can even be orthogonal to each other.

As demonstrated in this small example, optimal predictions are not only dependent
on the properties of the data, such as the presence of label dependence, but also on
the loss function to be minimized. In particular, this also makes it clear that an MLC
algorithm needs to be tailored to both the data – and therewith the type of label
dependence – and the target loss function.

30 Chapter 2 Preliminaries



2.2.5 Multi-Label Classifiers

Based on the plethora of well-studied SLC algorithms, multi-label classification
algorithms have been developed by either transforming the original MLC problem
into a (set of) single-label classification problem(s) and applying SLC algorithms
to the resulting problems or by adapting existing algorithms to the specifics of the
MLC problem [TK07]. More precisely, the algorithms need to be adapted to predict
label sets instead of single labels. In the following, we give a brief overview of both
algorithm adaptation methods and problem transformation methods.

Problem transformation algorithms compile the given MLC problem into one or
several SLC problems. Formally, they perform a reduction from the original problem
to SLC such that the resulting problems can be dealt with by already known methods,
e.g., decision trees, SVMs, or logistic regression. The most straightforward problem
transformation algorithms arguably are the label power set (LP) classifier [Bou+04;
Dip+05] and binary relevance (BR) learning [Zha+18].

LP casts the MLC problem as a single multi-class classification problem, treating
each label combination as a distinct class. Although being conceptually simple, the
approach comes with a few technical issues and limitations. First, the number of
classes grows exponentially in the number of labels m, and thus, quickly reaches
dimensions that render the learning problem unfeasible. Second, label combinations
may be considered as classes that do not and will never actually occur in the data.
Third, explicit information about structures over and dependencies between labels is
lost since each label combination is represented by a simple class label. Hence, LP
can learn about and account for label dependencies implicitly but not exploit such
properties directly.

BR handles the problem transformation quite differently by performing a decompo-
sition into a binary classification problem for each label. Each binary classification
problem aims to predict whether the respective label is relevant or not. Again, due to
the implicit independence assumption made about the labels, i.e., that the relevance
of each label can be predicted independently of the other labels, interactions or
dependencies between labels are ignored in BR as well. In fact, BR is often criticized
for this independence assumption, but for label-wise performance measures, such
as Hamming loss or the label-wise F1-measure, it can be theoretically shown that
BR is indeed optimal [Dem+12; Lua+12]. Also, the flexibility resulting from the
independence assumption can be leveraged to select and configure the SLC methods
for tackling the induced binary classification tasks for each label individually. As
shown in Chapter 7, this individualization can be done efficiently, and it benefits the
generalization performance. Nonetheless, the idea of exploiting such label depen-
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dencies in order to improve generalization performance is the primary motivation
for various methods developed to tackle the MLC problem.

Taking BR as a point of departure, various more sophisticated methods have been
developed over time [Zha+18; Rea+21]. A more sophisticated, very powerful, and
probably the most prominent problem transformation technique is called classifier
chains [Rea+11; Rea+21]. In classifier chains, a chain of binary classifiers is trained
in a sequence such that each classifier predicts the relevance for a specific label but
taking into account the relevance of the labels handled by previous classifiers. While
the relevance of the previous labels is given in the data when training a classifier
chain, this information is not available during prediction. Therefore, the values for
the attributes are provided using the predictions of the previous classifiers. However,
a preceding classifier’s prediction about the relevance of the respective label might be
wrong. In this case, the error propagates through the chain and affects subsequent
predictions, resulting in a kind of attribute noise [SCH12]. Another issue is that the
order of labels within a classifier chain plays an essential role in the generalization
performance and has been the subject of optimization in various studies [Rea+21].
To overcome this issue, ensembles of classifier chains can be built to compensate for
sub-optimal orders of labels [Rea+11].

Returning to the image tagging example (cf. Section 1.2), for instance, a classifier
chain may first predict the presence of BEACH based on the properties of the picture.
The prediction for SEA could then be conditioned on the properties of the picture and
the (predicted) presence or absence of the class label BEACH. In this way, classifier
chains may capture a potential dependence between class labels, at least to some
extent. However, the ground truth label for BEACH is only available during training,
and during prediction time, it is replaced by a prediction for that label. Hence, if
the prediction for BEACH is wrong, the error propagates to the prediction of the class
label SEA.

Algorithm adaptation is the other prominent way of developing MLC algorithms,
taking SLC methods as a point of departure and adapting models and/or learning
algorithms to the MLC setting. To give a brief impression of algorithm adaptation
methods, we present a few such methods in the following. A more detailed overview
can be found in [Bog+21]. For example, neural networks can be adapted to multi-
label classification quite easily by adding an output neuron for each label and
integrating the training algorithm with an MLC loss function [Zha09]. Moreover,
decision trees have been transferred to the MLC setting by adapting the split criterion
[CK01] or employing predictive clustering [Koc+07]. A more recent approach, called
BOOMER [Rap+20], is a multi-label classification rule learner, leveraging boosting
techniques to achieve state-of-the-art generalization performance while providing
interpretable models.
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Figure 2.9: Exemplary illustration of a problem transformation multi-label classifier.

2.2.6 Configuration of Multi-Label Classifiers

To achieve the best possible generalization performance, the hyper-parameters of
multi-label classifiers need to be tailored to the given data and the loss function in
question, as we have already detailed above. Depending on whether the classifier
was designed via algorithm adaptation or a problem transformation, optimizing
the hyper-parameters is differently challenging. While in the former case, only the
hyper-parameters directly exposed by the respective multi-label classifier are subject
to optimization, in the case of problem transformation, the optimization of hyper-
parameters is usually more complex. Compiling the original MLC problem into a (set
of) SLC problem(s), problem transformation methods can be seen as meta-learning
methods which are configured with a base learner, i.e., an SLC method, to tackle the
resulting SLC problems. On the one hand, this degree of freedom allows a better
fit of the algorithm to the given data and loss function. On the other hand, for
configuring such multi-label classifiers, a decision needs to be made regarding the
choice of the base learner and the hyper-parameters that the chosen base learner
may additionally expose.
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Figure 2.10: Illustration of the search spaces of ML-Plan for MLC [Wev+19] only consider-
ing the choice of algorithms for single-label classification (left) and multi-label
classification (right) as directed acyclic graphs. The curvature of an edge in a
clock-wise direction represents a directed edge from a parent to a child node.
While each node represents an algorithm contained in the search space, the
interpretation of an edge is that the algorithm represented by the parent node
has a hyper-parameter that can be configured with the algorithm represented
by the child node.

In Figure 2.9, the structure of an exemplary multi-label classification method is
illustrated. The figure displays a multi-label classifier consisting of 5 layers of
learning algorithms and a kernel algorithm for the support vector machine (SMO,
short for Sequential Minimal Optimization). The outer two layers comprise meta-
algorithms for multi-label classification named ExpectationMaximization and
RandomSubspaceML. The actual multi-label classifier that is configured as the base
learner for the latter meta multi-label classifier is set to be Monte Carlo Classifier
Chains, which are in turn configured with a single-label classifier as a base learner. In
this example, Bagging is chosen as a meta single-label classifier, which uses SMO as a
base learner. Finally, the SMO algorithm is configured with NormalizedPolyKernel.
While in this example, the decisions regarding the respective algorithms and base
learners are already made, each of the algorithms exposes hyper-parameters that
need to be tuned.

As can be seen from this single example, the configuration of multi-label classifiers is
quite complex, and many decisions need to be made. In Chapter 6, we deal with the
configuration of multi-label classifiers considering a pool of roughly 70 algorithms,
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exposing a total of more than 170 hyper-parameters (without counting the choice
of base learners), whereas a complete multi-label classifier may expose up to 25
hyper-parameters to be configured. To give an intuition about how much the search
space, limited only to the discrete (recursive) choice of algorithms, grows for multi-
label classification as compared to the search space for single-label classification,
Figure 2.10 shows the respective search spaces as directed acyclic graphs (DAGs).
Nodes of the DAG represent algorithms, and edges indicate a relation between two
algorithms in the sense that the child node can be configured as the base algorithm
of the parent node. The direction of an edge can be read from its curvature. When
following an edge in a clockwise direction, one traverses the DAG from a parent
node to a child node and vice versa.

While the graph on the left-hand side still shows a clear structure and seems quite
manageable, the graph on the right side is much denser. Algorithms (represented
by nodes) and relationships between those algorithms, represented by edges, are
difficult to recognize and can only be glimpsed. More precisely, the search space not
only contains more algorithms in total, i.e., 70 compared to 30, but also offers more
possibilities to combine algorithms and configure them as base algorithms. Clearly,
selecting and configuring a multi-label classifier is a demanding and cumbersome
task, even for experts. This is all the more true for non-experts.

Going beyond existing hyper-parameters and the configuration of base learners, one
may, of course, also think of adding more hyper-parameters to multi-label classifiers,
thereby increasing the degrees of freedom and improving their generalization per-
formance. For example, in [Nam+19] the permutation of base learners in classifier
chains is found to have a practical impact on the performance. Improving the gener-
alization performance by optimizing this permutation has been the subject of various
studies [Rea+21]. Moreover, rather than committing to a single base algorithm used
for all the labels, a base algorithm could be specifically selected for each label. For
the case of BR, in Chapter 7, we demonstrate that a label-wise configuration of base
algorithms for BR may indeed prove beneficial.

While this flexibility can positively affect performance, it obviously also increases the
complexity of the configuration space by several orders of magnitude. Consequently,
the configuration process becomes even more complex and increases the need for an
automated solution to this problem.

2.2 Introduction to Multi-Label Classification 35
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Abstract
Automated machine learning (AutoML) seeks to automatically select, compose, and
parametrize machine learning algorithms, so as to achieve optimal performance on a given
task (dataset). Although current approaches to AutoML have already produced impressive
results, the field is still far from mature, and new techniques are still being developed. In this
paper, we present ML-Plan, a new approach to AutoML based on hierarchical planning. To
highlight the potential of this approach, we compare ML-Plan to the state-of-the-art frame-
works Auto-WEKA, auto-sklearn, and TPOT. In an extensive series of experiments, we show
that ML-Plan is highly competitive and often outperforms existing approaches.

Keywords Automated machine learning · Automated planning · Algorithm selection ·
Algorithm configuration · Heuristic search

1 Introduction

The demand for machine learning (ML) functionality is growing quite rapidly, and successful
machine learning applications can be found in more and more sectors of science, technology,
and society. Since endusers in applicationdomains are normally notmachine learning experts,
there is an urgent need for suitable support in terms of tools that are easy to use. Ideally, the
induction of models from data, including the data preprocessing, the choice of a model class,
the training and evaluation of a predictor, the representation and interpretation of results,
etc., would be automated to a large extent (Lloyd et al. 2014). This has triggered the field of
automated machine learning (AutoML).
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State-of-the-artAutoML tools have shown impressive results (Thornton et al. 2013;Komer
et al. 2014; Feurer et al. 2015) but still leave room for improvement.Most of those approaches
squeeze the AutoML problem into the rigid corset of a (Bayesian) optimization problemwith
a fixed number of decision variables. Typically, there is one variable for the preprocessing
algorithm, one variable for the learning algorithm, and one variable for each parameter of each
algorithm. While this way of formalizing the AutoML problem leads to a solution space of
fixed dimensionality, it comes with a significant loss of structural information for the search.
TPOT (Olson and Moore 2016) and RECIPE (de Sá et al. 2017) allow for configuring ML
pipelines in a more flexible manner, using evolutionary algorithms for optimizing structure
and parameters, but suffer from scalability issues.

In this paper, we present ML-Plan, a new approach for AutoML based on hierarchical
task networks (HTNs). HTN is an established AI planning technique (Erol et al. 1994; Nau
et al. 2003) usually implemented as a heuristic best-first search over the graph induced by the
planning problem. There have been earlier HTN-based approaches to configure data mining
pipelines by Kietz et al. (2012) and Nguyen et al. (2014). However, the optimization potential
of these techniques is rather limited. In fact, Kietz et al. (2012) ranks candidates based on
usage frequencies of RapidMiner, and Nguyen et al. (2014) adopts a hill-climbing approach
guided by a database of known problems. In contrast, ML-Plan guides the search by ran-
domly completing partial pipelines like the ones in Auto-WEKA and auto-sklearn. This way,
ML-Plan offers a middle-ground solution that combines ideas and concepts from different
approaches, notably the evaluation of candidate pipelines at runtime, as done by Thornton
et al. (2013), Feurer et al. (2015), and the idea of Nguyen et al. (2014) to use HTN for pipeline
construction.

To the best of our knowledge, ML-Plan is the first AutoML approach that includes a
dedicated mechanism to prevent over-fitting. While previous approaches did recognize the
problem, too, specific remedies have not been offered. We propose a two-phase search model
(search + select) and show the benefit of this technique in terms of reduced error rates.

Our experimental evaluation shows that ML-Plan is highly competitive and often out-
performs the above state-of-the-art tools. Focusing on the search space of pipelines with
fixed length as in Thornton et al. (2013), Feurer et al. (2015), we mainly compare our search
technique against the techniques used by Auto-WEKA and auto-sklearn. ML-Plan can be
run with algorithms from both libraries WEKA and scikit-learn. To minimize library-rooted
confounding factors, we evaluate the WEKA version of ML-Plan against Auto-WEKA and
its scikit-learn-version against auto-sklearn, where the available algorithms are respectively
the same. TPOT was included as an additional baseline, although it has a different search
space and allows for more complex pipelines.

2 Problem definition

AutoML seeks to automatically compose and parametrize machine learning algorithms to
maximize a given metric such as predictive accuracy. The available algorithms are typi-
cally related either to preprocessing (feature selection, transformation, imputation, etc.) or
to the core functionality (classification, regression, ranking, etc.). While there are successful
approaches for the flexible composition of these algorithms such as TPOT (Olson andMoore
2016), most approaches arrange the algorithms sequentially and adopt a fixed template for
these pipelines. For example, auto-sklearn optimizes the pipeline shown in Fig. 1 with exactly
three elements, and the Auto-WEKA pipeline has only two such pipeline items. In this paper,
we consider the problem of a 2-step pipeline consisting of a preprocessor and a classifier.
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Fig. 1 A classical AutoML pipeline of fixed length

The planning technique we present in this paper is not limited to a particular type of
learning problem. For simplicity and ease of exposition, we nevertheless focus on multi-class
classification. Thus, we subsequently assume that the core machine learning algorithms are
classification algorithms. Depending on the learning problem, the adaptation to other settings
is either straightforward (e.g., for regression or ranking) or may require some changes in the
routine (e.g., in structured output prediction, where not all preprocessing combinations may
be allowed, or in unsupervised learning). However, even in those settings, no change of the
actual search mechanism is required.

Formally, the goal is to find a machine learning pipeline that learns to associate output
elements from a space Y (in our case classes) with input objects from an instance space
X . Often, X = Rd for some integer d , i.e., instances are described in terms of d numerical
attributes (features); however, features may also be binary or categorical. We denote byX the
collections of all such input spaces X . A dataset is a (finite) subset D = {(xi , yi )}ni=1 ⊂ X×Y .

In this context, wemay apply two types of algorithms. First, preprocessors are functions φ

that map datasets D to datasets D′, possibly changing the representation space from X ×Y to
X ′ × Y ′. Examples of such functions include methods for dimensionality reduction (such as
principal component analysis), feature selection, imputation, discretization, normalization,
etc. Second, learners are functions that map datasets D to a predictor function ψ : X → Y .

A pipeline is the pair consisting of a parametrized preprocessor and a learner. Both types
of algorithms can have continuous, discrete, ordinal, or nominal hyperparameters.1Let App

and Alearn be the space of parametrized preprocessing and learning algorithms, respectively.
A pipeline is a pair C ∈ App × Alearn, where C itself is a learner.

Given a set of labeled data D, the task consists of combining the above algorithms into
a pipeline C that, taking training data D as an input, produces an optimal predictor ψ =
C(D) as output. Here, optimality normally refers to the generalization performance, i.e., the
expected loss caused by ψ when being used for predicting class labels on new data (not
contained in the training data, but being produced by the same data-generating process).
More formally, the goal is to find

C∗ ∈ argmin
C∈App×Alearn

R
(
C(D)

)
, (1)

with the risk or expected loss of the predictor ψ given by

R(ψ) =
∫

X×Y

loss(y, ψ(x)) dP(x, y). (2)

Here, loss(y, ψ(x)) ∈ R is the penalty for predicting ψ(x) for instance x ∈ X when the true
label is y ∈ Y , and P is a joint probability measure on X × Y .

1 The term “hyperparameter” is commonly used for parameters of the learning algorithm, to distinguish them
from the parameters of the learned predictor ψ .
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Since (2) cannot be evaluated (the data-generating process P is assumed to exist but is
obviously not known to the learner), we replace the true generalization performance R(ψ)

by an estimation R̂(ψ). The latter is obtained by evaluating ψ on validation data Dval not
used for training:

R̂(ψ) = E

⎡

⎣ 1

|Dval |
∑

(x,y)∈Dval

loss
(
y, ψ(x)

)
⎤

⎦ ,

where the expectation is taken with respect to the randomly chosen validation data Dval of
predefined size k = |Dval |, i.e., with respect to all random splits of the data D into Dtrain

and Dval = D\Dtrain . Thus, we eventually solve the problem (1) with R̂ as a surrogate of
R.

Since computing the optimal solution is usually infeasible, we are interested in a solution
that is as good as possible under given resource constraints. As usual, we consider limited
runtime (1h and 1day) and hardware resources (CPU and memory).

3 Related work

Auto-WEKA (Thornton et al. 2013; Kotthoff et al. 2017) and auto-sklearn Feurer et al.
(2015) are the main representatives for solving AutoML by so-called sequential parameter
optimization. Both apply the general purpose algorithm configuration framework SMAC
(Hutter et al. 2011) to find optimal machine learning pipelines. In order to fit the AutoML
problem into the problem class of algorithm configuration and enable the application of
SMAC, the ML algorithms that can be used in the pipeline are interpreted as parameters
(of an imaginary pipeline algorithm) themselves. The parameters of the ML algorithms are
considered by SMAConly in case the corresponding algorithms have been chosen (activated).
As in ML-Plan, candidate solutions are executed and tested against a test set during search
in order to estimate their quality.

Compared to Auto-WEKA, auto-sklearn introduces two main innovations. The first is a
so-called “warm-start” technique that uses meta-features of the datasets to determine good
candidates to be considered in the pipeline based on past experiences on similar datasets.
Second, auto-sklearn can be configured to return an ensemble of classifiers instead of a single
classifier.

The main difference between the above approaches and ML-Plan is that ML-Plan suc-
cessively creates solutions in a global search instead of changing given solutions in a local
search as done by Auto-WEKA and auto-sklearn. To organize this search space, ML-Plan
uses hierarchical planning, a particular form of AI planning described in more detail in
Sect. 4. ML-Plan can be configured with arbitrary machine learning algorithms written in
Java or Python. In this paper, we consider a WEKA version and a scikit-learn version of
ML-Plan that use the same algorithms as Auto-WEKA and auto-sklearn, respectively. The
search space only deviates in the algorithm parameters, sinceML-Plan adopts a discretization
technique; this is discussed in Sect. 5.1.

Another interesting line of research is the application of evolutionary algorithms. One of
these approaches is TPOT (Olson and Moore 2016). In contrast to the above approaches and
ML-Plan, TPOT allows not just one pre-processing step but an arbitrary number of feature
extraction techniques at the same time.Whilemultiple pre-processors can be handled byHTN
planning as well, the current implementation of ML-Plan does not exploit that opportunity.
TPOT adopts a genetic algorithm to find good pipelines, and adopts the scikit framework to
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evaluate candidates. Another approach is RECIPE (de Sá et al. 2017), which uses a grammar-
based evolutionary approach to evolve pipeline construction. Like in other applications,
evolutionary algorithms are not uncritical with regard to runtime. In fact, RECIPE has so
far only been evaluated on rather small datasets, and our evaluation shows that TPOT is not
able to return any solution for the more difficult problems even within 1 day. Of course,
this neither excludes the usefulness of such approaches, especially since their results are
often very good, nor the possibility to improve efficiency in one way or the other (e.g., using
surrogate functions to speed up the evaluation of candidate solutions).

While AI planning has not yet been used in the core AutoML community, we are not the
first to use AI planning for machine learning purposes. A first approach for the configuration
of RapidMiner modules based on HTN planning was presented by Kietz et al. (2009, 2012).
The search algorithm is guided by a ranking that is obtained from usage frequencies of human
users of the RapidMiner tool. Nguyen et al. (2011, 2012, 2014) proposed the use of HTN
planning for data mining in a tool called Meta-Miner. Similar to auto-sklearn, their focus is
on learning the suitability of (partial) workflows for a dataset based on past experiences.

There are twomain differences betweenML-Plan andMeta-Miner. First, instead of evalu-
ating candidates during search, they apply a hill climbing search strategy where the decisions
are made based on past experiences. That is, the dataset of the active query is compared to
others examined in the past, for which the performance of the candidate workflows is known,
and based on this knowledge, the (partial) workflows are selected. This makes Meta-Miner
very fast at the cost of not having any true estimate of the returned solution. Second, there
is rather little emphasis on parameter tuning. In fact, Nguyen et al. experiment with single
parameters, but in the form of different “versions” of an algorithm rather than considering
the parameters as part of the HTNmodel. Due to the combinatorial explosion, of course, only
a small subset of the parameters covered by other AutoML approaches (including ML-Plan)
can be considered. In spite of these differences, their studies are of predominant importance
for the further development of ML-Plan, in which we aim at a stronger incorporation of
previous knowledge. In this sense, we consider the approaches as complementary.

4 Planning with hierarchical task networks (HTN)

The basis of HTN planning (Ghallab et al. 2004) is a logic languageL and planning operators
that are defined in terms of L. The language L has function-free first-order logic capacities,
i.e., it defines an infinite set of variable names, constant names, predicate names, and quanti-
fiers and connectors to build formulas. An operator is a tuple 〈nameo, preo, posto〉, where
nameo is a name and preo and posto are formulas from L that constitute preconditions and
postconditions, respectively. For example, an operator PCAmay conduct a principal compo-
nent analysis on a given dataset; preo would specify the conditions under which the operator
is applicable, and posto the effect it achieves.

A plan is a sequence of ground operations. As usual, we use the term ground to say that all
variables have been replaced by terms that only consist of constants. That is, an operation is
ground if all variables in the precondition and postcondition have been substituted by terms
from L that only contain constants. Ground operators are also called actions; we write prea
and posta for its precondition and postcondition, respectively.

The semantic of an action is that it modifies the state in which it is applied (e.g., turning
numeric attributes into discrete ones).A state is a set of groundpositive literals.Workingunder
the closed world assumption, we assume that every ground literal not explicitly contained in
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Fig. 2 Creation of pipelines with hierarchical planning. Left: a pipeline that uses a decision tree for prediction
where data are preprocessed with rescaling and imputation and features are preprocessed using fast ICA.
Middle: a pipeline that uses a (configured) nested dichotomy for prediction where data are preprocessed using
PCA. Right: a pipeline that uses a (configured) neural network for prediction and without preprocessing

a state is false. An action a is applicable in state s iff s |	cwa prea . The successor state s′
induced by this application is s if a is not applicable in s and (s ∪ add)\del otherwise; here,
add and del contain all the positive and negative literals, respectively.

A hierarchical task network (HTN) is a partially ordered set T of tasks. A task t(v0, .., vn)
is a name with a list of parameters, which are variables or constants from L. For example,
configureC45(c) could be the task of creating a set of options for a decision tree and assigning
them to the decision tree c. A task named by an operator [e.g., setC45Options(c, o)] is called
primitive, otherwise it is complex. A task whose parameters are constants is ground.

We are interested in deriving a plan from a task network. Intuitively, we can refine (and
ground) complex tasks iteratively until we reach a task network that has only ground primitive
tasks, i.e., a set of partially ordered actions. While primitive tasks can be realized canonically
by a single operation, complex tasks need to be decomposed by methods. A method m =
〈namem, taskm, prem, Tm〉 consists of its name, the (non-primitive) task taskm it refines,
a logic precondition prem ∈ L, and a task network Tm that realizes the decomposition.
Replacing complex tasks by the network of the methods we use to decompose them, we
iteratively derive new task networks until we obtain one with ground primitive tasks (actions)
only.

To get an intuition of this idea, consider the (totally ordered) task networks in the boxes
of Fig. 2 as an example. The colored entries are the tasks of the respective networks. Orange
tasks are complex (need refinement), and green ones are primitive. The tree shows an excerpt
of the possible refinements for each task network. The idea is very similar to derivations
in context-free grammars where primitive tasks are terminals and complex tasks are non-
terminal symbols. The main difference is that HTN considers the concept of a state, which is
modified by the primitive tasks and poses additional constraints on the possible refinements.
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The definition of a simple task network planning problem is then straight-forward. Given
an initial state s0 and a task network T0, the planning problem is to derive a plan from T0 that
is applicable in s0. A simple task network planning problem is a quadruple 〈s0, T0, O, M〉,
where O and M are finite sets of operators and methods, respectively.

HTN problems are typically solved by a reduction to a standard graph search problem
that can be approached with algorithms such as depth-first search, best-first search, etc. A
typical translation of the HTN problem into a graph is to select the first complex task in the
network of a node and to define one successor for each ground method that can be used to
resolve the task; this is called forward-decomposition (Ghallab et al. 2004). Every node in
the resulting graph corresponds to a plan prefix (the part of the plan that has been fixed)
together with remaining tasks. The root node has an empty plan with the initial task network,
and the goal nodes have solution plans and empty rest networks. The graph in Fig. 2 sketches
(an excerpt of) such a search graph for the AutoML problem. The root node corresponds to
the pipeline with the initial complex task, and goal nodes are nodes that have fully defined
pipelines. Usually, there is a one-to-one correspondence between search space elements, e.g.,
the machine learning pipelines, and the goal nodes.

5 ML-Plan

ML-Plan reduces AutoML to a graph search problem via HTN planning. More specifically,
ML-Plan invokes a best-first search algorithm on the graph induced by a forward decom-
position (see above) of “the” HTN planning problem. This is exactly what standard HTN
solvers like SHOP2 (Nau et al. 2003) are doing, but those solvers require that the costs of
a solution (plan) decompose over its actions, and that these costs are known in advance.
ML-Plan overcomes this limitation and, hence, constitutes an HTN planner tailored for the
needs of AutoML.

5.1 AutoML through HTN planning

ML-Plan encodes an HTN problem that divides the AutoML problem defined in Sect. 2 into
an algorithm selection and an algorithm configuration phase. ML-Plan is initialized with a
fixed set of preprocessing algorithms, classification algorithms, and the respective parameters
and their domains. The first phase is to decide the feature preprocessing algorithm (if any) and
then the classification algorithm. Inversely, the second phase first configures the classification
algorithm and then the preprocessing algorithm (if any).

Note that these phases must not be understood as phases of the algorithm in the sense
that ML-Plan first chooses the algorithms and then configures them, but as phases (regions)
of the search graph. More precisely, our formulation of the HTN problem induces an upper
and a lower part of the search graph—this is what we mean by phases. ML-Plan adopts a
global best-first search within that graph and, hence, does not greedily pick algorithms and
then configure them. Given sufficient time, ML-Plan will detect all solutions.

In the following, we describe the HTN problem encoded by ML-Plan. The complete
problem description is very technical, so we focus on giving an intuition. In particular,
we omit the variables of the tasks and methods to maintain readability. The full formal
specification is available with our implementation.2

2 Attached as supplementary material during review phase.
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The initial task network consists of the tasks choosePP, setupClassifier,
configPP. The first task can be refined to an empty task network to omit preprocessing or
any of the available preprocessing algorithms. That is, for m preprocessing algorithms, there
are m + 1 methods to resolve choosePP. The task networks associated with each of these
methods consists of a single primitive task that adds the chosen algorithm to the state using
a special predicate chosenPP. For example, it adds chosenPP(PCA) to indicate that the
chosen preprocessor is the principal component analysis. Storing this decision is necessary
to make sure that the correct preprocessor is refined when resolving the configPP task.

The second task setupClassifier is meant to choose and configure any of the
available classifiers. Similar to Auto-WEKA, ML-Plan assumes that classifiers belong to
predefined algorithm groups, e.g., basic learners, meta learners, ensembles, etc. To use this
information for the organization of the search graph, ML-Plan generates one method for
each of these algorithm groups, each of which has a task network with exactly one task
that means to setup a classifier of that group. For example, for the group of meta learners,
there is a method that refines setupClassifier to setupMetaClassifier. There
is exactly one method for each classifier, and it can be used for the task of the respec-
tive algorithm group. Each of these methods refines the task to a network of the form
selectClassifier,setupParam1, …, setupParamN for all of the N parameters
of the respective classification algorithm, so the network enforces that a decision is made
for all parameters. The selectClassifier task is primitive and only adds the choice of
the classifier to the state. For each of the parameters, there are methods that induce primitive
tasks either setting or not setting the respective parameter, i.e., leaving it at the default value.
The base learners of ensemble classifiers such as voting are considered as parameters in this
model.

The same technique is then applied to refine the third task refinePP. Refining this task
means to configure the initially chosen preprocessor (if any) and completes the configuration.

Note that the reduction conducted by ML-Plan is not a canonical one. In fact, there are
many different HTNproblems that can cover exactly the same search space. So apart from any
questions related to heuristics, node evaluation, etc., themereway of how theHTNproblem is
formulated can have a tremendous impact on the search efficiency. For example, besides the
above technique, we could also use a two-step network where we first choose and configure
the preprocessor (or choose to not use any) and then choose and configure the classifier.While
this looks like a trivial alteration that does not influence the set of constructible pipelines, it
has important consequences on the structure of the search tree.

In the current implementation, ML-Plan chooses the parameter values from a small pre-
defined set of possible values. To this end, numerical parameters are discretized either on a
linear scale or a log scale. The interval and discretization technique for a parameter is not a
choice point but is fixed in advance.

While there is certainly room for improvement in this technique, this simple discretization
seems to be often sufficient. Indeed, discretization is less flexible than the native support for
numeric variables offered, say, by Bayesian optimization as used in Auto-WEKA (Thornton
et al. 2013) and auto-sklearn (Feurer et al. 2015), and the decision about how a parameter
should be discretized may seem arbitrary and should be subject to optimization itself. On the
other side, experience has shown that, for most learning algorithms, the performance is suf-
ficiently robust toward small variations of the parameters. Thus, as long as the discretization
contains a value that is not too far from the theoretical optimum, AutoML can be expected
to find a good solution. Besides, it is interesting to note that restricting the set of possible
parameter values (via discretization or in any other way) may also have a positive influence,
as it comes with a regularization effect.
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5.2 The node evaluation function

ML-Plan adopts a best-first search algorithm in order to identify good pipelines. A best-first
search algorithm explores an implicitly given graph by assigning a number to each node
and choosing in each iteration the node with the currently best (usually lowest) known value
for expansion. Expansion means computing all successors of a node. The graph description
consists of the root node, the successor computation function used for the expansion, and a
predicate over the nodes that tells whether or not a node is a goal node. The task is to find a
path from the root to a goal node with a minimum score, and a best-first algorithm tries to
find such a path by expanding the intermediate nodes with minimum scores.

Since the prediction error as the solution quality does not decompose over the path (which
is a necessary requirement for A*), we adopt a randomized depth-first search similar to the
one applied in Monte Carlo tree search (MCTS) (Browne et al. 2012) to inform the search
procedure. Given the node for which we need a score, we choose a random path to a goal
node. This is achieved by randomly choosing a child node of the node itself, then randomly
choosing a child node of the child node, etc. until a leaf node is reached; note that every leaf
node is also a goal node in our search graph. We then compute the solution “qualities” of n
such random completions and take the minimum as an estimate for the best possible solution
that can be found beneath that node.

There are two main differences to standard MCTS when used with the UCT algorithm
(Kocsis et al. 2006). First, UCT aims at optimizing the average score achieved below a
node. While this is reasonable if one assumes that there is no full control about the eventual
track that will be taken in the graph, such as in multi-player games, in our case, we want
to optimize for the minimum score. Modifications of UCT for single-player games that take
this issue into account have been presented (Schadd et al. 2008; Bjornsson and Finnsson
2009). Second, MCTS takes a rather asymptotic view where a large number of (cheap) play-
outs makes sure that the algorithm converges to the optimal solution. However, play-outs in
AutoML are quite expensive, so ML-Plan tries to reliably detect sub-optimal solutions early
and effectively prunes them if all completions delivered bad results.

Since the node evaluation function computes solutions, we propagate these solutions to
the search algorithm. More precisely, we propagate the best of the n solutions drawn for
each node to the search routine. This way, ML-Plan is (as long as at least one node has been
evaluated) always able to return solutions even if the main search routine did not already
discover any goal node.

ML-Plan supports two procedures to determine the qualities of solutions:

1. k-fold cross-validation (CV) This is the standard cross-validation used by many
approaches, which, in our case, is only applied to the portion of the data that is allo-
cated for search. The dataset is split into k folds and, in k iterations, the validation
procedure uses k − 1 of them for training and the remaining one for validation. The per-
formance is then the average performance over the k runs. Auto-WEKA adopts tenfold
cross-validation. In ML-Plan, the number of folds can be defined by the user.

2. Monte Carlo cross-validation (MCCV) This technique is also called “hold out”. The data
(allocated for search) is partitioned k times into a stratified training and validation set.
For each of the k splits, the solution pipeline is trained with the respective training set
and tested on the validation set. The mean 0/1-loss of this evaluation is the score of that
solution.

Even though the evaluation technique influences the overall algorithm performance, it is
not meant to be optimized by the user but rather to give flexibility for scientific analysis.

123
47



1504 Machine Learning (2018) 107:1495–1515

In fact, ML-Plan is configured to use MCCV with 5 iterations, each of which with a split
of 70% for training and 30% for validation. The ability to use other techniques has been
included to eliminate confounding factors when comparing ML-Plan to other AutoML tools
using different evaluation techniques. In fact, the choice of the validation technique can have
a significant impact on the algorithm performance. On one hand, more exhaustive validations
bring more reliable estimates of the quality of a single solutions. On the other hand, these
validations can be very expensive in terms of time and memory; for some datasets, this can
take several minutes, or even hours, and quickly exhaust the time resources of the entire
algorithm.

Coming back to the discussion of the random completion strategy, we observed that the
estimates acquired by the above strategy unfortunately give rather confusing estimates when
used in the upper region of the search graph. We observed that sub-trees with very good
solutions are sometimes effectively pruned just because all completions of the top-node of
that sub-tree led to highly sub-optimal solutions. For example, on theMadelon dataset, we
obtain around 18% error rate after 1 min for a pipeline consisting of a scaling preprocessor
and a random forest classifier, but applying the random completion from the very beginning
suggests that the best solution quality under a top-level node that contains this solution
is about 49%. The node is effectively pruned, and the quality of the returned solution is
around 45%. The problem is that the random completions adopt inappropriate classification
algorithms with highly sub-optimal solutions. In other words, the top-layer nodes embrace
many different types of solutions, so the estimates may deviate significantly from the truly
best score obtainable in a corresponding sub-tree.

Based on several observations of this type, ML-Plan was designed to expand all nodes for
the algorithm selection part of the search tree without computing any node evaluations and
adopts the randomcompletions only for nodes in the deeper layers corresponding to algorithm
configuration decisions. More precisely, ML-Plan assigns a value of 0 (optimum) to all nodes
in which the classifier has not yet been chosen. This effectively means to disable the informed
search for the algorithm selection part, but since only a few hundred algorithm selections are
usually possible, all these possibilities can be efficiently enumerated. The random completion
technique then is only applied to nodes below the algorithm selection region. This strategy
ensures that each combination of preprocessors and classifiers is at least considered once
with random completions and also increases the reliability of these estimates.

In order to break ties among the different algorithm selections, ML-Plan defines a (prefer-
ential) pre-order on the classification algorithms. This order is used to sort the “leaf” nodes
of the algorithm selection region and hence defines in which order the first random com-
pletion evaluations are conducted. More precisely, nodes whose partial plan contains the
selectClassifier action but no parameters have been refined, are leaf nodes of the
algorithm selection region and receive a score k

n , where k is their rank and n is the number
of classifier algorithms; unkranked algorithms have k = n. The order is similar to the one
used in Auto-WEKA: KNN, random forests, voted perceptron, SVM, logistic regression (in
this order). These choices are based on results of Auto-WEKA reported in Thornton et al.
(2013). In ongoing work, we develop a method for deciding this order in a more flexible,
data-driven manner, specifically tailored for the learning problem at hand; this approach is
not yet realized, however.

Since we use two different node evaluation functions within the same graph, these need
to be made consistent to avoid strange behavior. To this end, the scores in the upper part are
scaled by the factor 10−3. This way, they are on a consistent scale with the accuracy estimates
and are preferred (unless ML-Plan gets an estimate for a solution with error rate below 10−3,
which would indicate an almost perfect solution).
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5.3 Mitigating oversearch: a two-phasemodel

Intuitively, an extensive, systematic search for good predictors should bear a strong risk of
over-fitting, and previous approaches have confirmed this intuition (Thornton et al. 2013). By
their ability to choose among all learners and even construct newand arbitrary large ones using
ensemble methods, AutoML tools are on the right extreme of the bias-variance spectrum. If
the data available for the search process is not sufficiently substantial and representative for
“real” data, the danger of over-fitting in AutoML is higher than for basic learning algorithms.

We address this problem with a two-phase search mechanism. The first phase covers the
actual search in the space described above, and produces a collection of solution candidates.
The second phase takes these candidates and selects the one that minimizes the estimated
generalization error. This estimation is achieved by splitting the data given to the AutoML
tool into two sets Dsearch and Dselect . Phase 1 only has access to Dsearch, which is used for
the evaluation of nodes as described in the previous section. Phase 2 performs Monte Carlo
cross-validation on Dsearch ∪ Dselect for a fixed number of iterations (10 in our evaluation).
For each iteration, we obtain a stratified split (70% train and 30% validation) that is used to
train and evaluate a candidate solution s. We estimate the generalization error of s by taking
the average of the “internal” evaluation of s as in the previous section (only on Dsearch), and
the .75-percentile of the evaluations that include Dselect . We use the .75-percentile to make
the estimate for the generalization more conservative (and robust) but also robust toward
outliers. Intuitively, a good solution should not only have a strong average performance on
the internal data, but also perform well on most of the more general splits.

Since phase 1 may detect hundreds or even thousands of models, phase 2 only operates
on a small subset of these solutions. The portfolio used in the second phase consists of two
equally large subsets Sbest and Srandom. The size of these sets is fixed by a parameter k; we
used a size of 25 in our evaluation. Sbest and Srandom contain, respectively, the k best and
random solutions the internal evaluation of which deviates by at most ε from the optimal
one. The random candidates are important to ensure a certain diversity in the selection set,
but the expected quality should still be reasonably good. Since the domain for the prediction
loss is fixed to [0, 1], ε is not a relative but an absolute deviation from the optimum; in our
experiments, we set ε = 0.03.

Of course, this prevention strategy comes at a cost. First, less data is available for evaluating
the nodes, which in particular implies that models with higher variance are more likely to
be discarded even though they could be preferable choices. Second, the selection phase
consumes valuable search budget. The search in phase 1 is accompanied by a timer that
estimates the time required by phase 2; this is done by extrapolating from the times required
to evaluate the models during search. When the expected time for phase 2 is close to the
remaining overall budget, ML-Plan switches to phase 2.

6 Experimental evaluation

6.1 Experimental setup

The experimental evaluation ofML-Plan is twofold. First,we compareML-Plan as introduced
in the preceding sections to other state-of-the-art AutoML tools. Second, we carry out a more
detailed analysis of individual components of the ML-Plan. To this end, we evaluate the
influence of isolated concepts using Auto-WEKA as a baseline. More specifically, we assess
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the impact of HTN, Monte Carlo cross-validation as evaluation technique, and adopting a
secondphase for selecting the returned solution on the performance ofML-Plan. Furthermore,
we discuss the combinations of preprocessors and classifiers as chosen by ML-Plan.

In the first part, we compareML-Plan toAuto-WEKA (version 2.3) (Thornton et al. 2013),
auto-sklearn (both vanilla and warm-started with ensembles) (Feurer et al. 2015), and TPOT
(Olson and Moore 2016), which represent the state-of-the-art in AutoML.

Due to missing features in RECIPE to set a timeout and other technical issues, we refrain
from a comparison to RECIPE. In order to reduce the number of confounding factors as
introduced by using different libraries, i.e., WEKA (Java) or scikit-learn (Python), we run
ML-Plan once using WEKA and once using scikit-learn. Since Auto-WEKA was already
shown to outperform other (more basic) baselines (Thornton et al. 2013), we do not consider
these anymore.

To maximize the insights about the performances of individual changes brought in by
ML-Plan, in the second part of our evaluation, we compare four different configurations of
ML-Plan against Auto-WEKA. We chose Auto-WEKA over the other AutoML tools since
(i) Auto-WEKA internally uses the same search strategy as auto-sklearn (SMAC), and (ii)
ML-Plan itself is implemented in Java, so that confounding factors arising from the usage
of different platforms can be excluded. Apart from the different search space model (HTN
vs. SMAC), ML-Plan brings two new aspects into play, which could be confounding factors
in a comparison with Auto-WEKA. The first is a different solution evaluation technique:
Auto-WEKA uses tenfold cross-validation (10-CV) while ML-Plan, by default, uses fivefold
Monte Carlo cross-validation (5-MCCV). Moreover, ML-Plan adopts a selection phase to
prevent overfitting, whereas nothing comparable is used in Auto-WEKA.

To isolate the different effects, we consider the variants of ML-Plan for 10-CV/5-MCCV
with the selection phase disabled (SD) and enabled (SE), respectively. If the selection phase
is disabled, ML-Plan uses all the data during search. Thus, the version of ML-Plan that is
closest to Auto-WEKA and only deviates in the search space exploration is 10-CV-SD.

Our evaluation is based on a selection of 20 datasets from the openml.org (Vanschoren
et al. 2013) repository, all ofwhich have previously been used to evaluateAutoMLapproaches
(Thornton et al. 2013; Feurer et al. 2015). More precisely, we present results for the same
datasets that were used in the original Auto-WEKA paper (Thornton et al. 2013). The imple-
mentation of ML-Plan, the evaluation code that produced the results shown in this section,
and the used datasets are publicly available to assure reproducibility.3

Results were obtained by carrying out 20 runs on each dataset with timeouts of 1 h and
1 day, respectively. Depending on the overall timeout, the timeout for the internal evaluation
of a single solution was set to 5m and 20m, respectively. In each run, we used 70% of a
stratified split of the data for the respective AutoML framework and 30% for testing. Note
that we used the same splits for all frameworks, i.e., for each split and each timeout, we ran
once Auto-WEKA, auto-sklearn, TPOT, and ML-Plan. Likewise, the timeout to evaluate a
single pipeline was set to the same values for all frameworks, i.e., we did not use the default
values. The computations were executed on 100 Linux machines in parallel, each of them
equipped with 8 cores (Intel Xeon E5-2670, 2.6 Ghz) and 32 GB memory. The accumulated
time of all experiments was over 400k CPU hours (over 45 CPU years).

Runs that did not adhere to the time or resource limitations (plus a tolerance threshold)
were canceled without considering their results. That is, we canceled the algorithms if they
did not terminate within 110% of the predefined timeout. Likewise, the algorithms were
killed if they consumed more resources (memory or CPU) than allowed, which happens as

3 https://github.com/fmohr/ML-Plan.
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both implementations fork new processes whose overall CPU and memory consumption is
hard to control.

An exception for the timeout rule has been made for TPOT, as not even a single result has
been returned in the long runs. Therefore, we configured TPOT to log intermediate solutions
and considered the most recent one of these to compute the respective value in the results
tables.

6.2 ML-Plan versus other AutoML tools

The results of the comparisonwith otherAutoML tools is summarized in Table 1 (1 h timeout)
and Table 2 (1 day timeout). The tables show the mean 0/1-loss over the 20 runs and the
standard deviation. The best average results per library and dataset are in bold. A • indicates
that ML-Plan is significantly better, and analogously a ◦ that it is significantly worse, than
another approach; significance is determined by a t test with p = 0.05. At the bottom of the
table, the numbers of wins and losses of each tool and the numbers of statistically significant
improvements and degradations are summarized over the various datasets.

The key message resulting from Tables 1 and 2 is that ML-Plan is competitive with the
other approaches in terms of the predictive accuracy of the returned solutions, and even shows
some advantages. ML-Plan largely dominates Auto-WEKA in both time setups. It performs
similar and sometimes superior to auto-sklearn (vanilla) and TPOT in the 1 h run and still
with a slight advantage after 1 day. TPOT did not return any results for larger resp. more
complex datasets, such as cifar10, dexter ormnist. Thus, TPOT seems to scale worse than
all the other AutoML approaches, which might be a configuration issue. We now discuss the
results in some more detail.

In the setting of using WEKA as a library, we observe that ML-Plan clearly dominates
Auto-WEKAand obtainsworse performance on only a fewdatasets. For a number of datasets,
ML-Plan achieved significantly better results even after 1 h compared to the result returned
by Auto-WEKA within one day; e.g., on Amazon, Convex, Krvskp, and Semeion. On
some datasets, the gap is quite drastic, e.g., there are differences of 25% on Amazon and
Convex. But even when the difference is not so pronounced, the advantage of ML-Plan is
often quite substantial, showing an improvement of at least 2% in 9 of 20 cases with a timeout
of 1 day. In total, ML-Plan achieves the best result on 18 of 20 datasets for a timeout of 1 h,
and on 17 of 20 for a timeout of 1 day. Out of these, ML-Plan is significantly better than
Auto-WEKA 12 (1 h) and 14 (1 day) times, whereas a significant degradation can only be
observed once for both the timeouts.

Coming to the comparison with AutoML tools based on scikit-learn, there is no such
clear dominance, although significant improvements over auto-sklearn can still be observed.
Irrespective of the timeout, ML-Plan performs best on 9 of 20 datasets while auto-sklearn
yields the best result in 6 of 20 cases, and TPOT in 7 of 20 (1 h) resp. 6 of 20 (1 day) cases.
Within the given timeouts, we note 7 (1 h) resp. 5 (1 day) significant improvements over
auto-sklearn, whereas significant degradations occur in 1/20 resp. 3/20 cases.

Comparing ML-Plan to TPOT, there is no clear winner or loser. However, given the
default parametrization (except for timeouts), TPOT often did not return any result within
the specified timeout, so that the results shown in Table 2 had to be recovered from its log
output. For larger datasets, TPOT did not even output a preliminary candidate solution within
the specified timeout. This might be due to inappropriate parameters for the evolutionary
algorithm, such as population size etc., which would have to be adapted to each specific
dataset. Here, we only considered the default parameter setting and refrained from optimizing
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the hyperparameters of TPOT; the only parameter we set was the timeout for evaluating a
single pipeline. However, algorithm-specific configurations should not play an important role
in AutoML since the goal is precisely to enable the functionality to non-experts. The number
of significant improvements (1 for 1 h, 2 for 1 day) and degradations are evenly balanced
for the datasets for which results could be obtained from TPOT. Due to this, we conclude
ML-Plan to be at least competitive with TPOT.

Comparing ML-Plan to auto-sklearn, ML-Plan appears to be slightly superior. Yet, auto-
sklearn with warm-start and ensembles outperforms ML-Plan in some cases. The latter
comparison is not unproblematic, however, since additional features such as warm-starting
and ensembling are not (yet) incorporated inML-Plan. Indeed, our focus is on the comparison
of search strategies, i.e., the algorithmic core, and less on complete AutoML systems/tools.
In this sense, our primary comparison is betweenML-Plan and auto-sklearn vanilla, while the
performance of auto-sklearn with warm-start and ensembles is merely presented as an addi-
tional reference. Adopting this perspective, our interpretation is that ML-Plan does have an
advantage over the core technique used in auto-sklearn (SMAC). Nevertheless, the improved
performance of auto-sklearn under warm-start and ensembles provides an incentive to add
these techniques to ML-Plan as well.

Unfortunately, for the datasets Abalone and Credit- g, auto-sklearn did not return any
results for the 1 day evaluations within the resource limitations, although there have been
results already for the 1 h runs. According to the logs, we assume that this might be due to a
bug in the auto-sklearn implementation.

The reader may have noticed significant differences between the results we report for
Auto-WEKA and auto-sklearn in the 1 day run compared to the results reported in Thornton
et al. (2013) and Feurer et al. (2015) for some of the datasets. For most of these (including,
e.g., Amazon), the authors of Auto-WEKA have confirmed the correctness of our results.
For the others, such as Convex, there are two possible explanations. First, we only granted
24 h compared to 30h as in previous studies. Second, the experiments in these studies were
conducted on only a single train/test-split, which implies a high variance.

All in all, we notice that themore time is available for search, the closer the gap between the
different AutoML tools. This comes at no surprise as, asymptotically, most of the algorithms
return the same (best) solution—excepting TPOT, which is able to construct more complex
pipelines (withmultiple preprocessors). Furthermore, our results show that, for somedatasets,
scikit-learn-based approaches perform substantially better than the ones based onWEKAand
vice versa. One possible reason for this might be a different portfolio of preprocessing and
classification algorithms. Another reason might simply be the fact that the evaluation of
candidate solutions in scikit-learn is much faster than in WEKA for most of the algorithms.
For example, compared to WEKA, ML-Plan is able to do twice as many evaluations with
scikit-learn.

6.3 Detailed analysis of ML-Plan

To better understand how HTN, Monte Carlo cross-validation, and the selection phase influ-
ence the performance of ML-Plan, we examined different configurations of ML-Plan. Since
the techniques used by ML-Plan are essentially the same for both its WEKA and scikit-learn
version, we conducted the experiments only for one of these versions; we chose the WEKA
implementation, because the gap to Auto-WEKA is the largest one.

The results of these experiments are summarized in Table 3. The table shows the mean
0/1-loss and the standard deviation per configuration and dataset for a timeout of 1h. The
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Fig. 3 Relative frequency of WEKA preprocessor-classifier combinations as returned by ML-Plan after 1 h
resp. 1 day

best average results per dataset are highlighted in bold; additionally, those results that are not
significantly (p = 0.05 using a t test) worse than the best result are underlined. Moreover,
a • denotes a significant improvement of the respective ML-Plan configuration over Auto-
WEKA, and ◦ a significant degradation. At the bottom of the table, we summarize how
many times a configuration of ML-Plan yielded a statistically significant improvement or
degradation with respect to the performance of Auto-WEKA. Furthermore, we count how
many times each variant performs best, not statistically significantly worse, and significantly
worse than the best.

Having eliminated the essential confounding factors in the 10-CV-SD variant of ML-
Plan, we conclude from these experiments that solving the AutoML problem with HTN
planning already gives significantly better results than using Auto-WEKA. Note that we do
not claim that ML-Plan is generally superior to applying sequential parameter optimization
in AutoML; instead, the results only apply to the implementation of parameter optimization
in Auto-WEKA.

Comparing the test performances of the different configurations of ML-Plan, there is no
single version that strictly dominates all others. Yet, all versions outperform Auto-WEKA,
which indicates that much of the performance improvement can be traced back to the use of
HTN planning.

However, counting the number of datasets where a configuration of ML-Plan achieves
a significant improvement, it can be seen that enabling the selection phase yields more
such improvements when 10-CV is used as the evaluation technique. Moreover, from this
perspective, 10-CV together with the selection phase enabled performs the best compared to
Auto-WEKA, yielding 17 significant improvements in 18 possible cases (Auto-WEKA did
not return any result on 2 of the 20 datasets). Surprisingly, this observation does not hold for
the case of 5-MCCV. In fact, switching on the selection phase while keeping the evaluation
function to be 5-MCCV leads to less significant improvements.
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Fig. 4 Relative frequency of scikit-learn preprocessor-classifier combinations as returned by ML-Plan after
1 h resp. 1 day

Although the results are quite heterogeneous, we opt for using 5-MCCV-SE as a standard
parametrization.While 10-CV-SE and 5-MCCV-SD yield 5 resp. 2more significant improve-
ments compared to Auto-WEKA, they do not ourperform the configuration with 5-MCCV
and selection phase enabled. In fact, 5-MCCV-SE yields the best observed performance on
nearly half of the evaluated datasets among the different configurations ofML-Plan. Counting
the number ofwins of those configurations, on one handwe see that the selection phase proves
beneficial, and on the other hand 5-MCCV seems to be advantageous as compared to 10-CV.

Nevertheless, for some datasets it can also be seen that the test set performance worsens
when enabling the selection phase. As one possible reason, recall that a portion of the training
data is reserved to be used only in the selection phase, but in most of the cases, this effect does
not arise on the same datasets for the different evaluation techniques. Further investigation
of this observation poses interesting future work, which may help to automatically adapt the
configuration of ML-Plan to the properties of the problem at hand.

6.3.1 Selected classifiers and preprocessors

The plots in Figs. 3 and 4 show the frequency with which a combination of preprocessor
and classifier was selected by ML-Plan using WEKA and scikit-learn, respectively. They
summarize the frequency over all datasets for each timeout, i.e., 1h and 1day.
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While the purpose of the plots is to give an insight into the algorithm choices, they do
in no way reflect the true distribution of optimal solutions. In particular, the dominant role
of random forests does not support the idea that they are a dominant optimal choice (even
though they often are good models of course). The node evaluation enforces a strong bias
towards some models, including random forests, for a given timeout. In many of the datasets
for which random forests were selected (e.g., Cifar10Small, Convex, Mnist), ML-Plan
observed only around 10–50 solutions in total (timeout 1 h).

In fact, only focusing on random forests can lead to high regrets. For example, the loss of
random forests on Amazon is over 70%, which is more than 40% points away from the best
solution we report here.

This being said, our interpretation of the results resembles the one inThornton et al. (2013).
Looking at the variety of preprocessors and classifiers chosen for the different problems, the
optimization effort is clearly justified. Even with a strong selection bias in favor of random
forests, SVM, and KNN (which in some cases were the only models considered at all), other
algorithms were better in more than 40% of the cases.

However, we also observe that, for some datasets, the current approach is simply not
adequate in terms of search space coverage. As described above, since the evaluation of
candidates is so costly for some problems, we only explored a very tiny part of the search
space. This problem calls for more sophisticated node evaluation techniques in order to
explore broader parts of the search space. One possibility is to reduce the amount of data
considered, i.e., only work on a (random) sub-sample of instances.

7 Conclusion

We proposed ML-Plan, a new AutoML framework based on hierarchical task networks. Dis-
tinguishing features of ML-Plan include a conveniently structured solution space amenable
to efficient search techniques, a reliable node evaluation based on random completions, and a
strategy to avoid over-fitting. We have shown that our implementation of ML-Plan is highly
competitive and often outperforms the state-of-the art tools Auto-WEKA, auto-sklearn, and
TPOT.

In follow-up work, we plan to elaborate on the expressiveness of the HTN formalism, and
to exploit its potential for creating more complex, variable-length pipelines. In particular,
we are already working on optimizing over pipelines with algorithms from both libraries
(WEKA and scikit-learn) simultaneously (Mohr et al. 2018). Moreover, the seed-strategy in
the upper part of the search graph should be adaptive to the dataset instead of implement-
ing a predefined preference on learning algorithms. Also, we expect the implementation of
parameter refinement to yield better fine tuning. Last but not least, the current emphasis on
exploitation can be balanced with more exploration, e.g., by occasionally choosing nodes for
expansion at random.
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Abstract

In automated machine learning (AutoML), the process of engineering machine learning
applications with respect to a specific problem is (partially) automated. Various AutoML
tools have already been introduced to provide out-of-the-box machine learning function-
ality. More specifically, by selecting machine learning algorithms and optimizing their
hyperparameters, these tools produce a machine learning pipeline tailored to the problem
at hand. Except for TPOT, all of these tools restrict the maximum number of processing
steps of such a pipeline. However, as TPOT follows an evolutionary approach, it suffers
from performance issues when dealing with larger datasets. In this paper, we present
an alternative approach leveraging a hierarchical planning to configure machine learning
pipelines that are unlimited in length. We evaluate our approach and find its performance
to be competitive with other AutoML tools, including TPOT.

Keywords: automated machine learning, complex pipelines, hierarchical planning

1. Introduction

The demand for machine learning functionality is increasing quite rapidly these days, not
least because of recent impressive successes in practical applications. Since users in different
application domains are normally not machine learning experts, a suitable support in terms
of tools that are easy to use is required. Ideally, (nearly) the whole process including
inducing models from data, data preprocessing, the choice of a model class, the training
and evaluation of a prediction, etc. would be automated (Lloyd et al., 2014). This has
triggered the field of automated machine learning (AutoML), which has developed into an
important branch of machine learning research in the last couple of years.

Various state-of-the-art AutoML tools (Thornton et al., 2013; Komer et al., 2014; Feurer
et al., 2015; Olson and Moore, 2016; de Sá et al., 2017) have shown impressive results
in selecting machine learning algorithms and optimizing their hyperparameters to form a
machine learning pipeline (ML pipeline). These approaches can be divided into two main
categories. First, the AutoML problem is designed as an optimization problem with a fixed
number of decision variables, which then is solved via standard (Bayesian) optimization tools
such as SMAC (Hutter et al., 2011). Typically, these approaches, such as auto-sklearn and
Auto-WEKA, have one variable for a pre-processing algorithm, one variable for the learning
algorithm, and one variable for each parameter of each algorithm. However, a relaxation of
the length restriction is not straight-forward. Approaches of the second category organize
the AutoML search space in terms of a formal grammar. The advantage of this formalism
is that it naturally allows for recursive structures, thereby supporting more flexible ML

c© 2018 M. Wever, F. Mohr & E. Hüllermeier.
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Figure 1: Possible workflow of an ML pipeline

pipelines. While de Sá et al. (2017) propose a grammar-based approach and allow for
multiple preprocessing steps, the maximum length of an ML pipeline is still fixed. To the
best of our knowledge, TPOT as originally introduced by Olson et al. (2016) is the only
AutoML tool with no upper bound on the length of a pipeline. However, while the more
flexible pipelines as composed by TPOT often perform particularly well, we also observed
severe scalability issues of TPOT for more complex datasets (e.g., large number of features
and/or instances).

In this paper, we present an alternative approach for composing ML pipelines that are
unlimited in length, using a grammar-based formalism. More specifically, we show how
ML-Plan (Mohr et al., 2018), an AutoML tool based on an AI planning technique called
hierarchical task networks, can be extended for this purpose. In our evaluation, we find that
our approach performs competitive to TPOT and furthermore improves on the scalability
issues.

2. AutoML and Hierarchical Planning

AutoML seeks to automatically compose and parametrize machine learning algorithms into
ML pipelines with the goal to optimize a given metric, e.g., predictive accuracy. Figure 1
shows an example of such a pipeline, which also illustrates that pipelines are by no means
only sequences of atomic algorithms but can have parallel flows and nested structures as
well. For example, StackingEstimator has a LinearSVC and AdaBoost uses RandomForest
as a base learner. Especially, when it comes to meta methods, such recursive definitions
of algorithms incorporating a base learner (and other components) constitute a very fre-
quent pattern. In general, complete pipelines can be viewed as a hierarchical composition
structure as in the example shown on the right-hand side of Figure 2. Furthermore, ma-
chine learning algorithms usually have hyperparameters that need to be chosen specifically
for this algorithm. Thus, a hierarchical view of a machine learning pipeline represents its
natural structure particularly well.

One interesting approach for creating such structure is hierarchical planning, a concept
from the field of AI planning (Ghallab et al., 2004). In essence, it is about iteratively break-
ing down an initially given complex task into new sub-tasks, which may also be complex or
simple (no further refinement required). Complex tasks are recursively decomposed until
only simple tasks remain. This procedure is comparable, for example, to deriving a sentence
from a context-free grammar. In that sense, complex tasks correspond to non-terminals and
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Figure 2: Excerpt of the search graph (left) listing the tasks of the planning problem at each
node and its hierarchical representation in the form of an ML pipeline (right).

simple tasks match terminal symbols. An example is shown on the left-hand side in Figure 2
where complex tasks are displayed in blue and simple tasks in green.

We are aware of four approaches to AutoML using hierarchical planning or related
techniques. The first approach is related to optimization within the RapidMiner framework
based on hierarchical task networks (HTN) (Nguyen et al., 2014; Kietz et al., 2012). They
conduct a beam search (hill-climbing in the most extreme case), where the beam is selected
based on a ranking of alternative choices obtained from a meta-learning module, which
compares the current dataset with previous ones and choices taken back then. The most
recent representative of this line of research is Meta-Miner (Nguyen et al., 2014). While
these approaches do not execute candidates during search to observe their performance,
approaches of extensive evaluation is presented in RECIPE (de Sá et al., 2017) and TPOT
(Olson and Moore, 2016). TPOT and RECIPE create pipelines using a grammar-based
genetic programming algorithm; the pipeline candidates are evaluated in the course of
computing their fitness. Last, ML-Plan (Mohr et al., 2018) recognizes the value of executing
pipelines during search, but also observes that the extensive evaluation conducted in TPOT
and RECIPE is infeasible for larger datasets. It reduces the number of evaluations by only
considering candidates obtained from completions of currently best candidates. Like Meta-
Learner, it is based on HTN planning.

Of course, other AutoML solutions such as Auto-WEKA or auto-sklearn can be extended
to multiple pre-processing steps. It is clear that one can flatten any hierarchical structure
into a vector as long as the allowed structures are bound in length. However, it is rather
unclear how to represent ML pipelines that are unlimited in length.

In this paper, we extend ML-Plan to deal with unlimited-length ML pipelines, which is
our approach for pipelines including a single preprocessor and a learner. In the following
section, we give a brief overview of ML-Plan and explain how it is extended.
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3. ML-Plan for Unlimited-Length ML Pipelines

3.1. ML-Plan

As briefly sketched above, ML-Plan is a hierarchical planner designed for AutoML problems
(Mohr et al., 2018). Standard hierarchical planners such as SHOP2 (Au et al., 2011) lack
some fundamental requirements of AutoML, e.g., to evaluate candidate solutions during
search, which was a main motivation for developing ML-Plan.

The search technique adopted by ML-Plan is a best-first graph search. Like other
planners, ML-Plan reduces the planning problem to the problem of finding a path to an
optimal goal node in a graph. The graph is represented by a distinguished root node, a
function for generating successors of a given node, and a function for testing whether a node
is a goal node. In a nutshell, the best-first search algorithm assumes that every node in the
explored part of the graph is associated with a score (in R), and, in each iteration of the
search, the leaf node with the lowest score is chosen for expansion. In contrast to A*, there
is no assumption that the node score can be computed from edge costs; instead, there is
just a function that returns the score without being related to the score of other nodes.

The node evaluation in ML-Plan is based on random path completion as also used in
Monte Carlo Tree Search (Browne et al., 2012). To obtain the evaluation of a node, this
strategy draws a fixed number of path completions, builds the corresponding pipelines and
evaluates them against a validation set. The score assigned to the node is the minimal score
that was observed over these validations in order to estimate the best solution that can be
obtained when following paths under the node.

Intuitively, ML-Plan formalizes the HTN problem in a way that the resulting search
graph is split into an algorithm selection region (upper region) and an algorithm configura-
tion region (lower region). The main motivation for this strategy lies in the node evaluation
we want to apply, which is based on random completions. Since algorithm selections usually
constitute a much more significant change to the performance of a pipeline than parameter
settings, we consider all solutions under a node that has all algorithms fixed as a kind of
neighborhood, and random samples drawn in that sub-region yield more reliable estimates.

With the idea of a two-phased search graph in mind, the HTN definition of ML-Plan
is as follows1. The initial task createClassifier can be broken down into a chain of the
three tasks createRawPP, setupClassifier, refinePP. The first task is meant to choose
the algorithms used for pre-processing without parametrizing them, the second task is meant
to choose and configure the multi-label classifier, and the third step parametrizes the previ-
ously chosen pre-processors. The second task setupClassifier can, for each classifier, be
decomposed into two sub-tasks. First, <classifier>:create is a simple task indicating the
creation of a new classifier of the respective class, e.g. RandomForestClassifier:create.
Second, <classifier>:configure is a complex task meant to configure the parameters of
the classifier.

As an additional remark, ML-Plan comes with a built-in strategy to prevent over-fitting.
This strategy apportions the assigned timeout for the whole search process among two
phases. The first phase covers the actual search in the space. The second phase takes a
collection of identified solutions and selects the one that minimizes the estimated general-

1. Since we have not formally introduced HTN planning, we describe the problem definition in a rather
intuitive way. The formal definition can be found in the implementation published with this paper
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ization error. Roughly speaking, the collection used for selection in phase 2 corresponds
to the k best candidates and k random candidates that are not significantly worse than
the best candidate. The time allocated at time step t for the second phase is flexible and
corresponds to the accumulated time that was required in phase 1 to evaluate the classifiers
that would be chosen at time step t for the selection process.

3.2. Extending ML-Plan for Unlimited-Length Pipelines

In order to compose ML pipelines with more complex pre-processing workflows, TPOT
allows for chaining pre-processing algorithms and to fuse datasets taking the union of
the respective features. Extending ML-Plan to operate on the same space of solution
candidates, we add two complex and one simple tasks. First, we add a complex task
createFeatureUnion, which may be resolved to the simple task FeatureUnion and two
complex tasks to create the preceding pre-processing steps. Second, we add a complex task
createFeaturePreprocessorChainItem, which may be resolved to one complex task for
selecting a concrete pre-processing algorithm (e.g., PCA, Polynomial Features, etc.) and
another complex task for creating any kind of pre-processing. In particular, the latter in-
cludes the building blocks for feature union and chaining pre-processing algorithms. We
refer to this extension as ML-Plan-UL.

4. Experimental Evaluation

In our experimental evaluation, we focus on comparing ML-Plan-UL to TPOT, which both
operate on the same solution space; besides, to the best of our knowledge, TPOT is the
only AutoML tool supporting ML pipelines of unlimited length. As additional references,
we also evaluate auto-sklearn and Auto-WEKA. All the tools are evaluated on a selection
of 20 data sets from the openml.org (Vanschoren et al., 2013) repository, all of which were
previously used to evaluate AutoML approaches (Thornton et al., 2013; Feurer et al., 2015).

The implementation of ML-Plan-UL, the evaluation code that produced the results
shown in this section, and the used datasets are publicly available to assure reproducibility2.

Results were obtained by carrying out 20 runs on each dataset with a timeout of one
day per run. The timeout for the internal evaluation of a single solution was set to 20m
for all the candidates. In each run, we used 70% of a stratified split of the data for the
respective AutoML tool and 30% for testing. Note that we used the same splits for all
tools. The computations were executed on 100 Linux machines in parallel, each of them
equipped with 8 cores (Intel Xeon E5-2670, 2.6Ghz) and 32GB memory; every experiment
used one machine at a time. The accumulated time of all experiments was over 300k CPU
hours (over 34 CPU years).

Runs that did not adhere to the time or resource limitations (plus a tolerance threshold)
were canceled without considering their results. That is, algorithms were canceled if they
did not terminate within 110% of the predefined timeout or if they consumed more resources
(memory or CPU) than allowed.

2. https://github.com/fmohr/ML-Plan
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Table 1: Mean 0/1-losses [in %] for a timeout of one day

As TPOT did not return even a single result for any of the datasets within the timeout,
we configured TPOT to log intermediate solutions and considered the most recent one of
these to compute the respective value in the results table.

The results of the experiments are summarized in Table 1, with best performances
highlighted in bold. To determine significance for differences in performance, we applied
a t-test with p = 0.05. A significant improvement of ML-Plan-UL over another tool is
indicated by • and a significant degradation is highlighted by ◦.

The overall image is that ML-Plan-UL performs competitive to TPOT as best per-
formances vary among the datasets and there are neither significant improvements nor
degradations. While ML-Plan-UL does not return any result for cifar10 only (due to
exceeding memory usage), TPOT does not manage to return anything (not even an in-
termediate solution) for nearly half of the datasets. Thus, despite the substantially larger
search space ML-Plan-UL manages to find feasible solutions even for larger datasets as
compared to TPOT. Furthermore, ML-Plan-UL also performs particularly well compared
to auto-sklearn and Auto-WEKA. In comparison to auto-sklearn, we observe 4 significant
improvements and 3 significant degradations. For the reference Auto-WEKA, we observe
13 significant improvements and only a single degradation.

5. Conclusion

We have presented ML-Plan-UL as an extension of ML-Plan to deal with ML pipelines
of unlimited length, i.e., allowing for more complex pre-processing worklflows. To this
end, we slightly adapted the search space description by additional tasks that allow for
sequential and tree-shaped pre-processing workflows. In our experimental evaluation, we
have shown that ML-Plan-UL performs competitive to TPOT and, in contrast to the latter,
even manages to return solutions for larger datasets.
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Eyke Hüllermeier eyke@upb.de
Heinz Nixdorf Institut, Paderborn University, Paderborn, Germany

Abstract

Existing tools for automated machine learning, such as Auto-WEKA, TPOT, auto-sklearn,
and more recently ML-Plan, have shown impressive results for the tasks of single-label
classification and regression. Yet, there is only little work on other types of machine learning
problems so far. In particular, there is almost no work on automating the engineering of
machine learning solutions for multi-label classification (MLC). We show how the scope
of ML-Plan, an AutoML-tool for multi-class classification, can be extended towards MLC
using MEKA, which is a multi-label extension of the well-known Java library WEKA. The
resulting approach recursively refines MEKA’s multi-label classifiers, nesting other multi-
label classifiers for meta algorithms and single-label classifiers provided by WEKA as base
learners. In our evaluation, we find that the proposed approach yields strong results and
performs significantly better than a set of baselines we compare with.

1. Introduction

In recent years, the field of AutoML has made significant progress in developing techniques
for automating the task of model selection and hyperparameter tuning. State-of-the-art
AutoML tools (Thornton et al., 2013; Komer et al., 2014; Feurer et al., 2015; Mohr et al.,
2018b) have shown impressive results for binary and multinomial classification problems.
We refer to this type of problems as single-label classification (SLC) in the following.

However, other learning problems, including multi-label classification (MLC), have re-
ceived much less attention so far. In MLC, instead of predicting only a single class label
for an instance, an entire subset of “relevant” labels is predicted. Learning algorithms for
MLC have been designed by either adapting the learning algorithm itself or by reducing
the original MLC problem to (multiple instances of) the SLC setting. The latter can be
considered as a meta-learning technique with a single-label classifier as a base learner.

From an AutoML perspective, automating the configuration of a multi-label classifier
is especially challenging, as these reduction techniques introduce deeper hierarchical struc-
tures. More specifically, while the configuration of a multi-label classifier’s base learner is
equivalent to the previous AutoML task for SLC, the meta-strategies for the multi-label
classifiers themselves create another level of the hierarchy. The effect on the complexity of
the search space is especially strong, because the evaluations are even more expensive.

In this paper, we propose the AutoML tool ML2-Plan (Multi-Label ML-Plan) to con-
figure multi-label classifiers based on ML-Plan. The latter provides a suitable basis to start
from, especially due to its ability to model hierarchical dependencies by means of techniques
from hierarchical task network (HTN) planning (Georgievski and Aiello, 2015). Besides,

c©2019 M. Wever, F. Mohr, A. Tornede, and E. Hüllermeier.
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ML-Plan has already been applied to deeper recursive structures in previous work (Wever
et al., 2018b). Apart from the work by de Sá et al. (2017, 2018), which uses evolutionary
algorithms, we are not aware of previous work on automated multi-label classification.

We compare ML2-Plan to a random search, a genetic algorithm (de Sá et al., 2017), and
a grammar-based genetic programming approach (de Sá et al., 2018). Empirically, we show
that our approach performs particularly well and significantly outperforms the baselines.

2. Multi-Label Classification

In contrast to conventional (single-label) classification, the setting of multi-label classifi-
cation (MLC) allows an instance to belong to several classes simultaneously, i.e., to be
assigned several labels at the same time. For example, a single image could be tagged
simultaneously with labels Sun and Beach and Sea.

More formally, let X denote an instance space, and let L = {λ1, . . . , λm} be a finite
set of class labels. We assume that an instance x ∈ X is (non-deterministically) associated
with a subset of labels L ∈ 2L; this subset is often called the set of relevant labels, while the
complement L \ L is considered as irrelevant for x. We identify a set L of relevant labels
with a binary vector y = (y1, . . . , ym), in which yi = 1 iff λi ∈ L. By Y = {0, 1}m we denote
the set of possible labelings.

In general, a multi-label classifier h is a mapping X → Y. For a given instance x ∈ X ,
it returns a prediction in the form of a vector h(x) =

(
h1(x), h2(x), . . . , hm(x)

)
. The

problem of MLC can be stated as follows: Given training data in the form of a finite set

of observations
{

(xi,yi)
}N
i=1
⊂ X × Y , the goal is to learn a classifier h : X → Y that

generalizes well beyond these observations in the sense of minimizing the risk with respect
to a specific loss function. Various loss functions are commonly used in MLC. Let Dtest =
(Xtest,Ytest) ⊂ X S×YS be a test set of size S, where the ith entry yi = (yi1, . . . , yim) ∈ Ytest

represents the labeling of the ith instance xi ∈ Xtest. Further, let H ⊂ YS with the ith
entry given by h(xi). Then, the subset 0/1 loss (exact match) is defined as1

L0/1(Ytest, H) =
1

S

S∑

i=1

Jyi 6= h(xi)K ,

and the Hamming loss as

LH(Ytest, H) =
1

S

S∑

i=1

1

m

m∑

j=1

Jyij 6= hj(xi))K .

In slightly different tasks, such as ranking and probability estimation, the prediction of a
classifier is not restricted to binary vectors. Instead, a hypothesis h is a mapping X → Rm,
which assigns scores to labels. Corresponding predictions also require other loss functions.
An example is the rank loss, which compares a ground-truth labeling with a predicted
ranking of the labels and counts the number of incorrectly ordered label pairs:

LR(Ytest, H) =
1

S

S∑

i=1

∑

(j,j′):yij>yij′

( Jhj(xi) < hj′(xi)K
|{(j, j′) | yij > yij′}|

)
, 1 ≤ j, j′ ≤ m

1. J·K is the indicator function.
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Complementary to instance-wise losses, which are defined for (and averaged over) instances,
losses are sometimes considered label-wise. An example is the macro-F1 measure:

F(Ytest, H) =
1

m

m∑

j=1

2
∑S

i=1 yijhj(xi)∑S
i=1 yij +

∑S
i=1 hj(xi)

(1)

A linear combination of the four measures defined above is proposed by de Sá et al. (2017,
2018), who use it as an “objective function” in the respective AutoML tools:

LFit(Ytest, H) =
1

4

(
L0/1(Ytest, H) + LH(Ytest, H) + (1− F (Ytest, H)) + LR(Ytest, H)

)
.

As it combines different types of losses with different interpretations, this metric is debatable
and difficult to interpret. Yet, in spite of our reservations, we will use it under the notion of
“fitness loss” in our experimental study as well, mainly to reduce confounding factors and
to ensure a fair comparison.

At first sight, MLC problems can be solved in a quite straightforward way, namely
through decomposition into several binary classification problems: One binary classifier is
trained for each label and used to predict whether, for a given query instance, this label is
relevant or not. This approach is known as binary relevance (BR) learning. However, BR
has been criticized for ignoring important information hidden in the label space, namely
information about the interdependencies between the labels. Since the presence or absence
of the different class labels has to be predicted simultaneously, it is arguably important to
exploit any such dependencies. Correspondingly, a large repertoire of methods for MLC
beyond BR has been proposed in the recent years. Most of these methods seek to improve
predictive accuracy by exploiting label dependencies in one way or the other. We refer to
Zhang and Zhou (2014) for an up-to-date survey on MLC algorithms.

3. A Multi-Label Extension of ML-Plan

As illustrated in Fig. 1 (left), multi-label classifiers may nest several classifiers in a recur-
sive manner. Additionally, each of the classifiers has a set of parameters that need to be
configured. While flattening these recursive structures to a single vector comprised of deci-
sion variables for the algorithm choices and a variable for each parameter that may occur
for a specific layer, as done by Auto-WEKA and auto-sklearn, may work in principle, this
approach would require many constraints to make sure that only relevant variables are con-
sidered. An arguably more natural way of representing these hierarchical dependencies is
hierarchical task network (HTN) planning (Ghallab et al., 2004), or more specifically pro-
grammatic task network (PTN) planning (Mohr et al., 2018a) as incorporated in ML-Plan
(Mohr et al., 2018b). Via HTN resp. PTN planning, the search space of possible algorithm
choices and respective hyperparameters to be tuned is structured into complex tasks (blue),
which are refined by methods to one or multiple complex tasks or primitive tasks (green).
Intuitively, this formalism mimics a human expert who is tackling a (complex) problem
by decomposing the original task into several sub-tasks until the resulting sub-tasks are
(simple) primitive tasks.

Translated to AutoML for MLC, the initial task could be, for example, to do multi-label
classification as shown on the right-hand side of Fig. 1. With the help of methods that are
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Figure 1: Visualization of the hierarchical structure of a machine learning pipeline (left)
and an excerpt of the hierarchical planning search graph (right).

displayed in the form of arcs, this task can be refined by choosing a multi-label classifier.
This can be either a meta multi-label classifier, e.g., Expectation Maximization (EM), or
a basic one, e.g., Binary Relevance (BR). Depending on the decision, new decision-specific
tasks arise, namely to choose base learners and to set the parameter values of the respective
algorithm. Modeling the search space in this fashion yields a tree that can be used as
a search graph for standard search algorithms. ML-Plan incorporates a Best-First search
with random completions to complete partial specifications (decisions already made until a
certain point) to fully specified classifiers that can be evaluated (using cross-validation or
a holdout set). For more details on ML-Plan, we refer to (Mohr et al., 2018b) and (Wever
et al., 2018a).

To derive ML2-Plan from ML-Plan, we use the default configuration of ML-Plan and
extend it in the following three ways:

• We extend the search space from SLC (WEKA) to MLC (MEKA+WEKA) but dis-
carding preprocessors. This extension increases the size of the search space dramat-
ically and yields in roughly 76,000 possible algorithm combinations (choice of main
model and recursive base learner selections) to setup a multi-label classifier, compared
to 234 as in the case of SLC. A breadth-first search to spawn all possible algorithm
combinations, as it is done in ML-Plan, is thus unfeasible. Therefore, we adapt ML-
Plan also to spawn only the first layer of algorithm choices, i.e., each multi-label
classifier (basic and meta) is considered at least once as a main model. In contrast to
(Wever et al., 2018a) we consider hyperparameter optimization as well. Hyperparam-
eter optimization is done via a single decision for categorical and boolean parameters
and by iteratively splitting the domain of numeric parameters into sub-intervals and
refining those step-by-step until an interval size is reached that is considered atomic.

• Compared to evaluating single-label classifiers, the evaluations are much more ex-
pensive. Therefore, we introduced an early stopping criterion for the Monte Carlo
cross-validation. After each iteration, we perform a significance test to check whether
the currently considered candidate might be added to the pool of candidates for the
selection phase, i.e., the difference of its performance and the best hitherto solution
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Dataset Auto-MEKAGGP GA-Auto-MLC Random Search ML2-Plan

arts1 0.5196±0.01 (1) ◦ 0.5509±0.01 (3) 0.5527±0.13 (4) 0.5508±0.04 (2)
bibtex - (3) - (3) 0.5822±0.02 (2) • 0.4910±0.05 (1)
birds-fixed 0.3259±0.02 (3) • 0.3239±0.03 (2) • 0.3277±0.04 (4) • 0.2962±0.03 (1)
business1 0.4711±0.00 (3) • - (4) 0.4034±0.13 (2) 0.3452±0.01 (1)
emotions 0.3643±0.02 (4) • 0.3356±0.02 (3) • 0.2858±0.02 (1) 0.2944±0.02 (2)
enron-f 0.4750±0.00 (3) • 0.4793±0.01 (4) • 0.4540±0.03 (2) • 0.3997±0.02 (1)
flags 0.4407±0.03 (3) • 0.4427±0.03 (4) • 0.3613±0.04 (2) • 0.3303±0.02 (1)
genbase 0.0701±0.02 (2) 0.1044±0.02 (3) • 0.1511±0.15 (4) • 0.0684±0.01 (1)
health1 0.5153±0.00 (4) • 0.4499±0.01 (1) 0.5141±0.07 (3) 0.4564±0.03 (2)
llog-f 0.5054±0.01 (3) • 0.4981±0.01 (2) • 0.5183±0.02 (4) • 0.4792±0.02 (1)
medical 0.2770±0.05 (3) 0.2648±0.01 (2) • 0.3167±0.10 (4) • 0.2425±0.01 (1)
scene 0.1998±0.02 (2) • 0.2614±0.03 (4) • 0.2003±0.04 (3) • 0.1746±0.01 (1)
science1 0.5495±0.00 (3) 0.5318±0.00 (1) ◦ 0.6052±0.04 (4) • 0.5462±0.02 (2)
yeast 0.4495±0.01 (3) • 0.4773±0.01 (4) • 0.3935±0.05 (2) 0.3632±0.01 (1)

average-rank 2.86 2.86 2.93 1.29
#best 1 2 1 10
sig (i/t/d) 12 / 1 / 0 9 / 2 / 1 13 / 0 / 1 - / - / -

Table 1: LFit (mean ± standard deviation) for the test data of 20 runs per dataset. The
rank per dataset of the respective approach is enclosed in parentheses.

is not more than 3%. If case the hypothesis test fails, we abort the evaluation of the
classifier and return the mean of the evaluated iterations so far.

• We adapt the internal evaluations part of ML-Plan to the MLC setting, incorporating
LFit as the objective function instead of error rate for SLC, and creating train and
test splits at random instead of class-stratified splits.

4. Experimental Evaluation

We evaluate ML2-Plan as introduced in the previous section on various datasets and com-
pare it to three baselines: a random search, GA-AutoMLC (de Sá et al., 2017), and
Auto-MEKAGGP (de Sá et al., 2018). The random search evaluates candidates that are
picked uniformly at random from the set of 76,000 possible nested classifiers and chooses
values of the resulting parameters at random as well. Note that while ML2-Plan, random
search and Auto-MEKAGGP operate on the same search space, GA-Auto-MLC is based on
a much simpler space (see (de Sá et al., 2017)). All approaches underly the same timeout
and resource limitations and use the implementations of the basic loss functions provided
by MEKA. The implementation of ML2-Plan is publicly available2.

Results were obtained by carrying out 20 runs on 14 datasets with a timeout of 1 hour for
each run and a timeout of 10 minutes for evaluating a single candidate. The datasets stem
from the MULAN project website3. In each run, we used 70% of a randomized split of the
data for learning (search) and 30% for testing. We used the same splits for all candidates,
i.e., for each split, we ran ML2-Plan as well as each baseline exactly once. The significance

2. Implementation of ML2-Plan: https://github.com/fmohr/AILIbs,
Dataset splits, seed project, and ReadMe: https://github.com/mwever/ML2PlanAtAutoML2019

3. http://mulan.sourceforge.net/datasets-mlc.html
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of an improvement (marked by •) resp. degradation (◦) per dataset was determined using
a Wilcoxon signed-rank test (Wilcoxon, 1945) with a threshold for the p-value of 0.05.

The experiments were run on up to 220 Linux machines in parallel, each of which with
a resource limitation of 8 cores (Intel Xeon E5-2670, 2.6Ghz) and 32GB RAM. Runs that
did not adhere to the time or resource limitations (plus a tolerance threshold of 10%) were
canceled without considering their results for the respective approach.

A summary of the results is given in Table 1. While the upper part of the table describes
the observed values for Lfit on the test data, the bottom part gives a summary regarding
the average rank and statistics about number of times an approach has been the best solver.
On the last row of the table, it is counted how many times ML2-Plan achieved significantly
improved, significantly degraded or equally performing results compared to a baseline.

The general impression is that ML2-Plan performs clearly superior to the baselines and
for the majority of datasets manages to return significantly better solutions compared to
the competitor tools and the random search. Nevertheless, ML2-Plan does not win in every
case and it must admit defeat on arts against Auto-MEKAGGP, on emotions against the
random search, and on health1 and science1 against GA-Auto-MLC.

Furthermore, it was surprising to see that, according to the average rank statistic,
Auto-MEKAGGP and GA-Auto-MLC perform only slightly better than the random search
baseline. This might be due to the relatively small timeout of 1 hour we gave each tool
for a single run but note that on the contrary ML2-Plan already manages to outperform
the random search. Moreover, Auto-MEKAGGP did not return any result for the dataset
bibtex and GA-Auto-MLCfor the datasets bibtex and business1 which may also be due
to the low time budget. Nevertheless, we will consider larger timeouts in future work to
investigate the long-term behavior of the different approaches as well.

5. Conclusion

In this paper, we presented an AutoML approach to multi-label classification. ML2-Plan
builds on ML-Plan and combines hierarchical task network planning with a global best-
first search as proposed by Mohr et al. (2018b). Compared with previous AutoML tools for
single-label classification, ML2-Plan has to deal with more deeply nested structures to auto-
matically select and configure multi-label classifiers for a given dataset. In an experimental
study, we showed that ML2-Plan outperforms the baselines, including the only existing ap-
proaches to AutoML for multi-label classification (de Sá et al., 2018, 2017). Future work
will be dedicated to improving scalability, e.g., by moving to a service-oriented architecture
(Mohr et al., 2018d,c) or incorporating meta-learning techniques for warmstarting (Feurer
et al., 2015), and to improving efficiency during search, e.g., by biasing the random com-
pletion towards in general more promising solutions. Finally, the wide spectrum of loss
functions in MLC motivates a multi-objective optimization process that seeks for trade-offs
between different (and potentially conflicting) performance metrics.
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Felix Mohr, Marcel Wever, and Eyke Hüllermeier. Ml-plan: Automated machine learning
via hierarchical planning. Machine Learning, 107(8-10):1495–1515, 2018b.
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AutoML for Multi-Label Classification:
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Abstract—Automated machine learning (AutoML) supports the algorithmic construction and data-specific customization of machine
learning pipelines, including the selection, combination, and parametrization of machine learning algorithms as main constituents.
Generally speaking, AutoML approaches comprise two major components: a search space model and an optimizer for traversing the
space. Recent approaches have shown impressive results in the realm of supervised learning, most notably (single-label) classification
(SLC). Moreover, first attempts at extending these approaches towards multi-label classification (MLC) have been made. While the
space of candidate pipelines is already huge in SLC, the complexity of the search space is raised to an even higher power in MLC. One
may wonder, therefore, whether and to what extent optimizers established for SLC can scale to this increased complexity, and how they
compare to each other. This paper makes the following contributions: First, we survey existing approaches to AutoML for MLC. Second,
we augment these approaches with optimizers not previously tried for MLC. Third, we propose a benchmarking framework that
supports a fair and systematic comparison. Fourth, we conduct an extensive experimental study, evaluating the methods on a suite of
MLC problems. We find a grammar-based best-first search to compare favorably to other optimizers.

Index Terms—automated machine learning, multi-label classification, hierarchical planning, Bayesian optimization

F

1 INTRODUCTION

AUTOMATED machine learning (AutoML) is commonly
understood as the task of automating the process

of engineering a “machine learning pipeline” specifically
tailored to a problem at hand, that is, to a dataset on
which a (predictive) model ought to be induced. This
includes the selection, combination, and parameterization
of machine learning (ML) algorithms as basic constituents
of the pipeline, which is the main output produced by
an AutoML tool, and which can then be used to train a
concrete model on the dataset. Thus, compared to “basic”
ML algorithms such as neural networks or support-vector
machines, which solve a learning problem, an AutoML tool
can be seen as solving a “learning to learn” problem. For the
standard problem classes of single-label (binary or multi-
class) classification (SLC) and regression, several such tools
have been proposed in the last couple of years, and their
performance has been demonstrated quite impressively in
several experimental studies.

For various reasons, however, the empirical compari-
son of AutoML tools is a difficult endeavor and prone to
incorrect interpretations. In particular, since an AutoML
tool is a complex system consisting of several components,
most importantly a search space model and an optimization
method for traversing this space, one typically faces a credit
assignment problem: If a tool performs well, and perhaps
even better than others, what component is actually respon-
sible for the improvement? For example, different tools (e.g.,
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University, Germany.
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[1] and [2]) are typically using different search spaces, i.e.,
the space of ML pipelines they consider is not the same.
While optimizing the search space, in general, is indeed a
reasonable approach to improve the performance of an Au-
toML tool, it impedes the interpretation of evaluation results
when a new approach to tackle the search task is proposed
simultaneously. In such cases, it is often unclear where the
improved performance comes from, the modification of the
search space or the newly proposed search algorithm.

Going beyond standard (single-target) prediction prob-
lems, first attempts at extending AutoML toward multi-
target problems [3] have been made in the last couple of
years, most notably for the popular problem of multi-label
classification (MLC) [4], [5], [6], [7], [8]. While the space of
candidate pipelines is already huge in SLC, the complexity
of the search space is raised to an even higher power in
the case of MLC. This is mainly caused by more complex
learning algorithms employed for the problem of MLC,
which often perform as meta-algorithms on top of multiple
existing SLC learning algorithms (e.g., one per label). An
example of a potential structure of a multi-label classifier
is depicted in Fig. 1. In fact, as we detail in Section 4, the
MLC search space subsumes the SLC search space (several
times). Furthermore, the evaluation of solution candidates
takes significantly longer for MLC than for SLC algorithms
due to their increase in structural complexity.

In light of this, one may wonder whether existing opti-
mization methods for searching candidate pipelines, which
have mainly been developed for SLC, are able to scale to the
increased complexity of MLC search spaces, and how they
compare with each other. Addressing this question in a sys-
tematic way, this paper makes the following contributions:

• First, we survey the state of the art, compare different
approaches on a methodological level with respect
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Fig. 1: Hierarchical representation of a multi-label classifier’s
structure being recursively configured with base learners
and finally a kernel for the support vector machine (SMO,
short for Sequential Minimal Optimization).

to their applicability to the MLC problem, and give
an overview of existing approaches to AutoML for
MLC, which are mainly characterized by the specifi-
cation of the search space (Section 4).

• Second, we further augment these approaches by
optimization methods that have not been tried for
MLC so far, including Bayesian optimization, bandit
algorithms, and hybrids thereof (see Section 5).

• Third, we propose a benchmarking framework that
allows for a fair and systematic comparison (Sec-
tion 6). Our framework ensures that all optimization
methods adhere to the same runtime constraints,
operate on equivalent search space models, and share
the evaluation routine for solution candidates.

• Fourth, leveraging this framework, we conduct an
extensive experimental study, in which we evaluate
the methods on a suite of MLC problems (Section 7).
In our experiments , we observe that all methods are
visibly struggling with the tremendous size of the
search space. However, a grammar-based best first
search approach is found to perform best for the
considered MLC search space, clearly outperforming
the other optimizers.

Prior to elaborating on the main contributions of the
paper as outlined above, we give a short introduction to
AutoML (Section 2) and multi-label classification (Section 3).

2 AUTOMATED MACHINE LEARNING

D ESPITE the short history of automated machine learn-
ing (AutoML), a diverse array of methods has been

proposed to tackle the problem of so-called combined algo-
rithm selection and hyper-parameter optimization (CASH),

which was first stated in [9] and can formally be described
as follows.

Let A := {A(1), A(2), . . . , A(n)} denote a set of algo-
rithms and Λ(1),Λ(2), . . . ,Λ(n) the corresponding hyper-
parameter spaces. Furthermore, let training (validation) and
test data from a dataset space D be given by Dtrain =
(Xtrain, Ytrain) ∈ D and Dtest = (Xtest, Ytest) ∈ D, as well as a
target loss L to be minimized. The objective is now to find
an algorithm A∗λ∗ together with a suitable hyper-parameter
configuration that generalizes well beyond the training data:

A∗λ∗ ∈ arg min
A(i)∈A,λ∈Λ(i)

E
[
L(Ytest, A

(j)
λ (Xtest))

]

In practice, however, the test loss is not accessible and thus
approximated via the expected validation loss. To this end,
the set of training data is again split into training data D′train
used for training and validation data Dval = (Xval, Yval) for
validating the solution candidates’ performance:

A∗λ∗ ∈ arg min
A(i)∈A,λ∈Λ(i)

E
[
L(Yval, A

(j)
λ (Xval))

]

The obtained estimate is then used for guiding the search
for the best solution in the CASH problem.

Initial approaches reduced the CASH problem to a
hyper-parameter optimization (HPO) problem by inter-
preting the choice of an algorithm as yet another hyper-
parameter — a binary variable set to 1 if the respective algo-
rithm is included in the pipeline — and concatenating those
with the hyper-parameters of the respective algorithms to
a single hyper-parameter vector. On the one side, such a
reduction makes the original problem amenable to well-
established tools for HPO such as SMAC [10] based on
Bayesian optimization, Hyperband [11] based on a multi-
armed bandit algorithm, or a combination of the two called
BOHB [12]. In fact, by reducing AutoML to HPO and
applying HPO tools, a variety of AutoML approaches have
been proposed, including Auto-WEKA [9], auto-sklearn [1],
hyperopt-sklearn [13], and Auto-Band [14].

On the other side, a reduction to HPO comes with
the potential disadvantage of losing structural information
due to “flattening” the search space. The structure of this
space is naturally hierarchical, with a tree-like structure over
the hyper-parameters. When using a flat, purely vectorial
representation, parameter dependencies have to be captured
in the form of additional constraints. For example, certain
hyper-parameter configurations of a specific model might
simply not be valid. Moreover, only those hyper-parameters
belonging to selected algorithms are actually relevant or
active, while all the others are irrelevant — information that
is very important but not immediately accessible for the
learner.

As an alternative to constraint-based vectorial represen-
tations, another branch of AutoML tools models the search
space in a way that the hierarchical structure is maintained.
Usually, these approaches rely on modeling solutions via a
grammar that is used to derive valid candidates. This model
can then be used for deriving (valid) individuals in (evolu-
tionary) genetic programming [2], [15], [16]. Alternatively,
such a grammar can also be used as a basis for deriving a
search graph amenable to heuristic search algorithms, for
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example, a best-first search as in ML-Plan [17], [18] or a
Monte Carlo Tree Search (MCTS) [19], [20].

Apart from the aforementioned tools, many other inter-
esting techniques have emerged in the recent years, such
as neural architecture search in general [21], tools with an
emphasis on stacking [22], [23], leveraging reinforcement
learning [24], or exploiting the potential of a random search
for parallelization [25].

However, due to the rapid development, it is difficult to
track the overall progress and understand the strengths and
weaknesses of different optimizers and complete AutoML
tools. In particular, newly proposed tools are often evalu-
ated on different datasets and compared to a more or less
randomly chosen subset of existing tools as baselines. This
makes a global perception of the different AutoML tools and
their performances very difficult. As another threat to com-
parability in empirical studies, new AutoML approaches
are proposed as a combination of several components: opti-
mization method, search space, and evaluation procedures
(including timeouts, splitting for training, validation, and
test data, performance measures) for assessing solution
candidates. Due to this, performance gains or differences
cannot be attributed to one particular change. Although
there have been first steps in this direction [26], [27], an
isolated large-scale comparison of the basic optimization
strategies operating on an equivalent search space of a
reasonable size is still an open issue. This is especially true
for the problem domain of MLC.

3 MULTI-LABEL CLASSIFICATION

MULTI-LABEL classification is a special type of multi-
target prediction [3], where all the targets are binary

variables encoding the “relevance” or the “irrelevance” of
a specific aspect (identified by a label) for a data object (an
instance). The main task in MLC is to learn a set-valued
function that maps instances to subsets of (presumably)
relevant class labels. As such, MLC can be seen as a gen-
eralization of standard multi-class classification, where an
instance is assigned to exactly one class. As an example,
consider the problem of image tagging: An image could be
tagged with class labels Sun and Beach and Sea and Yacht
at the same time. For a more comprehensive overview of
multi-label classification, we refer to the survey articles [28]
and [29].

3.1 Problem Setting

To formalize the MLC problem, let X denote an instance
space and L = {l1, . . . , lm} a finite set of m class labels. An
instance x ∈ X is (non-deterministically) associated with a
subset of class labels L ⊆ L. The subset L is often called
the set of relevant labels. It is convenient to identify a set
of relevant labels L with a binary vector y = (y1, . . . , ym),
where yi = 1 if li ∈ L and yi = 0 otherwise.The set of all
possible label combinations is denoted by Y = {0, 1}m.

Formally, a multi-label classifier h is a mapping h :
X −→ Y . For a given instance x ∈ X as an input, it outputs
a prediction in the form of a vector

h(x) =
(
h1(x), h2(x), . . . , hm(x)

)
.

The task of inducing a multi-label classifier from data can
be stated as follows: Given a finite set of observations

Dtrain := (Xtrain, Ytrain) =
{

(xi,yi)
}N
i=1
⊂ XN × Y N

as training data, the goal is to learn a classifier h : X −→
Y that generalizes well beyond these observations in the
sense of minimizing the risk with respect to a specific loss
function.

3.2 Loss Functions
A wide spectrum of loss functions has been proposed for
multi-label classification, many of which are generalizations
or adaptations of losses known for single-label classification.
Generally speaking, these loss functions can be divided
into three main categories: instance-wise, label-wise, and
considering the label matrix as a whole (flattened to a
single vector), which is also known as micro averaging.
While instance-wise loss functions first compute a loss for
every single test instance and then aggregate (average)
over instances, label-wise loss functions compute a (binary
classification) loss for each label and then aggregate the
respective values across the labels. To be more specific, let
Dtest := (Xtest, Ytest) ⊂ XS × YS be a test set of size S and
H = (h(x1), . . . ,h(xS)) ⊂ YS . Then, a loss function is a
mapping L : YS × YS −→ [0, 1]. In the following, we give
three different ways of generalizing the F-measure to multi-
label classification as instance-wise, macro averaging, and
micro averaging loss functions that are commonly used in
the literature.

Since the number of relevant labels is normally rather
small (i.e., the label matrix is very sparse), the F-measure
(which is actually not a loss function but a measure of
accuracy, and thus to be maximized) has been adapted to the
MLC setting in various ways. One possibility is to compute
the F-measure for the predicted label vector of each instance
in the test set first, and then aggregate across the instances;
this is the instance-wise F-measure:

FI(Ytest, H) :=
1

S

S∑

i=1

2
∑m
j=1 yi,jhj(xi)∑m

j=1(yi,j + hj(xi))
(1)

Analogously, it can be defined in a label-wise manner:

FL(Ytest, H) :=
1

m

m∑

j=1

2
∑S
i=1 yi,jhj(xi)∑S

i=1(yi,j + hj(xi))
(2)

Finally, in a third variant, the F-measure can also be applied
by so-called micro-averaging:

Fµ(Ytest, H) :=
1

m · S
2
∑m
j=1

∑S
i=1 yi,jhj(xi)∑m

j=1

∑S
i=1(yi,j + hj(xi))

(3)

Since the F-measure is the harmonic mean of precision and
recall, good performance requires both a high true positive
rate and a high true negative rate. In contrast to other
commonly used MLC loss functions, such as the Hamming
loss, the F-measure thereby addresses the problem of class
imbalance and avoids an overly strong tendency toward
negative predictions: too many negative predictions will
yield a high precision but a low recall, and hence an overall
low value for the F-measure. Nevertheless, depending on
the variant used, the F-measure accounts for mistakes in the
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predictions in different ways, so that classifiers might be
more appropriate for one and less for another version.

4 THE MULTI-LABEL SEARCH SPACE

Taking standard (aka single-label) classification algorithms
as a point of departure, multi-label classifiers have been
developed in mainly two different ways: Either the multi-
label problem is transformed into one or more single-label
problems to which an existing algorithm can be applied, or
an existing learning algorithm is adapted to the problem of
MLC [30]. The latter essentially comes down to extending
the algorithm so as to provide support for multiple labels in
the algorithm structure. A simple example is the extension
of decision tree learning from standard classification to
multi-label classification [31].

4.1 Configuration of Multi-Label Classifiers

On one hand, the configuration of adapted learners such
as neural networks with multiple output units, i.e., one
per label, multi-target trees, or k-nearest neighbour learners
works as in previous approaches and does not impose a
particular challenge due to the multi-label classification set-
ting. On the other hand, transformation techniques usually
reduce the original MLC problem to a set of binary or multi-
class classification problems, which can then be dealt with
by known methods such as random forest, SVMs, logistic
regression, etc. For example, binary relevance learning (BR)
transforms it into a set of binary classification problems [32],
one per label. These binary problems consist of predicting
the relevance of the corresponding label independently of
all other labels. While BR may look like a straightforward
and efficient solution to the MLC problem, it is often criti-
cized for ignoring interactions and statistical dependencies
between class labels. Indeed, the idea of leveraging such
dependencies to improve predictive performance is the
main motivation of many multi-label learning algorithms.
As an illustration, consider again the example, where the
class label Yacht might be positively correlated with the
class label Sea: If the former is positive, i.e., a yacht is on an
image, then the latter is likely to be positive, too. Thus, while
the predictions (0, 0), (0, 1), and (1, 1) appear completely
plausible, a multi-label classifier should be more reluctant
to predict (1, 0). As an example of a slightly more sophisti-
cated (though still simple) transformation technique, let us
mention classifier chains [33]. As suggested by the name, the
classifier chain (CC) method trains predictive models in a se-
quential manner, sorting the labels along a chain. The basic
idea is to condition the prediction of a label yi, not only on
the instance information x, but also on the labels preceding
yi in the chain, which is specified by a permutation σ of
{1, . . . ,m}. Thus, starting with a model ŷσ(1) = h1(x), CC
trains a second model ŷσ(2) = h2(x, yσ(1)), a third model
ŷσ(3) = h3(x, yσ(1), yσ(2)), and so forth.

In the above example, for instance, CC may first predict
the presence of Yacht based on properties of the image,
and then additionally condition the prediction for Sea on
the (predicted) presence or absence of a yacht on the image.
In this way, label dependence could in principle be captured,
at least to some extent. Yet, as a theoretical problem of CC,

note that the label information used as additional features
by the classifiers is only available for training but not
at prediction time: Since the true label information yσ(1)

cannot be used as an additional input, h2 will actually
deliver a prediction ŷσ(2) = h2(x, ŷσ(1)), replacing yσ(1)

by the estimate ŷσ(1) coming from h1. Likewise, h3 will
predict ŷσ(3) = h3(x, ŷσ(1), ŷσ(2)), etc. This creates a kind
of attribute noise and possibly causes a problem error prop-
agation along the chain [34].

Generally speaking, problem transformation methods
can be seen as meta-learning methods, which need to be
instantiated with a base learner, for example, a binary classi-
fier in BR or CC. As already pointed out earlier, the structure
of an MLC algorithm can thus become quite complex (cf.
Fig. 1), requiring the user or ML engineer to make many de-
cisions, e.g., choose up to 6 out of more than 70 algorithms,
and configure up to 25 hyper-parameters simultaneously.
Furthermore, empirical studies suggest that for optimizing
the generalization performance of transformation methods,
the choice of the base learner is indeed crucial [35], [36].

In addition to the selection and configuration of base
learners, one may of course also think of parameterizing
the meta-learner itself, thereby increasing the number of
hyper-parameters even further. A simple example is the
permutation σ in classifier chains, which is known to have
a practical impact on performance [37].

Moreover, instead of choosing a single base learner to
be used for each label, an individual base learner could be
selected and tuned for each label separately. As shown in
[36] for the case of BR, a label-wise configuration of that kind
may indeed prove beneficial. Obviously, however, this will
further increase the complexity of the configuration space
by several orders of magnitude. Therefore, we stick to the
simpler task of recursively selecting the base learners and
tuning their hyper-parameters.

4.2 Search Space Description

The search space for multi-label classification considered
here is shown in Fig. 2, comprising 5 different types of
algorithms: meta and base algorithms for multi-label clas-
sification, meta and base algorithms for single-label classifi-
cation, as well as kernels to be plugged into an SVM clas-
sifier (in the figure represented by the sequential minimal
optimization algorithm; SMO). More precisely, the following
algorithms are contained in the search space:

MEKA Meta MBR, SubsetMapper (SM), Random-
SubspaceML (RSS), MLCBMaD (MLCBMD), BaggingML
(BML), BaggingMLdup (BMLdup), EnsembleML (EML),
EM, CM

MEKA Base BR, BRq, CC, CCq, BCC, PCC, MCC,
PMCC, CT, CDN, CDT, FW, RT, LC, PS, PSt, RAkEL,
RAkELd, BPNN, HASEL, MajorityLabelset (MLS), DBPNN

WEKA Meta AdaBoostM1 (ABM1), Vote (V), Stacking
(S), LWL, RandomSubSpace (RSS), Bagging (B), Random-
Committee (RC), AttributeSelectedClassifier (ASC), Ad-
ditiveRegression (AR), ClassificationViaRegression (CVR),
LogitBoost (LB), MultiClassClassifier (MCC)

WEKA Base J48, M5P, M5Rules (M5R), VotedPerceptron
(VP), SimpleLinearRegression (SLR), SimpleLogistic (SL),
NaiveBayesMultinomial (NBM), LMT, DecisionStump (DS),
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Fig. 2: Overview of the search space showing classification algorithms from MEKA for multi-label and WEKA for single-
label classification. An arc pointing to a box frame means an arc to every classifier contained in this frame. Purple diamonds
indicate whether the respective classifier exposes hyper-parameters to be tuned.
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Fig. 3: Comparison of statistics regarding characteristics of the multi-label classification search space and the subsumed
search space for single-label classification. Note that the there is a substantial increase in the number of unparameterized
solution candidates, i.e., the number of distinct classifier configurations ignoring hyper-parameter configuration. Moreover,
the maximum number of hyper-parameters that are optimized simultaneously for a single configuration is almost double
the amount.

RandomForest (RF), RandomTree (RT), DecisionTable (DT),
JRip (JR), OneR (OR), PART, ZeroR (ZR), IBk, KStar (KS),
MultilayerPerceptron (MP), SMO, Logistic (L), NaiveBayes
(NB), BayesNet (BN), REPTree (REPT)

Kernel NormalizedPolyKernel (NPK), PolyKernel (PK),
RBFKernel (RBFK), Puk

From left to right, the algorithms typically require the
configuration of a base algorithm, which can either be of
the same type or the next type in the previously enumer-
ated list. Within the figure, this requirement is indicated
by an arc pointing either to a specific algorithm or a box
containing several algorithms. The latter is a shortcut for
drawing an arc from the respective algorithm to every
algorithm contained in the box. Algorithms exposing hyper-
parameters that need to be optimized are indicated by a
purple diamond.

Fig. 2 provides a compact overview of the entire search

space1, such that the extension for AutoML from single-
label to multi-label classification appears to only double
the complexity, as only twice the number of algorithms is
available. However, the real complexity lies in the need to
configure base learners recursively, i.e., base learners of one
method may require a base learner in turn to be configured.
Therefore, the short cut arcs pointing from an algorithm to
a box abstract most of the complexity.

A comparison of various statistics regarding the search
spaces for single-label respectively multi-label classification
is given in Fig. 3. While the number of algorithms (compo-
nents) as well as the number of hyper-parameters defined
in the search space increase only slightly, the size of the
entire search space blows up from 177 unparameterized

1. A more detailed description including the hyper-parameters can be
found in the GitHub repository: https://github.com/mwever/tpami-
automlc
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solution candidates to more than 55,000. However, not only
the large number of distinct algorithm choices exacerbates
the AutoML tasks, but also the maximum number of pa-
rameters a single solution candidate may expose. In the
extreme case, a single solution candidate may expose up
to 25 hyper-parameters, as compared to 14 in the case of
single-label classification, but also the average number of
hyper-parameters increases from 5.89 to 10.13.

In conclusion, compared to single-label classification, the
multi-label classification search space itself contains consid-
erably more solution candidates. Furthermore, due to more
hyper-parameters that need to be optimized for a single
candidate, the hyper-parameter optimization of the latter
can be much more complex as well.

5 OPTIMIZATION METHODS

The literature on AutoML for standard classification and
regression is rich of techniques that have been proposed for
searching the huge space of solution candidates. However,
for multi-label classification, only a few of these approaches
have been considered so far. These include genetic algo-
rithms [4], grammar-based genetic programming [5], hierar-
chical task network planning [6], [7], and a classifier specific
approach based on neural architecture search [8]. Here,
we focus on methods for classical AutoML dealing with
the problem of combined algorithm selection and hyper-
parameter optimization.

In the following, after a formal definition of the Au-
toML problem, we briefly outline various optimization ap-
proaches from the two branches of hyper-parameter opti-
mization and grammar-based search. Moreover, we elabo-
rate on how these methods can be applied to automating
multi-label classification and whether this has already been
done in the literature. For a more in-depth summary of
the respective approaches, we refer the interested reader
to survey papers on standard AutoML [38], [39], [40], [41].
In Fig. 4, an overview of the here considered optimization
methods is given. Furthermore, we discuss to what extent
these methods have already been considered in AutoML
for single-label resp. multi-label classification. An overview
of their use regarding standard AutoML and AutoML for
multi-label classification is given in Table 1.

5.1 Reduction to Hyper-Parameter Optimization
A prominent way of tackling the AutoML problem is to re-
duce it to the problem of instance-specific hyper-parameter
optimization. Here, one is given a hyper-parameter space Λ
defined over multiple hyper-parameters, a dataset space D
and a quality measure u : Λ × D −→ R, stating how well a
certain hyper-parameter configuration performs on a certain
dataset. For a given datasetD ∈ D the goal is to find the best
hyper-parameter configuration λ∗D ∈ Λ defined as

λ∗D = arg max
λ∈Λ

u(λ,D) . (4)

In the context of AutoML, the quality measure u is usually
a scoring or loss function such as the F-measure or the
Hamming loss.

The reduction from the AutoML problem to hyper-
parameter optimization is done by encoding the choice of

Automated Multi-Label Classification

Hyper-parameter Optimization Grammar-based Search Baseline

Bayesian Opt. Bandit Opt. Local Search Global Search Random

SMAC Hyperband GGP HTN-BF Random Search

BOHB

Fig. 4: Ontology showing the considered optimization tech-
niques proposed for automating machine learning.

TABLE 1: Overview of optimization techniques considered
in this paper for automating multi-label classification and
an overview of whether and where these techniques have
been employed for automating single-label resp. multi-label
classification.

Method AutoML SLC AutoML MLC

Bayesian Optimization [42] 3 [1], [9], [13], [43] 7
Hyperband [44] 3 [14], [45] 7
Bayesian Optimization and
Hyperband [12]

3 [46] 7

Genetic Algorithms [47] 7 3 [4]

Genetic Programming [48] 3 [2], [15] 3 [5]
HTN Planning [49] 3 [17], [18], [50], [51] 3 [6], [7]

each algorithm and its components via a categorical param-
eter for each choice. Each of these categorical parameters
can take as many different values as there are choices for the
respective algorithm or component. Hence, the result of the
reduction is a single hyper-parameter vector consisting of
these categorical hyper-parameters and the original hyper-
parameters of each possible algorithm and component. Fur-
thermore, many tools request a set of constraints, defining
which hyper-parameters are connected to which algorithms
and components. Thus, it becomes possible to leverage
this information, e.g., by decomposing the vector into trees
where only relevant hyper-parameters are considered.

5.1.1 Bayesian Optimization

Bayesian Optimization (BO) [52] is one of the most promi-
nent techniques in the area of hyper-parameter optimization
and the basis for the first approaches to AutoML [1], [9],
[43]. On an abstract level, BO is an alternating process
of building/updating a surrogate model û inferred from
observations of the (costly) measure u and leveraging the
information contained in û through a so-called acquisition
function to choose the next candidate to be evaluated w.r.t
u. This is repeated until a stopping criterion is met, e.g.,
wall-clock time or evaluations of u.

For AutoML tasks, typically Tree Parzen Estimators [53]
or Random Forests [54] are employed as surrogate model.
Although Gaussian Processes also represent a very natural
choice for the surrogate model, they do not scale well with
the high dimensional search space of the AutoML problem.
In any case, the right choice depends on specifics of the
optimization task, e.g., the structure and topology of the
search space or the noisiness of u.

The surrogate model û is used in combination with an
acquisition function to decide which hyper-parameter con-
figuration to evaluate next with u. For the sake of efficiency,
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this choice should reveal as much useful information about
the search space as possible. Generally speaking, acquisition
functions are a means to trade off exploration and exploita-
tion so as to guide the search to promising candidates. To
this end, not only the expected values (according to the sur-
rogate model û) but also the uncertainty about these values
are taken into account. While there are various functions of
this kind, including entropy search [55], knowledge gradient
[56], and expected improvement (EI) [57], [58], we focus on
the latter, since it is mainly used in the field of AutoML.

The basic idea of EI is to sample the candidate that
optimizes the improvement with respect to the best solution
found so far. Formally, EI can be described with respect
to a hyper-parameter configuration λD and the best hyper-
parameter configuration λ∗D found so far as

EI (λD) = E [max(u(λ∗D,D)− u(λD,D), 0)] . (5)

Note that taking the expected value is required because
u(λD,D) is a random variable with unknown outcome at
the time of the computation of EI (λD). Using this defini-
tion, the EI acquisition function chooses the configuration
that maximizes EI.

BO has been employed as an optimization technique in
several AutoML tools [1], [9], [13], [43] for tackling standard
classification and regression tasks. However, to the best
of our knowledge, it has not been used for tackling the
AutoMLC problem before.

5.1.2 Hyperband
Another family of methods to tackle hyper-parameter op-
timization is based on formalizing the problem as a multi-
armed bandit (MAB) problem, which is a sequential stochas-
tic decision-making problem. The MAB agent (decision
maker) selects one option at a time from a set of alternatives,
also called “arms”, and observes a numerical (and typically
noisy) reward signal providing information on the quality
of that option. The goal of the agent is to optimize an
evaluation criterion such as the cumulative regret, i.e., the
expected difference between the sum of rewards that could
have been obtained by playing the best arm (defined as the
one with the highest rewards on average) in each round and
the sum of the rewards obtained while being challenged by
the exploration-exploitation dilemma.

Hyper-parameter optimization can be cast as a MAB
problem by considering each possible hyper-parameter con-
figuration (or machine learning pipeline in the case of
AutoML) as an arm. The rewards obtained when pulling
an arm correspond to the evaluation of the corresponding
configurations for a given budget, such as time, which is
adapted over the course of the algorithm.

A classical naı̈ve approach to finding a good arm (con-
figuration) in such a setting is to allocate a total budget B
equally to all K arms, i.e., pull each arm with a budget of
bB/Kc. While simple, this approach spends large amounts
of the budget on non-optimal arms.

Successive halving [44], [59] mitigates this flaw by di-
viding the time steps into N brackets, allocating the budget
equally across the brackets and halving the number of arms
to be pulled at the end of each bracket. Based on the rewards
obtained, the best half of the arms are kept and promoted
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Fig. 5: Comparison of the classical approach (top) and suc-
cessive halving (SH) (bottom) to identify the best perform-
ing configuration out of 4 candidates. Numbers within col-
ored rectangles indicate the rank of a configuration. Within
each bracket, the current set of configurations is evaluated
on a portion of the totally assignable budget and after each
bracket the worse half drops out. After bracket 2, SH already
identified the winner configuration (red). The right column
summarizes the total budget spent per configuration.

towards the next bracket resulting in a single final arm
after dlog2(K)e − 1 brackets. The success of this strategy
in selecting the truly best arm heavily relies on the assump-
tion that discarding arms based on low-budget evaluations
does indeed correctly discard the bad configurations, but
not those that may only show their potential when being
evaluated on larger budgets. A visual comparison of the
two approaches with K = 4 arms and N = 3 brackets in
the case of SH is presented in Figure 5.

In the context of hyper-parameter optimization, the
budgeted resource can vary, but common choices are the
number of iterations for evaluating the configuration [44],
the computation time for evaluating the configuration, the
size of the subsampled dataset or the subsampled feature set
on which the configuration is evaluated [11]. Here, we make
use of the number of folds of a Monte Carlo cross-validation
(MCCV) as budgeted resource, i.e., we present evaluation
results based on one or more iterations to the optimization
approach to allow for low fidelity optimization.

However, the set of hyper-parameter configurations, and
hence the number of arms in the associated MAB, is typ-
ically extremely large or even infinite. The authors of [44]
solve this problem by sampling a predefined number of
configurations before SH is invoked, presenting thus only
a finite set of arms to the algorithm while still covering the
underlying space sufficiently well.

As shown in [11], the size of the set of configurations
K presented to SH greatly influences the choice of the
final arm. This is because picking too few configurations
might lead to missing good ones but also offers the selected
configurations more budget, whereas too many configu-
rations may contain good ones but lead to less budget,
which in turn might lead to wrong rejections (exploration-
exploitation dilemma). Hyperband is a heuristic for choos-
ing initial set sizes and repeatedly applying SH to finally
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return the best solution found in this process.
More precisely, Hyperband iteratively calls SH with dif-

ferent numbers of hyper-parameter configurations K and
assigns a minimum budget to each of these configurations
before any of them is discarded. The adaptation of K is
based on a maximum budget to be allocated to a single
configuration and the proportion of configurations to be
discarded in each bracket of SH. Doing so, Hyperband
gradually moves from exploration to exploitation by de-
creasing the amount of initial configurations while receiving
a single final solution with each call of SH. Finally, the best
configuration found during this process is returned.

Hyperband has been applied to AutoML for classifica-
tion in [14]. Yet, to the best of our knowledge, it has not
been used to tackle the AutoMLC problem so far, which
will be done in this work for the first time.

5.1.3 Bayesian Optimization and Hyperband (BOHB)
An obvious weakness of Hyperband is its random sam-
pling of configurations at the beginning of each iteration,
which is addressed by an approach combining the idea of
Hyperband with Bayesian Optimization, called BOHB [12].
More specifically, it replaces the random sampling proce-
dure of Hyperband by BO-based sampling. TPE models
are constructed for different budgets B based on observed
configuration performances. In each iteration, the major-
ity of configurations are iteratively sampled using these
models, while the remaining configurations are sampled at
random for reasons of convergence. As one is eventually
interested in the performance of a configuration evaluated
on the maximum budget, BOHB always queries the model
associated with the largest budget available.

BOHB can be instantiated to solve AutoML problems in
the same way as SMAC and Hyperband, namely by reduc-
ing the AutoML problem to a problem of hyper-parameter
optimization. Once again, to the best of our knowledge,
this work is the first one to apply BOHB for tackling the
AutoMLC problem, although it has been used in the context
of AutoML for classification before [46].

5.1.4 Genetic Algorithms
Genetic algorithms (GAs) are quite popular and frequently
used as a tool for black-box optimization. The basic idea
is to maintain a population of candidate solutions and to
refine these candidates iteratively by applying randomized
operators (e.g., mutation and cross-over inspired by biolog-
ical evolution) with the aim of maximizing a given fitness
function. Each of the candidate solutions is encoded by a
fixed-size binary or real-valued vector of so-called genes,
also referred to as a genetic representation.

Applying genetic algorithms to the problem of Au-
toML thus requires a proper genetic representation, which
can be obtained by encoding every hyper-parameter by
a single gene (using integers for categorical or integer
hyper-parameters, and reals for any other numeric hyper-
parameters). However, such an encoding is difficult to han-
dle for standard GAs, because most of the genes are “inac-
tive” in the sense of not belonging to the currently selected
algorithm(s). This also hinders the exchange of parts of the
current solution. Alternatively, messy GAs can be used but
the mutual exchange of individuals remains difficult [60].

These issues may explain why standard GAs have not been
considered very much in the AutoML literature.

To the best of our knowledge, only a simple GA called
GA-Auto-MLC has been used for the problem of automating
multi-label classification [4]. However, only a very small
selection of algorithms has been considered in this work,
which is mostly due to the chosen genetic representation.
To compress the genetic representation, the genes for hyper-
parameters were shared among different algorithms. More
specifically, the number of genes for hyper-parameters was
chosen according to the method exposing the highest num-
ber of hyper-parameters. The values encoded in the genes
are then interpreted with respect to the selected method and
the remaining information is ignored.

Later on, a detailed ablation study [5] revealed that a
grammar-based genetic programming approach can outper-
form such a simple genetic algorithm for the same search
space. These findings can be attributed to the more suitable
genetic representation. Furthermore, the genetic program-
ming approach is even more flexible and allows for a larger
portfolio of algorithms. Because of these results, we exclude
GA-Auto-MLC from our study.

5.2 Grammar-based Search
Grammar-based search approaches have emerged as an-
other line of research for designing AutoML tools (cf. [2], [5],
[16], [17]). In contrast to reduction techniques representing
the optimization space by a (flat) vector of hyper-parameters
combined with additional conditions, grammar-based for-
malisms allow for modeling the hierarchical structure of ma-
chine learning pipelines and classifiers more naturally. This
hierarchical structure is particularly prominent in the case
of multi-label classifiers, which usually employ single-label
classifiers as a base learner. Yet, it is also inherent to single-
label classifiers, as shown by examples like a bagged en-
semble of support vector machines, which in turn require a
kernel function to be specified. In the following, we describe
two representatives of grammar-based approaches, first an
evolutionary approach for evolving tree-shaped structures
called grammar-based genetic programming (Section 5.2.1),
and then a technique from the field of AI planning dubbed
hierarchical task network (HTN) planning (Section 5.2.2).

5.2.1 Grammar-Based Genetic Programming
Just like genetic algorithms, grammar-based genetic pro-
gramming (GGP) algorithms belong to the family of evolu-
tionary algorithms. Yet, in contrast to standard GAs, GGPs
make use of a grammar to describe the correct syntax of
individuals. This syntax is used to generate an initial pop-
ulation of valid individuals, and also provided to genetic
operators that are specifically crafted for GGP. Another
difference to standard GAs is the genetic representation.
Instead of representing individuals in terms of fixed-length
vectors of genes, they are described in the form of trees
describing derivations of the grammar, which makes the
entire approach more flexible with respect to more complex
structures and larger portfolios of algorithms. Furthermore,
the size of such a tree does not necessarily need to be fixed
or upper bounded. For a more comprehensive description
of grammar-based genetic programming, we refer the inter-
ested reader to [48].
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Fig. 6: Sketch of a search tree induced via HTN planning
for automated multi-label classification. Primitive tasks are
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sub-trees are only hinted at.

Due to their appealing properties, GGPs have been used
to tackle the AutoML problem in various ways [2], [15], [16].
All these approaches have in common that the search space
is described by a context-free grammar, structuring the
space in a hierarchical way and having algorithm names and
hyper-parameter values as terminals. Prominent examples
of applying GGP to AutoML for single-label classification
or regression are TPOT [2], RECIPE [16], and GAMA [15].

Even more interestingly, GGP provides the basis
of an AutoML tool for multi-label classification called
Auto-MEKAGGP [5]. However, from a methodological point
of view, nothing has been implemented in Auto-MEKAGGP
that could be considered as specific for MLC, except for
the evaluation of multi-label classifiers. In particular, the
search space is described in the same way (extended by
descriptions for multi-label classifiers) as before.

5.2.2 HTN Planning and Best-First Search
The basic idea of Hierarchical Task Network (HTN) plan-
ning [49], a technique from the field of automated planning,
is to hierarchically structure the space of possible solutions
based on a logic language and specific operators. To this
end, HTN planning describes the search space in terms of
complex tasks, primitive tasks, and methods that specify
how complex tasks are refined again into complex tasks
or primitive tasks. While primitive tasks are considered

atomic and usually represent something that can be “exe-
cuted”, complex tasks can be viewed as a composition of
simpler tasks and thus need to be decomposed recursively.
Intuitively, HTN planning mimics, e.g., the way a machine
learning expert approaches a multi-label classification task,
decomposing it into smaller and simpler tasks such as
selecting classifiers, base learners, and eventually tuning the
hyper-parameters [61]. A “ground” solution, also referred to
as a plan, is obtained once all complex tasks are fully refined
and only primitive tasks are left.

The idea is similar to derivations in context-free gram-
mars, where complex tasks are non-terminal symbols and
primitive tasks are terminals. In contrast to context-free
grammars, primitive tasks do not only work in a generative
manner, but can also modify a (logical) state, a concept
featured in HTN.

HTN problems are typically solved by a reduction to a
graph search problem that can be approached with standard
algorithms, e.g., depth-first search. A typical translation of
the HTN problem into a graph is to select the first complex
task of a list and to define one successor for each applicable
method that can be used to refine the task; this is called
forward-decomposition [49]. As a consequence, the shape of
the resulting search graph is a tree. While leaf nodes of the
tree represent plans, an inner node represents a prefix of a
plan. Hence, the root node is an empty plan.

HTN planning has been instantiated for automating data
mining and machine learning by mapping primitive tasks to
algorithm choices and the configuration of hyper-parameter
values and building an abstract structure over these choices
by means of complex tasks [17], [62]. The graph in Fig.
6 sketches an excerpt from such a search graph for the
automated multi-label classification problem. In [17], a best-
first search is applied to the resulting search graph. As a
heuristic, the proposed best-first search assigns scores to
inner nodes by randomly drawing several path completions
to leaf nodes in order to obtain fully-specified pipelines that
can be evaluated as usual, e.g., applying cross-validation.
The score of the inner node is determined by the best
completion to bound the true optimum that can be found
in the respective sub-tree (assuming the objective function
to be minimized). By configuring the number of random
completions drawn for assessing the quality of an inner
node in terms of an approximate score, we can trade-off
the degree of exploitation and the degree of exploration of
the search.

In analogy to AutoML for single-label classification, we
can instantiate HTN planning combined with a best-first
search for the MLC setting. Extending the search space,
tuning the search and the evaluation strategy to the specifics
of the MLC search space, extensions of [17] have been
proposed in [6], [7].

6 AUTOMLC BENCHMARK

IN empirical AutoML studies, multiple components are
often changed at a time without carrying out ablation

studies. For example, different optimizers with different
search spaces are compared, sometimes even with different
candidate evaluation methods. One quite frequent example
is to propose a new optimization technique together with a
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different search space, while not changing the search space
for the baseline methods considered for comparison. In such
cases, the results of the studies are difficult to interpret.
Regardless of whether the newly proposed method is su-
perior, competitive, or inferior to the baselines, it is not clear
whether this finding should be attributed to the change of
the search space or the optimization method.

The general issue has already been acknowledged in the
literature [26], where AutoML tools are evaluated within
consistent hardware and timeout environments as well as
optimized for the same target loss function. However, the
compared AutoML methods are considered a black box
and the design of the search space is considered a part
thereof. As a consequence, the latter differs from approach
to approach. Therefore, it is unknown whether performance
differences between AutoML methods can be attributed the
optimization techniques or to the search space definition.

Note that the definition of the latter has a huge impact
on the problem complexity. Even small changes may sim-
plify the problem a lot or, on the contrary, make it much
harder. Extending the search space by a single ensembling
algorithm, comprising an arbitrary list of base learners, may
increase the size of the search space from finite to infinite.
Likewise, removing a single algorithm from the search space
can lead to a significant simplification of the optimization
task, but of course, also imply that the best algorithm for a
particular task is no longer available. The question of which
optimizer may perform best in which setting is thus still an
open question.

In [39], the authors attempt to answer the question
considering different optimizers for the same search space
and even the same internal evaluation procedure. However,
the approach taken in [39] is limited in several regards:

• It is restricted to optimizers available in Python,
whereas the benchmark proposed here features
cross-platform capabilities.

• The search space only considers a flat set of algo-
rithms to be chosen, i.e. the optimizers are allowed
to choose out of 13 different classifiers and activate
hyper-parameters to be optimized according to this
choice. Although there is a notion of parameters
being configured in a hierarchical way in the case
of SVMs, the search space definition has no concept
for refining base learners, e.g., of ensembles.

• Furthermore, the runtime of the optimizers is indi-
rectly limited via the number of evaluations, which
in turn is bounded by a maximum of 10 minutes per
evaluation. However, the limitation on the number
of evaluations unnecessarily penalizes optimization
strategies that prefer to extensively examine candi-
dates with a very short runtime. While the number
of evaluations is a proper means to ensure compara-
bility in the realm of black-box function optimization,
the solution candidates in AutoML are occasionally
too diverse. In our experimental evaluation, we pro-
vide empirical evidence for the high variance of the
evaluation times for different solution candidates.

Generally speaking, a common benchmark is desirable
since AutoML studies are expensive in terms of time
and computational resources. With each newly proposed

method, the corresponding studies repeatedly execute mul-
tiple other methods and baselines. This is necessary, first
because experimental setups, i.e., time constraints, assigned
hardware resources, target functions, and datasets, are al-
tered, and second, there is no common benchmark ensuring
compatibility of experimental results. Moreover, common
benchmarks are useful to streamline research, ensuring com-
parability of the evaluations of new methods to already
existing ones and ideally enforce separation of concerns.

As the line of research on AutoML for multi-label
classification is still in its infancy, we propose a unified
framework for benchmarking methods and extensions for
AutoML in the problem domain of MLC to ensure com-
parability across different optimizers (across different plat-
forms) and to avoid unnecessary re-evaluations of already
published methods in the future. Moreover, it forms a basis
for future research on both refining the MLC search space
and refining optimization techniques to cope with the more
complex search space. An overview of the framework is
sketched in Fig. 7. The key features of the framework are
shared run constraints, a model-to-model transformation
for search space descriptions, and a shared (cross-platform)
performance evaluation procedure.

The framework is organized into two parts. First, the
benchmarking setup (blue part of the figure) contains
the technical specifications, i.e., the global run constraints,
search space description, and the performance estimation
procedure. Second, the interface of the optimizer (green
part of the figure), which is responsible for translating the
setup information into a format manageable by the specific
optimizer and providing a stub that can be called to query
the performance estimation procedure.

As an aside, except for its concrete instantiation, noth-
ing of the framework is task-specific (regarding multi-label
classification). Therefore, the benchmark framework could
in principle be used to achieve comparability of different
optimization techniques for any other AutoML task, too.
For example, the benchmark could be used to investigate
the capabilities of different optimizers to search for standard
classification machine learning pipelines including (multi-
ple) pre-processing algorithms. However, as we focus on
automated machine learning for multi-label classification
here, this kind of investigation is out of the scope of this
paper and left for future work.

6.1 Benchmarking Setup

The benchmarking setup encapsulates all the parameters
relevant to an AutoML benchmark, except for the optimizer
that is used to explore the space of potential solution can-
didates. More precisely, the benchmarking setup defines the
entire experimental setup, including constraints on the run
defining the degree of parallelization and the timeouts. The
framework allows for defining timeouts for both the entire
AutoML process and the evaluation of a single candidate
independently.

The core part of the benchmarking setup is the search
space description, which specifies all potential solutions
that may be tested by the algorithms. Our benchmarking
environment comes with its own (JSON-based) language
to describe a search space, which is easy to read and edit,
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Fig. 7: Architecture of the benchmark for comparing different optimizers for the same run constraints, search space, and
evaluation procedure. Blue parts are commonly used for all approaches, while green parts are specific to the respective
optimizer, marshaling the description of candidate solutions for both the search space description and the description of
candidates to be evaluated.

and which allows for modeling search spaces maintaining
hierarchical structures. In this model, every algorithm is
seen as a software component with provided and required
interfaces. The interfaces are just names and have no func-
tional specification. For example, a binary relevance learner
provides an interface MultiLabelClassifier and re-
quires an interface BaseLearner, which in turn can be
provided, for example, by an SVM. For every component,
one can define a set of parameters with their domains and
dependencies among them, e.g., “if value of x = 3, then the
domain of possible values for y becomes [0, 1]”.

To make this search space description understandable to
the different optimizers, a search space converter must be
written for every optimizer to be considered in the bench-
mark. Clearly, every optimization tool accepts some form of
search space description, but the concrete formats strongly
vary among the different optimizers. For this paper, we
implemented such converters for the considered optimizers
to configure correct inputs for these optimizers.

Second, the run constraints comprise timeouts and com-
putational resources. More precisely, one defines the over-
all timeout for the search process, the timeout for single
evaluations, and constraints on memory and CPU usage.
Needless to say, the concrete choice of timeouts can be more
or less beneficial for an optimizer. However, since the same
constraints apply to all optimizers, this impact should not
be too large.

The third and last part of the benchmarking setup
concerns the evaluation procedure, and thereby also the
performance measure, which serves as the target loss to
be optimized. Sharing this part of the benchmarking setup
across the different optimizers ensures that there is no
advantage in terms of evaluation speed, which might distort
the overall performance. Usually, to ensure this kind of
fairness, the number of allowed evaluations is limited. Our
approach guarantees the same degree of fairness also for
anytime settings.

In addition to ensuring fairness and comparability, an
advantage of decoupling the benchmarking setup from the
optimizer is to develop meta-learning approaches indepen-
dent of a concrete optimizer. For example, a surrogate for
assessing the performance of a solution candidate can be
used by substituting the evaluation procedure. In this way,
the surrogate can be tested in combination with any opti-
mizer implemented within the framework. Furthermore, the
framework allows for task-specific adaptations of the search
space, e.g., by anticipating which algorithms will likely be
too time-consuming for a chosen evaluation timeout and
excluding these algorithms right from the start. Only the
reduced search space is then provided to the optimizer.

6.2 Optimizer Interface

The optimizer interface is responsible for connecting an
optimizer to the rest of the benchmarking framework.
More specifically, this mainly concerns setting the hyper-
parameters of the optimizer and converting the search space
description from the framework’s format into the specific
format of the optimizer.

In addition to the optimizer itself, the optimizer interface
contains an evaluation stub bridging between the optimizer
and the evaluation procedure that is part of the benchmark-
ing setup. The evaluation stub takes evaluation requests
from the optimizer and forwards them to the evaluation
procedure. If the evaluation of the respective solution can-
didate is successful, the evaluation stub will feed the result
value back to the optimizer. Of course, the optimizer and
the evaluation stub are agnostic about the loss function
used to calculate the return value. However, in the case of
an unsuccessful evaluation, the evaluation procedure gives
feedback regarding the cause and differentiates between
crashed evaluations and those with a timeout.

The third component of the optimizer interface is a map-
ping from the framework’s search space description format
into the specific format of the optimizer. By automatically
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generating search space descriptions, only the model-to-
model transformation needs to be correct, which simplifies
maintenance and allows for considering different search
spaces in a consistent way across multiple optimizers.

7 EXPERIMENTAL EVALUATION

THE experimental evaluation analyzes the performance
of the optimization strategies for AutoML introduced

above in the problem domain of multi-label classification.
We investigate the scalability of the optimizers alone con-
cerning the increased search space complexity, resulting
from the deeper hierarchical structures of multi-label clas-
sifiers and the more costly candidate evaluations. To this
end, we apply the benchmarking framework as proposed in
Section 6, making sure that all optimizers are operating on
the same search space and adhere to the same constraints in
terms of hardware resources and timeouts.

7.1 Experimental Setup
In our experimental evaluation, we carry out all experiments
in the proposed benchmarking framework considering the
following optimization methods:

• Bayesian optimization (SMAC)
• Bandit optimization (Hyperband; HB)
• Bayesian Optimization & Hyperband (BOHB)
• Grammar-based genetic programming (GGP)
• HTN planning and best-first search (HTN-BF)

Additionally, as a primitive baseline, we run a random
search that samples algorithm selections uniformly at ran-
dom (including recursive dependencies on other algo-
rithms) and subsequently chooses the hyper-parameters
of the selected algorithms uniformly at random from the
respective hyper-parameter domains.

All the runs were executed on nodes equipped with 8
CPU cores (Intel Xeon E5-2670) and 32GB of main memory
with an overall timeout of 24h and a timeout for evaluating
a single classifier of 30 minutes. For the performance estima-
tion of a solution candidate, we used 5 randomly generated
train/validation splits with 70% training and 30% validation
data of the “training” data provided for the AutoML run.
Moreover, we used three different performance measures as
target function: instance-wise F-measure (FI ), label-wise F-
measure (FL) and micro-averaged F-measure (Fµ).

The best-first search was configured with the default
configuration proposed in [17], i.e., it samples 3 random
path completions for assessing the quality of a node, result-
ing in a relatively greedy search behavior. As for SMAC, we
used its parallelized version, but otherwise the default pa-
rameterization. Furthermore, we allowed for multi-fidelity
optimization by letting Hyperband and BOHB choose how
many train and validation splits are used for estimating the
performance of a solution candidate. To this end, they were
configured to choose budgets b ranging from 1 to 5000 (to
also allow for enough exploration as the budget limits also
determine how many candidates are explored), which was
translated to db/1000e train and validation splits.

The grammar-based genetic programming approach was
configured to operate on a population size of 15, as in the
default configuration of Auto-MEKAGGP. The probabilities

TABLE 2: Benchmark datasets used in this study. The
datasets are described by their name, number of instances
(#I), number of labels (#L), the label-to-instance ratio (L2IR),
the portion of unique label combinations (ULC), and the
average label cardinality (card.).

Dataset #I #L L2IR ULC card.

arts1 7484 26 0.0035 0.08 1.65
bibtex 7395 159 0.0215 0.39 2.40
birds 645 19 0.0295 0.21 1.01
bookmarks 87856 208 0.0024 0.21 2.03
business1 11214 30 0.0027 0.02 1.60
computers1 12444 33 0.0027 0.03 1.51
education1 12030 33 0.0027 0.04 1.46
emotions 593 6 0.0101 0.05 1.87
enron-f 1702 53 0.0311 0.44 3.38
entertainment1 12730 21 0.0016 0.03 1.41
flags 194 12 0.0619 0.53 4.12
genbase 662 27 0.0408 0.05 1.25
health1 9205 32 0.0035 0.04 1.64
llog-f 1460 75 0.0514 0.21 1.18
mediamill 43907 101 0.0023 0.15 4.38
medical 978 45 0.0460 0.10 1.25
recreation1 12828 22 0.0017 0.04 1.43
reference1 8027 33 0.0041 0.03 1.17
scene 2407 6 0.0025 0.01 1.07
science1 6428 40 0.0062 0.07 1.45
social1 12111 39 0.0032 0.03 1.28
society1 14512 27 0.0019 0.07 1.67
tmc2007 28596 22 0.0008 0.05 2.16
yeast 2417 14 0.0058 0.08 4.24

for applying cross-over and mutation for recombination of
individuals were set to 0.9 and 0.1, respectively. Each new
generation keeps the best individual of the last genera-
tion. In contrast to Auto-MEKAGGP, our implementation of
grammar-based genetic programming does no reshuffling
of train and validation splits but only uses the performance
estimation procedure provided by the benchmarking frame-
work as a fitness function. Moreover, the algorithm was
used in an anytime setting, i.e., it can return a solution as
soon as a first successful candidate evaluation was done,
and continues the evolution as long as time is left.

Train and test splits are derived by 10-fold cross-
validation, resulting in 10 train and test splits for each
dataset. A list of the datasets used for benchmarking to-
gether with some descriptive statistics is given in Table 2.
The descriptive statistics include the number of instances
(#I), the number of labels (#L), the label to instance ratio
(L2IR), the unique labeling combinations (ULC), and the
average number of labels assigned to an instance (aka label
cardinality).

In total, we carried out 720 runs for each method, except
for random search, which we executed only for 240 runs to
reduce computation costs. As random search does not make
any decisions based on candidate solutions seen so far, we
only need one run for all the three target losses together.
Each of the methods is executed with 8 parallel workers.
Summing up to a total of 3,840 experiments à 24h, the
experimental evaluation contains data worth approximately
84 CPU years (= 3, 840× 24h× 8 cores = 737, 280 CPUh).

To specify the search space, we considered the multi-
label classifiers provided by MEKA [63], a multi-label clas-
sification extension of the well-known WEKA [64] machine
learning library. Both libraries are implemented in Java,
which is one reason why our benchmarking framework
is implemented in Java, too. For the global model of the
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Fig. 8: Pair-wise comparison of one method (shown on the x-axis) against all other methods with respect to instance-wise
F-Measure (left), label-wise F-Measure (center), and micro-averaged F-Measure (right).
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TABLE 3: Test performances (mean ± std) of the consid-
ered approaches. Best performances are highlighted in bold,
whereas results not significantly worse than the best per-
formance are underlined. Average ranks across the datasets
are given at the bottom of each part for the respective
performance measure.

Dataset SMAC HB BOHB GGP HTN-BF Random

In
st

an
ce

-W
is

e
F-

M
ea

su
re

(F
I

)

arts1 .27±.05 .36±.10 .34±.09 .25±.01 .52±.03 .27±.09
bibtex .37±.07 .38±.06 .39±.03 .24±.02 .38±.02 .17±.06
birds .27±.04 .27±.04 .27±.04 .27±.04 .29±.04 .27±.04
bookmarks .08±.05 .17±.08 .11±.08 .00±.00 .14±.03 .04±.06
business1 .74±.02 .77±.02 .75±.01 .73±.01 .80±.02 .67±.22
computers1 .46±.05 .50±.06 .46±.02 .44±.01 .65±.02 .04±.13
education1 .30±.07 .39±.11 .36±.10 .20±.10 .53±.01 .15±.15
emotions .68±.05 .68±.04 .66±.05 .67±.03 .69±.04 .70±.04
enron-f .57±.03 .59±.03 .59±.03 .52±.03 .59±.02 .61±.01
entertainment1 .46±.11 .43±.10 .49±.14 .36±.09 .67±.02 .03±.10
flags .70±.03 .70±.04 .69±.04 .69±.03 .69±.02 .71±.03
genbase .99±.01 .99±.01 .99±.01 .99±.01 .99±.01 .99±.01
health1 .56±.10 .58±.07 .61±.09 .42±.01 .73±.02 .36±.18
llog-f .15±.03 .17±.04 .15±.02 .14±.03 .21±.04 .19±.07
mediamill .50±.02 .56±.03 .56±.05 .50±.00 .60±.03 .00±.00
medical .81±.05 .79±.05 .77±.09 .80±.04 .81±.05 .82±.05
recreation1 .40±.15 .34±.11 .42±.14 .25±.09 .61±.05 .13±.11
reference1 .48±.07 .53±.04 .52±.04 .46±.06 .64±.02 .00±.00
science1 .35±.13 .36±.08 .36±.12 .38±.20 .57±.02 .03±.08
social1 .40±.02 .51±.09 .42±.14 .39±.02 .68±.02 .00±.00
society1 .40±.01 .46±.04 .47±.04 .40±.01 .52±.05 .00±.00
tmc2007 .37±.03 .36±.02 .38±.02 .00±.00 .36±.02 .00±.00
yeast .66±.01 .65±.02 .66±.02 .63±.02 .67±.02 .67±.01

avg. rank 3.71 2.92 3.33 4.92 1.67 4.46
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arts1 .18±.09 .24±.05 .22±.05 .14±.01 .30±.01 .05±.08
bibtex .18±.08 .32±.03 .29±.06 .14±.01 .27±.03 .05±.02
birds .40±.05 .40±.06 .42±.06 .41±.06 .43±.07 .42±.06
bookmarks .01±.02 .04±.06 .00±.01 .00±.00 .04±.04 .00±.00
business1 .17±.06 .22±.07 .22±.08 .13±.01 .27±.06 .06±.06
computers1 .16±.08 .17±.05 .22±.07 .04±.07 .32±.02 .00±.01
education1 .14±.08 .15±.05 .16±.08 .10±.04 .22±.01 .02±.02
emotions .68±.03 .67±.04 .68±.03 .68±.04 .70±.04 .69±.04
enron-f .18±.03 .20±.03 .20±.02 .20±.02 .21±.03 .21±.03
entertainment1 .22±.15 .32±.08 .29±.13 .27±.09 .40±.03 .01±.02
flags .53±.07 .51±.05 .51±.06 .55±.07 .53±.09 .53±.08
genbase .63±.06 .64±.06 .64±.06 .63±.06 .64±.07 .64±.06
health1 .24±.11 .26±.07 .23±.11 .17±.02 .31±.02 .03±.02
llog-f .05±.01 .06±.02 .06±.02 .07±.01 .07±.01 .06±.02
mediamill .10±.05 .17±.05 .17±.06 .23±.01 .40±.05 .00±.00
medical .32±.03 .33±.04 .33±.03 .33±.03 .34±.04 .34±.03
recreation1 .22±.16 .35±.08 .29±.13 .24±.06 .42±.14 .02±.02
reference1 .17±.07 .17±.05 .15±.08 .11±.03 .23±.06 .00±.00
scene .76±.02 .76±.02 .76±.02 .73±.03 .79±.02 .79±.02
science1 .15±.11 .24±.05 .20±.07 .17±.07 .27±.03 .00±.01
social1 .08±.06 .17±.08 .16±.09 .02±.01 .21±.02 .00±.00
society1 .06±.08 .18±.06 .19±.08 .02±.00 .30±.02 .00±.00
tmc2007 .05±.08 .08±.10 .10±.11 .00±.00 .13±.11 .00±.00
yeast .47±.01 .47±.01 .47±.01 .46±.01 .48±.01 .47±.01

avg. rank 4.46 3.25 2.92 4.42 1.33 4.63
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arts1 .32±.12 .39±.05 .37±.08 .27±.01 .50±.01 .24±.08
bibtex .39±.07 .43±.02 .42±.04 .27±.02 .42±.02 .20±.09
birds .55±.04 .54±.06 .54±.04 .55±.05 .60±.05 .60±.06
bookmarks .06±.02 .09±.06 .11±.06 .00±.00 .14±.05 .03±.04
business1 .68±.03 .72±.03 .72±.04 .60±.20 .76±.02 .60±.20
computers1 .47±.08 .51±.06 .48±.06 .42±.01 .59±.04 .04±.13
education1 .36±.11 .37±.10 .36±.11 .30±.06 .52±.01 .14±.14
emotions .71±.04 .69±.04 .70±.05 .70±.03 .71±.03 .70±.04
enron-f .59±.02 .60±.02 .60±.02 .57±.02 .61±.02 .61±.01
entertainment1 .42±.11 .45±.10 .43±.09 .41±.09 .66±.01 .03±.09
flags .70±.03 .72±.03 .71±.03 .71±.03 .72±.03 .72±.03
genbase .99±.01 .99±.01 .99±.01 .99±.01 .99±.01 .99±.01
health1 .51±.12 .61±.04 .57±.07 .44±.02 .71±.03 .34±.17
llog-f .19±.05 .22±.04 .22±.03 .26±.04 .25±.05 .20±.08
mediamill .50±.02 .57±.06 .58±.04 .53±.00 .64±.02 .00±.00
medical .82±.04 .81±.04 .81±.04 .81±.04 .82±.04 .83±.04
recreation1 .34±.16 .38±.11 .36±.14 .30±.02 .59±.04 .12±.10
reference1 .48±.06 .51±.05 .53±.06 .43±.02 .63±.02 .00±.00
scene .75±.02 .75±.02 .75±.02 .73±.03 .78±.02 .79±.02
science1 .27±.10 .35±.12 .32±.13 .31±.13 .52±.03 .02±.07
social1 .39±.02 .45±.10 .49±.10 .33±.12 .62±.08 .00±.00
society1 .37±.01 .45±.04 .39±.14 .37±.01 .51±.02 .00±.00
tmc2007 .32±.07 .36±.06 .36±.06 .00±.00 .38±.02 .00±.00
yeast .66±.02 .67±.02 .67±.01 .65±.01 .68±.02 .68±.01

avg. rank 4.00 3.04 3.13 4.96 1.33 4.54

search space, we used the AILibs2 format of the project
HASCO and the extensive description of MEKA and WEKA
provided in [65]. The source code for the benchmarking
framework and the experiments is publicly available via

2. https://github.com/starlibs/AILibs

GitHub3.

7.2 Analysis of Generalization Performance

The test performances for all the methods and datasets
across 10 train and test splits and the three performance
measures (instance-wise, label-wise, and micro-averaged F-
Measure) are given in Table 3. At first glance, one can
observe that HTN-BF performs best in most of the cases
and tends to outperform all other methods on a wide range
of datasets. To obtain a better and more profound overall
impression, we have additionally visualized the results in
the form of scatter plots in Fig. 8, where we compare the
performance of one method against all others for each
of the performance measures. A single point in this plot
depicts the relative performance of the one method and
another compared method for one of the datasets, where
the performance of the one method is on the x-axis and that
of the compared method on the y-axis. The generalization
performance of the considered method improves from left
to right, and the performance of the compared methods bot-
tom up. A tie in the generalization performance is observed
whenever a point is located on the diagonal. If a point lies
below (above) the diagonal, it means the considered method
performs better (worse).

These plots clearly show that HTN-BF mostly dominates
the other methods and yields (most of the time just slightly)
inferior results on a few datasets only. In fact, the few cases
in which another algorithm exhibits better performance are
not even statistically significant. While the advantage of
HTN-BF is clearly visible for all performance measures, it
is especially obvious for the case of label-wise F-Measure
optimization. The measure seems to be rather hard to op-
timize by the AutoML approaches since the scores are in
general rather low. Yet, HTN-BF manages to obtain scores
that improve up to a factor of three compared to SMAC and
Hyperband (let alone Random Search, which is completely
off the mark). Furthermore, we can observe that SMAC
is more in the midfield, whereas HB and BOHB perform
usually superior to the other methods (except for HTN-
BF). Apart from the random search, GGP typically performs
inferior to the other considered methods, such that most of
the points are located above the diagonal.

In Table 3, we can see that the advantage of HTN-
BF is often statistically significant. For each dataset, we
report the mean result of each algorithm together with its
standard deviation. The algorithm with the best mean score
is marked in bold, and we underline those results that
are not significantly worse in a statistical sense (according
to a Wilcoxon signed-rank test with a threshold for the
p-value of 0.05) for the same dataset. As suggested by
the rather low standard deviations and confirmed by the
significance test, the results are not just by chance. Instead,
the advantage of HTN-BF appears to be systematic. In spite
of HTN-BF improving over other approaches by factors on
some datasets, the statistical difference in summary is less
pronounced for the label-wise F-measure. For the other two
performance measures, the great majority of advantageous
entries is also significant.

3. https://github.com/mwever/tpami-automlc
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The random search baseline manages to return better
solutions than the other optimizers on several datasets even
after 24 hours of runtime. Furthermore, for two of the three
measures, it is even able to obtain a better average rank
than GGP, getting close to SMAC and GGP for the label-
wise F-measure. Random search does not offer a practically
useful alternative, however, as it also produces disastrous
results on a considerable number of datasets. The strongly
fluctuating performance can be explained by the fact that
the random search first draws one element from the set of
all possible unparameterized classifiers, which has, by defi-
nition, a bias towards more complex classifier structures (i.e.
a higher tendency for including meta classifiers for multi-
label classification as well as single-label base learners) since
those represent a larger fraction of the set.

In the nested donut charts of Fig. 11, we present the
relative frequency of an algorithm being selected by the
respective optimizer across all runs. The layers of the nested
donut charts represent the five different component types
reading from outside to inside: meta multi-label, base multi-
label, meta single-label, base single-label, and kernel al-
gorithms. For a better readability, only algorithms with a
portion of at least 0.05 are shown. Algorithms below this
threshold are grouped together under the label “Others”.
If no algorithm has been selected for a particular layer,
this is denoted by a “/”. Note that meta methods do not
necessarily need to be selected as opposed to base multi-
label algorithms that are required to occur in any solution.
This figure makes very clear that SMAC, HB, and BOHB
select somewhat similar solutions which also explains their
similar performance in various settings. However, SMAC’s
and HB’s choices differ more from each other than each of
them differs from BOHB. Another interesting observation is
that the bias of the random search towards more complex
classifier structures is obvious and clearly distinguishes it
from any other method. On one hand, this bias enables
random search to yield best performances on some of the
datasets. On the other hand, classifier evaluations are more
prone to timeouts, because more complex classifiers usually
also need considerably more evaluation time, explaining
the disastrous results previously mentioned. Lastly, GGP
and HTN-BF favor simpler solutions barely incorporating
meta algorithms at all. Still the methods selected by GGP
and HTN-BF differ significantly, especially the set of chosen
multi-label base algorithms is way more diverse in the case
of HTN than for GGP.

Methods that are based on a reduction to hyper-
parameter optimization are usually inferior to HTN-BF but
still better on a few datasets. Overall, however, it is obvious
that HB and BOHB compare favorably to SMAC, which we
attribute to the feature of multifidelity optimization. Since
HB and BOHB are allowed to evaluate single iterations
of the Monte Carlo cross-validation (MCCV), they can use
more time to explore a more diverse array of classifiers
and then focus more and more on the promising candi-
dates. In the anytime average rank plots in Fig. 10, we
can observe that these methods usually perform superior
in the beginning, but HTN-BF passes by after one hour (first
vertical dashed line). While HB and BOHB race head-to-
head, SMAC is more or less off the mark, especially for FL
and Fµ. Nevertheless, in the case of FI , SMAC manages to

perform competitively to BOHB. GGP and Random quickly
drop to the back ranks, which is due to sampling the (first)
incumbent uniformly at random leading to rather complex
models that take longer to evaluate or might even timeout
and any method is considered to have a score of 0 as long
as no incumbent was found.

Grammar-based genetic programming (GGP) performs
the worst on average. After 12h (third dashed vertical line)
it significantly loses in terms of average ranks compared
to all other methods, at this point performing even worse
than random search for FI and Fµ. However, the bad
performance can be attributed to the parameterization of
the evaluated GGP approach, which has been configured
with a population containing only 15 individuals, as it was
advised in [5]. While this seems to be a reasonable value for
moderate runtimes of up to 6 hours (second dashed vertical
line), it impedes a sufficient exploration of the search space
as carried out by other methods. Additionally, we only use
a straight-forward version of GGP which does not leverage
more sophisticated features, as for example restarting.

Another interesting insight is with respect to the “stabil-
ity” of the approaches. We can see that the standard devi-
ation is smaller for HTN-BF than for all other algorithms,
both on average and in the extremes. In other words, HTN-
BF produces high-quality results on a quite constant level.
As a consequence, HTN-BF can be expected to produce
better results than SMAC or HB in almost all cases, not
only on average. Furthermore, results obtained from other
methods can also perform considerably worse than the
mean performance, entailing a certain risk when being used
in practice.

Finally, even if HTN-BF is playing quite a dominant role,
it is worth mentioning that each of the other methods yields
the best performance for at least one combination of dataset
and performance measure.

7.3 Discussion of Results

The first conclusion one may want to draw from the re-
sults is that greedily pursuing candidate lines pays off in
the multi-label scenario. Among all compared algorithms,
HTN-BF along with GGP is clearly the most greedy al-
gorithm; its only exploration is in the number of samples
drawn for each node evaluation. But this number is small
(here 3), and there is no further update of those values
once the node evaluation has been completed. However,
although GGP can also be considered quite greedy due
to its local search behavior, it very much depends on its
initialization and gets stuck in local optima quite easily.
Given HTN-BF’s great overall performance, we conclude
that greediness is preferable over exploration for this setting,
which is characterized by an extremely large search space.

This also seems to have an intuitive explanation in the
long evaluation times in multi-label classification, which are
shown in terms of boxplots in Fig. 9. There is simply not
enough time for exhaustive evaluation, and being stuck in
a local optimum, at least provided enough exploration in
the beginning, is a substantially smaller risk here than not
optimizing at all.

However, taking a closer look, it is not entirely clear
whether the advantage of HTN-BF is due to the search
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behavior or due to the formal model for specifying the
search space. In other words, maybe the advantage already
comes from using a grammar-based approach for modeling
the search space instead of flattening the space to a hyper-
parameter optimization vector, whereas the (greedy) algo-
rithm used to traverse that space has a less strong influence.

This suspicion seems to be confirmed by the fact that the
random search, being the least greedy algorithm, does also
sometimes perform well. In fact, among all cases in which
HTN-BF is not best, the random search has the highest
chance to be the winner. For these particular datasets, this
is either attributed to the fact that the more sophisticated
methods tend to focus on flatter classifiers and thus simpler
classifier structures, or it does not seem to advocate any
strategy that exploits the information encountered so far.

On the other hand, the results of the random search are
often also quite disastrous, as it repeatedly runs into time-
outs and cannot find any reasonable solution. For example,
the score on mediamill, social1, society1, and tmc2007 is 0,
compared to values between .3 and .6 for the other algo-
rithms4. Hence, random search is certainly not a reasonable
alternative. Note that in cases where the score is 0, classifiers
are returned that are fast to evaluate but low in performance.
Often these solutions employ a majority classifier as a base
learner for the transformation methods, which due to the
rare label activation always scores 0.

Overall, all methods seem to struggle with the tremen-
dous size of the search space. While greediness still seems to
be the best way to cope with this challenge, just like all other
methods, it tends to ignore classifiers that are structurally
more complex. As indicated by the results of the random
search, which is more biased towards such methods, simply
leaving out the more complex methods would come at
the price of excluding the optimal solution for some tasks.
Nevertheless, to improve the performance of the obtained
solutions, either the methods need to be adapted further
to work more effectively in the MLC search space, or
the problem needs to be transformed so that the methods
can better cope with it. For the latter, one option would
be to implement meta-learning approaches to dynamically
prune parts of the search space, i.e., in an instance-wise
manner, which are anticipated not to be relevant for the
final solution. For example this could be done employing
approaches to extreme algorithm selection (XAS), which
proved beneficial in settings with a large number of different
algorithms [66].In this way the optimizers could focus on
the more promising candidates as anticipated by the XAS
model. Another option would be to incorporate safeguards
for the evaluation of solution candidates to avoid timeouts,
thus allowing one to waste time for regions that are omitted
from the effective solution space anyways. Interestingly, the
observation that either method needs to be adapted to better
fit the MLC setting, or that the search space needs to be
transformed in a way to better suit the methods we already

4. One may wonder how any algorithm can have positive results if
such results cannot be obtained even with maximum exploration. The
explanation here is that the systematic searches have a more systematic
exploration. For example, if the evaluation of a node in HTN-BF obtains
a timeout, the corresponding sub-tree of this node is ignored, whereas
random search may consider repeatedly instances of this algorithm
which are also very likely to produce a timeout.

D
at
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et

5-MCCV Classi�er Evaluation Times in Seconds

Fig. 9: Evaluation times of successful classifier evaluations.

have developed for SLC, perfectly matches the philosophy
according to which classifiers for MLC have been developed
in the literature so far.

8 CONCLUSION

In this work, we considered existing optimization ap-
proaches for automating multi-label classification and,
moreover, transferred other AutoML approaches commonly
used for single-label classification to the problem domain of
MLC. Furthermore, we defined a benchmarking framework
for multi-label classification, which allows for isolated op-
timizer comparisons ensuring that all of them run within
the same computational and time constraints, and that they
operate on the same search space, i.e., the same solution can-
didates can be found and the same performance estimation
of solution candidates is used.

Our extensive study revealed that a reduction of the
AutoML problem to hyper-parameter optimization does not
scale well to the problem domain of MLC out of the box.
Consequently, to apply those techniques properly, more
work on dealing with the extremely large search space and
the deep hierarchical configuration structures of multi-label
classifiers is necessary.
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Fig. 10: Average ranks over time (in ms) for the three
performance measures: instance-wise F-Measure (FI ), label-
wise F-Measure (FL), and micro-averaged F-Measure (Fµ).

On the contrary, a greedy global search approach based
on hierarchical task network planning yields promising
results, showing the potential to properly deal with the
hierarchical structures that are also reflected in the model
of the search space. However, all of the considered AutoML
approaches have in common that they focus on classifiers
having a flatter structure than others. As a result, more
complex classifiers with a better generalization performance
are not yet sufficiently considered. To address this problem,
we outlined two interesting research directions, which are
in line with the two ways classifiers for MLC have been
developed in the past: to either adapt the methods to the
specifics of the MLC search space, or to transform the
original AutoML problem for MLC into a problem that is
more amenable to the already existing approaches.
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machine learning via hierarchical planning,” Machine Learning,
vol. 107, no. 8-10, 2018.

[18] M. Wever, F. Mohr, and E. Hüllermeier, “Ml-plan for unlimited-
length machine learning pipelines,” in ICML 2018 AutoML Work-
shop, 2018.

[19] H. Rakotoarison, M. Schoenauer, and M. Sebag, “Automated ma-
chine learning with monte-carlo tree search,” in Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, 2019.

[20] I. Drori, Y. Krishnamurthy, R. Rampin, R. Lourenço, J. One, K. Cho,
C. Silva, and J. Freire, “Alphad3m: Machine learning pipeline
synthesis,” in AutoML Workshop at ICML, 2018.

[21] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-the-
art,” arXiv preprint arXiv:1908.00709, 2019.

[22] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li,
and A. Smola, “Autogluon-tabular: Robust and accurate automl
for structured data,” arXiv preprint arXiv:2003.06505, 2020.

[23] B. Chen, H. Wu, W. Mo, I. Chattopadhyay, and H. Lipson,
“Autostacker: A compositional evolutionary learning system,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2018, pp. 402–409.

[24] X. Sun, J. Lin, and B. Bischl, “Reinbo: Machine learning pipeline
conditional hierarchy search and configuration with bayesian
optimization embedded reinforcement learning,” in Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 2019, pp. 68–84.

[25] E. LeDell and S. Poirier, “H2o automl: Scalable automatic machine
learning,” in Proceedings of the AutoML Workshop at ICML, vol. 2020,
2020.

[26] A. Balaji and A. Allen, “Benchmarking automatic machine learn-
ing frameworks,” arXiv preprint arXiv:1808.06492, 2018.

[27] P. Gijsbers, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Van-
schoren, “An open source automl benchmark,” in 6th ICML Work-
shop on Automated Machine Learning, 2019.

[28] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label
data,” in Data mining and knowledge discovery handbook. Springer,
2009.

[29] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning
algorithms,” IEEE transactions on knowledge and data engineering,
vol. 26, no. 8, 2013.

[30] G. Tsoumakas and I. Katakis, “Multi-label classification: An
overview,” International Journal of Data Warehousing and Mining
(IJDWM), vol. 3, no. 3, 2007.

[31] D. Kocev, C. Vens, J. Struyf, and S. Džeroski, “Ensembles of multi-
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learning service composition,” arXiv preprint arXiv:1809.00486,
2018.
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Abstract. In multi-label classification (MLC), each instance is associ-
ated with a set of class labels, in contrast to standard classification, where
an instance is assigned a single label. Binary relevance (BR) learning,
which reduces a multi-label to a set of binary classification problems,
one per label, is arguably the most straight-forward approach to MLC.
In spite of its simplicity, BR proved to be competitive to more sophisti-
cated MLC methods, and still achieves state-of-the-art performance for
many loss functions. Somewhat surprisingly, the optimal choice of the
base learner for tackling the binary classification problems has received
very little attention so far. Taking advantage of the label independence
assumption inherent to BR, we propose a label-wise base learner selection
method optimizing label-wise macro averaged performance measures. In
an extensive experimental evaluation, we find that or approach, called
LiBRe, can significantly improve generalization performance.

Keywords: Multi-label classification · Algorithm selection · Binary
relevance

1 Introduction

By relaxing the assumption of mutual exclusiveness of classes, the setting of
multi-label classification (MLC) generalizes standard (binary or multinomial)
classification—subsequently also referred to as single-label classification (SLC).
MLC has received a lot of attention in the recent machine learning literature [23,
29]. The motivation for allowing an instance to be associated with several classes
simultaneously originated in the field of text categorization [19], but nowadays
multi-label methods are used in applications as diverse as image processing [4,26]
and video annotation [14], music classification [18], and bioinformatics [2].

Common approaches to MLC either adapt existing algorithms (algorithm
adaptation) to the MLC setting, e.g., the structure and the training procedure
for neural networks, or reduce the original MLC problem to one or multiple SLC
problems (problem transformation). The most intuitive and straight-forward

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 561–573, 2020.
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problem transformation is to decompose the original task into several binary
classification tasks, one per label. More specifically, each task consists of train-
ing a classifier that predicts whether or not a specific label is relevant for a query
instance. This approach is called binary relevance (BR) learning [3]. Beyond BR,
many more sophisticated strategies have been developed, most of them trying
to exploit correlations and interdependencies between labels [28]. In fact, BR
is often criticized for ignoring such dependencies, implicitly assuming that the
relevance of one label is (statistically) independent of the relevance of another
label. In spite of this, or perhaps just because of this simplification, BR proved to
achieve state-of-the-art performance, especially for so-called decomposable loss
functions, for which its optimality can even be corroborated theoretically [7,9].

Techniques for reducing MLC to SLC problems involve the choice of a
base learner for solving the latter. Somewhat surprisingly, this choice is often
neglected, despite having an important influence on generalization performance
[10–12,15]. Even in more extensive studies [10,12], a base learner is fixed a
priori in a more or less arbitrary way. Broader studies considering multiple
base learners, such as [6,22], are relatively rare and rather limited in terms
of the number of base learners considered. Only recently, greater attention to
the choice of the base learner has been paid in the field of automated machine
learning (AutoML) [17,24,25], where the base learner is considered as an impor-
tant “hyper-parameter” to tune. Indeed, while optimizing the selection of base
learners is laborious and computationally expensive in general, which could be
one reason for why it has been tackled with reservation, AutoML now offers new
possibilities in this direction.

Motivated by these opportunities, and building on recent AutoML methodol-
ogy, we investigate the idea of base learner selection for BR in a more systematic
way. Instead of only choosing a single base learner to be used for all labels simul-
taneously, we even allow for selecting an individual learner for each label (i.e.,
each binary classification task) separately. In an extensive experimental study,
we find that customizing BR in a label-wise manner can significantly improve
generalization performance.

2 Multi-label Classification

The setting of multi-label classification (MLC) allows an instance to belong to
several classes simultaneously. Consequently, several class labels can be assigned
to an instance at the same time. For example, a single image could be tagged
with labels Sun and Beach and Sea and Yacht.

2.1 Problem Setting

To formalize this learning problem, let X denote an instance space and L =
{λ1, . . . , λm} a finite set of m class labels. An instance x ∈ X is then (non-
deterministically) associated with a subset of class labels L ∈ 2L. The subset L
is often called the set of relevant labels, while its complement L\L is considered
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irrelevant for x. Furthermore, a set L of relevant labels can be identified by a
binary vector y = (y1, . . . , ym) where yi = 1 if λi ∈ L and yi = 0 otherwise (i.e.,
if λi ∈ L \ L). The set of all label combinations is denoted by Y = {0, 1}m.

Generally speaking, a multi-label classifier h is a mapping h : X −→ Y
returning, for a given instance x ∈ X , a prediction in the form of a vector

h(x) =
(
h1(x), h2(x), . . . , hm(x)

)
.

The MLC task can be stated as follows: Given a finite set of observations as
training data Dtrain

..= (Xtrain, Ytrain) =
{
(xi,yi)

}N

i=1
⊂ X N × Y N , the goal is

to learn a classifier h : X −→ Y that generalizes well beyond these observations
in the sense of minimizing the risk with respect to a specific loss function.

2.2 Loss Functions

A wide spectrum of loss functions has been proposed for MLC, many of which are
generalizations or adaptations of losses for single-label classification. In general,
these loss functions can be divided into two major categories: instance-wise and
label-wise. While the latter first compute a loss for each label and then aggregate
the values obtained across the labels, e.g., by taking the mean, instance-wise loss
functions first compute a loss for each instance and subsequently aggregate the
losses over all instances in the test data. As an obvious advantage of label-wise
loss functions, note that they can be optimized by optimizing a standard SLC loss
for each label separately. In other words, label-wise losses naturally harmonize
with label-wise decomposition techniques such as BR. Since this allows for a
simpler selection of the base learner per label, we focus on two such loss functions
in the following. For additional details on MLC and loss functions, especially
instance-wise losses, we refer to [23,29].

Let Dtest
..= (Xtest, Ytest) = {(xi,yi)}S

i=1 ⊂ X S × YS be a test set of size S.
Further, let H = (h(x1), . . . ,h(xS)) ⊂ YS . Then, the Hamming loss, which can
be seen as a generalized form of the error rate, is defined1 as

LH(Ytest,H) ..=
1

m

m∑

j=1

1

S

S∑

i=1

�
yi,j �= hj(xi))

�
. (1)

Moreover, the label-wise macro-averaged F-measure (which is actually a measure
of accuracy, not a loss function, and thus to be maximized) is given by

F(Ytest,H) ..=
1

m

m∑

j=1

2
∑S

i=1 yi,jhj(xi)∑S
i=1 yi,j +

∑S
i=1 hj(xi)

. (2)

Obviously, to optimize the measures (1) and (2), it is sufficient to optimize each
label individually, which corresponds to optimizing the inner term of the (first)
sum.

1 �·� is the indicator function.
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2.3 Binary Relevance

As already said, binary relevance learning decomposes the MLC task into several
binary classification tasks, one for each label. For every such task, a single-label
classifier, such as an SVM, random forest, or logistic regression, is trained. More
specifically, a classifier for the jth label is trained on the dataset {(xi, yi,j)}N

i=1.
Formally, BR induces a multi-label predictor

BRb : X −→ Y, x �→
(
b1(x), b2(x), . . . , bm(x)

)
,

where bj : X −→ {0, 1} represents the prediction of the base learner for the jth

label.

3 Related Work

Binary relevance has been subject to modifications in various directions, an
excellent overview of which is provided in a recent survey [28]. Extensions of
BR mainly focus on its inability to exploit label correlations, due to treating
all labels independently of each other. Three types of approaches have been
proposed to overcome this problem. The first is to use classifier chains [15]. In
this approach, one first defines a total order among the m labels and then trains
binary classifiers in this order. The input of the classifier for the ith label is the
original data plus the predictions of all classifiers for labels preceding this label in
the chain. Similarly, in addition to the binary classifiers for the m labels, stacking
uses a second layer of m meta-classifiers, one for each label, which take as input
the original data augmented by the predictions of all base learners [11,21]. A
third approach seeks to capture the dependencies in a Bayesian network, and
to learn such a network from the data [1,20]. One can then use probabilistic
inference to compute the probability for each possible prediction.

Another line of research looks at how the problem of imbalanced classes can
be addressed using BR. Class imbalance constitutes an important challenge in
multi-label classification in general, since most labels are usually irrelevant for
an instance, i.e., the overwhelming majority of labels in a binary task is negative.
Using BR, the imbalance can be “repaired” in a label-wise manner, using tech-
niques for standard binary classification, such as sampling [5] or thresholding
the decision boundary [13]. An approach taking dependencies among labels into
account (and hence applied prior to splitting the problem) is presented in [27].

To the best of our knowledge, this is the first approach in which the base
learner used for the different labels is subject to optimization itself. In fact,
except for AutoML tools, we are not even aware of an approach optimizing a
single base learner applied to all labels. In all the above approaches, the choice
of the base learners is an external decision and not part of the learning problem
itself.
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4 Label-Wise Selection of Base Learners

As already stated before, while various attempts at improving binary relevance
learning by capturing label dependencies have been made, the choice of the
base learner for tackling the underlying binary problems—as another potential
source of improvement—has attracted much less attention in the literature so
far. If considered at all, this choice has been restricted to the selection of a single
learner, which is applied to all m binary problems simultaneously.

We proceed from a portfolio of base learners

A ..=
{
a | a : (X n × {0, 1}n) −→ (X −→ {0, 1})

}
.

Then, given training data Dtrain = (Xtrain, Ytrain), the objective is to find the
base learner a for which BR performs presumably best on test data Dtest =
(Xtest, Ytest) with respect to some loss function L:

arg min
a∈A

L
(
Ytest,BRb(Xtest)

)
, with bj

..= a
(
Xtrain, Y

(j)
train

)
, (3)

where Y
(i)
train denotes the jth column of the label matrix Ytrain.

Moreover, we propose to leverage the independence assumption underlying
BR to select a different base learner for each of the labels, and refer to this
variant as LiBRe. We are thus interested in solving the following problem:

arg min
a∈Am

L
(
Ytest,BRb(Xtest)

)
, with bj

..= aj

(
Xtrain, Y

(j)
train

)
. (4)

Compared to (3), we thus significantly increase flexibility. In fact, by taking
advantage of the different behavior of the respective base learners, and the ability
to model the relationship between features and a class label differently for each
binary problem, one may expect to improve the overall performance of BR. On
the other side, the BR learner as a whole is now equipped with many degrees of
freedom, namely the choice of the base learners, which can be seen as “hyper-
parameters” of LiBRe. Since this may easily lead to undesirable effects such
as over-fitting of the training data, an improvement in terms of generalization
performance (approximated by the performance on the test data) is by no means
self-evident. From this point of view, the restriction to a single base learner in (3)
can also be seen as a sort of regularization. Such kind of regulation can indeed
be justified for various reasons. In most cases, for example, the binary problems
are indeed not completely different but share important characteristics.

Computationally, (4) may appear more expensive than choosing a single base
learner jointly for all the labels, at least at first sight. However, the complexity in
terms of the number of base learners to be evaluated remains exactly the same.
In fact, just like in (3), we need to fit a BR model for every base learner exactly
once. The only difference is that, instead of picking one of the base learners for
all labels in the end, LiBRe assembles the base learners performing best for the
respective labels (recall that we head for label-wise decomposable performance
measures).
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5 Experimental Evaluation

This section presents an empirical evaluation of LiBRe, comparing it to the
use of a single base learner as a baseline. We first describe the experimental
setup (Sect. 5.1), specify the baseline with the single best base learner (Sect. 5.2),
and define the oracle performance (Sect. 5.3) for an upper bound. Finally, the
experimental results are presented in Sect. 5.4.

5.1 Experimental Setup

For the evaluation, we considered a total of 24 MLC datasets. These datasets
stem from various domains, such as text, audio, image classification, and biology,
and range from small datasets with only a few instances and labels to larger
datasets with thousands of instances and hundreds of labels. A detailed overview
is given in Table 1, where, in addition to the number of instances (#I) and
number of labels (#L), statistics regarding the label-to-instance ratio (L2IR), the
percentage of unique label combinations (ULC), and the average label cardinality
(card.) are given.

The train and validation folds were derived by conducting a nested 2-fold
cross validation, i.e., to assess the test performance we have an outer loop of 2-
fold cross validation. To tune the thresholds and select the base learner, we again
split the training fold of the outer loop into train and validation sets by 2-fold
cross validation. The entire process is repeated 5 times with different random
seeds for the cross validation. Throughout this study, we trained and evaluated
a total of 14,400 instances of BR and 649,800 base learners accordingly.

Furthermore, we consider two performance measures, namely the Hamming
loss LH and the macro-averaged label-wise F-measure as defined in (1) and (2),
respectively. A binary prediction is obtained by thresholding the prediction of
an underlying scoring classifier, which produces values in the unit interval (the
higher the value, the more likely a label is considered relevant). The thresholds
τ = (τ1, τ2, . . . , τm) are optimized by a grid search considering values for τi ∈
[0, 1] and a step size of 0.01. When optimizing the thresholds, we either allow for
label-wise optimization or constrain the threshold to be the same for all labels
(uniform τ), i.e., τi = τj for all i, j ∈ {1, . . . , m}.

In order to determine significance of results, we apply a Wilcoxon signed rank
test with a threshold for the p-value of 0.05. Significant improvements of LiBRe
are marked by • and significant degradations by ◦.

We executed the single BR evaluation runs, i.e., training and evaluating either
on the validation or test split, on up to 300 nodes in parallel, each of them
equipped with 8 CPU cores and 32 GB of RAM, and a timeout of 6 h. Due to
the limitation of the memory and the runtime, some of the evaluations failed
due to memory overflows or timeouts.

The implementation is based on the Java machine learning library WEKA [8]
and an extension for multi-label classification called MEKA [16]. In our study, we
consider a total of 20 base learners from WEKA: BayesNet (BN), DecisionStump
(DS), IBk, J48, JRip (JR), KStar (KS), LMT, Logistic (L), MultilayerPerceptron
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Table 1. The datasets used in this study. Furthermore, the number of instances (#I),
the number of labels (#L), the label-to-instance ratio (L2IR), the percentage of unique
label combinations (ULC), and the label cardinality (card.) are given.

Dataset #I #L L2IR ULC card. Dataset #I #L L2IR ULC card.

arts1 7484 26 0.0035 0.08 1.65 bibtex 7395 159 0.0215 0.39 2.40

birds 645 19 0.0295 0.21 1.01 bookmarks 87856 208 0.0024 0.21 2.03

business1 11214 30 0.0027 0.02 1.60 computers1 12444 33 0.0027 0.03 1.51

education1 12030 33 0.0027 0.04 1.46 emotions 593 6 0.0101 0.05 1.87

enron-f 1702 53 0.0311 0.44 3.38 entertainment1 12730 21 0.0016 0.03 1.41

flags 194 12 0.0619 0.53 4.12 genbase 662 27 0.0408 0.05 1.25

health1 9205 32 0.0035 0.04 1.64 llog-f 1460 75 0.0514 0.21 1.18

mediamill 43907 101 0.0023 0.15 4.38 medical 978 45 0.0460 0.10 1.25

recreation1 12828 22 0.0017 0.04 1.43 reference1 8027 33 0.0041 0.03 1.17

scene 2407 6 0.0025 0.01 1.07 science1 6428 40 0.0062 0.07 1.45

social1 12111 39 0.0032 0.03 1.28 society1 14512 27 0.0019 0.07 1.67

tmc2007 28596 22 0.0008 0.05 2.16 yeast 2417 14 0.0058 0.08 4.24

(MlP), NaiveBayes (NB), NaiveBayesMultinomial (NBM), OneR (1R), PART
(P), REPTree (REP), RandomForest (RF), RandomTree (RT), SMO, SimpleL-
ogistic (SL), VotedPerceptron (VP), ZeroR (0R). All the data and source code
is made available via GitHub (https://github.com/mwever/LiBRe).

5.2 Single Best Base Learner

To figure out how much we can benefit from selecting a base learner for each label
individually, and whether this flexibility is beneficial at all, we define the single
best base learner, subsequently referred to as SBB, as a baseline. In principle,
SBB is nothing but a grid search over the portfolio of base learners (3).

When considering a base learner a, it is chosen to be employed as a base
learner for every label. After training and validating the performance, we pick
the base learner that performs best overall. This baseline thus gives an upper
bound on the performance of what can be achieved when the base learner is
not chosen for each label individually. As simple and straight-forward as it is,
this baseline represents what is currently possible in implementations of MLC
libraries, and already goes beyond what is most commonly done in the literature.

5.3 Optimistic Versus Validated Optimization

In addition to the results obtained by selecting the base learner(s) according
to the validation performance (obtained in the inner loop of the nested cross
validation), we consider optimistic performance estimates, which are obtained
as follows: After having trained the base learners on the training data, we select
the presumably best one, not on the basis of their performance on validation
data, but based on their actual test performance (as observed in the outer loop

111



568 M. Wever et al.

Fig. 1. The heat map shows the average share of each base learner being employed
for a label with respect to the optimized performance measure: Hamming (LH) or the
label-wise macro averaged F-measure (F ).

of the nested cross-validation). Intuitively, this can be understood as a kind of
“oracle” performance: Given a set of candidate predictors to choose from, the
oracle anticipates which of them will perform best on the test data.

Although these performances should be treated with caution, and will cer-
tainly tend to overestimate the true generalization performance of a classifier,
they can give some information about the potential of the optimization. More
specifically, these optimistic performance estimates suggest an upper bound on
what can be obtained by the nested optimization routine.

5.4 Results

In Fig. 1, the average share of a base learner per label is shown. From this
heatmap, it becomes obvious that for the SBB baseline only a subset of base
learners plays a role. However, one can also notice that the distribution of the
shares varies when different performance measures are optimized. Furthermore,
although random forest (RF) achieves significant shares of 0.8 for the Hamming
loss and around 0.6 for the F-measure, it is not best on all the datasets. To put
it differently, one still needs to optimize the base learner per dataset. This is
especially true, when different performance measures are of interest.

In the case of LiBRe, it is clearly recognizable how the shares are distributed
over the base learners, in contrast to SBB. For example, the shares of RF decrease
to 0.29 for F-measure and to 0.25 for Hamming, respectively. Moreover, base
learners that did not even play any role in SBB are now gaining in importance
and are selected quite often. Although there are significant differences in the
frequency of base learners being picked, there is not a single base learner in the
portfolio that was never selected.

In Table 2, the results for optimizing Hamming loss are presented. The opti-
mistic performance estimates already indicate that there is not much room for
improvement. This comes at no surprise, since the datasets are already pretty
much saturated, i.e., the loss is already close to 0 for most of the datasets. While
LiBRe performs competitively to SBB for the setting with uniform τ , SBB com-
pares favourably to LiBRe in the case where the thresholds can be tuned in a
label-wise manner. Apparently, the additional degrees of freedom make LiBRe
more prone to over-fitting, especially on smaller datasets.

In contrast to the previous results, for the optimization of the F-measure,
the optimistic performance estimates already give a promising outlook on the
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Table 2. Results obtained for minimizing LH optimistically resp. with validation per-
formances. Thresholds are optimized either jointly for all the labels (uniform τ) or
label-wise. Best performances per setting and dataset are highlighted in bold. Signifi-
cant improvements of LiBRe are marked by a • and degradations by ◦.

Dataset Optimistic uniform τ Validated uniform τ Optimistic label-wise τ Validated label-wise τ

LiBRe SBB LiBRe SBB LiBRe SBB LiBRe SBB

arts1 0.0515 0.0536 0.0531 0.0538 0.0504 0.0513 0.0526 0.0525

bibtex 0.0118 0.0126 0.0126 0.0127 0.0115 0.0120 0.0151 0.0139

birds 0.0357 0.0397 0.0476 0.0420 ◦ 0.0329 0.0352 0.0470 0.0422 ◦
bookmarks 0.0085 0.0087 0.0086 0.0087 • 0.0085 0.0086 0.0105 0.0114 •
business1 0.0233 0.0248 0.0241 0.0249 • 0.0218 0.0223 0.0227 0.0228

computers1 0.0313 0.0334 0.0329 0.0335 0.0301 0.0306 0.0323 0.0312

education1 0.0352 0.0365 0.0359 0.0369 • 0.0340 0.0344 0.0354 0.0349 ◦
emotions 0.1762 0.1800 0.1926 0.1856 ◦ 0.1684 0.1712 0.1961 0.1875 ◦
enron-f 0.0447 0.0474 0.0481 0.0477 0.0437 0.0445 0.0485 0.0469 ◦
entertainment1 0.0432 0.0466 0.0440 0.0469 • 0.0414 0.0434 0.0430 0.0443 •
flags 0.1732 0.1979 0.2134 0.2088 0.1635 0.1799 0.2105 0.2158

genbase 7.0E-4 0.0014 0.0069 0.0016 ◦ 6.0E-4 7.0E-4 0.0070 0.0023 ◦
health1 0.0305 0.0344 0.0313 0.0347 • 0.0282 0.0297 0.0303 0.0302

llog-f 0.0149 0.0153 0.0202 0.0157 ◦ 0.0145 0.0149 0.0230 0.0178 ◦
mediamill 0.0268 0.0270 0.0271 0.0270 0.0261 0.0262 0.0265 0.0265

medical 0.0084 0.0103 0.0115 0.0109 0.0078 0.0093 0.0136 0.0116

recreation1 0.0459 0.0472 0.0472 0.0473 0.0446 0.0453 0.0468 0.0462

reference1 0.0244 0.0264 0.0267 0.0268 0.0230 0.0245 0.0255 0.0251

scene 0.0781 0.0788 0.0817 0.0794 ◦ 0.0757 0.0762 0.0816 0.0800 ◦
science1 0.0281 0.0311 0.0311 0.0317 0.0269 0.0291 0.0304 0.0302

social1 0.0197 0.0208 0.0227 0.0210 0.0188 0.0196 0.0223 0.0200

society1 0.0474 0.0495 0.0479 0.0496 • 0.0444 0.0455 0.0455 0.0461 •
tmc2007 0.0601 0.0611 0.0600 0.0611 • 0.0590 0.0611 0.0613 0.0611

yeast 0.1914 0.1926 0.2002 0.1930 ◦ 0.1886 0.1890 0.1940 0.1929 ◦

potential for improving the generalization performance through the label-wise
selection of the base learners. More precisely, they indicate that performance
gains of up to 11% points are possible. Independent of the threshold optimization
variant, LiBRe outperforms the SBB baseline, yielding the best performance on
two third of the considered datasets, 13 improvements of which are significant in
the case of uniform τ , and 11 in the case of label-wise τ . Significant degradations
of LiBRe compared to SBB can only be observed for 2 respectively 3 datasets.
Hence, for the F-measure, LiBRe compares favorably to the SBB baseline.

In summary, we conclude that LiBRe does indeed yield performance improve-
ments. However, increasing the flexibility of BR also makes it more prone to
over-fitting. Furthermore, these results were obtained by conducting a nested
2-fold cross validation. While keeping the computational costs of this evaluation
reasonable, this implies that, for the purpose of validation, the base learners were
trained on only one fourth of the original dataset. Therefore, considering nested
5-fold or 10-fold cross validation could help to reduce the observed over-fitting.
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Table 3. Results for maximizing the F-measure optimistically resp. with validation
performances. Thresholds are optimized either jointly for all the labels (uniform τ) or
label-wise. Best performances per setting and dataset are highlighted in bold. Signifi-
cant improvements of LiBRe are marked by a • and degradations by ◦.

Dataset Optimistic uniform τ Validated uniform τ Optimistic label-wise τ Validated label-wise τ

LiBRe SBB LiBRe SBB LiBRe SBB LiBRe SBB

arts1 0.3445 0.2749 0.3018 0.2684 • 0.3680 0.3211 0.3184 0.3001 •
bibtex 0.4020 0.3027 0.3391 0.2998 • 0.4194 0.3516 0.3378 0.3041 •
birds 0.5404 0.4424 0.3707 0.3961 ◦ 0.5832 0.5310 0.3843 0.3981 ◦
bookmarks 0.2495 0.2244 0.2347 0.2239 • 0.2646 0.2516 0.2435 0.2416

business1 0.3692 0.2854 0.2970 0.2659 • 0.3874 0.3197 0.3006 0.2790 •
computers1 0.3646 0.2861 0.3099 0.2810 • 0.3833 0.3486 0.3224 0.3190

education1 0.3346 0.2468 0.2594 0.2437 • 0.3591 0.3022 0.2652 0.2612

emotions 0.7068 0.6946 0.6670 0.6779 0.7186 0.7135 0.6761 0.6859 ◦
enron-f 0.2870 0.2192 0.2056 0.2096 0.3138 0.2773 0.2077 0.2069

entertainment1 0.4470 0.3673 0.3929 0.3500 • 0.4639 0.4049 0.3950 0.3774 •
flags 0.6280 0.5634 0.5230 0.5098 0.6474 0.5981 0.5150 0.5145

genbase 0.8126 0.7798 0.6039 0.7421 ◦ 0.8141 0.8119 0.6201 0.6390

health1 0.4203 0.3259 0.3486 0.3208 • 0.4312 0.3582 0.3464 0.3225 •
llog-f 0.1569 0.0808 0.0730 0.0689 0.1834 0.1264 0.0744 0.0741

mediamill 0.3766 0.3499 0.3481 0.3483 0.4010 0.3898 0.3543 0.3600 ◦
medical 0.4960 0.3852 0.3560 0.3639 0.5251 0.4523 0.3547 0.3208 •
recreation1 0.4964 0.4224 0.4669 0.4160 • 0.5093 0.4675 0.4670 0.4494 •
reference1 0.3185 0.2254 0.2477 0.2021 • 0.3393 0.2860 0.2587 0.2418 •
scene 0.7831 0.7816 0.7734 0.7776 0.7909 0.7897 0.7759 0.7812

science1 0.3824 0.2724 0.2928 0.2637 • 0.4033 0.3240 0.3036 0.2662 •
social1 0.3629 0.3073 0.3046 0.3060 0.3737 0.3119 0.3103 0.2769 •
society1 0.3437 0.2807 0.3180 0.2688 • 0.3597 0.3382 0.3215 0.3238

tmc2007 0.5659 0.5342 0.5467 0.5342 0.5782 0.5525 0.5656 0.5484 •
yeast 0.4970 0.4750 0.4800 0.4731 • 0.5145 0.5084 0.4922 0.4947

6 Conclusion

In this paper, we have not only demonstrated the potential of binary relevance
to optimize label-wise macro averaged measures, but also the importance of
the base learner as a hyper-parameter for each label. Especially for the case of
optimizing for F1 macro-averaged over the labels, we could achieve significant
performance improvements by choosing a proper base learner in a label-wise
manner. Compared to selecting the best single base learner, choosing the base
learner for each label individually comes at no additional cost in terms of base
learner evaluations. Moreover, the label-wise selection of base learners can be
realized by a straight-forward grid search.

As the label-wise choice of a base learner has already led to considerable
performance gains, we plan to examine to what extent the optimization of the
hyper-parameters of those base learners can lead to further improvements. Fur-
thermore, we want to increase the efficiency of the tuning by replacing the grid
search with a heuristic approach.
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Another direction of future work concerns the avoidance of over-fitting effects
due to an overly excessive flexibility of LiBRe. As already explained, the restric-
tion to a single base learner can be seen as a kind of regularization, which, how-
ever, appears to be too strong, at least according to our results. On the other
side, the full flexibility of LiBRe does not always pay off either. An interesting
compromise could be to restrict the number of different base learners used by
LiBRe to a suitable value k ∈ {1, . . . , m}. Technically, this comes down to finding
the arg min in (4), not over a ∈ Am, but over {a ∈ Am |#{a1, . . . , am} ≤ k}.
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ABSTRACT
In multinomial classification, reduction techniques are commonly
used to decompose the original learning problem into several sim-
pler problems. For example, by recursively bisecting the original set
of classes, so-called nested dichotomies define a set of binary clas-
sification problems that are organized in the structure of a binary
tree. In contrast to the existing one-shot heuristics for constructing
nested dichotomies and motivated by recent work on algorithm
configuration, we propose a genetic algorithm for optimizing the
structure of such dichotomies. A key component of this approach is
the proposed genetic representation that facilitates the application
of standard genetic operators, while still supporting the exchange
of partial solutions under recombination. We evaluate the approach
in an extensive experimental study, showing that it yields classifiers
with superior generalization performance.
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1 INTRODUCTION
The reduction of a multinomial (aka polychotomous, multi-class)
classification problem to several binary problems is a common ap-
proach in supervised machine learning. There are several reasons
for applying a reduction of this kind. In particular, it makes classi-
fiers that are inherently binary (such as support vector machines)
amenable to the problem. Moreover, even for classifiers that are not
restricted in this sense, and which are in principle able to handle
multi-class problems directly (such as decision trees), a reduction
complying with the divide and conquer paradigm of algorithm de-
sign often leads to improvements in terms of predictive accuracy.
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Different approaches for the decomposition of multi-class problems
have been proposed in the literature; among the most common
reduction schemes are one-vs-rest (OvR), one-vs-one (OvO), also
known as all-pairs or pairwise classification [9], and nested di-
chotomies (ND) as introduced in [7].

The first two approaches, OvR and OvO, build ensembles of bi-
nary classifiers that are trained independently of each other. Since
these classifiers may produce inconsistencies at prediction time,
specific aggregation techniques (such as winner-takes-all or major-
ity vote) are needed to combine their predictions into an overall
prediction for the original problem. In contrast to that, NDs de-
compose the original multi-class problem in a hierarchical manner,
recursively splitting a set of classes into two distinct subsets. This
way, a hierarchical structure in the form of a binary tree is produced,
which is inherently consistent and associates each original class
with (a path from the root to) a leaf node. An example of a nested
dichotomy for a 4-class problem is shown in Figure 1. The classifiers
at inner nodes, referred to as base classifiers or base learners, are
supposed to predict which of the two subsets the query instance
belongs to, given it belongs to the set of classes associated with that
node; typically, this prediction is given in terms of a probability, so
that, according to the chain rule of probability, the overall proba-
bility of each class is obtained as the product of the probabilities
along the path from the root to the corresponding leaf node.

Since the structure of a dichotomy determines the classifiers that
need to be trained at the inner nodes, and hence the classification
problems that need to be solved by the learner, it has a strong
influence on performance and should be chosen with care. Indeed,
recent work in the field of algorithm selection and configuration has
shown that tuning learning algorithms for a given data set can lead
to substantial performance improvements [11, 14]. Motivated by
advances in that field, we consider the problem of finding optimal
reductions from multi-class to binary classification with the help
of a genetic algorithm.

To facilitate an efficient search of the space of NDs, we propose
a representation that is suitable for being used by evolutionary
optimization algorithms. This representation is robust to standard
mutation and recombination techniques and still enables individu-
als to share partial solutions—in contrast to the tree structure itself,
which is not suitable as a genetic representation. We also present an
algorithm for the construction of an ND from its genotype. By per-
forming multiple evolutionary runs with different randomization
seeds, we form bagged ensembles of nested dichotomies.

In an extensive experimental study, we compare our approach
for evolving nested dichotomies to several baselines, including
uniformly sampled NDs [7] and a state-of-the-art heuristic called
random-pair nested dichotomies (RPND) [12]. The results show
that the proposed genetic algorithm does outperform the baselines,
a fortiori in the case of weak base classifiers.
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Figure 1: A nested dichotomy for a 4-class problem.

2 NESTED DICHOTOMIES
Given a classification problemwith a set ofn classesC = {c1, . . . , cn },
a nested dichotomy (ND) is a recursive separation (Cl ,Cr ) ofC into
pairs of disjoint, nonempty subsets. Equivalently, an ND can be
defined in terms of a full binary tree on n leaf nodes, which are
(uniquely) labeled by the classes; moreover, the n − 1 inner nodes
are labeled by the set of classes in the subtree beneath that node
(see Figure 1 for an example).

To turn a nested dichotomy into a multi-class classifier, a binary
classifier is assigned to each inner node. The task of the classifier is
to separate the set of classes Cl associated with its left successor
node (the positive meta-class) from the set of classes Cr of its right
successor (the negative meta-class). Given a set of training data

D = {(x i , ci )}Ni=1 ⊂ X ×C ,
where X is the underlying instance space, the binary classifiers
are produced by applying a suitable base learner to the correspond-
ing classification problems. We assume the classifier hCl ,Cr asso-
ciated with the dichotomy (Cl ,Cr ) to be a mapping of the form
X −→ [0, 1], where hCl ,Cr (x) is an estimation of the conditional
probability p(c ∈ Cl | c ∈ Cl ∪Cr ,x), and hence 1−hCl ,Cr (x) an es-
timation of p(c ∈ Cr | c ∈ Cl ∪Cr ,x). Such a probabilistic classifier
is produced by the base learner on the relevant subset of training
data {(x i , ci ) ∈ D | ci ∈ Cl ∪Cr }.

Once the hierarchy of classifiers required by a nested dichotomy
has been trained, a new instance x can be classified probabilistically
as follows: For c j ∈ C , let C = C0 ⊃ C1 ⊃ · · · ⊃ Cm = {c j } be the
chain of subsets associated with the nodes from the root to the leaf
node labeled by c j . Then, by virtue of the chain rule of probability,

p(c j | x) =
m−1∏
i=1

p
(
c j ∈ Ci+1 | c j ∈ Ci ,x

)
,

where p(Ci+1 |Ci ,x) is given by hCi+1,Ci \Ci+1 (x) if Ci+1 is the left
successor ofCi , and 1−hCi \Ci+1,Ci+1 (x) ifCi+1 is the right successor
of Ci . In other words, the probability pj of class c j is obtained by
multiplying the predicted probabilities along the path from the root
of the ND tree to the leaf node associated with c j . In case a definite
decision in favor of a single class has to be made, the expected
loss minimizer can be derived from the probability distribution

(p1, . . . ,pn ); for 0/1 loss, this is simply the class c j for which pj is
highest.

As alreadymentioned, the structure of a dichotomy has an impor-
tant influence on performance and predictive accuracy. However,
finding optimal structures is not an easy task, especially because
the space of ND structures is extremely large. In fact, it is not
difficult to see that this set is isomorphic to the set of unordered
complete binary trees on n nodes, the size of which is known to be
1 · 3 · 5 · · · (2n − 3) = (2n − 3)!!.

3 RELATED WORK
Being rooted in statistics, nested dichotomies have been introduced
to the field of machine learning by Frank and Kramer [7]. Assuming
that each ND is equally likely to perform well, a binary tree is
sampled uniformly at random from the set of all possible trees.
Forming ensembles of NDs via repeated sampling of these binary
trees, Frank and Kramer showed that ensembles of NDs perform
competitive to other reduction techniques. At the inner nodes, they
use logistic regression and decision trees as base classifiers.

Further investigations were mainly focused on heuristics for
optimizing the recursive structure of NDs. To this end, Dong et al.
[3] present two approaches to balance the binary splits, either in
terms of the number of classes or the number of instances per subset
of the training data. Despite having a positive impact on runtime,
which was the main concern of the authors, these approaches have
only little effect on the predictive accuracy of such balanced NDs
(the second approach even tends to deteriorate performance).

Instead of repeatedly selecting NDs uniformly at random, Ro-
dríguez et al. [16] investigate other approaches for the assembly
of ensembles. In particular, the authors found that the accuracy of
ensembles can be improved using bagging [1], AdaBoost [8], and
MultiBoost [18] with random NDs as the base learner.

In [4], the authors propose a more sophisticated strategy for
splitting classes. In a first step, the centroid of each class (considered
as a cluster of instances) is determined. Based on this information,
for each split, a pair of classes with maximal distance between their
centroids is chosen. Subsequently, the base learner is trained to
discriminate those two classes. Finally, the model thus produced is
used to assign the remaining classes to one of the subsets, depending
on how the majority of the instances within each class is assigned.
The authors found that this approach performs superior compared
to the previous random methods.

Leathart et al. [12] picked up the idea of splitting the set of classes
by seeding each subset with a single class and assigning the remain-
ing classes based on the predictions of the trained base learner.
Instead of using distances between centroids as a criterion, they
randomly select a pair of classes to be used as seeds. Experimentally,
they show their heuristic to yield state-of-the-art performance in
terms of predictive accuracy.

4 NESTED DICHOTOMIES EVOLUTIONARY
ALGORITHM (NDEA)

In this section, we introduce an evolutionary algorithm for search-
ing the space of nested dichotomies in a systematic and efficient
way. Key to the efficiency of this algorithm is to decouple the ge-
netic representation from the phenotype that is used to assess the
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fitness of an individual. Therefore, our discussion will start with
the description of these operators, followed by the algorithm itself.

At first sight, the tree structure of an ND itself may appear
like a reasonable genotype. However, the structure of NDs has
specific semantics. In particular, each class of a multi-class problem
occurs exactly once as a leaf of the tree structure. Applying standard
genetic operators such as crossover and mutation would frequently
lead to invalid individuals. One way to overcome this problem is to
design specific genetic operators complying with this constraint,
but this would make these operators computationally expensive.

Therefore, we keep the tree structure as a phenotype and define
another genotype reducing the problem of evolving NDs to the
evolution of a string of real values.. Subsequently, we define away to
constructed the phenotype (an ND) from the genetic representation.

4.1 Genetic Representation
For the genetic representation of nested dichotomies, we aim for an
indirect representation that is robust in the face of genetic operators
but still supports the exchange of partial solutions under recombi-
nation. To this end, given an n-class problem, we define a function
φ : C ×C → R that assigns each combination (ci , c j ) of classes a
real value that we interpret as a “distance”. We require this function
to be symmetric, i.e., φ(ci , c j ) = φ(c j , ci ) for all ci , c j ∈ C . Moreover,
φ(ci , ci ) = 0 for all ci ∈ C . Fixing an ordering c1, c2, . . . , cn of the
classes in C , we can arrange the values of φ in a symmetric matrix
with zeros on the main diagonal as follows:

©«

c1 c2 . . . cn

c1 0 φ(c1, c2) . . . φ(c1, cn )
c2 φ(c2, c1) 0 φ(c2, cn )
...

...
. . .

...

cn φ(cn , c1) φ(cn , c2) . . . 0

ª®®®®¬
Concatenating the rows of the upper triangular matrix yields the
sequence

φ(c1, c2),φ(c1, c3), . . .φ(c1, cn ),φ(c2, c3), . . .φ(cn−1, cn ).
By fixing the order of the elements of φ, we choose the sequence
of φ’s values to serve as the genotype of an individual. As there
are n(n − 1)/2 many pairs of elements for an n-class problem, the
genotype of an individual is an element of Rn(n−1)/2.

Compared to the structured object of a nested dichotomy, our
genetic representation is rather simple. More importantly, it enables
us to use standard recombination techniques such as crossovers and
polynomial mutation. Another advantage is that partial solutions
may be exchanged when doing crossovers, since the distance in-
formation for pairs of classes is exchanged. Furthermore, thanks to
fixing the ordering of the φ-values, we can easily restore the tuples
(ci , c j ,φ(ci , c j )), which are required for the phenotype construction.

4.2 Phenotype Construction
The fitness of an individual is assessed by training the correspond-
ing nested dichotomy and estimating its predictive accuracy on
validation data. Thus, from the genotype of an individual, we need
to construct its phenotype, i.e., the nested dichotomy, to subse-
quently determine the individual’s fitness.

Listing 1: Phenotype construction procedure
i npu t : Queue Q , integer n
outpu t Node r oo t

Node array [ 1 . . n ] nodeArray
for k=1 to n do

nodeArray [ k ] = l e a f ( k )
od
while Q not empty do

(ci , c j , φ(ci , c j )) ← dequeue (Q)
l e f tNod e ← nodeArray [ i ]
r i gh tNode ← nodeArray [ j ]
i f ( l e f tNod e == r igh tNode )

continue

s ub t r e eRoo t ← node ( l e f tNode , r i gh tNode )
foreach k in newRoot . l e a v e s do

r oo t [ k ] ← newRoot
od

od
return nodeArray [ 0 ]

For the phenotype construction, we first need to restore the tu-
ples (ci , c j ,φ(ci , c j )) consisting of a pair of classes and a real value
describing the distance between the two classes. Taking a sequence
of genes [φ(c1, c2),φ(c1, c3), . . .φ(c1, cn ),φ(c2, c3), . . .φ(cn−1, cn )] as
input, we define tuples of the form (ci , c j ,φ(ci , c j )) for all 1 ≤ i ≤
n− 1, i < j ≤ n. Subsequently, we sort the tuples with respect to the
value of φ in ascending order and enqueue these tuples in a queue
Q . Together with the number of classes |C |, Q is then provided as
an input for the algorithm shown in Listing 1.

Initially, an array nodeArray is created that contains a leaf node
for each class of the problem. The basic idea is now to create the
binary tree bottom-up starting at the leaves. In the nodeArray, we
maintain the root node of each subtree a class may already belong
to. Iterating over the tuples contained in the queue, we retrieve the
subtree roots of the respective classes from the array and combine
these subtrees under a new root node if the classes are not already
part of the same subtree. For all classes that are part of one of the two
subtrees the entry in the nodeArray is updated accordingly. Finally,
all entries of nodeArray contain the root node of the binary tree
structure. Each inner node is assigned a base classifier completing
the construction of the nested dichotomy.

In Figure 2, examples of genotypes and their corresponding
nested dichotomies are shown for a 4-class problem with a set of
classes {A,B,C,D}. In this example, we fixed the ordering on the
classes to be A,B,C,D. Additionally, the genetic encoding of each
individual is visualized in terms of a graph, illustrating the classes
as nodes and edges between those nodes that are labeled with the
values of φ. The processing done by the algorithm in Listing 1 is
highlighted with blue borders surrounding the respective nodes.
The corresponding inner nodes within the nested dichotomies are
highlighted in blue as well.

The examples in Figure 2b illustrate offspring resulting from
a crossover of the two individuals shown in Figure 2a. To obtain
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(a) Genotypes representing balanced nested dichotomies (b) Offspring resulting from applying crossover to the individuals in 2a

Figure 2: Examples of genotypes, visualization of pairwise distances as graphs, and corresponding nested dichotomies for a
4-class problem.

these individuals, the gene strings of the parents are cut into halves.
Moreover, one can see that partial solutions, i.e., the subtree (A,C)
respectively the subtree (A,B) have been transmitted from the
parents, thus, partial solutions have been exchanged.

From the definition of genotypes and the construction of pheno-
types, it is clear that every genotype representation corresponds to
a valid ND and, moreover, each ND can be represented by a geno-
type. Since this representation is not unique, our mapping from the
space of genotypes to the space of phenotypes is a surjection.

4.3 Fitness Function
For assessing the fitness of an individual, we only consider the
performance of the phenotype. As we are mainly interested in the
generalization performance of the NDs, i.e., the predictive accuracy,
we use a variant of Monte Carlo cross-validation (MCCV). More
concretely, we create random stratified splits with 90% training and
10% validation data on which the predictive accuracy of the ND is
measured. We repeat this procedure 5 times.

Usually, the validation performance is then summarized tak-
ing the mean over the different splits. However, depending on
the dataset, the performance for different splits of the data varies
widely. Therefore, to increase robustness toward outliers, we take
the trimmed instead of the standard mean, cutting off both the best
and the worst measured value.

Another advantage of MCCV is that by drawing random splits
each time to assess an individual’s fitness, we prevents the latter
from overfitting a fixed data split. Nevertheless, especially owing
to the nature of optimizing the individuals, overfitting remains an
omnipresent problem.

Note that the fitness function is actually not a proper function,
since two independent evaluations of the same individual may lead

to different fitness values. Instead, it should be seen as an approxima-
tion of the true fitness of an individual, namely the generalization
performance of the ND it encodes.

4.4 Implementation
The actual evolutionary algorithm is an instantiation of NSGA-II [2],
albeit with the fitness function described in the previous section as
the only objective. For selection, we rely on the defaults of NSGA-II,
performing a tournament with 2 individuals. In a tournament two
individuals are compared according to their fitness value in the
first place. If both individuals have the same fitness, the crowding
distance comparator is used as a second criterion, as suggested
in [2]. For recombination and mutation, we use standard genetic
operators, i.e., single-point crossover with a probability of 0.9 and
polynomial mutation with a probability of 2/(c(c − 1)), which leads
to one mutated gene per individual in expectation. The source code
of the implementation is publicly available1.

4.5 Building Ensembles
To build bagged ensembles of size k , we do k independent evolu-
tionary runs with different seeds. Obviously, these runs may be
performed in parallel. The best individual of each run is then added
to the ensemble. While each of the ensemble members is trained on
the data independently, when making a prediction, the predictions
of all the ensemble members are aggregated by averaging over the
predicted probabilities for each class.

5 EVALUATION
In this section, we evaluate the nested dichotomies evolutionary
algorithm (NDEA) as introduced in the previous section on 35 UCI
datasets [13]. On one hand, we assess the feasibility of the proposed
1https://github.com/mwever/ndea.git
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Dataset #Classes #Inst. #Att. Dataset #Classes #Inst. #Att. Dataset #Classes #Inst. #Att.
anneal 6 898 39 arrhythmia 16 452 280 audiology 24 226 70
autos 7 205 26 balance.scale 3 625 5 car 4 1728 7
ecoli 8 336 8 glass 7 214 10 grub-damage 4 155 9
hypothyroid 4 3772 30 kropt 18 28056 7 led24 10 3200 25
letter 26 20000 17 lymph 4 148 19 mfeat-factors 10 2000 217
mfeat-fourier 10 2000 77 mfeat-karhunen 10 2000 65 mfeat-morphological 10 2000 7
nursery 5 12960 9 optdigits 10 5620 65 page-blocks 5 5473 11
pendigits 10 10992 17 primary.tumor 22 339 18 segment 7 2310 20
semeion 10 1593 257 shuttle 7 58000 10 soybean 19 683 36
splice 3 3190 62 vehicle 4 846 19 vowel 11 990 14
waveform5000 3 5000 41 wine 3 178 14 winequality 11 4898 12
yeast 10 1484 9 zoo 7 101 18

Table 1: Description of UCI datasets used in the evaluation

genetic representation of nested dichotomies. On the other hand, we
compare the predictive accuracy of the evolved nested dichotomies
to several other approaches including the state-of-the-art random
pairs nested dichotomies.

5.1 Configuration of NDEA
We instantiate NDEA with a population size to 16 individuals. The
algorithm terminates as soon as at least one of the following three
conditions holds: (1) The maximum of 200 generations is reached,
(2) the best individual has not changed for 15 generations, or (3) a
timeout for the evolutionary run occurs. For the experiments, we set
the timeout to 7 minutes. Moreover, we reinitialize the population
every 5 generations, keeping solely the best individual.

5.2 Experiment Setup
The evaluation of the NDEA is two-fold. First, the genetic represen-
tation is implicitly evaluated for its feasibility in general. Second, we
compare the quality of solutions returned by the proposed method
for nested dichotomies using three different base classifiers from
the WEKA library [6, 10]. To achieve a broad coverage of the bias-
variance spectrum, we use decision stumps, logistic regression, and
decision trees (J48 in WEKA). While the former is an extremely
simple classifier (high bias, low variance), the latter is able to create
highly non-linear decision boundaries (low bias, high variance),
and logistic regression is in-between these extremes.

We compare NDEA to the state-of-the-art random-pair nested
dichotomies (RPND) [12], class balanced NDs (CBND), data-near-
balanced NDs (DNBND) [3], furthest-centroid NDs (FCND) [4],
and the original randomly sampled nested dichotomies (ND) [7].
The well-known reduction techniques one-vs-one (OvO) [9] and
one-vs-rest (OvR) are considered as additional baselines.

Altogether, we evaluated a bagged ensemble of size 10 for each
of the 8 methods for each dataset, performing 10 times a 10-fold
cross validation. Thus, we conducted 2,800 experiments, and in
each of these experiments, the base method for creating a single
nested dichotomy has been invoked 100 times. The experiments
were conducted on nodes with Intel Xeon E5-2670 CPUs having 8
cores, and the memory has been limited to 4GB.

To assess the statistical significance of the results, we use a rank-
sum test, the so-called Mann-Whitney U Test [15]. We consider
changes in the predictive accuracy as significant if p < 0.05.

5.3 Results
In Tables 2, 3, and 4, the results of the experiments for decision
stumps, logistic regression, and decision trees are presented. The
number of classes is given in parentheses next to the dataset names.
Significant improvements of NDEA over other methods are high-
lighted with a •, significant degradations with a ◦. Best perfor-
mances are highlighted in bold.

We start our evaluation with the results shown in Table 2, where
decision stumps are used as a base classifier. For many datasets, it
can be seen that NDEA is competitive to the other methods. For a
few datasets, we observe that NDEA yields significantly degraded
solutions, but most of these datasets have a rather small number
of classes, i.e., the binary tree structure remains rather simple. For
instance, in the case of 3 classes, ignoring the order of classes,
there are only 3 different binary tree structures. Across all datasets,
NDEA clearly dominates FCND and OvR, yielding significantly
better solutions most of the time. Compared to CBND, DNBND,
ND, and OvO, the number of significant improvements is smaller,
but our approach is still preferable. Furthermore, NDEA yields
significant improvements over the state-of-the-art approach RPND
by Leathart et al. [12].

The results for logistic regression are presented in Table 3. In
this setting, a clear dominance of NDEA can only be observed
over FCND. Nevertheless, NDEA’s performance is still preferable
compared to CBND, DNBND, OvR, and even ND. OvO and RPND
perform quite well and are rather competitive, but NDEA has still
a slight edge over those two approaches.

In the experiments with decision trees as base learner, NDEA
outperforms FCND as well as OvO and OvR. However, compared
to CBND and DNBND, there is no clear winner, since the number
of datasets with significant wins and losses is nearly balanced.
Considering RPND and ND, although NDEA is performing clearly
better than RPND, it performs significantly worse than ND on
several datasets, most probably due to the effect of overfitting the
respective data. This observation is somewhat surprising, as it
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Dataset CBND DNBND FCND ND OvO OvR RPND NDEA
anneal (6) 87.13±0.94 • 85.82±0.38 • 85.38±0.35 • 88.0±0.73 • 89.08±0.14 89.15±0.09 88.75±0.40 • 89.32±0.28
arrhythmia (16) 64.91±0.66 • 60.09±1.05 • 69.45±1.43 • 67.37±1.31 • 73.05±0.68 70.15±1.02 • 72.83±0.82 72.52±0.46
audiology (24) 67.85±0.75 66.37±0.63 55.75±2.37 65.49±1.91 73.89±0.36 52.65±0.36 75.07±0.21 71.73±1.14
autos (7) 60.24±1.61 60.39±1.59 48.88±2.28 • 60.59±1.34 60.29±1.07 57.02±0.88 • 58.73±1.79 59.8±1.29
balance.scale (3) 58.35±0.98 58.11±0.74 58.32±1.03 58.21±1.11 57.58±0.62 57.86±0.75 57.74±0.68 57.58±0.62
car (4) 70.02±0.00 70.02±0.00 70.02±0.00 70.02±0.00 70.02±0.00 70.02±0.00 70.02±0.00 70.02±0.00
ecoli (8) 79.7±1.50 79.29±1.20 76.13±1.25 • 79.61±0.91 79.38±0.58 76.52±0.80 • 80.09±0.73 80.09±1.58
glass (7) 65.05±0.80 • 65.33±1.00 • 68.41±1.26 64.49±1.25 • 65.84±0.79 • 60.23±0.99 • 67.29±1.13 67.62±0.98
grub-damage (4) 40.52±1.22 40.52±1.22 34.65±1.85 • 39.61±2.04 39.81±2.33 39.74±2.40 40.13±2.43 40.45±2.04
hypothyroid (4) 97.66±0.10 97.72±0.00 96.68±0.02 • 97.69±0.05 97.58±0.05 • 97.71±0.02 97.72±0.00 97.72±0.00
kropt (18) 26.62±0.15 26.52±0.09 • 25.59±0.14 • 26.46±0.30 • 27.12±0.04 ◦ 20.1±0.30 • 26.62±0.10 26.77±0.12
led24 (10) 68.53±0.53 • 67.47±1.15 • 58.33±0.78 • 67.63±0.81 • 67.33±0.13 • 46.76±0.11 • 69.24±0.48 • 69.97±0.56
letter (26) 56.36±0.49 ◦ 56.63±0.54 ◦ 35.84±0.34 • 51.55±0.66 • 61.99±0.15 ◦ 30.31±0.13 • 57.57±0.29 ◦ 52.48±0.48
lymph (4) 77.03±0.80 • 77.3±0.33 • 77.36±1.49 • 77.7±1.00 78.58±0.31 76.96±0.47 • 78.58±0.31 78.45±0.20
mfeat-factors (10) 87.89±0.82 ◦ 87.98±0.49 ◦ 72.7±0.35 • 87.84±0.39 ◦ 87.29±0.29 ◦ 77.89±0.39 • 87.23±0.56 ◦ 85.32±0.43
mfeat-fourier (10) 71.11±0.78 71.69±0.83 60.63±0.26 • 70.53±0.74 71.21±0.54 62.27±0.28 • 71.2±0.81 70.93±0.53
mfeat-karhunen (10) 78.68±0.57 ◦ 78.58±0.81 ◦ 60.07±0.40 • 76.15±0.85 ◦ 76.88±0.43 ◦ 49.57±0.53 • 75.37±1.00 74.29±0.81
mfeat-morphological (10) 67.49±0.88 • 66.94±1.18 • 58.88±0.33 • 67.0±0.64 • 70.19±0.24 54.41±0.30 • 69.4±0.32 69.78±0.44
nursery (5) 76.01±0.51 76.25±0.28 76.34±0.00 76.34±0.00 76.34±0.00 66.25±0.00 • 76.34±0.00 76.34±0.00
optdigits (10) 82.89±0.43 ◦ 82.85±0.55 ◦ 59.44±0.28 • 80.27±0.42 82.29±0.18 ◦ 54.04±0.36 • 79.38±0.52 • 80.38±0.67
page-blocks (5) 94.15±0.13 • 93.65±0.35 • 93.22±0.06 • 94.46±0.10 • 95.55±0.06 ◦ 94.89±0.02 • 94.98±0.07 • 95.42±0.02
pendigits (10) 78.68±0.57 • 79.11±0.33 • 63.73±0.36 • 78.38±0.77 • 81.62±0.11 ◦ 56.59±0.23 • 79.96±0.34 80.2±0.35
primary.tumor (22) 43.16±0.40 42.95±1.33 35.31±1.61 • 42.71±0.79 • 40.0±0.95 • 37.4±0.45 • 45.96±1.24 44.73±1.33
segment (7) 87.2±0.84 87.29±0.70 83.49±0.63 • 88.57±0.64 86.35±0.12 • 83.02±0.28 • 86.81±0.30 • 87.8±0.15
semeion (10) 66.67±0.64 ◦ 66.35±0.76 ◦ 45.79±0.56 • 63.92±1.21 63.68±0.44 33.51±0.70 • 63.9±0.43 64.09±0.92
shuttle (7) 92.63±0.01 • 92.66±0.03 92.71±0.00 ◦ 92.66±0.03 92.8±0.02 ◦ 92.63±0.00 • 92.74±0.02 ◦ 92.67±0.01
soybean (19) 78.9±1.04 • 78.01±1.04 • 60.24±0.68 • 81.6±0.82 85.57±0.16 ◦ 74.54±0.39 • 82.84±0.80 82.05±0.66
splice (3) 79.99±1.82 ◦ 77.12±1.31 ◦ 56.11±0.25 • 80.0±1.38 ◦ 69.03±0.38 • 81.41±0.00 ◦ 78.74±0.99 ◦ 73.98±0.00
vehicle (4) 48.77±1.66 • 48.77±1.66 • 50.65±0.29 • 58.48±2.12 ◦ 53.62±0.81 50.34±0.74 • 58.07±1.01 ◦ 53.07±0.95
vowel (11) 50.6±1.12 50.99±0.80 43.19±0.89 • 49.26±0.91 • 52.13±0.32 40.19±0.46 • 51.16±0.67 51.02±1.02
waveform5000 (3) 69.68±0.69 ◦ 69.88±0.42 ◦ 64.13±0.16 • 69.72±0.54 ◦ 68.08±0.26 ◦ 62.57±0.57 • 66.0±0.73 66.01±0.17
wine (3) 88.54±1.01 88.54±1.10 82.87±0.76 • 89.04±1.67 85.96±1.59 • 90.39±1.02 87.13±2.30 89.72±1.23
winequality (11) 50.29±0.48 49.98±0.47 • 44.95±0.59 • 50.51±0.45 47.8±0.34 • 51.07±0.15 ◦ 47.61±0.41 • 50.81±0.18
yeast (10) 53.39±1.06 • 52.02±0.73 • 54.08±0.66 • 53.64±0.54 • 56.83±0.41 53.09±0.30 • 56.83±0.39 57.08±0.63
zoo (7) 88.42±1.83 • 90.3±1.81 74.75±2.04 • 91.88±1.07 90.89±0.59 94.06±0.00 ◦ 91.88±1.07 90.89±0.86

Table 2: Accuracies (mean±std) of ensembles of 10 bagged nested dichotomies using decision stump as base classifier.

contradicts the results reported in [12], where no such significant
degradations of RPND have been mentioned.

Altogether, we can conclude that the proposed genetic represen-
tation is suitable for optimizing the structure of nested dichotomies.
Moreover, forming ensembles of nested dichotomies evolved with
NDEA yields classifiers of superior predictive accuracy. Especially
compared to OvO and OvR, such ensembles provide better reduc-
tions from multinomial to binary classification. NDEA even has a
slight edge over the state-of-the-art approach RPND.

However, the improved predictive accuracy comes at the cost of
runtime. As an ensemble of size 10 requires the same number of
executions of NDEA, the runtime is multiplied by the ensemble size.
Yet, as already mentioned, the evolutionary runs are independent
of each other, and thus amenable to simple parallelization.

6 CONCLUSION
In this paper, we developed an evolutionary algorithm for learning
ensembles of nested dichotomies, called NDEA.More specifically, by
evolving the structure of NDs, we seek to find the most appropriate
binary reductions of the original multi-class problem. To this end,

we proposed a genetic representation based on pairwise distances
between classes. This indirect representation allows for encoding
individuals simply by a sequence of real values, the length of which
is quadratic in the number of classes. Despite the simplicity of
this representation, it facilitates the application of standard genetic
operators. Furthermore, the encoding supports the exchange of
partial solutions.

The main question we wanted to answer is whether an evolu-
tionary approach to nested dichotomies is worthwhile, i.e., whether
there is a potential to further improve on existing methods. The
answer we can give to this question is affirmative. In fact, our ex-
periments revealed that NDEA outperforms standard reduction
techniques such as one-vs-one and one-vs-rest as well as other
heuristics for optimizing the structure of dichotomies, for example
based on clustering or balancing. Moreover, NDEA even has a slight
edge over the state-of-the-art random pair approach, albeit at the
cost of an increased runtime (as the evolutionary algorithm needs to
train and test NDs repeatedly). In this regard, we observed that, the
simpler the base learner, the more pronounced the improvements
achieved by NDEA. This is plausible, because simple classifiers have
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Dataset CBND DNBND FCND ND OvO OvR RPND NDEA
anneal (6) 99.59±0.16 99.4±0.24 99.15±0.26 • 99.58±0.16 99.45±0.18 99.51±0.14 99.59±0.14 99.58±0.17
arrhythmia (16) 58.63±1.37 56.75±1.21 47.9±2.28 • 57.41±1.00 61.06±1.20 ◦ 53.14±1.23 • 56.22±1.65 57.64±2.43
audiology (24) 84.37±0.55 81.42±1.08 • 70.5±0.42 • 83.92±1.27 77.3±1.34 • 75.88±1.71 • 83.33±0.91 84.51±0.76
autos (7) 74.24±1.74 74.29±1.76 71.07±2.12 • 73.41±1.30 75.32±1.58 66.63±2.00 • 73.61±1.08 74.83±1.38
balance.scale (3) 86.69±0.61 • 86.37±0.43 • 90.77±0.35 86.54±0.48 • 90.74±0.32 85.95±0.49 • 90.75±0.33 90.58±0.52
car (4) 92.82±0.39 • 93.7±0.18 • 94.07±0.15 92.83±0.46 • 93.92±0.16 90.16±0.14 • 93.67±0.23 • 94.0±0.11
ecoli (8) 86.46±0.68 86.82±0.42 ◦ 84.97±0.47 • 86.07±0.42 85.48±0.74 86.28±0.56 85.89±0.50 85.83±0.79
glass (7) 64.49±0.96 64.81±1.22 61.96±0.73 63.93±1.73 62.15±1.20 64.07±0.77 63.18±1.00 63.32±1.52
grub-damage (4) 43.42±1.58 43.42±1.58 42.65±1.79 42.71±2.41 41.81±1.15 41.94±2.40 43.16±2.57 41.87±2.33
hypothyroid (4) 96.55±0.36 • 96.82±0.20 • 97.61±0.07 96.72±0.27 • 97.65±0.12 95.12±0.15 • 97.54±0.11 97.65±0.08
kropt (18) 31.64±0.13 • 31.38±0.11 • 33.18±0.08 • 32.04±0.31 • 35.18±0.09 ◦ 31.69±0.07 • 33.73±0.09 • 34.16±0.17
led24 (10) 72.6±0.16 72.54±0.24 72.28±0.18 72.55±0.17 71.69±0.30 • 72.76±0.13 ◦ 72.57±0.14 72.47±0.22
letter (26) 73.71±0.45 • 73.72±0.29 • 72.25±0.13 • 74.41±0.21 • 84.6±0.06 ◦ 72.39±0.03 • 79.22±0.19 ◦ 77.38±0.18
lymph (4) 78.99±2.55 78.11±2.22 78.18±1.25 79.19±2.13 79.93±1.68 77.84±2.70 79.59±2.17 78.92±2.13
mfeat-factors (10) 97.84±0.21 • 97.82±0.14 • 96.71±0.21 • 98.02±0.20 96.92±0.18 • 96.77±0.26 • 98.01±0.09 98.25±0.23
mfeat-fourier (10) 82.54±0.49 • 82.5±0.50 • 75.54±0.55 • 82.37±0.44 • 80.95±0.35 • 77.7±0.29 • 83.1±0.54 83.3±0.40
mfeat-karhunen (10) 95.03±0.32 • 95.13±0.27 • 90.94±0.51 • 94.92±0.29 • 93.84±0.23 • 89.22±0.35 • 95.03±0.31 • 95.8±0.27
mfeat-morphological (10) 72.67±0.61 • 72.59±0.76 • 70.41±0.43 • 73.47±0.38 • 73.71±0.55 73.77±0.31 73.51±0.49 74.11±0.48
nursery (5) 92.45±0.14 92.43±0.15 92.52±0.03 92.41±0.04 • 92.59±0.05 ◦ 91.69±0.05 • 92.5±0.03 92.52±0.04
optdigits (10) 96.7±0.14 • 96.77±0.22 • 91.99±0.18 • 96.96±0.11 • 97.31±0.15 94.83±0.09 • 97.06±0.16 97.19±0.15
page-blocks (5) 95.85±0.08 • 95.61±0.07 • 95.72±0.08 • 96.07±0.10 • 96.73±0.09 ◦ 95.76±0.07 • 96.33±0.09 • 96.51±0.07
pendigits (10) 94.56±0.16 • 94.57±0.18 • 87.97±0.08 • 95.09±0.17 • 97.73±0.05 ◦ 93.56±0.06 • 95.41±0.21 • 96.69±0.09
primary.tumor (22) 45.81±1.29 46.17±0.97 39.47±1.46 • 45.6±1.62 40.0±0.89 • 42.6±1.33 • 44.31±1.58 45.06±0.88
segment (7) 94.07±0.38 • 93.88±0.25 • 88.87±0.12 • 94.21±0.34 • 95.96±0.14 92.34±0.15 • 95.48±0.29 • 96.06±0.15
semeion (10) 87.94±0.51 87.65±0.55 71.58±1.24 • 85.29±0.56 • 90.57±0.36 ◦ 74.54±0.42 • 88.0±0.73 88.02±0.65
shuttle (7) 95.01±0.42 • 96.04±0.13 • 96.84±0.04 • 95.02±0.35 • 97.42±0.06 ◦ 93.34±0.01 • 96.91±0.03 96.94±0.01
soybean (19) 94.05±0.50 94.05±0.50 91.62±0.52 • 94.06±0.42 92.71±0.46 • 92.01±0.65 • 93.95±0.47 93.64±0.52
splice (3) 92.8±0.40 ◦ 91.62±0.35 ◦ 92.18±0.31 ◦ 92.32±0.42 ◦ 90.48±0.26 • 91.82±0.18 ◦ 91.74±0.35 ◦ 90.87±0.33
vehicle (4) 79.27±0.69 79.27±0.69 79.16±0.50 80.01±0.58 ◦ 79.17±0.50 79.18±0.39 79.82±0.55 79.23±0.54
vowel (11) 79.74±1.69 • 79.82±1.35 • 80.53±0.67 • 79.79±1.52 • 90.46±0.47 ◦ 65.85±0.49 • 89.39±0.65 89.28±0.49
waveform5000 (3) 86.46±0.22 ◦ 86.47±0.24 ◦ 84.38±0.10 • 86.28±0.27 ◦ 86.5±0.13 ◦ 86.8±0.14 ◦ 85.92±0.28 ◦ 85.15±0.32
wine (3) 96.97±0.88 96.97±0.84 95.73±0.80 • 96.91±0.80 96.57±0.89 96.69±0.89 96.07±0.87 • 97.58±0.44
winequality (11) 53.81±0.14 ◦ 53.7±0.18 53.13±0.15 • 53.71±0.18 53.55±0.13 53.5±0.06 53.29±0.11 • 53.52±0.14
yeast (10) 58.72±0.59 • 58.73±0.65 • 58.98±0.38 • 58.92±0.41 • 58.98±0.37 • 58.42±0.25 • 59.13±0.50 • 59.84±0.47
zoo (7) 94.95±1.03 94.65±0.79 87.72±1.48 • 94.75±1.09 93.27±0.59 • 89.8±1.77 • 94.85±0.59 94.75±1.09

Table 3: Accuracies (mean±std) of ensembles of 10 bagged nested dichotomies using logistic regression as base classifier.

a restricted ability to solve difficult binary problems—for them, a
good binary reduction is therefore even more important than for
flexible classifiers. Nevertheless, the interplay between ND struc-
ture optimization and the choice of the base learner ought to be
investigated in more depth.

In this regard, and motivated by recent advances in algorithm
selection [5, 17, 19], we also plan to extend our approach toward
a more global hyperparameter optimization for NDs. While the
ND structure can be seen as one such hyperparameter, the base
learners at the inner nodes of an ND tree are parametrized, too.
Since we only used default parameters in our experiments, there is
obviously scope for further improvement. In this regard, one may
even think of selecting different base learners for different nodes.
Last but not least, there is of course also scope to improve our
evolutionary algorithm itself. For example, instead of creating an
ensemble by running several evolutionary processes independently
of each other, it would be more efficient (and perhaps also more
effective) to compose an ensemble from a single population. This, of
course, requires an appropriate adaptation of strategies for fitness
evaluation and selection of individuals.
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Dataset CBND DNBND FCND ND OvO OvR RPND NDEA
anneal (6) 98.67±0.20 • 98.7±0.17 • 98.56±0.20 • 98.76±0.25 98.57±0.18 • 99.14±0.23 98.44±0.21 • 99.0±0.25
arrhythmia (16) 72.7±1.07 71.84±0.99 66.19±1.39 • 73.05±0.88 67.81±1.03 • 64.71±1.52 • 71.13±1.01 71.86±1.01
audiology (24) 80.27±1.37 80.04±0.78 74.78±1.28 • 78.94±0.95 78.58±0.75 70.13±1.39 • 78.45±1.28 79.34±1.07
autos (7) 75.22±2.24 • 76.15±1.56 • 68.78±1.41 • 78.83±1.45 70.73±1.73 • 77.12±0.83 • 73.85±1.90 • 79.66±1.66
balance.scale (3) 79.63±0.73 79.57±0.91 80.02±0.35 79.65±0.72 79.23±0.96 78.32±0.66 79.81±0.89 79.39±0.97
car (4) 92.95±0.35 93.5±0.41 92.53±0.32 • 92.86±0.35 94.2±0.27 ◦ 92.46±0.44 • 92.67±0.37 93.17±0.38
ecoli (8) 85.12±0.81 85.42±1.12 82.38±1.35 • 85.12±1.05 83.72±0.80 82.14±0.83 • 83.87±1.26 84.14±1.03
glass (7) 74.02±2.04 73.93±1.80 70.98±1.73 • 75.0±1.88 73.88±1.61 70.33±3.27 71.4±1.59 73.83±1.94
grub-damage (4) 46.77±2.05 46.77±2.05 38.65±1.84 • 45.1±2.32 41.35±2.09 • 44.58±1.72 44.0±2.79 45.61±1.85
hypothyroid (4) 99.54±0.04 99.55±0.05 99.5±0.03 99.52±0.07 99.44±0.05 99.48±0.05 99.53±0.03 99.51±0.04
kropt (18) 75.35±0.18 • 75.36±0.18 • 69.31±0.26 • 75.71±0.27 • 73.28±0.15 • 66.34±0.20 • 75.97±0.19 76.4±0.17
led24 (10) 72.42±0.26 72.5±0.27 71.77±0.19 • 72.52±0.30 72.21±0.22 69.64±0.39 • 72.47±0.28 72.38±0.31
letter (26) 94.93±0.15 ◦ 94.93±0.11 ◦ 86.67±0.16 • 94.73±0.06 ◦ 91.49±0.16 • 86.95±0.10 • 94.27±0.09 94.45±0.15
lymph (4) 77.77±2.76 76.96±2.35 77.5±2.58 77.7±1.45 78.04±2.81 76.96±1.90 78.72±1.69 76.82±2.47
mfeat-factors (10) 96.08±0.28 ◦ 95.96±0.31 ◦ 88.6±0.60 • 95.68±0.28 ◦ 91.65±0.32 • 87.48±0.50 • 94.62±0.42 94.93±0.30
mfeat-fourier (10) 82.66±0.35 82.67±0.59 74.21±0.70 • 82.35±0.49 78.51±0.45 • 71.93±0.46 • 81.6±0.58 82.28±0.54
mfeat-karhunen (10) 93.54±0.35 ◦ 93.44±0.29 ◦ 82.52±0.75 • 93.51±0.39 ◦ 88.53±0.45 • 81.07±0.55 • 91.9±0.48 • 92.7±0.37
mfeat-morphological (10) 73.11±0.19 • 73.17±0.31 • 72.28±0.27 • 73.73±0.24 72.32±0.35 • 72.95±0.55 • 73.46±0.43 73.74±0.34
nursery (5) 97.19±0.12 97.19±0.11 97.14±0.10 97.19±0.11 97.13±0.07 97.21±0.10 97.17±0.08 97.17±0.10
optdigits (10) 97.31±0.11 ◦ 97.21±0.12 ◦ 90.77±0.19 • 97.12±0.20 ◦ 94.56±0.10 • 90.19±0.27 • 96.97±0.14 ◦ 96.74±0.12
page-blocks (5) 97.24±0.10 97.12±0.17 97.03±0.15 97.24±0.09 97.12±0.14 96.98±0.13 • 97.16±0.14 97.22±0.13
pendigits (10) 98.78±0.07 ◦ 98.75±0.06 ◦ 95.8±0.12 • 98.68±0.06 ◦ 96.83±0.08 • 95.43±0.15 • 98.32±0.11 • 98.48±0.10
primary.tumor (22) 47.08±1.02 ◦ 46.87±1.10 ◦ 40.27±1.15 • 45.81±1.53 43.19±0.82 • 39.82±0.78 • 43.83±0.96 44.87±0.81
segment (7) 97.72±0.20 97.82±0.25 96.6±0.30 • 97.8±0.16 96.72±0.21 • 95.45±0.29 • 97.41±0.15 • 97.93±0.21
semeion (10) 90.85±0.47 90.65±0.42 78.02±0.78 • 90.54±0.60 85.37±0.50 • 76.15±0.83 • 90.35±0.57 90.34±0.52
shuttle (7) 99.98±0.00 99.97±0.01 • 99.98±0.00 99.98±0.00 99.98±0.00 99.97±0.00 99.98±0.00 99.98±0.00
soybean (19) 94.83±0.33 94.42±0.49 92.14±0.42 • 94.04±0.45 • 93.82±0.37 • 90.98±0.39 • 94.25±0.42 94.77±0.54
splice (3) 94.46±0.43 • 93.02±0.22 • 91.03±0.50 • 94.71±0.36 94.71±0.12 • 94.72±0.19 94.92±0.15 94.92±0.09
vehicle (4) 73.45±1.30 73.45±1.30 70.12±0.65 • 72.96±0.98 71.52±0.45 70.22±1.08 • 72.04±1.05 72.62±1.45
vowel (11) 91.27±0.73 90.94±0.68 76.45±1.00 • 90.85±0.82 81.74±0.67 • 78.84±1.13 • 86.47±0.87 • 90.36±0.59
waveform5000 (3) 77.65±0.45 ◦ 77.71±0.48 ◦ 75.37±0.47 77.53±0.28 ◦ 75.78±0.31 72.82±0.50 • 75.74±0.41 75.67±0.47
wine (3) 93.31±1.47 92.92±0.91 91.24±1.71 92.81±1.39 92.02±1.42 89.33±1.55 • 92.19±0.64 92.25±1.84
winequality (11) 63.93±0.29 ◦ 63.39±0.45 ◦ 57.76±0.58 • 64.01±0.45 ◦ 58.8±0.47 • 59.45±0.92 • 62.05±0.43 • 62.76±0.36
yeast (10) 60.9±0.50 61.06±0.73 58.06±0.71 • 60.68±0.47 58.85±0.76 • 57.68±0.43 • 59.82±0.52 • 60.53±0.33
zoo (7) 92.97±0.53 93.07±0.89 87.62±1.42 • 93.17±1.03 91.29±0.40 • 92.18±1.12 92.38±0.63 93.17±0.93

Table 4: Accuracies (mean±std) of ensembles of 10 bagged nested dichotomies using decision trees as base classifier.
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Predicting Machine Learning Pipeline Runtimes
in the Context of Automated Machine Learning

Felix Mohr, Marcel Wever, Alexander Tornede, Eyke Hüllermeier

Abstract—Automated Machine Learning (AutoML) seeks to automatically find so-called machine learning pipelines that maximize the
prediction performance when being used to train a model on a given dataset. One of the main and yet open challenges in AutoML is an
effective use of computational resources: An AutoML process involves the evaluation of many candidate pipelines, which are costly but
often ineffective because they are canceled due to a timeout. In this paper, we present an approach to predict the runtime of two-step
machine learning pipelines with up to one pre-processor, which can be used to anticipate whether or not a pipeline will time out.
Separate runtime models are trained offline for each algorithm that may be used in a pipeline, and an overall prediction is derived from
these models. We empirically show that the approach increases successful evaluations made by an AutoML tool while preserving or
even improving on the previously best solutions.

Index Terms—automated machine learning, runtime prediction for classifiers and pipelines, hierarchical runtime prediction

F

1 INTRODUCTION

Automated Machine Learning (AutoML) is concerned with
the automatic construction of algorithmic solutions to ma-
chine learning tasks, so-called machine learning pipelines,
which are specifically tailored to a given dataset. The field
has gained increasing attention over the last years, and
numerous approaches have been presented [1]–[8].

Regardless of the optimization technique used, the over-
whelming majority of approaches involve the training and
validation of candidate pipelines. Such executions deliver
important estimates of the quality of pipelines, but can also
be quite expensive in terms of execution time.

AutoML tools often waste a good part of their time
budget in executions canceled due to a timeout. Timeouts are
upper bounds on the CPU time a pipeline execution may
consume to prevent the search process from getting stuck
in the evaluation of an expensive candidate.Analyzing the
evaluations in [5], we found that between 20% and 60% of
the CPU time is completely lost in evaluations that time out
before a result is returned. This corresponds to an absolute
total loss of 34 minutes (of one hour, i.e., 56%) per dataset
on average, a total loss of 400 CPU hours in that evaluation.

To our knowledge, no existing approach rejects execu-
tions that are believed to hit the timeout. An early approach
has been to estimate runtimes of a whole grid search instead
of single executions [9]. Some AutoML approaches incorpo-
rate runtime estimates when choosing the next evaluation
candidates, trading runtime against expected quality. Some
Bayesian optimizers use an implicit runtime model, which
is then part of the objective function [10], [11]. We know of
two approaches with explicit runtime models for learners
[12], [13]. However, both approaches consider learners to
be monolithic and also ignore their parameters. Hence, they
can neither generalize over different parametrizations nor
over composed learners, in particular pipelines.

Focusing on two-step classification pipelines, our contri-
bution is a compositional approach to predict pipeline time-

outs. In this paper, we not only admit algorithm parameters,
but also allow classification algorithms to be wrapped into
meta-learners and combined with a pre-processing algo-
rithm. We solve the prediction task by training regression
models only for pre-processors and base classifiers whose
predictions are then requested and aggregated into a runtime
prediction for meta-learners and complete pipelines. The
focus on classification is a bit arbitrary; we expect the
approach to also work for other data-processing pipelines
such as regression or multi-label classification.

Our experimental results are diverse. First, we find that
the basic models predict runtimes with quite a moderate
error for almost all of the considered algorithms, yielding
mostly correct decisions. Second, including observations
collected earlier in the AutoML process improves this per-
formance significantly. Next, we show that the composi-
tional approach substantially outperforms a single non-
decompositional model in the form of a random forest
regressor. Finally, we analyze the effect of the model when
being used in the AutoML tool ML-Plan [5]. For datasets
with data matrices of above 1 million entries, the number
of and time spent on successful evaluations is increased by
over 400% and 200%, respectively, on average. While higher
efficiency aims at saving resources and will not generally
imply better models produced by the AutoML tool, in some
cases such improvements can be observed as well.

For the sake of readability, we subsequently interleave
conceptual parts and results. Following a formalization of
the problem in Section 2, we give a conceptual overview of
our solution in Section 3. Our approach is built on top of
three independent building blocks to predict base algorithm
runtimes, meta-learner runtimes, and the change of dataset
meta-features, respectively. Each of them is described and
evaluated separately in dedicated Sections 4-6. In Section 7,
we merge these building blocks into a runtime predictor for
complete pipelines. Finally, Section 8 describes integration
aspects of the model into an AutoML tool and evaluates the
overall performance improvement for the case of ML-Plan.
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2 PROBLEM DEFINITION

All state-of-the-art AutoML approaches guide the search us-
ing performance estimates obtained by evaluating pipelines
[1]–[8]. Here, by evaluation we mean that the pipeline is
trained with a portion of the given data and validated with
another portion of the data disjoint from the training data.
Typically, this validation is repeated several times in a stan-
dard or hold-out cross-validation, and scores are averaged.

In this paper, we focus on search spaces covering two-
step pipelines in which meta-learners, if used, must be
homogeneous. Two-step pipelines consist of a learner that
may be preceded by a pre-processing algorithm such as
normalization or a principal component analysis. The learn-
ers can be base learners such as decision trees or neu-
ral networks, or homogeneous meta-learners like adaptive
boosting, which rely on several instances of a single base
learner to make their predictions. We do not admit hetero-
geneous meta-learners that use different base learners, say
a decision tree and a support vector machine, at the same
time. All algorithms, i.e. pre-processors as well as base-
learners and meta-learners, may potentially be customized
via parameters, and we consider pipelines to be composed
of such parametrized algorithms. We denote as P the space
of descriptions of such two-step pipelines, each element of
which describes the used algorithms and their parameters.

To predict whether the evaluation of such a pipeline
will time out, we predict its runtime via regression, and then
pass this prediction together with the time-bound to some
decision rule φ : R ˆ R Ñ t0, 1u. The simplest rule is to
multiply the predicted runtime with the number of execu-
tions required by the cross-validation, and check whether it
exceeds the time bound. Although more sophisticated rules
are clearly conceivable, we commit to that one in this paper.

Reducing the “timeout or no timeout” question to a
regression task has two important advantages over learning
a binary classification model. First, in a regression-based
solution, the learned model does not depend on the time-
bound the user configures in the AutoML tool. Using clas-
sification, each bound would give rise to a new learning
problem. Second, a regression approach can be decomposi-
tional: Predicting runtimes of the individual components of
a pipeline, and suitably aggregating them, prior knowledge
about the structure of pipelines can be incorporated, and
useful information can be shared among pipelines with
common components. It is unclear how these advantages
coming from a decompositional view could be reasonably
exploited via classification.

Formally, we search for a fast-to-evaluate function

f : P ˆD ˆD ˆHÑ R , (1)

where fpp, d1, d2, hq is the prediction of the time needed
to train a pipeline p with data d1 (training data) and make
predictions for instances in d2 (evaluation data), taking into
account previous observations h. Here, P is a space of
pipeline descriptions, D is the space of dataset descriptions,
and H is the space of histories of runtime observations.

The objective is to maximize prediction quality with
respect to the question of whether or not a pipeline will
run into a timeout. That is, given training data of previous
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prediction=	(f(p,split(d),h),t)

Search
Engine

Queries	score
for	pipeline	p

Tells
	-	validation	data	d	and	mode
	-	time	bound	t

AutoML	Tool
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rts

1

2

3
if	prediction	=	1:
		(score,details)=eval(p,d,t)
		for	obsTimes	in	details:
				add	obsTimes	to	h
		return	score
else:
		return	FAIL

4

returns	score
or	FAIL5

Fig. 1: The predictor resides inside the evaluation module
and is hence isolated from the search engine.

pipeline executions in different contexts, we aim to find
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f
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where φ encodes the fix decision rule introduced above,
JαK “ 1 iff condition α is true (else 0), ‘ is the vector
concatenation, and expectation is taken with respect to all
random splits of the available data D into Dtrain, which
is used to create f , and Dval “ DzDtrain, time bounds t,
and observation histories h. The data D associates vectors
x “ pp, d1, d2q consisting of a description of a pipeline p and
training and validation data d1 and d2 with the evaluation
time y P R of p on d1 and d2. In other words, we assess our
regression solution f by its error rate in the original timeout
classification problem.

Note that a solution to this problem applies to every
AutoML tool relying on executions. Fig. 1 illustrates an
integration of this predictor into the search process. With the
guard function f in place, the evaluation module, instead of
blindly executing the requested pipeline p, first solicits a
prediction about the success of its execution and then either
executes p and returns the results (memorizing the runtimes
in the history) or returns with a failure. The functionality
of the predictor is hence completely part of the evaluation
module and independent of the underlying search engine.

3 A COMPOSED RUNTIME PREDICTOR

Solving the runtime prediction problem (1) directly for
whole pipelines has several disadvantages. First, the
pipelines in P are given in a structural and not in a
vectorial representation, as required by classical regression
algorithms. Squeezing a structural description into a vector
[1], [2] yields a very high-dimensional regression problem —
avoiding such constructions already motivated grammar-
based approaches such as TPOT [3] and ML-Plan [5] for the
AutoML task itself. Second, a direct approach would need to
learn relationships that are not only implicitly contained in
the data but actually given as prior knowledge. For example,
if we know the runtime for a PCA and a decision tree, we
can just compute the runtime of a pipeline connecting the
two, knowing that the total runtime will be the sum. Ignor-
ing this structural knowledge in the prediction imposes an
unnecessary burden on the learner. Third, it is unclear how
the previous knowledge from H could be included.
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Instead, we propose a compositional prediction model.
The idea, which is very much in line with the notion of
“learning to aggregate” [14], is to create one prediction
model for every atomic algorithm, i.e., pre-processors and
base learners, and to derive all other runtimes, e.g., of meta-
learners and the pipeline itself, using these common models.

The regression problem of a parametrized atomic algo-
rithm is modeled as usual for runtime prediction problems
[15]. An algorithm with n parameters is characterized by a
vector θ “ pθ1, . . . , θnq PŚn

i“1 Θi “: Θ, where Θ1, . . . ,Θn

are numeric or categorical domains. The input data of the
algorithm is characterized in terms of m numeric features
F “ pF1, . . . , Fmq P Śm

i“1 Fi “: F , the so-called dataset
(meta-) features. Typical dataset features include the number
of instances, attributes, or classes, but many more can be
used. A concrete run of the algorithm can be characterized
by a joint vector θ‘F “ pθ1, . . . , θk, F1, . . . , Fmq of features
describing the parametrization and the input.

As machine learning pipelines have a very simple struc-
ture, it is straight forward to determine their overall runtime
given the runtimes of their components. In general, they
only allow for sequential or parallel executions of other
algorithms but usually do not contain conditional branches
let alone loops. Here, we only consider sequential pipelines,
for which the overall runtime of the pipeline is simply the
sum of the runtimes of the components.

Two main issues remain open on the conceptional level:

1) How to obtain predictions for meta-learners? Just as for
the whole pipeline, models of atomic algorithms can
be reused to predict meta-learner runtimes. But, in
contrast to the pipeline, we do not know the flow
structure of meta-learners, and it is not clear how
the base learner models should be used.

2) How to determine the dataset features F for models of
algorithms that do not receive the original data as inputs?
If a feature selector is followed by a decision tree,
we must use the data left by the feature selector to
predict the runtime of the decision tree. But it is not
clear how this data looks like until execution.

We defer the detailed answers to these questions to
the following sections. On a high level, the idea is to
learn separate models for these two cases. Regarding meta-
learners, the idea is to learn a relationship between their
configuration and the number of induced base learners and
their inputs. With such models, one can estimate the overall
runtime of a meta-learner given its configuration and an
estimate of the runtime of the used base learner. Section 6
covers the detailed explanation of this part. Regarding the
second point, the idea is to maintain a model for each
dataset meta-feature and each pre-processing algorithm that
predicts how that algorithm will change the respective meta-
feature. The detailed procedure is described in Section 5,
preceded by Section 4 elaborating on the main building
block, i.e. the runtime estimation of the atomic algorithms.

The empirical evaluations in the following sections are
based on algorithms from the WEKA library [16] and
datasets from openml.org [17]. We list the relevant algo-
rithms in the respective sections and provide a brief descrip-
tion of each of them in the supplement. We consider 170
datasets from openml.org as the basis of the datasets used

in the evaluation. This is a strict superset of the datasets
used in [2], which is a systematic selection of datasets with
heterogeneous properties. The supplement lists details of
these datasets. In total, we conducted 8.4 million experi-
ments on computation units of 4 cores (Intel Xeon E5-2670,
2.6Ghz) with 16GB memory. In this setup, the experiments
accumulated a total runtime of over 60 CPU years and
results occupying a volume of over 600GB disk space.

4 PREDICTING ATOMIC ALGORITHM RUNTIME

The runtime prediction problems for atomic algorithms, by
which we refer to pre-processors and base learners, can be
phrased as regression problems with (up to) three types of
variables on which the prediction can be based. Following
the notation of Section 3, the independent variables may
comprise (i) the algorithm parameters θ, (ii) any subset of
dataset meta-features F , and, in addition to those conven-
tional features, (iii) previous observations H. The two target
variables are the total train time (in ms) and the time required
to make 1, 000 predictions, the latter of which is motivated
by the fact that the prediction time is always linear in the
number of predictions to be made so that it is enough to
estimate the slope of the runtime function. While we can
simply use the parameters of the algorithms as-is for θ, the
choices of dataset meta-features F and inclusion of previous
observations H is less obvious.

This section gives insights into the runtime prediction
of atomic algorithms in four steps. First, we discuss how
well the runtime can be described only in terms of numbers
of instances and attributes (a natural and simple choice),
and which regressor would be good for this choice of F .
In the second step, we analyze the prediction performance
for this F over a broad range of 170 datasets and 30
atomic algorithms. Third, we examine whether errors in
the predictions lead to wrong pruning decisions. Finally,
we analyze whether these models can be adjusted under
particular conditions to improve performance.

The first question addresses an optimization problem
on the meta-level. Clearly, we will want to include the
meta-features and use the regressors that obtain the best
runtime prediction performance. In order to later assess this
prediction performance in an unbiased way, i.e., to avoid
overfitting on a meta-level, this question is answered only
using a representative selection of 10 of the 170 datasets. We
refer to the supplement for details on the selection process.

The analysis of the remaining questions is then based on
the results of the first one. In all models, we use the dataset
meta-features and regressors identified in the first step.
However, while the second question combines those meta-
features with the features resulting from the algorithm pa-
rameters, the fourth question aims at assessing the regressor
performance if we only use the dataset meta-features (and no
algorithm description, assuming a default parametrization)
or if we add another feature for the performance of the
respective algorithm under default parametrization.

4.1 Choice of Dataset Meta-Features and Regressor

This section aims at answering the question of which regres-
sor achieves high-quality runtime prediction performance
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Fig. 2: Runtimes of DecisionTable.

and which dataset meta-features need to be used for this
purpose. here, we implicitly assume that the optimality
of these choices for the eventual performance does not
depend on the other potential variables such as the algo-
rithm parameters θ. It also assumes that there is a single
best answer for all basic algorithms, which is probably not
the case. While future research can try to investigate more
fine granular approaches, we consider these simplifications
acceptable at this step of research and in the attempt of
getting a first grip on the problem.

To address this question, we gathered data in the fol-
lowing way. We consider 1, 058 combinations of numbers of
instances (between 100 and 106) and numbers of attributes
(between 5 and 105) such that no point induces a total data
matrix size larger than 3 ¨ 108, which is a kind of maximum
that can be treated with 16GB of memory. We then chose
10 reference datasets, each of which was once transformed to
each of the points of the grid, yielding a total of 10, 580
datasets with properties originating from the original 10
properties. The exact grid definition and exhaustive details
on how the reference datasets were chosen and how the
grid point datasets were derived from them are given in the
supplement. We then evaluated each atomic algorithm on
each of these 10, 580 datasets under default configuration,
using the full number of instances for training, and 1, 000
extra instances for predictions. Note that we are not inter-
ested in a kind of cross-validation but only the runtime for
making predictions. Exploiting the fact that the prediction
runtime always behaves linearly in the number of instances
for which predictions are made, we also measure the time
to make 1, 000 predictions for each atomic algorithm.

In this paper, we evaluate pipelines consisting of algo-
rithms of the WEKA library [16]. The atomic algorithms of
this library are as follows (details in supplement):

Pre-processors: CfsSubsetEval + BestFirst (se-bf), CfsSub-
setEval + GreedyStepwise (se-gs), Correlation (cr), Gain-
Ratio (gr), InfoGain (ig), OneR (or), PrincipalComponents
(pca), ReliefF (re), and SymmetricalUncert (su).

Base learners: BayesNet (bn), DecisionStump (ds), Deci-
sionTable (dt), IBk (ibk), J48 (j48), JRip (jrip), KStar (k*), LMT
(lmt), Logistic Regression (lr), MultilayerPerceptron (ann),
NaiveBayes (nb), NaiveBayesMultinomial (nbm), OneR (1-
r), PART (part), RandomForest (rf), RandomTree (rt), REP-
Tree (rep), SimpleLogistic (sl), SMO (smo), VotedPerceptron
(vp), and ZeroR (0-r).

Similar to [13], we base our runtime predictions mainly
on the number of instances and attributes of a dataset. Fig. 2
illustrates the relationship between the three variables for

the decision table classifier; each point is the median of the
10 samples on the grid point. It is evident that there is a very
systematic relationship of runtime that above all depends on
the number of instances and the number of attributes used
for training the algorithm, and this or a similar pattern can
be observed for all atomic algorithms. In contrast to [13], we
include the learner parameters into the model.

However, there are some caveats with this simple model.
First, many atomic algorithms exhibit runtime noise, i.e. have
different runtimes when invoked several times under iden-
tical conditions, and this noise proportionally increases with
the runtime. Second, for some of the algorithms, other data
properties substantially influence the slope of the general
runtime shape and hence the overall runtime. Both issues
become evident in the right plot of Fig. 2, which summarizes
in boxplots, one for each of the 170 considered datasets,
10 observations for the training time at the 50, 000 ˆ 1, 000
grid point. The noise issue is evidenced by the large ranges
of some boxplots, and the distribution of boxplots in the
range of runtimes evidences the second concern. While the
second issue seems to be a problem of insufficient features,
a preliminary investigation revealed that additional meta-
features could not resolve this problem. It is unclear whether
such meta-features exist at all, and if so, whether they are
cheap to compute and easily predictable (as needed later, cf.
Section 5). An exhaustive search for the existence of features
that satisfy these necessities is an ambitious project on its
own and beyond the scope of this paper.

To assess the suitability of different regressors, we aggre-
gated learning curves for three candidates. We used 10, 000
of the above 10, 580 data points as training instances, each of
which is described by four attributes for learning, which are
the number of instances (ni) and attributes (na) respectively,
their product ni ¨ na, and ni ¨ na2 to cope for the super-
linear increase observed in some situations. Based on a
series of subsets of this 10, 000ˆ 4 meta dataset, we created
learning curves for a standard linear regression, a neural
network with one hidden layer of 100 units, and a random
forest with 100 trees. The prediction performance is based
on 58 grid points, which are not used for training but only
validation, so that between 10 and 10, 000 points are used
for training and 580 used for validation. This performance
is computed once for each atomic algorithm and regressor,
and the performance is then aggregated and displayed per
regressor in Fig. 3; the dashed lines depict the 0.1-trimmed
mean, and the solid lines the medians. The shaded areas
reflect the range between the 0.25 and the 0.9 quantile. Note
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Fig. 3: Learning curves of the three considered regressors for train time (left) and prediction time (right).

that this entire validation is only based on data derived from
the original 10 reference datasets.

The overall conclusion is that the number of instances
and attributes are maybe not the only relevant but the most
informative of the examined dataset meta-features, and that
random forests seem best suited to predict runtimes on their
basis. Surprisingly, the neural network regressor was not at
all able to learn the runtime behavior. We suspect that this
could be an issue of the used library, which was the Neu-
ralNetworkRegressor of the Python package scikit-learn.
Among the two others, one can see that linear regression
already performs well. The random forest however seems
better in terms of robustness. Besides, we learn here that in
most cases we could also use only 1000 training examples
and hence drastically reduce the effort to gather training
data. As discussed above, the two key meta-features alone
are not always sufficient to obtain accurate predictions. On
the other hand, some of the problems are due to runtime
noise, which cannot be tackled by any feature, and even
the more systematic deviations cannot be easily assessed
by common meta-features and require, if solvable at all,
additional research.

4.2 Prediction Performance of Independent Models
While the last section gave an insight about general runtime
behavior and an aggregated view on a kind of in-sample
error for the three regressors, this section now answers the
question of how well random forests can predict the runtime
of each of the considered atomic algorithms using unseen
datasets for validation. In contrast to the previous study, we
now also consider the algorithm parameters as additional
variables in the model.

4.2.1 Experimental Setup
How do we evaluate the capacity of the regressor to predict
runtimes? The train and validation sets consist of runtime
information made over variations of the 170 source datasets.
A concrete observation is said to be a d-instances if the
observed times stem from an application of the algorithm
to the d-th (of the 170) dataset. Since the procedure to train
and validate is identical for all atomic algorithms, we will
for simplicity just refer to the (atomic) algorithm.

We propose to train the regressor with a dataset Dtrain

consisting of a fixed number of observations for each grid
point, exploiting the spectrum of parameter values of the
algorithm and different data sources. In our case, we choose
to produce 10 samples per grid point, i.e. 10, 580 samples
in total, and for each sample, the algorithm parameters
are drawn (uniformly) at random and the source dataset is

selected in a round-robin fashion. That is, the source dataset
(of 170) used to produce the i-th sample is i mod 170.

The model performance is then assessed in a leave-one-
out evaluation over the source datasets. For each dataset d
of the 170 in the portfolio, the regressor is trained with the
data described above, omitting from the 10, 580 points the
d-instances. The regressor must then make predictions not
on the d-instances of Dtrain but on 10 d-instances of large
size (50, 000 ˆ 1, 000, see below) with random parameters.
For each of the 10 instances, we measure the time to train the
atomic algorithm and the time to make 1000 predictions for
unseen instances. The regressor then tries to predict these 10
train and prediction (validation) times. This yields a total of
1, 700 predictions, which we can then interpret.

We use this kind of validation because we are interested
in the prediction performance not in general but in rather
relevant regions. A lot of runtimes in the grid are (very) low
and hence irrelevant for the decision of pruning. Since we
are particularly interested in difficult problems, in which the
algorithms have rather high runtimes and are likely to hit
the time-bound, each dataset is transformed into a version
of size 50, 000 ˆ 1, 000. For inputs of this size, all non-
lazy algorithms have a training runtime of at least some
seconds and often several minutes (or hours). Of course,
the regressor should be able to predict runtimes for any
input type, so the training does not specifically focus on
this area of validation. In the supplement, we also add
two additional validations for smaller datasets, in which it
becomes apparent that the prediction accuracy for smaller
sized input data is quite high, and where noise is negligible.

4.2.2 Atomic Algorithm Runtime Prediction Performance
Fig. 4 summarizes the results separately for each atomic
algorithm. The plots summarize the differences between the
true and the predicted runtime; negative values indicate
runtime over-estimation. Even though the dataset size is
always identical, the ground truth of the atomic learners
can vary substantially. This is due to the effects discussed
above but also the fact that we here have different algo-
rithm parametrizations, which introduces substantial vari-
ance into the observations. Therefore, we group the ground
truth observations into three bins (one in each row) and
contextualize the prediction errors for this ground truth.
This is because a prediction error of 5m is less severe for
a total runtime of 40m than for a runtime of 10m. The
colors indicate (our arbitrary) degrees of acceptability for
the prediction error.

We can make several observations here. First, the run-
time predictions for pre-processors are quite accurate in
all cases except (se), which is somewhat anticipated; but
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Fig. 4: Runtime prediction performances of a random forest with 100 trees on datasets of size 50000ˆ 1000. All 170 source
datasets are considered, and a range of different parametrizations is considered for each base algorithm. Left and right
column: Prediction results for training times and prediction times respectively. Rows group the ground truth runtimes into
different bins in order to ease interpretation of the boxplots. Colors indicate degrees of acceptability for the prediction error.

the errors are still acceptable here. Second, the errors in
predicting prediction times are almost negligible for most
algorithms. Only for some lazy learners like nearest neigh-
bors, the mistake can become quite large if the true pre-
diction times are large; these are partially off the mark.
Third, each atomic learner has a kind of center around which
predictions seem to be oriented. Then, if the true runtime is
substantially higher, the predictor tends to under-estimate
the true runtime and it tends to over-estimate it if the true
runtime is substantially lower. For example, the runtimes
of the decision table are mostly between 5 and 20 minutes,
and the error is small in those cases (middle row). For this
learner, we can see in the upper row (lower true runtimes)
a substantial over-estimation of runtimes and a substantial
under-estimation in the third row.

The variance in the prediction accuracy between the
learners is quite remarkable. In terms of prediction error
on the training times, we can see that predictions are very
precise even for high runtimes for bayesnet (bn), naivebayes
(nb), or neural networks (ann). For other algorithms, the
prediction accuracy is less pleasant, especially for the rule-
based learners decisiontable (dt), jrip, and PART. Still, this
is also partially due to a rather large input space, which
we consider a stress-test here. The supplement contains
identical plots for smaller input sizes, which show that the
prediction errors in those cases substantially decrease.

4.3 Critical Over/Underestimation of Overall Runtimes

We now answer the question of how accurate the
(regression-based) classifier φ (cf. Section 2) predicts time-
outs for pipelines that only consist of an atomic algorithm.
We check for each t P t0.5, 1, 5, 10, 15, 20, 30, 60u (minutes)
and each atomic algorithm whether the rejection rule will
correctly predict a timeout. For each timeout, we use a dif-
ferent reference size of datasets to check against (because the
timeouts are typically adjusted to the dataset size as well).
The dimensions are t¨106

100 ˆ 100 if t ă 10 and t¨106
1000 ˆ 1000

else. Again, for each such size, the runtime of each algorithm
is observed 10 times on the copy adjusted to this size for
each of the 170 source datasets, and as in Section 4.2.1, the
regressor used for prediction on dataset d is only trained
with non-d-instances. We hence assess the correctness of
1, 700 decisions per algorithm and timeout.

The results are summarized in Fig. 5 in the form of true
positives/negatives (green) and false positives/negatives
(red) for each pair of atomic algorithms and considered
timeouts. The top figure indicates the number of decisions
for rejecting an execution in order to put the relative plots
below into context. First of all, we can see that most pre-
processors do never time out, and the predictor decides
almost always correctly to allow their execution. A similar
situation occurs with some classifiers, in particular decision
stumps, Naive Bayes, or the random trees and forests.
Among the cases in which the guard decides to allow ex-
ecution, there are very few cases in which a timeout occurs.
On the contrary, we can observe that the guard is sometimes
quite restrictive, which results in a good deal of correct reject
decisions, but also quite some wrong decisions. That is, the
guard sometimes rejects executions that would not time out.
This can be observed with particular frequency for logistic
regression and PART.

The rather high false-positive rate for some of the learn-
ers indicates that too many solutions may be cut. This could
indeed be the case when using the standard models Mθ .
Hence, it is all the more important to look at whether
we can improve these models using additional information
gathered during the execution of an AutoML tool. The
next section will show that we can substantially improve
specifically on the algorithms for which false positives were
high.

4.4 Prediction Performance of Enhanced Models
Finally, we want to answer the question of whether we can
improve upon the above prediction performance in partic-
ular situations if we exploit knowledge about the candidate

136



7
se

-b
f

se
-g

s cr gr ig or pc
a re su bn ds dt ib
k

j4
8

jri
p k* lm
t lr

an
n nb

nb
m 1-
r

pa
rt re
p rf rt sl

sm
o vp 0-
r

101
102
103
104

1 minute 10 minutes 20 minutes 60 minutes

1
10
20
60

1
10
20
60

1
10
20
60

se
-b

f
se

-g
s cr gr ig or pc
a re su bn ds dt ib
k

j4
8

jri
p k* lm
t lr

an
n nb

nb
m 1-
r

pa
rt re
p rf rt sl

sm
o vp 0-
r

1
10
20
60

Fig. 5: Top figure: Number of rejected executions. Bottom
figures: (1) + (2) Number of correctly/incorrectly rejected
executions relative to the number of total rejects. (3) +
(4) number of correctly/incorrectly permitted executions
relative to the number of total accepts.

to be evaluated. Here, we exploit the knowledge that it is
reasonable (and common practice) in AutoML to evaluate,
for each pipeline candidate, first the variant in which all
components have the parameters set to default. On one
hand, this motivates the usage of a dedicated model only for
the default parametrized version of each algorithm, because
it reduces the number of variables and hence potentially
simplifies the model. On the other hand, we can use the
true runtime with default parametrization as a landmarking
feature for runtime predictions of parametrized algorithms.

For comparability, the models are trained and validated
like in Section 4.2. That is, for each atomic algorithm and
each dataset d, we build, in addition to the model described
in Section 4.2.1, which we label Mθ , a model M´θ , and
Mθ`d for runtime prediction under default parametriza-
tion or using true runtimes under default parametrizations
respectively; we call the latter the posterior model. More
precisely, for each of these three, we have two models, one
for predicting training times and one to predict prediction
times. As in Section 4.2.1, each model is trained using those
of the 10, 580 training instances, which are not d-instances,
and then predict on 10 d-instances at point 50, 000ˆ 1, 000,
which yields 1, 700 predictions per model we compare.

The results are summarized in Fig. 6. For each config-
urable atomic algorithm, we show 8 comparisons (rows in
the plot), all based on the 1, 700 validation point observa-
tions. We use a hot-cool color map, which yields white for no
change, dark blue for improvements, and dark red for deterio-
rations of at least 5m or 100% respectively. The two top plots
show the improvement of a model for default parameters
only (Def), and the lower two plots the improvement for
the posterior model (Pos). For each of these two cases, we
show the changes for the training time performance (first
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Fig. 6: Absolute (Abs) and relative (Rel) comparison of
prediction performances between the standard model Mθ

and the models M´θ for default parametrization (Def) and
models Mθ`d for posteriors (Pos). Blue indicates improve-
ments, white is neutral, and red indicates deteriorations.

line) and prediction time performance (second line) once in
terms of absolute (Abs) and once in terms of relative (Rel)
improvements over the model of Section 4.2. Note that the
algorithms ds, kstar, nbm, and 0r are not configurable and
hence do not appear in the comparison.

The figure conveys two messages. On one hand, the
utility of default parametrization models is highly unclear,
since there are a couple of cases in which the performance
is even worse than for the parametrized model. It is hence
rather not recommendable to use them except for specific
learners. On the other hand, the posterior model does in
fact add a substantial improvement to the prediction per-
formance in almost all learners, especially for those with
poor performance in the standard model. In many cases,
the prediction error can be reduced by more than 5m on
average. The supplement contains versions of Fig. 4 and 5
for the posterior model that also displays the substantial
improvements for all algorithms; most observations then
lie inside the colored ranges. Finally, we can observe that
there is almost no impact on pre-processors, which is not
surprising since the prediction performance is already quite
well in the standard model.

5 PREDICTING FEATURE TRANSFORMATIONS RE-
ALIZED BY PRE-PROCESSORS

We now answer the question of how well we can predict
the number of attributes the data have after a particular
pre-processing step. As a quick recall, we need to predict
the dataset meta-features of the output of pre-processors in
order to feed the runtime model of the subsequent learner
with estimates of meta-features of the data it will really
work on. Since our runtime models rely only on the number
of instances and the number of attributes, and since the
number of instances is not touched by the (considered) pre-
processors, we only need to estimate how the number of
attributes will change.

Fortunately, we can predict the number of attributes
quite well using only the number of attributes of the orig-
inal data and the parameters of the pre-processor. This is
not surprising since most pre-processors have an explicit
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Fig. 7: Errors in the predicted number of attributes after pre-
processor application with linear regression.

parameter to determine the maximum number of attributes
that must be contained in the output. Taking the minimum
of this value and the actual number of attributes of the
dataset already achieves 100% accuracy in some cases.

The results of this simple strategy are summarized in
Fig. 7 and compared against a more “optimized” feature set.
To generate these results, all pre-processors were evaluated
on all datasets in a leave-one-out fashion on two distin-
guished feature sets. The left plot shows the results when
only using the derived feature above and the algorithm
parameters θ. The right plot shows the feature set with
the best performance found on all feature sets of length up
to 3; these features were optimized in a preliminary step
only on the 10 core datasets above. For each dataset, the
information available for the other datasets is used to train
a linear regressor, and the predictions obtained for the left-
out dataset is used to compute an RMSE prediction error for
the number of attributes afterward. The boxplots summarize
the 170 points obtained over the datasets.

The evaluation shows that the simple feature set has
almost no disadvantage compared to the optimized one.
For the principal component analysis, the feature set does
not yield a statistically significant difference. For the subset
evaluation (with both best-first search and greedy step-wise
search), the optimized feature set is slightly better, but also
here, the advantage is almost negligible. To summarize, the
best way to predict the changes of the data caused by a
pre-processor is to use its parameters and the minimum of
previous attributes and, if available, the attribute threshold
configured in the pre-processor.

6 PREDICTING META-LEARNER RUNTIME

6.1 Runtime Prediction for Meta-Learners

Even if the implementation details of meta-learners are not
known, we can make plausible assumptions about the gen-
eral behavior of every (sensible) meta-learner. By definition,
meta-learners rely on (several copies of) a base learner,
which builds the actual model and makes predictions from
it, while the meta-learner only organizes this resource. We
can assume that a meta-learner, when being trained, will
simply create several copies of its base learner, prepare their
input data, and invoke a training (and maybe a prediction)
procedure on them. The data fed to each base learner may
deviate among each other and, more importantly, from the
data given to the meta-learner itself. For example, some
implementations of bagging [18] allow a flexible bag size
(number of instances), and Random Subspace [19] reduces
the number of features. Second, during the prediction phase,

...

Fig. 8: Spy-wrapped base learners b1, .., bk leak feature trans-
formations of the meta-learner and base learner runtimes.

the meta-learner will consult and aggregate predictions
from its base learners.

Under this premise, and given accurate estimates for the
base learners and the parameters that tell us how many of
them are created and how often they are called, there is no
need to learn any model for the runtime of a meta-learner.
Instead, one can directly compute its runtime based on its
parameters and the base learner runtimes.

As sketched in the above example, meta-learners may
also manipulate the data they receive as input, prior to
passing it to their base learners. In order to obtain accu-
rate predictions from the base learner models, we need to
anticipate how these changes in the data look like, and call
the base learner models with these anticipated values.

The claim we sustain in this section is that we can
approximate the overall runtime of a meta-learner by

tmpθ,F q “ k
`
tmf pθb ,F 1q ` pcpf ` cpp qtmppθb ,F 1q

˘
, (2)

where k is the number of copies of the base learner main-
tained by the meta-learner, cpf and cpp are the number of
invocations of the prediction routine of each base learner
copy during the training and prediction phase of the meta-
learner, respectively, θb and F 1 are the base learner param-
eters and meta-features of the data passed to each base
learner copy, and tmf and tmp are the runtime models for
training and prediction of the used base learner.

This model makes three important assumptions. First, it
assumes that the meta-learner has negligible overhead, since
the formula does not include any runtime contribution of
the meta-learner itself. Second, it assumes that the parame-
ters cpf , cpp , and F 1 are identical for all k copies of the base
learner, whence the multiplication by k (the parameter θb is
obviously identical for all by construction). Third, it assumes
that the runtime does not depend on the behavior of the base
learner (i.e., what it returns) but only on its runtime. We
will discuss the legitimacy of these assumptions based on
our empirical observations.

To predict an overall runtime for the meta-learner, we
estimate the four parameters in (2) given F , θ, and θb as
follows. For all considered meta-learners, the variable k is
in fact an algorithm parameter and hence already part of θ.
For the other three parameters cpf , cpp , and F 1, we create
simple linear regression models that predict each of the
respective variables from θ and F . To acquire ground truth
target data to train and validate these models, we use an
invasive approach illustrated in Fig. 8 by configuring the
meta-learners with a spy base learner that records meta-
features of the data received from the meta-learner for
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time and total meta-learner train/prediction time respec-
tively. Bottom 2 plots: Abs/rel. difference of total true meta-
learner runtime and the time predicted by (2) (in seconds).

training and prediction, and how often the different routines
for training the base learner and making predictions were
called. In order to get a ground truth for the overall runtimes
of the meta-learners, the spy learners are not only dummies
but also serve as wrappers for true base learners. Keeping
track of the internal runtimes of base learners, we can also
compute the net self-time of the meta-learner.

6.2 Evaluation
We consider the algorithms AdaBoost (ab), Bagging (bg),
LogitBoost (lb), Random Subspace Classification (rss), and
Random Committees (rc) from the WEKA library [16].

To verify that self-time is indeed negligible, consider the
two top boxplots in Fig. 9. The plots show, as an aggregation
over several hundred observations, the percentage of the
base learner wall time compared to the total wall-time of the
meta-learner for training and prediction, respectively. The
top row compares the total wall time of the base learners
during the meta-learner training phase to the total wall time
of the meta-learner itself. The middle row computes the
same ratios for the prediction phase of the meta-learner. We
only show the ratios for cases where the overall runtime
is at least 10s. In situations with runtimes under 10s, the
overhead of the meta-learner is relatively substantial, but
those quick runtime cases are practically irrelevant. We can
see that the self-time of the meta-learner is under 5% in
the great majority of cases, and even under 2% on average,
which we consider a negligible fraction.

Concerning the equality of the parameters among the
different copies of the base learner, our result is ambivalent.
On the one hand, we could check that cpf and cpp are indeed
constant across the different base learner instances for all
meta-learners. On the other hand, this is not always true for
the parameter F 1 but only for a couple of meta-learners.
More precisely, AdaBoost (ab1) and LogitBoost (lb) may
pass data of different dimensions to each copy of the base
learner. However, those assignments are influenced by an
unpredictable random component, so that no easy solution
seems to be in sight.

The prediction quality obtained with (2) is summarized,
for each meta-learner, in the bottom rows of Fig. 9. The

boxplots show the absolute and relative difference between
the true total wall time of a meta-learner and the value
predicted by (2) in seconds using the true average base
learner wall-time for tmf and tmp as to pretend a perfect
estimate, which was determined using the spy wrapper
discussed in Section 6. The other variables of the formula
are derived from the meta-learner parameters.

The results clearly justify the usage of (2) to predict meta-
learner runtimes. In particular, the good prediction results
justify the assumption that the actual output of the algo-
rithms does not affect the runtime of the meta-learner. For
BAGGING, RANDOMCOMMITTEE, and RANDOMSUBSPACE,
the prediction by the formula is almost perfect. For the
other two algorithms, there are small but fairly acceptable
deviations, which can be explained by the fact that the meta-
features of the sub-datasets Di are only averaged and hence
do not provide perfect information.

7 PREDICTING PIPELINE RUNTIME

7.1 Prediction Algorithm
The runtime of a pipeline pp, cm, cbq with pre-processor p,
meta-learner cm, and base learner cb on folds Df , De for
fitting and evaluation, respectively, is predicted as described
in Alg. 1. First, we compute the meta-features F from the
training set Df , which is just the shape of the data (cf. Sec-
tion 4.1). We next check whether the pre-processor p is set (l.
2). If so, its runtime is estimated based on the corresponding
runtime model tmp using the dataset features F , and the
features of the processed data are predicted, which yields an
update of F . If this pre-processor has been executed before,
we just obtain the information from the cache instead (l. 3–
10). After this step, the meta-features of the data used by
the learner (base or meta) are available (either as ground
truth or as an estimate). Third, it is checked whether a meta-
learner is used. If this is the case, the meta-features of the
data shown to the base learner by the meta-learner is com-
puted (l. 11). Fourth, the model corresponding to the used
base learner is invoked with the meta-features determined
before to obtain a prediction for the training and prediction
runtime per instance. Alternatively, if we have executed
the base learner with exactly the given configuration, we
retrieve the information from the cache (l. 12–16). If a meta-
learner is used, these values are plugged into (2) to obtain
a runtime of the learner; otherwise, they are used as-is (l.
18 –22). Then, the runtimes of the pre-processor and the
learner are added up and returned. The scaling factor of
1000 is of course arbitrary and just needs to coincide with
the normalization used in the prediction time models.

This algorithm assumes that the following prediction
models have already been trained offline. First, we have
models for training (tmf

a) and prediction time (tme
a) for

every atomic algorithm a (cf. Section 4). Second, there is
a meta-feature model fma for pre-processors and meta-
learners a, which returns the meta-features of the processed
data described with F and the algorithm parameters θ (cf.
Sections 5 and 6). Finally, pmcm is a parameter model that
allows one to infer the relevant runtime parameters of the
meta-learner, given its parameters θpcmq (cf. Section 6).

Note the somewhat sloppy notation of θpaq to specify
the parameter description of an algorithm a, which in fact
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Algorithm 1: GETPLRUNTIME(pp, cm, cbq, Df , De)
1 F Ð shapepDf q;
2 if p is defined then
3 if pp, F q P cacheT then
4 tp Ð cacheT pp, F, |De|q;
5 F Ð cacheF pp, F q;
6 else
7 tp Ð tmf

ppF, θppqq ` |De|
1000 tm

e
ppF, θppqq;

8 F Ð fmppF, θppqq;
9 end

10 end
11 if cm is defined then F Ð fmcm pF, θpcmqq ;
12 if pcb, F, |De|q P cacheT then
13 ptfcb , t

e
cb
q Ð cacheT pcb, F, |De|q;

14 else
15 tfcb

Ð tmf
cb
pF, θpcbqq;

16 tecb
Ð tme

cb
pF, θpcbqq;

17 end
18 if cm is defined then
19 pk, p, qq Ð pmcm pθpcmqq;
20 tl Ð k

´
tfcb
` pp`qq

1000 t
e
cb

¯
;

21 else
22 tl Ð tfcb

` |De|
1000 t

e
cb

;
23 end
24 return tp ` tl

is part of a itself. The models, e.g. tma, are of course not
specific for θ but only for the algorithm associated with a.

There are two caches used in the approach. cacheT is
a cache for runtimes, and cacheF is a cache for observed
meta-features of a dataset after the application of a pre-
processor. Both caches are only used in a reading fashion in
this algorithm. They are updated with concrete observations
whenever a pipeline is executed successfully.

7.2 Empirical Comparison to Naive Approach

To compare this approach against a non-decompositional
runtime predictor, we gathered the runtime of 150k
pipelines over the 170 datasets. The runtimes are between
few milliseconds up to the time-bound of 1h, having
roughly half of the observations with less than 1m run-
time and one half above. As a baseline, we use a random
forest with input space similar to the one used in Auto-
WEKA [1] and auto-sklearn [2] in which every parameter
of every algorithm becomes a feature in addition to some
auxiliary features describing the occurring algorithms. The
observation set is split into 170 folds of observations, one
for each dataset, over which both predictors are validated.
For each fold, the random forest is trained on the full set of
observations not based on the respective dataset, and each
component of the compositional model is trained exactly as
in Section 4.2.1 using 10k instances of the runtime database
not containing the dataset in question. For this comparison,
we use the standard compositional model without posterior
information of default configuration runtimes.

As a result of this comparison, we observe that the
compositional model has a substantial advantage over the
vector-based approach. More precisely, averaging over the
170 folds, we observe an average reduction in the RMSE
of 768s, i.e. almost 13 minutes. In other words, the non-
decompositional model is outperformed by a large margin
and cannot be considered an adequate alternative.

8 IMPROVEMENTS IN THE AUTOML TASK

We now answer the question of what all these efforts are
worth in the concrete context of an AutoML application.
More precisely, we wonder how much more successful com-
putations can be achieved by plugging Alg. 1 into function f
in (1) of Section 2, and whether this also results in improved
overall performance of the AutoML tool. To this end, we
integrated Alg. 1 into the state-of-the-art AutoML tool ML-
Plan and compared it with the vanilla version.

We compare evaluations of ML-Plan for the vanilla ver-
sion against using the guard for 1h runs in a 5-fold hold-
out cross-validation with 8 CPUs and 32GB memory. The
timeout per candidate (cross-)evaluation here is 5 minutes,
so a single execution must take not more than 1 minute.
The results are based on 10 runs for each ML-Plan instance
averaging over the error rates on stratified 70/30% splits.

In this evaluation, we are interested in the behavior of
the AutoML tool on rather big datasets. On small datasets,
the approach will rarely or never reject pipeline executions,
so there is no point in applying it in such scenarios. In the
following, we consider the datasets of our portfolio whose
data matrix has at least 1 million entries.

We stress again that our primary goal is not to improve
the performance of the AutoML tool but to improve exe-
cution efficiency. Since our approach does not improve any
particular model, we cannot generally expect that the per-
formance of the AutoML tool improves. It occasionally may
improve results if avoided timeouts yield to the execution
of models that otherwise would not have been executed.
However, we consider this rather a desirable side effect. The
main goal is to reduce wasted CPU time as much as possible,
because large scale wasted CPU time is not only a severe
ethical concern with the ambience (energy, CO2) but also
leaves the AutoML user with the “what if?” question: Unless
we exploit the resources as well as possible, we cannot
know that there is no or little improvement through timeout
avoidance. In other words, it is really desirable to avoid
timeouts as much as possible, regardless the improvements
in the overall AutoML process.

In this sense, Fig. 10 captures three metrics of success
for the two versions of ML-Plan. Bars and lines are blue
for ML-Plan without the guard and orange for ML-Plan
with the guard. The first plot shows the wasted CPU time
in hours (less is better). The numbers range between 0 and
8 since 8 CPUs are used for one hour. The middle and
bottom plots capture the number of and the time spent in
successful evaluations respectively. In both plot pairs, the
first row shows the absolute metric value, and the second
row shows the relative increase of the metric. Note that the
absolute values for the number of executions are plotted on
a log-scale, which hides a bit the high relative changes;
these values are hence repeated in Table 1. In all plots,
the horizontal colored dotted lines are the mean value of
the respective approach. In addition, there are black dotted
lines in the relative improvement plots for improvements of
100%, 200% and 500% respectively; these are just visual aids
to ease interpretation of the bars inside the plots.

The plots on computational efficiency are complemented
by Table 1, which shows average final error rates and num-
bers of successful evaluations per approach. Best achieve-
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Fig. 10: Wasted computation times, numbers of successful
evaluations, and hours spent in successful evaluations.

ments are bold and not significantly worse (according to a
Wilcoxon signed-rank test with p-level 5%) are underlined.

The first observation is that the guard technique man-
ages to halve the wasted CPU time. More precisely, the
average reduction in wasted CPU time is 49% from a bit
over 4h to almost “only” 2h. In fact, 2h wasted CPU time are
even still a rather high number, and it would be desirable
to achieve higher prediction accuracy to reduce this further.
However, it is a substantial and important improvement.
The stable results in Table 1 show that these savings do not
usually come at the cost of worse results. That is, in very rare
cases the eventually best pipeline is rejected by the guard.

Looking at efficiency from a more positive viewpoint
and in terms of successful evaluations, we can see a sub-
stantial and partially dramatic increase in both the number
of and the time spent in successful evaluations. On average,
the number of successful executions is increased by over
400%, and the time spent in successful evaluations is in-
creased by 227%. In some cases, improvements are even well
above 1000%. For example, CIFAR-100 and DIABETES130US
have improvements of approximately 2000%, i.e. enable 20
times more evaluations with the guard than without it.

These are huge improvements in the optimization pro-
cess, and it is a bit unfortunate that these increases rarely
yield better overall results. For most datasets, the observed
score just remains unchanged, which is not very surprising
since we know that for these datasets even in 24h with very
few timeouts no better solution has been found. However,
in those cases, the increase in successful evaluations is an
additional argument that the best solution identifiable in the
given timeout has been found.

Even if the decisions are not yet perfect, the alternative

Dataset (id on openml.org) Vanilla Guarded
error rate evaluations error rate evaluations

AMAZON (1457) 0.28˘ 0.03 51.9 0.28˘ 0.02 96.6
CIFAR-100 (41983) 0.80˘ 0.00 8.89 0.73˘ 0.08 187.5
CIFAR-10 (40927) 0.64˘ 0.02 16.1 0.58˘ 0.01 105.8
CIFAR10SMALL (40926) 0.58˘ 0.02 24.4 0.59˘ 0.02 141.9
CLICKPREDSMALL (1216) 0.05˘ 0.01 27.6 0.04˘ 0.00 95.9
CODRNA (351) 0.04˘ 0.00 55.0 0.04˘ 0.00 214.5
CONVEX (41064) 0.16˘ 0.01 30.4 0.16˘ 0.02 238.7
COVERTYPE (293) 0.11˘ 0.01 22.7 0.07˘ 0.01 165.4
DEXTER (4136) 0.07˘ 0.02 73.2 0.07˘ 0.02 1131.4
DIABETES130US (4541) 0.43˘ 0.01 40.6 0.43˘ 0.01 852.1
DOROTHEA (4137) 0.08˘ 0.01 56.3 0.07˘ 0.01 117.1
FABERT (41164) 0.32˘ 0.01 71.5 0.32˘ 0.01 204.0
FBIS.WC (389) 0.20˘ 0.04 118.0 0.19˘ 0.03 272.6
GINAPRIOR2 (1041) 0.07˘ 0.01 458.6 0.07˘ 0.01 701.7
GINAPRIOR (1042) 0.05˘ 0.01 392.0 0.06˘ 0.01 1449.6
GISETTE (41026) 0.04˘ 0.01 43.6 0.04˘ 0.01 262.7
HIGGS (23512) 0.29˘ 0.01 72.3 0.30˘ 0.01 131.2
HIVAAGNOSTIC (1039) 0.03˘ 0.00 742.7 0.03˘ 0.00 3238.6
IMDB.DRAMA (273) 0.36˘ 0.00 21.89 0.36˘ 0.00 114.8
ISOLET (300) 0.04˘ 0.01 44.7 0.04˘ 0.01 155.2
LA1S.WC (396) 0.13˘ 0.02 45.6 0.12˘ 0.01 136.8
LA2S.WC (393) 0.11˘ 0.01 55.3 0.11˘ 0.02 134.9
MADELON (1485) 0.26˘ 0.04 10507.9 0.26˘ 0.04 14161.6
MNIST784 (554) 0.03˘ 0.00 23.7 0.05˘ 0.01 82.7
MNISTROTATION (41065) 0.58˘ 0.06 23.0 0.53˘ 0.02 75.1
MUSK (1116) 0.00˘ 0.00 431.4 0.00˘ 0.00 5355.1
NEW3S.WC (390) 0.21˘ 0.00 13.6 0.22˘ 0.00 98.1
NOMAO (1486) 0.04˘ 0.01 94.0 0.05˘ 0.01 477.5
OH0.WC (392) 0.11˘ 0.02 83.5 0.13˘ 0.02 500.0
OH10.WC (401) 0.20˘ 0.03 79.7 0.21˘ 0.02 716.7
OHSCAL.WC (399) 0.26˘ 0.01 24.6 0.24˘ 0.02 87.8
OVABREAST (1128) 0.04˘ 0.01 130.5 0.04˘ 0.01 384.1
OVACOLON (1161) 0.06˘ 0.04 122.7 0.04˘ 0.01 373.8
OVAENDOMETRIUM (1142) 0.04˘ 0.00 284.4 0.04˘ 0.00 1322.2
OVAKIDNEY (1134) 0.02˘ 0.01 182.11 0.02˘ 0.01 350.4
OVALUNG (1130) 0.03˘ 0.03 123.3 0.03˘ 0.01 370.6
OVAOMENTUM (1139) 0.05˘ 0.00 171.6 0.05˘ 0.00 1467.3
OVAOVARY (1166) 0.08˘ 0.02 162.7 0.07˘ 0.01 214.1
OVAPROSTATE (1146) 0.01˘ 0.01 221.2 0.01˘ 0.00 591.8
OVAUTERUS (1138) 0.08˘ 0.01 116.6 0.07˘ 0.01 932.5
POKER-HAND (1569) 0.38˘ 0.01 31.6 0.37˘ 0.01 107.5
POKER (354) 0.30˘ 0.03 46.0 0.28˘ 0.03 207.4
RE0.WC (391) 0.19˘ 0.02 175.7 0.19˘ 0.02 446.4
RE1.WC (395) 0.16˘ 0.02 203.7 0.18˘ 0.03 278.7
SYLVAAGNOSTIC (1036) 0.01˘ 0.01 441.0 0.01˘ 0.00 1572.3
SYLVAPRIOR (1040) 0.01˘ 0.00 2356.7 0.01˘ 0.00 1423.6
VEHICLENORM (1242) 0.14˘ 0.00 34.1 0.15˘ 0.01 140.1
VEHICLESENSIT (357) 0.14˘ 0.01 35.4 0.15˘ 0.01 135.6
WAP.WC (398) 0.19˘ 0.01 91.5 0.18˘ 0.02 130.0

TABLE 1: Comparison of overall error rates in ML-Plan.

with guard is certainly preferable over the one without
guard. Only in three situations, the guarded version obtains
a statistically significant worse result, and in these cases
the different is at most 2 percentage points. On the other
hand, we can see that CIFAR-10, CIFAR-100, COVERTYPE,
and MNISTROTATION exhibit a substantially improved final
error rate, and, to our knowledge, the score for CIFAR-10
is, by a large margin, the best that has been reported for
any AutoML tool on the WEKA library with a timeout
of 1h to date. The same holds for MNISTROTATION only
that the margin to the best reported score on WEKA in 1h
is not as large [5]. Overall, the guarded version performs
mostly similar to the vanilla version with occasional small
disadvantages or significant advantages.

To summarize, at least for ML-Plan, it seems preferable
to use the guarded version from all considered points of
view. The wasted CPU time can be halved, the number
of successful evaluations increases substantially, the results
hardly ever are substantially worse and sometimes sub-
stantially better. Of course, it would now be interesting to
conduct this analysis for other AutoML tools as well. While
there may be differences in the concrete outputs, we should
expect for all common tools, such as auto-sklearn and TPOT,
expect similar results.
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9 CONCLUSION AND OUTLOOK

In this paper, we have proposed a regression-based ap-
proach to decide whether or not the execution of a machine
learning pipeline in the context of AutoML will time out. In
contrast to previous work on the runtime prediction of ma-
chine learning algorithms [12], [13], we admit parametrized
algorithms, pre-processors, and meta-learners. We found
that the general predictability of runtimes is satisfactory and
that, especially on resource-intensive datasets, the approach
can substantially increase both the number of and time spent
in successful executions, without decreasing and sometimes
substantially increasing its overall performance. Moreover,
we believe that an execution guard is especially useful when
performing AutoML on very resource-intensive problems
such as predictive maintenance [20].

We envision four main directions for future work. The
first one is to improve runtime predictions by more sophis-
ticated learning methods, such as stacking or specialized
regressors for different runtime regions. Second, building on
the insights about runtime prediction for pipelines gained
in this paper, and the solution concepts we developed for
the case of two-step pipelines, a natural next step is to
tackle runtime prediction for complex pipelines with fewer
or without structural limitations as for example considered
in [3], [21]. The ability to propagate dataset feature trans-
formations, as proposed in this paper, will play a key role
in this regard. The third direction is to extend runtime
predictions by information about uncertainty, for example,
by predicting confidence intervals instead of producing point
estimates. Finally, more sophisticated decision rules are con-
ceivable, for example based on the notion of expected utility
maximization as shown in [22] for algorithm selection. In-
formation about the expected runtime could be combined
with information about the expected quality of a pipeline as
in [10], [11], which we completely disregarded so far.
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Predicting Machine Learning Pipeline Runtimes
in the Context of Automated Machine Learning

- Supplement -
Felix Mohr, Marcel Wever, Alexander Tornede, Eyke Hüllermeier

F

1 DESCRIPTION OF CONSIDERED ALGORITHMS

1.1 General Overview

In this paper, we only consider pre-processing algorithms
and classification algorithms of the WEKA library [1]. How-
ever, instead of using the original WEKA library, we use
an interruptible modification [2] of WEKA since the WEKA
algorithms cannot be stopped by default, an indispensable
ability in the AutoML context. This modification is, in the
used version, based on WEKA 3.9, which is therefore also
the basis of all the algorithm descriptions above.

The parameter configurations considered for the dif-
ferent algorithms depend on the number and type of the
parameters of each algorithm. For algorithms with only
categorical attributes, we considered the whole parameter
space. Numeric parameters were discretized, depending on
the parameter semantic, on a linear or logarithmic scale. In
situations where the cross product of all parameter values
after discretization exceeded 1000, we considered only the
1-dimensional and 2-dimensional combinations of parame-
ters (assuming independence of the others with respect to
the runtime) to avoid the combinatorial explosion. Besides,
we also consider each algorithm with its default parameter
configuration.

In the following tables, we show every considered al-
gorithm together with its parameters and the size of the
considered parameter grid. Following the above explana-
tion, the grid size is not always the product of the domain
values; this is only the case if the resulting grid is not too
big. Note that the grid size is not the number of experiments
conducted for the algorithm but only a basis for it.

The upper part of Table 1 lists the pre-processors. Ex-
cept for CfsSubsetEval, all pre-processors use the RANKER
algorithm as a filter, which associates each attribute with
a score using the evaluator and then simply sorts them
by this score and eventually returns the best N , so the
parameter N here defines the number of attributes kept.
If N exceeds the number of attributes in the dataset, no
attributes are discarded. The synthetic feature discussed in
Sec. 7 of the paper is precisely mintN,nu, where N is the
above parameter for the RANKER and n is the number of
attributes of the dataset. For the PCA, this is only an upper
bound, because it can be even more selective beforehand.
The GREEDYSTEPWISE algorithm has a similar parameter

also named N , but it is not guaranteed that the number
of attributes afterwards is of this number. The BESTFIRST
algorithm has no comparable parameter, so the number of
attributes afterwards cannot be determined so easily.

The middle part of Table 1 shows the configurations of
the base learners. For some parameters, we adopt the nota-
tionănameą:ăexpr of xą:ăcond on xąwhereănameą is
the name of the parameters,ăexpr of xą is some mathemat-
ical expression over a variable and ăcond on xą explains
the integer domain of which we consider values for x. There
are four base learners that do not have parameters, which
are DECISIONSTUMP, KSTAR, NAIVEBAYESMULTINOMIAL,
and ZEROR; they are listed for completeness.

As written in the main paper, for each point on the
main evaluation grid defined over numbers of instances
and attributes, we run 10 experiments, which call for 10
different parametrizations. Of course, it is not feasible to test
all configurations on each grid point, so we limit ourselves
to an admittedly arbitrary number of 10 evaluations per
point. These configurations are drawn in a kind of latin
hypercube sampling, to possibly have “maximally distant”
configurations on each grid point. The hope is that there
is then a rather homogenous distribution of configurations
over the whole evaluation grid.

Note that SMO plays a somewhat special role in this
classifier portfolio in that it is the only classifier that has no
native support for multi class classification. On multi class
classification problems, SMO is run in an all-pairs mode,
i.e. the algorithm is trained on each each pair of classes once
and eventually the class that “wins” most pair-wise battles is
chosen. It is natural to expect that predictions for SMO will
not be too accurate in our model since we do not consider
the number of labels in the set of features.

The last section of Table 1 describes the five used meta-
learners. All of them have a parameter I to control the
number of instances of the base learner, which corresponds
to the parameter k in the paper. By default I “ 10 for all
meta-learners.

The name meta-learner is a bit arbitrary and, in fact, one
could also call what we consider meta-learners in this paper
as homogeneous ensembles. They are ensembles in that they
maintain a set of base learners, which are trained and used
to gather prediction opinions, which are then aggregated by
the meta-learner into one final prediction. They are homoge-
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Algorithm Parameters and the considered subsets of their domains (0/1 for binary) Grid Size
CfsSubsetEval + Best (se+bf) M: 0/1, L: 0/1, Z: 0/1, D: (0, 1, 2), N: (1, 2, 4, 10, 100, 1000), S: (0, 1, 2, 3) 576
CfsSubsetEval + Greedy (se+gs) M: 0/1, L: 0/1, Z: 0/1, C: 0/1, B: 0/1, N: (1, 2, 10, 100) 128
CorrelationAttributeEval (cr) N: (1, 2, 4, 10, 100, 1000) 6
GainRatioAttributeEval (gr) N: (1, 2, 4, 10, 100, 1000) 6
InfoGainAttributeEval (ig) N: (1, 2, 4, 10, 100, 1000), M: 0/1, B: 0/1 24
OneRAttributeEval (or) N: (1, 2, 10, 100), D: 0/1, F: (2, 4, 8, 10), B: (1, 2, 4, 6, 8, 16) 192
PrincipalComponents (pca) N: (1, 2, 10, 100), A: (-1, 1, 2, 4, 8, 10, 100), C: 0/1, R: (.5, .7., .9, .95, .99), O: 0/1 560
ReliefFAttributeEval (re) N: (1, 2, 4, 10, 100, 1000), K: (1, 2, 4, 10, 100), A: (1, 2, 3, 10), M: (1, 2, 10, 100, 1000) 198
SymmetricalUncert (su) N: (1, 2, 4, 10, 100, 1000), M: 0/1 12
BayesNet (bn) D: 0/1, Q: (K2, HillClimber, LAGDHillClimber, SimulatedAnnealing, TabuSearch, TAN) 12
DecisionStump (ds) - -
DecisionTable (dt) I: 0/1, E: (acc, rmse, mae, auc), S: (BestFirst, GreedyStepwise), X: 1 ď X ď 10 170
IBk (ibk) K: (2, 4, 8, 16, 32, 64), X: 0/1, E: 0/1, I: 0/1, F: 0/1 16
J48 (j48) O: 0/1, U: 0/1, B: 0/1, J: 0/1, S: 0/1, A: 0/1, C: .1x : 1 ď x ď 10, M: (1, 4, 8, 16, 32, 64) 22
JRip (jrip) E: 0/1, P: 0/1, F: 1 ď F ď 5, N: 1 ď N ď 5, O:( 1, 2, 4, 8, 16, 32, 64) 19
KStar (k*) - -
LMT (lmt) B: 0/1, R: 0/1, C: 0/1, P: 0/1, A: 0/1, M: (1, 2, 4, 8, 16, 32, 64), W: (0, 0.5, 1, 1.5, 2, 4) 18
Logistic Regression (lr) R: 10x : ´9 ď x ď 2 13
MultilayerPerceptron (ann) B: 0/1, R: 0/1, C: 0/1, D: 0/1, L&M: 0.1 ¨ x : 1 ď x ď 10, H: (i, o, t) 25
NaiveBayes (nb) K: 0/1, D: 0/1 4
NaiveBayesMultinomial (nbm) - -
OneR (1-r) B: (1, 2, 4, 8, 16, 32, 64) 7
PART (part) R: 0/1, B: 0/1, U: 0/1, J: 0/1, M: (1, 4, 8, 16, 32, 64), N: (1, 2, 4, 5, 6, 7, 8, 9, 10) 19
RandomForest (rf) Options of RandomTree + I: 2x : 0 ď x ď 7 48
RandomTree (rt) B: 0/1, K: 1 ď K ď 10, M: 2x : 1 ď x ď 7, V: 10x : ´6 ď x ď 2, D&N: 2x : 0 ď x ď 6 40
REPTree (rep) P: 0/1, M: 2x : 1 ď x ď 7, V: 10x : ´6 ď x ď 2, L&N: 2x : 0 ď x ď 6 31
SimpleLogistic (sl) S: 0/1, A: 0/1, P: 0/1, W: (0, 0.5, 1, 1.5, 2), H&I&M: 2x : 0 ď x ď 10 41
SMO (smo) C: 10x : ´6 ď x ď 5, N: (1,2), L: 10x : ´6 ď x ď 2, P: 10x : ´14 ď x ď ´3, V: 1 ď V ď 10 42
VotedPerceptron (vp) I: 2x : 1 ď x ď 10, E: (2, 3, 4, 5), M: (1, 10, 100,1000, 100000, 1000000) 20
ZeroR (0-r) - -
AdaBoost (ab) Q: 0/1, P: (50, 60, 70, 80, 90, 95), I: (5, 20, 50) 36
Bagging (bg) O: 0/1, P: (50, 60, 70, 80, 90, 95), I: (5, 20, 50) 36
LogitBoost (lb) as AdaBoost + L: (0, 0.01, 0.1), H: (0.1, 0.5, 0.9), Z = (1, 2, 3, 5, 10) 2520
Random Subspace Classification (rss) I: (5, 10, 20, 50) 4
Random Committees (rc) P: (50, 60, 70, 80, 90, 95), I: (5, 10, 20, 50) 28

TABLE 1: Overview of all considered algorithms with their parameters

nous, because they require that all its base learners are of
the same type. Of course, this restriction is not necessary,
and we can, on a conceptual level, simply combine different
classifier types in a voting ensemble or use a stacking
approach, which also allows different base learner types to
be combined.

In this paper, we disregard the latter type of ensembles
for technical reasons. This is mainly due to the fact that
the configurability of such ensembles in the current imple-
mentation of ML-Plan is still rather limited, and we would
not have had the ability to make a detailed analysis of
the runtime prediction of “very” heterogeneous ensembles.
Hence, we decided to better omit this ensemble type at this
point and leave it for future work.

1.2 Some Details on the Algorithms
1.2.1 Pre-Processors

CfsSubsetEval. This is an implementation of the Correla-
tion based Feature Set (CFS) evaluation developed in Mark
Hall’s PhD thesis [3]. Roughly speaking, it evaluates a
feature set by relating the average correlation between the
features and the class attributes to the average correlation

between the features themselves; higher scores are better. It
is noteworthy that the term “correlation” here is not meant
to capture linear correlation but rather generally a degree of
dependency among variables. Attributes are first discretized
internally and then, one out of different possible measures
for inter-dependency can be applied. CfsSubsetEval can be
used either inside a Best First Search (se-bf), which theoreti-
cally enables an exhaustive search stopped at some stalling
point of time, or in a local search called GreedyStepwise (se-
gs), in which only single (irrevocable) modifications to the
feature set are allowed.

Correlation (cr). This ranks the attributes based on their
(linear) correlation with the class attribute.

InfoGain (ig). This is an implementation of the traditional
information gain criterion proposed by Quinlan [4]. It mea-
sures by how much the (Shannon) entropy reduces by
conditioning (i.e. branching) on a particular attribute.

GainRatio (gr). The Gain Ratio criterion was proposed by
Quinlan [4] in the context of decision tree inference. It
evaluates an attribute by dividing its information gain by its
entropy. It can hence be understood as a relative information
gain that puts the conditional entropy into the context of
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the unconditional one and hence, to a degree, measures the
“surprisingness” of the conditional entropy observed. This
can be thought of as not overweighing certain attributes that
cause high information gain when effectively all attributes
yield high information gain, just because of a high basic
entropy.

OneR (or). This is an implementation of Holte’s 1R algo-
rithm [5], which builds on classifier for each attribute and
tries to predict the class using only this attribute. This can
be thought of as a one-level decision tree. Attributes with
lowest error rates are retained.

PrincipalComponents (pca). The (linear) principal compo-
nent analysis introduced by Pearson [6]. The coordinate
system is rotated so that the axises of the new system cor-
respond to the (orthogonal) eigenvectors of the covariance
matrix of the data. The new attributes are hence non-pure
mixtures of the original attributes, and they are ranked by
the variance the data have in their direction, corresponding
to the eigenvalue of the respective eigenvector.

ReliefF (re). This algorithm implements the RELIEFF algo-
rithm introduced by Kononeko in [7]. It is a generalization
of the original RELIEF algorithm introduced by Kira and
Rendell in [8], which tries to estimate the importance of a
feature by weighing it according to its relevance at the deci-
sion boundary. In a stochastic manner, it draws points and
for each point its nearest neighbor with the same and with
the other class. The weight of each attribute is initialized
with 0 and updated with the squared mean distance (0/1 for
nominal attributes) among each of the samples between the
nearest miss and nearest hit instance, respectively. Hence,
higher average distances to other classes increase the feature
importance and, in a sense, point to better separability in
this dimension.

SymmetricalUncert (su). This is a normalized version of
information gain in which also the bias towards features
with a high number of occurring values is reduced.

1.2.2 Base Learners

BayesNet (bn). This is an implementation that builds a
Bayes net to derive posterior probabilities for classes based
on a set of given attributes. In contrast to (nb), it does not
make the assumption of independence among attributes but
rather tries to assess the dependency structure in a network,
which then allows for probabilistic inference.

DecisionStump (ds). Creates a binary (ternary if there are
missing values) split over a single attribute and a value
for it. One child fold contains the instances in which the
attribute has a value ”less or” equal to the split value, while
the other folds contains all other instances with non-missing
values for the attribute. This procedure is in contrast to (1r)
in that a specific value is considered for splitting, instead of
creating one fold for each possible value.

DecisionTable (dt). Decision tables were proposed by Ko-
havi in [9]. A decision table combines a pre-processor with a
conditional majority class decision rule. The classifier is built
by selecting the “most relevant” features using some pre-
processing algorithm; continuous attributes are discretized.
The algorithm memorizes all instances projected to the

retained features, and to make a prediction for an unlabeled
instance, it will search for all seen instances with exact
matches in the retained attributes and return the majority
class among them. If no match is found, the overall majority
class is returned.

IBk (ibk). This is an implementation of a k-nearest neighbor
classifier. When making a prediction, each class label is
associated with a probability that depends on how many
among the k nearest neighbors have that label and what
their distance to the predicted point is. For a deterministic
prediction, the class with the highest probability is pre-
dicted.

J48 (j48). This is an implementation of C4.5 decision trees as
proposed by Quinlan [4], an extension of ID3 that facilitates
pruning in order to avoid overfitting. The name is a bit mis-
leading and probably refers to the fact that it is implemented
in Java.

JRip (jrip). This is an implementation of the RIPPERk
algorithm proposed by Cohen [10]. This is a rule generation
algorithm that runs an open loop in which each iteration
consists of building a new rule. This is done in two steps:
First a rule is created by growing a rule premise with the
same building blocks used in decision trees maximizing
information gain, and in a second step the rule is pruned
to remove possibly unnecessary or overfitting conditions.
Examples satisfying the rule’s premise are then removed
from the considered dataset. The loop runs until the dataset
is exhausted or a rule with an unacceptably high error rate
is produced.

KStar (k*). Implementation of the K* algorithm, which is
a nearest neighbors algorithm adopting the so-called K*
distance introduced in [11]. The main idea is to base the
distance between two points not in terms of their geometri-
cal distance but on their information theoretic distance. This
distance is defined in terms of expected numbers of modifica-
tions that need to be made on the first instance to obtain the
second one. That is, instead of looking only at the shortest
such modification, the algorithm sums over “all possible”
transformations and weighs them with a probability.

LMT (lmt). Implementation of Logistic Model Trees [12].
This algorithm combines the idea of decision trees and logis-
tic regression in the sense that it grows a tree that maintains
in its leafs logistic regression models rather than constant
classes. The algorithm adopts the LogitBoost algorithm [13]
to iteratively fit logistic regression models already at each
inner node of the tree. The model of the parent is extended
by additional terms for the logistic model that are fit only
based on the instances “still in play” at the respective child.
The splitting criterion is the same as used for C4.5 trees, and
the algorithm stops if less than 15 examples are available for
a leaf.

Logistic Regression (lr). An implementation of the lr algo-
rithm proposed in [14]. This approach combines the ideas
of Ridge regression and “classical” lr. To cope with several
classes, the algorithm is slightly modified as to derive a
probability vector for an unseen instance and predicts the
instance with the highest probability.

MultilayerPerceptron (ann). A standard artificial neural
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network trained via back-propagation. In our evaluation,
the networks have exactly one hidden layer (with number
of hidden units depending on the parametrization).

NaiveBayes (nb). A classifier that computes posterior prob-
abilities for each class based on an independency assump-
tion between the features [15].

NaiveBayesMultinomial (nbm). [16]

OneR (1-r). A fast and very simple rule-based classifier,
using a single attribute in the rule’s head, with which
the target attribute can most accurately be concluded [17].
Numeric attributes are discretized by splitting the ranges
into a fixed number of intervals to mitigate overfitting.

PART (part). A rule-based classifier, building a decision
list iteratively by fitting a partial C4.5 decision tree and
transforming the path to the ’best’ leaf into a rule [18].

RandomTree (rt). A tree classifier that considers a randomly
sampled subset of k features at each node for splitting
[19]. In contrast to other decision tree classifiers, it does no
pruning. The main purpose of this classifier is to serve as a
base learner in a RandomForest ensemble.

RandomForest (rf). An classifier, forming an ensemble of
RandomTree classifiers via bagging [19].

REPTree (rep). A fast implementation of a decision tree that
splits nodes by trading off information gain and variance
and pruning the tree with backfitting afterwards.

SimpleLogistic (sl). A simple classifier consisting of linear
logistic regression models that are fitted using LogitBoost
[12], [20]. The optimal number of LogitBoost iterations is
determined via cross-validation.

SMO (smo). A support vector machine that is induced via
the sequential minimal optimization algorithm [21], hence
the name, for solving the underlying quadratic program-
ming problem.

VotedPerceptron (vp). An implementation of the voted per-
ceptron algorithm which builds a set of simple perceptrons
and combines their predictions into a weighted sum [22].
The weight of each perceptron is determined by counting
the number of instances that are correctly predicted during
the training.

ZeroR (0-r). A classifier that agnostic of an instance simply
predicts the mode of the training data sample, i.e., the
majority class.

2 DATASETS

We consider 170 datasets from the openml.org platform
[23] as the basis of the datasets used in the evaluation. The
considered set is a strict superset of those used in [24], which
is a systematic selection of datasets with heterogeneous
properties. Fig. 2 shows these datasets in terms of their
numbers of instances and attributes respectively as orange
points; the left is linear scaled with only an excerpt for
readability, and the right one shows them on a log-scale.

2.1 Selection of 10 Representative Datasets
The idea is to adopt repetitions of a randomly initialized
kMeans algorithms in the space of meta-features over the
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Fig. 1: Dataset Overview

datasets. The algorithm is run with k “ 10, i.e. identifies 10
centroids, and in each round, the point that is closest to each
of the centroids gets a point. After 100 repetitions of this
“game”, the ten points this the highest scores are selected as
representants.

From the pool of candidates, we exclude those with more
than 10000 instances or more than 100 attributes. This only
has the reason to be sure that none of the datasets that
is part of the final evaluation will be selected here. Also,
we are specifically interested in representants for the other
attributes, since our procedure to produce new datasets will
make the dataset size an arbitrary variable anyway.

Interestingly, this process is absolutely stable in that
the 10 highest scored datasets are selected in almost all
rounds as the best representants. These datasets are (to-
gether with their openml id): KR-VS-KP (3), HYPOTHYROID
(57), RMFTSA-SLEEPDATA (741), FRI-C1-1000-5 (743), QUAKE
(772), FRI-C3-1000-5 (813), FRI-C2-1000-25 (903), FRI-C0-
1000-50 (904), BALLOON (914), and VISUALIZING-SOIL (923).

An overview of all the datasets in the number of in-
stances and attributes is shown in Fig. 1. The red points are
the datasets excluded from the clustering, the green ones are
then 10 chosen datasets, and the orange ones the others. The
colored lines are visual aids to recognize the resulting size
of the input matrix.

2.2 Definition of the Grid and the Dataset Generator

Even taking into account several dozens of different
datasets, it is necessary to derive further data points in the
space of used datasets. On one hand, if we run a classifier
on each of the datasets, we will obtain only 170 semantically
distinct runtime records (even if several repetitions are
made using different seeds). This is a rather small number of
training examples for a regression algorithm, and it would
be even harder to conduct a meaningful validation. On the
other hand, as one also sees in the figures, those points only
cover a couple of regions of the spectrum of the input space
of the regressor, and we lack examples in many regions.

To overcome this limitation, we adopted a technique to
cast a version of an arbitrarily shaped dataset to any point
on the plain spanned by the numbers of instances and num-
bers of attributes respectively. Formally, this corresponds
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Fig. 2: Training Point Grid points (in blue) and sizes of the 170 original datasets (in orange). Left shows an excerpt of the
linear scale plot and right shows log scales.

to a generator function g : N ˆ N ˆ D Ñ D such that
gpn, d,Dq is a nˆd dataset derived from the original dataset
D. The idea is to somewhat uniformly cover all regions of
the input space regardless the sizes of the original data.
To this end, we consider a sub-space of the grid over the
following points whenever the product (input matrix size)
has at most 3 ¨ 108 entries, which fits into the memory for
most datasets in a way that most learners can still be applied
if 16GB memory are available in total:

‚ Number of instances: 100, 200, 300, 400, 500, 600, 700,
800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000,
9000, 10000, 12000, 14000, 15000, 16000, 18000, 20000,
30000, 40000, 50000, 60000, 70000, 80000, 90000,
100000, 250000, 500000, 750000, 1000000

‚ Number of attributes: 5, 10, 25, 50, 100, 150, 200, 250,
300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000,
5000, 6000, 7000, 8000, 9000, 10000, 12000, 14000,
16000, 18000, 20000, 25000, 30000, 40000, 50000,
60000, 70000, 80000, 90000, 100000

There are 1058 points in total. The resulting grid together
with the limit curve for a input size of 3¨108 is shown in blue
in Fig. 2. Given an original dataset D of the form n0 ˆ d0,
we apply, in this order, four steps to compute gpn, d,Dq:

1) if d ą d0, generate d´d0 random numeric columns,
2) if n ą n0, generate n ´ n0 new instances using

SMOTE [25] (applying it once for each class and
treating the respective class as if it was the minority
class),

3) if d0 ą d, randomly eliminate d0´d attributes of D,
4) if n0 ą n, randomly eliminate n0 ´ n instances of

D.

An example transformation for the CIFAR10 small dataset
(id 40926) with 20000 instances and 3072 attributes to point
(40000, 5000) is shown with the red arrows.

Augmenting attributes by random columns is admit-
tedly a bit arbitrary and could also be replaced by other,

rather kernel-like, feature expansions. We chose this for
simplicity but did not find any indications that this choice
had any particular effects on the runtime. For example, we
could observe for all algorithms cases in which a dataset
with only original attributes had an identical runtime to one
with a high number of generated features (but then the same
overall number of features).

Using SMOTE for instance generation aims at preserving
the structure of the original data, including class distribu-
tion, as well as possible.

2.3 Considered Meta-Features
Besides the number of instances and attributes, we consid-
ered also attributes in our analysis, and the overall set of
considered candidates for dataset-metafeatures F was as
follows: the number of instances (ni); number of attributes
in total (na), numeric (nn), symbolic/categorical (ns), after
binarization (nab); number of labels (nl), number of possible
values for the nominal attributes (nc), total variance (tv),
and the attributes required to cover 50%, 90%, 95%, and
90% of the variance (vx) respectively. Table 2 lists all the
considered datasets with their respective meta-features. The
meta-features are computed for each dataset as a whole but
can of course be different for concrete splits considered dur-
ing evaluation. Note that some dataset names appear twice,
but the datasets then have modifications in the number of
attributes or classes.
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id name ni na nn ns nab nl nc tv v50 v90 v95 v99
3 kr-vs-kp 3.20E+03 3.70E+01 0.00E+00 3.60E+01 7.50E+01 2.00E+00 6.00E+00 9.49E+00 21 46 53 62
6 letter 2.00E+04 1.70E+01 1.60E+01 0.00E+00 1.70E+01 2.60E+01 0.00E+00 8.55E+01 6 14 15 16

12 mfeat-factors 2.00E+03 2.17E+02 2.16E+02 0.00E+00 2.17E+02 1.00E+01 0.00E+00 9.89E+05 34 85 95 107
14 mfeat-fourier 2.00E+03 7.70E+01 7.60E+01 0.00E+00 7.70E+01 1.00E+01 0.00E+00 4.20E-01 13 52 63 74
16 mfeat-karhunen 2.00E+03 6.50E+01 6.40E+01 0.00E+00 6.50E+01 1.00E+01 0.00E+00 4.15E+02 8 36 46 60
18 mfeat-morpho... 2.00E+03 7.00E+00 6.00E+00 0.00E+00 7.00E+00 1.00E+01 0.00E+00 1.41E+07 1 1 1 1
21 car 1.73E+03 7.00E+00 0.00E+00 6.00E+00 2.20E+01 4.00E+00 2.10E+01 4.25E+00 10 19 20 21
22 mfeat-zernike 2.00E+03 4.80E+01 4.70E+01 0.00E+00 4.80E+01 1.00E+01 0.00E+00 1.37E+05 6 19 22 27
23 cmc 1.47E+03 1.00E+01 2.00E+00 7.00E+00 2.50E+01 3.00E+00 1.60E+01 7.66E+01 1 2 2 15
24 mushroom 8.12E+03 2.30E+01 0.00E+00 2.20E+01 1.26E+02 2.00E+00 1.17E+02 1.12E+01 25 61 72 91
26 nursery 1.30E+04 9.00E+00 0.00E+00 8.00E+00 2.80E+01 5.00E+00 2.50E+01 5.47E+00 13 24 26 27
28 optdigits 5.62E+03 6.50E+01 6.40E+01 0.00E+00 6.50E+01 1.00E+01 0.00E+00 1.20E+03 17 36 41 45
30 page-blocks 5.47E+03 1.10E+01 1.00E+01 0.00E+00 1.10E+01 5.00E+00 0.00E+00 2.87E+07 1 2 3 3
31 credit-g 1.00E+03 2.10E+01 7.00E+00 1.30E+01 6.40E+01 2.00E+00 5.20E+01 7.96E+06 1 1 1 1
32 pendigits 1.10E+04 1.70E+01 1.60E+01 0.00E+00 1.70E+01 1.00E+01 0.00E+00 1.49E+04 6 13 14 16
36 segment 2.31E+03 2.00E+01 1.90E+01 0.00E+00 2.00E+01 7.00E+00 0.00E+00 2.25E+04 3 8 9 11
38 sick 3.77E+03 3.00E+01 7.00E+00 2.20E+01 5.30E+01 2.00E+00 5.00E+00 3.37E+03 2 4 4 4
44 spambase 4.60E+03 5.80E+01 5.70E+01 0.00E+00 5.70E+01 2.00E+00 0.00E+00 4.07E+05 1 1 2 2
46 splice 3.19E+03 6.20E+01 0.00E+00 6.10E+01 3.46E+03 3.00E+00 3.46E+03 4.54E+01 114 217 231 2016
57 hypothyroid 3.77E+03 3.00E+01 7.00E+00 2.20E+01 5.30E+01 4.00E+00 5.00E+00 3.37E+03 2 4 4 4
60 waveform-5000 5.00E+03 4.10E+01 4.00E+01 0.00E+00 4.00E+01 3.00E+00 0.00E+00 6.94E+01 11 33 37 40

179 adult 4.88E+04 1.50E+01 2.00E+00 1.20E+01 1.21E+02 2.00E+00 1.17E+02 1.12E+10 1 1 1 1
180 covertype 1.10E+05 5.50E+01 1.40E+01 4.00E+01 9.40E+01 7.00E+00 0.00E+00 4.32E+06 1 2 2 4
181 yeast 1.48E+03 9.00E+00 8.00E+00 0.00E+00 8.00E+00 1.00E+01 0.00E+00 8.00E-02 3 6 7 8
182 satimage 6.43E+03 3.70E+01 3.60E+01 0.00E+00 3.60E+01 6.00E+00 0.00E+00 3.60E+01 18 33 35 36
183 abalone 4.18E+03 9.00E+00 7.00E+00 1.00E+00 1.00E+01 2.80E+01 3.00E+00 1.01E+00 3 5 6 9
184 kropt 2.81E+04 7.00E+00 0.00E+00 6.00E+00 4.80E+01 1.80E+01 4.80E+01 4.83E+00 16 34 37 40
185 baseball 1.34E+03 1.80E+01 1.50E+01 2.00E+00 1.36E+03 3.00E+00 1.35E+03 5.56E+06 1 3 5 7
273 IMDB.drama 1.21E+05 1.00E+03 0.00E+00 0.00E+00 1.00E+03 2.00E+00 0.00E+00 1.86E+01 227 771 875 970
293 covertype 5.81E+05 5.50E+01 0.00E+00 0.00E+00 5.40E+01 2.00E+00 0.00E+00 9.95E+00 5 9 10 10
300 isolet 7.80E+03 6.18E+02 6.17E+02 0.00E+00 6.17E+02 2.60E+01 0.00E+00 1.15E+02 185 466 520 578
351 codrna 4.89E+05 9.00E+00 0.00E+00 0.00E+00 8.00E+00 2.00E+00 0.00E+00 7.99E+00 4 8 8 8
354 poker 1.03E+06 1.10E+01 0.00E+00 0.00E+00 1.00E+01 2.00E+00 0.00E+00 1.00E+01 5 9 10 10
357 vehicle sensIT 9.85E+04 1.01E+02 0.00E+00 0.00E+00 1.00E+02 2.00E+00 0.00E+00 1.00E+02 51 91 96 100
389 fbis.wc 2.46E+03 2.00E+03 0.00E+00 0.00E+00 2.00E+03 1.70E+01 0.00E+00 5.47E+04 55 619 912 1467
390 new3s.wc 9.56E+03 2.68E+04 0.00E+00 0.00E+00 2.68E+04 4.40E+01 0.00E+00 1.37E+06 17 877 1980 6367
391 re0.wc 1.50E+03 2.89E+03 0.00E+00 0.00E+00 2.89E+03 1.30E+01 0.00E+00 2.16E+03 114 734 1063 1565
392 oh0.wc 1.00E+03 3.18E+03 0.00E+00 0.00E+00 3.18E+03 1.00E+01 0.00E+00 4.26E+03 254 1104 1437 2097
393 la2s.wc 3.08E+03 1.24E+04 0.00E+00 0.00E+00 1.24E+04 6.00E+00 0.00E+00 3.25E+04 342 2477 3729 6541
395 re1.wc 1.66E+03 3.76E+03 0.00E+00 0.00E+00 3.76E+03 2.50E+01 0.00E+00 3.73E+03 189 1101 1505 2230
396 la1s.wc 3.20E+03 1.32E+04 0.00E+00 0.00E+00 1.32E+04 6.00E+00 0.00E+00 3.97E+04 247 2362 3632 6681
398 wap.wc 1.56E+03 8.46E+03 0.00E+00 0.00E+00 8.46E+03 2.00E+01 0.00E+00 8.58E+03 308 2082 2951 4531
399 ohscal.wc 1.12E+04 1.15E+04 0.00E+00 0.00E+00 1.15E+04 1.00E+01 0.00E+00 2.29E+04 1023 4493 5781 8061
401 oh10.wc 1.05E+03 3.24E+03 0.00E+00 0.00E+00 3.24E+03 1.00E+01 0.00E+00 5.18E+03 269 1171 1527 2193
554 mnist 784 7.00E+04 7.85E+02 7.84E+02 0.00E+00 7.84E+02 1.00E+01 0.00E+00 3.43E+06 141 298 345 435
679 rmftsa sleep... 1.02E+03 3.00E+00 2.00E+00 0.00E+00 2.00E+00 4.00E+00 0.00E+00 2.29E+02 1 1 1 1
715 fri c3 1000 25 1.00E+03 2.60E+01 2.50E+01 0.00E+00 2.50E+01 2.00E+00 0.00E+00 2.50E+01 13 23 24 25
718 fri c4 1000 100 1.00E+03 1.01E+02 1.00E+02 0.00E+00 1.00E+02 2.00E+00 0.00E+00 9.99E+01 50 90 95 99
720 abalone 4.18E+03 9.00E+00 7.00E+00 1.00E+00 1.00E+01 2.00E+00 3.00E+00 1.01E+00 3 5 6 9
722 pol 1.50E+04 4.90E+01 4.80E+01 0.00E+00 4.80E+01 2.00E+00 0.00E+00 5.31E+03 5 13 16 22
723 fri c4 1000 25 1.00E+03 2.60E+01 2.50E+01 0.00E+00 2.50E+01 2.00E+00 0.00E+00 2.50E+01 13 23 24 25
727 2dplanes 4.08E+04 1.10E+01 1.00E+01 0.00E+00 1.00E+01 2.00E+00 0.00E+00 7.00E+00 5 9 10 10
728 analcatdata ... 4.05E+03 8.00E+00 7.00E+00 0.00E+00 7.00E+00 2.00E+00 0.00E+00 9.82E+01 1 1 1 2
734 ailerons 1.38E+04 4.10E+01 4.00E+01 0.00E+00 4.00E+01 2.00E+00 0.00E+00 6.85E+04 1 1 1 2
735 cpu small 8.19E+03 1.30E+01 1.20E+01 0.00E+00 1.20E+01 2.00E+00 0.00E+00 2.55E+11 1 2 3 3
737 space ga 3.11E+03 7.00E+00 6.00E+00 0.00E+00 6.00E+00 2.00E+00 0.00E+00 1.32E+14 1 1 1 1
740 fri c3 1000 10 1.00E+03 1.10E+01 1.00E+01 0.00E+00 1.00E+01 2.00E+00 0.00E+00 9.99E+00 5 9 10 10
741 rmftsa sleep... 1.02E+03 3.00E+00 1.00E+00 1.00E+00 5.00E+00 2.00E+00 4.00E+00 2.30E+02 1 1 1 1
743 fri c1 1000 5 1.00E+03 6.00E+00 5.00E+00 0.00E+00 5.00E+00 2.00E+00 0.00E+00 5.00E+00 3 5 5 5
751 fri c4 1000 10 1.00E+03 1.10E+01 1.00E+01 0.00E+00 1.00E+01 2.00E+00 0.00E+00 9.99E+00 5 9 10 10
752 puma32H 8.19E+03 3.30E+01 3.20E+01 0.00E+00 3.20E+01 2.00E+00 0.00E+00 9.42E+03 3 5 5 5
761 cpu act 8.19E+03 2.20E+01 2.10E+01 0.00E+00 2.10E+01 2.00E+00 0.00E+00 2.55E+11 1 2 3 3
772 quake 2.18E+03 4.00E+00 3.00E+00 0.00E+00 3.00E+00 2.00E+00 0.00E+00 2.86E+04 2 2 2 3
797 fri c4 1000 50 1.00E+03 5.10E+01 5.00E+01 0.00E+00 5.00E+01 2.00E+00 0.00E+00 5.00E+01 25 45 48 50
799 fri c0 1000 5 1.00E+03 6.00E+00 5.00E+00 0.00E+00 5.00E+00 2.00E+00 0.00E+00 5.00E+00 3 5 5 5
803 delta ailerons 7.13E+03 6.00E+00 5.00E+00 0.00E+00 5.00E+00 2.00E+00 0.00E+00 0.00E+00 1 3 3 4
806 fri c3 1000 50 1.00E+03 5.10E+01 5.00E+01 0.00E+00 5.00E+01 2.00E+00 0.00E+00 5.00E+01 25 45 48 50
807 kin8nm 8.19E+03 9.00E+00 8.00E+00 0.00E+00 8.00E+00 2.00E+00 0.00E+00 6.56E+00 4 8 8 8
813 fri c3 1000 5 1.00E+03 6.00E+00 5.00E+00 0.00E+00 5.00E+00 2.00E+00 0.00E+00 5.00E+00 3 5 5 5
816 puma8NH 8.19E+03 9.00E+00 8.00E+00 0.00E+00 8.00E+00 2.00E+00 0.00E+00 7.33E+00 4 6 6 8
819 delta elevators 9.52E+03 7.00E+00 6.00E+00 0.00E+00 6.00E+00 2.00E+00 0.00E+00 6.74E+02 1 1 1 2
821 house 16H 2.28E+04 1.70E+01 1.60E+01 0.00E+00 1.60E+01 2.00E+00 0.00E+00 4.34E+09 1 1 1 1
822 cal housing 2.06E+04 9.00E+00 8.00E+00 0.00E+00 8.00E+00 2.00E+00 0.00E+00 6.37E+06 1 2 3 4
823 houses 2.06E+04 9.00E+00 8.00E+00 0.00E+00 8.00E+00 2.00E+00 0.00E+00 1.33E+10 1 1 1 1
833 bank32nh 8.19E+03 3.30E+01 3.20E+01 0.00E+00 3.20E+01 2.00E+00 0.00E+00 5.01E+01 3 13 21 27
837 fri c1 1000 50 1.00E+03 5.10E+01 5.00E+01 0.00E+00 5.00E+01 2.00E+00 0.00E+00 5.00E+01 25 45 48 50
843 house 8L 2.28E+04 9.00E+00 8.00E+00 0.00E+00 8.00E+00 2.00E+00 0.00E+00 6.22E+08 1 1 1 1
845 fri c0 1000 10 1.00E+03 1.10E+01 1.00E+01 0.00E+00 1.00E+01 2.00E+00 0.00E+00 9.99E+00 5 9 10 10
846 elevators 1.66E+04 1.90E+01 1.80E+01 0.00E+00 1.80E+01 2.00E+00 0.00E+00 7.78E+04 1 1 1 1
847 wind 6.57E+03 1.50E+01 1.40E+01 0.00E+00 1.40E+01 2.00E+00 0.00E+00 3.70E+02 5 12 13 14
849 fri c0 1000 25 1.00E+03 2.60E+01 2.50E+01 0.00E+00 2.50E+01 2.00E+00 0.00E+00 2.50E+01 13 23 24 25
866 fri c2 1000 50 1.00E+03 5.10E+01 5.00E+01 0.00E+00 5.00E+01 2.00E+00 0.00E+00 5.00E+01 25 45 48 50
871 pollen 3.85E+03 6.00E+00 5.00E+00 0.00E+00 5.00E+00 2.00E+00 0.00E+00 2.41E+02 2 4 4 5
881 mv 4.08E+04 1.10E+01 7.00E+00 3.00E+00 1.40E+01 2.00E+00 3.00E+00 1.68E+04 1 2 2 2
897 colleges aaup 1.16E+03 1.70E+01 1.30E+01 3.00E+00 1.21E+03 2.00E+00 1.20E+03 5.93E+06 1 1 1 5
901 fried 4.08E+04 1.10E+01 1.00E+01 0.00E+00 1.00E+01 2.00E+00 0.00E+00 8.30E-01 5 9 10 10
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id name ni na nn ns nab nl nc tv v50 v90 v95 v99
903 fri c2 1000 25 1.00E+03 2.60E+01 2.50E+01 0.00E+00 2.50E+01 2.00E+00 0.00E+00 2.50E+01 13 23 24 25
904 fri c0 1000 50 1.00E+03 5.10E+01 5.00E+01 0.00E+00 5.00E+01 2.00E+00 0.00E+00 5.00E+01 25 45 48 50
910 fri c1 1000 10 1.00E+03 1.10E+01 1.00E+01 0.00E+00 1.00E+01 2.00E+00 0.00E+00 9.99E+00 5 9 10 10
912 fri c2 1000 5 1.00E+03 6.00E+00 5.00E+00 0.00E+00 5.00E+00 2.00E+00 0.00E+00 5.00E+00 3 5 5 5
913 fri c2 1000 10 1.00E+03 1.10E+01 1.00E+01 0.00E+00 1.00E+01 2.00E+00 0.00E+00 9.99E+00 5 9 10 10
914 balloon 2.00E+03 2.00E+00 1.00E+00 0.00E+00 1.00E+00 2.00E+00 0.00E+00 3.00E-02 1 1 1 1
917 fri c1 1000 25 1.00E+03 2.60E+01 2.50E+01 0.00E+00 2.50E+01 2.00E+00 0.00E+00 2.50E+01 13 23 24 25
923 visualizing ... 8.64E+03 5.00E+00 3.00E+00 1.00E+00 5.00E+00 2.00E+00 0.00E+00 8.32E+02 1 1 1 1
930 colleges usnews 1.30E+03 3.50E+01 3.20E+01 2.00E+00 1.36E+03 2.00E+00 1.32E+03 1.29E+08 3 6 8 11
934 socmob 1.16E+03 6.00E+00 1.00E+00 4.00E+00 3.90E+01 2.00E+00 3.40E+01 1.97E+03 1 1 1 1
953 splice 3.19E+03 6.20E+01 0.00E+00 6.10E+01 3.46E+03 2.00E+00 3.46E+03 4.54E+01 114 217 231 2016
958 segment 2.31E+03 2.00E+01 1.90E+01 0.00E+00 1.90E+01 2.00E+00 0.00E+00 2.25E+04 3 8 9 11
959 nursery 1.30E+04 9.00E+00 0.00E+00 8.00E+00 2.70E+01 2.00E+00 2.50E+01 5.47E+00 13 24 26 27
962 mfeat-morpho... 2.00E+03 7.00E+00 6.00E+00 0.00E+00 6.00E+00 2.00E+00 0.00E+00 1.41E+07 1 1 1 1
966 analcatdata ... 1.34E+03 1.80E+01 1.50E+01 2.00E+00 1.36E+03 2.00E+00 1.35E+03 5.56E+06 1 3 5 7
971 mfeat-fourier 2.00E+03 7.70E+01 7.60E+01 0.00E+00 7.60E+01 2.00E+00 0.00E+00 4.20E-01 13 52 63 74
976 JapaneseVowels 9.96E+03 1.50E+01 1.40E+01 0.00E+00 1.40E+01 2.00E+00 0.00E+00 2.80E+02 1 1 2 2
977 letter 2.00E+04 1.70E+01 1.60E+01 0.00E+00 1.60E+01 2.00E+00 0.00E+00 8.55E+01 6 14 15 16
978 mfeat-factors 2.00E+03 2.17E+02 2.16E+02 0.00E+00 2.16E+02 2.00E+00 0.00E+00 9.89E+05 34 85 95 107
979 waveform-5000 5.00E+03 4.10E+01 4.00E+01 0.00E+00 4.00E+01 2.00E+00 0.00E+00 6.94E+01 11 33 37 40
980 optdigits 5.62E+03 6.50E+01 6.40E+01 0.00E+00 6.40E+01 2.00E+00 0.00E+00 1.20E+03 17 36 41 45
991 car 1.73E+03 7.00E+00 0.00E+00 6.00E+00 2.10E+01 2.00E+00 2.10E+01 4.25E+00 10 19 20 21
993 kdd ipums la... 7.02E+03 6.10E+01 3.30E+01 2.70E+01 6.77E+02 2.00E+00 6.27E+02 1.01E+12 3 5 5 6
995 mfeat-zernike 2.00E+03 4.80E+01 4.70E+01 0.00E+00 4.70E+01 2.00E+00 0.00E+00 1.37E+05 6 19 22 27

1000 hypothyroid 3.77E+03 3.00E+01 7.00E+00 2.20E+01 5.30E+01 2.00E+00 5.00E+00 3.37E+03 2 4 4 4
1002 ipums la 98-... 7.48E+03 5.60E+01 1.60E+01 3.90E+01 2.46E+02 2.00E+00 2.13E+02 9.42E+11 3 5 5 6
1018 ipums la 99-... 8.84E+03 5.70E+01 1.50E+01 4.10E+01 2.70E+02 2.00E+00 2.36E+02 5.34E+11 2 3 3 5
1019 pendigits 1.10E+04 1.70E+01 1.60E+01 0.00E+00 1.60E+01 2.00E+00 0.00E+00 1.49E+04 6 13 14 16
1020 mfeat-karhunen 2.00E+03 6.50E+01 6.40E+01 0.00E+00 6.40E+01 2.00E+00 0.00E+00 4.15E+02 8 36 46 60
1021 page-blocks 5.47E+03 1.10E+01 1.00E+01 0.00E+00 1.00E+01 2.00E+00 0.00E+00 2.87E+07 1 2 3 3
1036 sylva agnostic 1.44E+04 2.17E+02 2.16E+02 0.00E+00 2.16E+02 2.00E+00 0.00E+00 1.12E+06 8 27 32 38
1037 ada prior 4.56E+03 1.50E+01 6.00E+00 8.00E+00 1.02E+02 2.00E+00 9.40E+01 1.17E+10 1 1 1 1
1039 hiva agnostic 4.23E+03 1.62E+03 1.62E+03 0.00E+00 1.62E+03 2.00E+00 0.00E+00 1.06E+02 287 1010 1221 1471
1040 sylva prior 1.44E+04 1.09E+02 1.08E+02 0.00E+00 1.08E+02 2.00E+00 0.00E+00 5.57E+05 4 14 16 20
1041 gina prior2 3.47E+03 7.85E+02 7.84E+02 0.00E+00 7.84E+02 1.00E+01 0.00E+00 3.44E+06 142 299 344 431
1042 gina prior 3.47E+03 7.85E+02 7.84E+02 0.00E+00 7.84E+02 2.00E+00 0.00E+00 3.44E+06 142 299 344 431
1049 pc4 1.46E+03 3.80E+01 3.70E+01 0.00E+00 3.70E+01 2.00E+00 0.00E+00 3.93E+09 1 1 1 1
1050 pc3 1.56E+03 3.80E+01 3.70E+01 0.00E+00 3.70E+01 2.00E+00 0.00E+00 1.29E+11 1 1 1 1
1053 jm1 1.09E+04 2.20E+01 2.10E+01 0.00E+00 2.10E+01 2.00E+00 0.00E+00 1.89E+11 1 1 1 1
1059 ar1 1.21E+02 3.00E+01 2.90E+01 0.00E+00 2.90E+01 2.00E+00 0.00E+00 3.50E+07 1 1 1 1
1067 kc1 2.11E+03 2.20E+01 2.10E+01 0.00E+00 2.10E+01 2.00E+00 0.00E+00 3.05E+08 1 1 1 1
1068 pc1 1.11E+03 2.20E+01 2.10E+01 0.00E+00 2.10E+01 2.00E+00 0.00E+00 2.92E+10 1 1 1 1
1069 pc2 5.59E+03 3.70E+01 3.60E+01 0.00E+00 3.60E+01 2.00E+00 0.00E+00 7.82E+08 1 1 1 1
1116 musk 6.60E+03 1.69E+02 1.66E+02 2.00E+00 6.87E+03 2.00E+00 6.70E+03 1.30E+06 54 129 144 159
1119 adult-census 3.26E+04 1.50E+01 6.00E+00 8.00E+00 1.05E+02 2.00E+00 9.70E+01 1.12E+10 1 1 1 1
1120 MagicTelescope 1.90E+04 1.10E+01 1.00E+01 0.00E+00 1.00E+01 2.00E+00 0.00E+00 1.49E+04 2 4 6 7
1128 OVA Breast 1.54E+03 1.09E+04 1.09E+04 0.00E+00 1.09E+04 2.00E+00 0.00E+00 2.41E+11 39 847 1834 5753
1130 OVA Lung 1.54E+03 1.09E+04 1.09E+04 0.00E+00 1.09E+04 2.00E+00 0.00E+00 2.36E+11 42 867 1869 5806
1134 OVA Kidney 1.54E+03 1.09E+04 1.09E+04 0.00E+00 1.09E+04 2.00E+00 0.00E+00 2.41E+11 39 847 1834 5753
1138 OVA Uterus 1.54E+03 1.09E+04 1.09E+04 0.00E+00 1.09E+04 2.00E+00 0.00E+00 2.41E+11 39 847 1834 5753
1139 OVA Omentum 1.54E+03 1.09E+04 1.09E+04 0.00E+00 1.09E+04 2.00E+00 0.00E+00 2.41E+11 39 847 1834 5753
1142 OVA Endometrium 1.54E+03 1.09E+04 1.09E+04 0.00E+00 1.09E+04 2.00E+00 0.00E+00 2.41E+11 39 847 1834 5753
1146 OVA Prostate 1.54E+03 1.09E+04 1.09E+04 0.00E+00 1.09E+04 2.00E+00 0.00E+00 2.41E+11 39 847 1834 5753
1161 OVA Colon 1.54E+03 1.09E+04 1.09E+04 0.00E+00 1.09E+04 2.00E+00 0.00E+00 2.41E+11 39 847 1834 5753
1166 OVA Ovary 1.54E+03 1.09E+04 1.09E+04 0.00E+00 1.09E+04 2.00E+00 0.00E+00 2.41E+11 39 847 1834 5753
1216 Click predic... 1.50E+06 1.20E+01 1.10E+01 0.00E+00 1.10E+01 2.00E+00 0.00E+00 2.46E+37 1 1 1 1
1242 vehicleNorm 9.85E+04 1.01E+02 0.00E+00 0.00E+00 1.00E+02 2.00E+00 0.00E+00 1.00E+02 51 91 96 100
1457 amazon-comme... 1.50E+03 1.00E+04 1.00E+04 0.00E+00 1.00E+04 5.00E+01 0.00E+00 1.35E+04 8 1165 2213 4000
1485 madelon 2.60E+03 5.01E+02 5.00E+02 0.00E+00 5.00E+02 2.00E+00 0.00E+00 4.55E+05 76 254 306 389
1486 nomao 3.45E+04 1.19E+02 8.90E+01 2.90E+01 1.74E+02 2.00E+00 8.10E+01 1.38E+01 31 98 117 141
1501 semeion 1.59E+03 2.57E+02 2.56E+02 0.00E+00 2.56E+02 1.00E+01 0.00E+00 5.35E+01 113 219 235 250
1569 poker-hand 1.02E+06 1.10E+01 1.00E+01 0.00E+00 1.00E+01 9.00E+00 0.00E+00 7.63E+01 3 5 7 10
4136 Dexter 6.00E+02 2.00E+04 0.00E+00 0.00E+00 2.00E+04 2.00E+00 0.00E+00 1.46E+06 584 3921 5713 8595
4137 Dorothea 1.15E+03 1.00E+05 0.00E+00 0.00E+00 1.00E+05 2.00E+00 0.00E+00 8.88E+02 16008 52645 63830 81381
4541 Diabetes130US 1.02E+05 4.90E+01 1.30E+01 3.60E+01 2.47E+03 3.00E+00 2.44E+03 1.20E+16 1 2 2 2
4552 BachChoralHa... 5.66E+03 1.60E+01 2.00E+00 1.40E+01 1.04E+02 1.02E+02 7.80E+01 1.40E+03 1 1 1 1

23380 cjs 2.80E+03 3.30E+01 3.10E+01 2.00E+00 9.80E+01 6.00E+00 6.70E+01 6.30E+02 1 10 15 22
23512 higgs 9.80E+04 2.80E+01 2.80E+01 0.00E+00 2.80E+01 2.00E+00 0.00E+00 1.96E+01 9 18 22 26
40497 thyroid-ann 3.77E+03 2.10E+01 2.10E+01 0.00E+00 2.10E+01 3.00E+00 0.00E+00 6.60E-01 3 10 12 15
40685 shuttle 5.80E+04 9.00E+00 9.00E+00 0.00E+00 9.00E+00 7.00E+00 0.00E+00 5.67E+04 1 2 3 6
40691 wine-quality... 1.60E+03 1.10E+01 1.10E+01 0.00E+00 1.10E+01 6.00E+00 0.00E+00 1.20E+03 1 1 2 2
40900 Satellite 5.10E+03 3.60E+01 3.60E+01 0.00E+00 3.60E+01 2.00E+00 0.00E+00 7.40E+03 15 31 34 36
40926 CIFAR 10 small 2.00E+04 3.07E+03 3.07E+03 0.00E+00 3.07E+03 1.00E+01 0.00E+00 1.24E+07 1359 2711 2890 3035
40971 collins 1.00E+03 2.20E+01 2.00E+01 2.00E+00 3.70E+01 3.00E+01 1.50E+01 8.34E+04 1 1 1 1
40975 car 1.73E+03 6.00E+00 0.00E+00 6.00E+00 2.10E+01 4.00E+00 2.10E+01 4.25E+00 10 19 20 21
41026 gisette 7.00E+03 5.00E+03 0.00E+00 0.00E+00 5.00E+03 2.00E+00 0.00E+00 1.29E+03 981 2542 2998 3746
41064 convex 5.80E+04 7.84E+02 7.84E+02 0.00E+00 7.84E+02 2.00E+00 0.00E+00 1.81E+02 368 692 737 774
41065 mnist rotation 6.20E+04 7.84E+02 7.84E+02 0.00E+00 7.84E+02 1.00E+01 0.00E+00 5.39E+01 356 695 739 775
41066 secom 1.57E+03 5.90E+02 5.90E+02 0.00E+00 5.90E+02 2.00E+00 0.00E+00 9.31E+07 2 6 8 28
41143 jasmine 2.98E+03 1.44E+02 8.00E+00 1.36E+02 2.80E+02 2.00E+00 0.00E+00 3.98E+01 53 163 194 239
41146 sylvine 5.12E+03 2.00E+01 2.00E+01 0.00E+00 2.00E+01 2.00E+00 0.00E+00 1.08E+07 3 5 5 7
41164 fabert 8.24E+03 8.00E+02 8.00E+02 0.00E+00 8.00E+02 7.00E+00 0.00E+00 2.79E+00 222 572 648 735
41946 Sick numeric 3.77E+03 2.90E+01 2.90E+01 0.00E+00 2.90E+01 2.00E+00 0.00E+00 2.81E+04 2 3 4 6

TABLE 2: Overview of all datasets under consideration together with their meta-features.
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3 DETAILED ANALYSIS OF ATOMIC ALGORITHM
RUNTIME PREDICTION

Here we shed more light on the prediction performances of
the atomic algorithms under conditions different than in the
main paper.

3.1 Basic Prediction Performance
The first analysis is concerned with a more detailed view
on the prediction performance of the regression models on
different input sizes than the large input size of the main
paper. Fig. 3 shows the same results as in the main paper
but for different grid sizes. In the main paper, we consider
a rather large reference dataset of size 50, 000 ˆ 1, 000.
Here, we consider smaller datasets of sizes 5000 ˆ 100 and
10, 000ˆ 100. Naturally, for these datasets, the runtimes are
generally much lower. At the same time, the predictions are
more accurate as well.

Looking at those boxplots, we can see that most obser-
vations are in the upper plot rows, indicating short ground
truth runtimes. At the same time, the inter-quartile ranges
are extremely small, and many boxplots do not even have
whiskers. This tells us that predictions are extremely precise
in those cases. Looking at the concrete numbers, in fact most
runtimes are in the range of under 5s, and the predictions
are also in the same range.

Note that the predictions are generated with the same
model as the predictions in the main paper and hence indi-
cate a very good flexibility of the predictors. The predictors
are not only able to predict the high runtimes as shown in
the main paper but are also accurate in predicting very short
runtime. In fact, they are even more precise for the small
runtimes. It hardly ever occurs that a predictor believes that
a short-running algorithm would run for a long time.

While this trend might lead one to believe that the
learner is simply more focused on short runtimes, we think
that this is not the case. Recall that the training examples
are all over the map of different input sizes. There is no
focus on a particular region, and the learners do not “know”
in which region they will be evaluated. Having this rather
homogeneous distribution of training examples in the input
space in mind, one might actually rather expect the learners
to specialize on high runtimes, because these are more likely
to induce high errors.

The opposite is the case, and our explanation for this
is the difficulty of the learning problem also discussed in
Section 4.1 of the main paper: The higher the runtimes in
general, the more weird and intense the (sometimes non-
deterministic) side effects become. There is no surprise that
the regressor has difficulties to perform perfectly if the
execution of the same algorithm on the same data once takes
1 minute and once takes 2 minutes whereas there is little
problem if it requires 1 second instead of 2 seconds. The
fact that we observe, for identical input sizes, extraordinary
runtime differences among different input datasets tells us
that there are data-intrinsic properties we cannot (still) grasp
and make the runtime prediction a tough problem.

We have not made the attempt yet to compare these
observations to the results for the Oboe framework [26].
That paper suggests a prediction performance that is, com-
pared with what we can achieve here, incredibly high. This

raises the question why the predictability reported there
is so much better than the one we report in our paper.
We do not believe that there is a simple answer in sight
currently. While we assume that the results in [26] have been
prepared with utmost care, our research is likewise 100%
reproducible, and we are as well sure that our observations
are correct. At this point, our intuition for the different
results is that this may be a programming language issue
since Oboe was evaluated with sklearn algorithms, which
may be more reproducible in terms of runtimes. We have
made a lot of runtime observations that are far from what
one would have expected based on its meta-features. Since
no learner can discriminate these cases without additional
features, we suppose that such effects did not occur in
[26], which then has its roots in the implementation of the
learning algorithms.

However, without challenging the results in [26], we
believe that homogeneous runtimes are generally a rather
unexpected phenomenon and consider our own observa-
tions as a realistic image of what happens in practice.
Unless machines are totally idle, one would typically always
expect deviating runtimes, even for iterative calls to the
same routine. A lot of aspects argue in favor of this view,
especially in environments like Java in which the runtime
environment conducts a lot of optimizations at runtime,
adopting sophisticated cache technologies etc. Maybe run-
times are well predictable if run on an idle machine with
empty memory and with a fresh environment for each call.
Probably Python is a bit more reproducible in this sense than
Java. In any case, we find it somewhat more normal that
runtime observations exhibit variance, and this will always
impose a challenge to the learner.

This being said, we believe that this topic opens quite
a range of interesting questions that could and maybe
should studied independently. Especially given the fact that
runtime predictions for machine learning algorithms is a so
little studied field. First, it would be interesting to study the
runtime variance of the learners depending on the load of
the machine in general and whether repeated runs of the
same algorithm (in the same environment) will have the
same speed or whether there are side effects imposed by
the runtime environment. Second, we already observed that
some learners are more prone to these “hidden” properties
in the data than others. For example, decision tables exhibit
very heterogeneous runtimes for different input data of
same size. Decision stumps on the other hand are very
stable and have almost no variance. It would be interesting
to analyze in more depth which learners are more robust
than others in this sense and to try to find the features or
properties of the data that explain these runtime differences
of a single learner. The latter would then allow us to create
a new and more informative feature.

All these observations also point into the direction of
more individualized models. It is entirely clear that using
the same meta-feature setup for all atomic algorithms cannot
be globally optimal. Identifying optimal models for each
atomic algorithm is a thrilling Meta-AutoML task itself.
When addressing this problem, it would be important to
define a clear methodology that explains how that AutoML
approach should be used to find the respective attributes.
Since AutoML tools are currently not good at extracting fea-
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Fig. 3: Prediction results for smaller datasets than in the main paper. Above: 5000ˆ100, below: 10000ˆ 100.

tures, it would be important to pre-define a quite extensive
set of dataset meta-features that are the initially computed
and passed to the system.

Of course, once we come up with features that do not de-
pend any longer on the number of instances and attributes,
the overall prediction solution becomes also more complex
since we need to predict those features. Recall that we need
to predict the value for each meta-feature for the output of a
pre-processor. Clearly, this can become a challenging or even
infeasible task. However, at this point, this is a highly specu-
lative topic, and in a first step it would be a great advance to
get better predictive models, regardless the challenges this
would impose to pipeline runtime prediction.

3.2 Improvements By Posterior Models
We now provide some more details on the impact of the pos-
terior model. The main paper shows that there is substantial
improvement for most learners when using the runtime of
the algorithm under default configuration as a landmark
feature. While the main paper only compares the different
models against each other in a very summarized fashion, we
here complement those results by showing how the other
plots would have looked like if drawn with the posterior
model.

First, Fig. 4 shows the boxplots of the different prediction
errors. It is clearly visible that the errors can be reduced
extremely in the posterior model. In particular, the errors
for models including logistic regression (such as lmt and
logistic regression itself) and some rule based approaches
such as jrip and part substantially benefit from the addi-
tional feature.

Second, Fig. 5 illustrates that these improvements have a
direct impact onto the correctness of the rejection decision.
The upper plot is the same as in the main paper and serves
as a reference. The lower plot shows how our predictor
would have decided with the posterior model. While there
are still a couple of wrong decisions, these can be sub-
stantially reduced for the learners mentioned above. These
observations suggest to use the posterior model whenever
possible.

4 FUNCTIONALITY OF SPY WRAPPERS

In order to gather the feedback of the spy components
injected into the meta-learners, we use a separate database
table in which every single member of the meta-learner
registers itself when being used the first time and then sends
observations during the training and prediction phases of
the meta-learner. For each copy of the spy base learner, we
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Fig. 4: Prediction performance under the posterior model. Semantics are identical to above and the main paper.
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Fig. 5: Top plot: Standard model (same plot as in paper,
just as reference). Bottom plot: Correct (green) and incorrect
(red) decisions when using the posterior model.

track events of invocations for the start and stop times for
training and prediction respectively. In order to understand
in which of the phases of the meta-learner the events occur,
the spy wrapper is informed from the outside once the meta-
learner has returned control from the training invocation
to the executing algorithm. This way, it can clearly assign

each event to one of the two phases and hence allows to
understand time contributions to the two different models.

With the above framework, we can assess three impor-
tant metrics for each base learner instance in isolation:

1) the number of invocations of the training and predic-
tion routines respectively,

2) the overall runtime of the base learner for training
and prediction, and

3) the features of the data effectively passed to the base
learner.

Knowing the original data used by the meta-learner and its
parameters, we can use these statistics to study the behavior
of the meta-learner in terms of the parameters used in Eq.
(1) of the paper.

Note that while the relationship between algorithm pa-
rameters and meta-features afterwards is sometimes deter-
ministic, it still makes sense to use a model for the pre-
diction of those parameters in the eventual approach. One
argument is simply with respect to the implementation: It is
easier and cleaner to treat all predictors as models instead of
hard-coding certain rules that are only valid under specific
circumstances. A second more conceptual argument is that,
using models, one assures that the rule one would otherwise
code is really sustained by observed data.

5 HIERARCHICAL GUARD: BUILD AND USAGE

In Fig. 6 the processes for fitting (offline) and applying (on-
line) the hierarchical guard. On the left hand side, the steps
for fitting the hierarchical guard are displayed. The initial
step is to run the calibration module in order to determine
coefficients for linearly scaling the predictions to the current
system. As described in the paper, to determine these coeffi-
cients we sample a few algorithms and parametrizations of
those for which the constraint on the runtime in the training
data is fulfilled (not being too fast but also not too slow).
Afterward, we use the training data for the hierarchical
guard to fit models to predict the runtime of the base
learners (Mθ,M´θ,Mθ`d) and pre-processors.
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Fig. 6: Visualization of the steps that are executed for fitting a hierarchical guard offline (left) and how the runtime of a
pipeline is predicted using the hierarchical safe guard.

Furthermore, we use a different set of meta-data to fit
models to predict, how specific parametrizations of pre-
processors and meta-learners transform the meta-features
of data sets. More specifically these models predict whether
the respective algorithms change the number of attributes.

Lastly, we fit models for predicting the coefficients of
Eq. (2) which are needed to calculate the runtime of a meta-
learner that is configured with a certain parametrization of a
base learner. To this end, we simply reuse the models fitted
for the base learners as described above.

On the right-hand side, it is presented how the runtime
of a pipeline is predicted applying the models fitted on the
left side. First of all we compute the dataset meta-features
for the original data. If the given pipeline contains a pre-
processor, we use the runtime prediction model for the cor-
responding pre-processor to estimate its fit time (in case of
supervised pre-processors) and its runtime for transforming
the data. Furthermore, we predict the transformed dataset
meta-features in order to forward them to the next step.

The next action is to check whether the pipeline contains
a meta-learner. If this evaluates to true, we first predict the
transformed dataset meta-features and predict the coeffi-
cients for Eq. (2). To give an estimate on the runtime of
the meta-learner we plug all the predicted coefficients as
well as the runtime predicted for the base learner (based on
the predicted transformed dataset meta-features) into the
equation.

For predicting the runtime of a base learner, we first
of all inspect the parametrization of the base learner and
determine whether it is in default configuration or not. In
the former case we use the default model M´θ , while in the
latter case, we either apply the standard model Mθ or the
posterior model Mθ`d,1 depending on the configuration of
the guard. However, if the history H contains an entry for
this specific parametrization and dataset meta-features, this
value is simply returned instead of making a prediction.

Finally, to obtain the runtime of the entire pipeline, we
add the runtimes predicted for the (optional) pre-processor
and the learner.
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10Conclusion and Open Questions

According to the structure of the thesis, we draw conclusions and discuss open
questions in two parts. First, we focus on AutoML itself and, in particular, AutoML
for multi-label classification. Second, we address the topic of improving the efficiency
and efficacy of AutoML systems.

In the first part of the thesis, i.e., in Chapters 3 to 6, we have devised a novel AutoML
system based on hierarchical task network planning for a natural representation of
hierarchical dependencies in the configuration space of machine learning pipelines
(cf. Chapter 3). Furthermore, we demonstrated this search space representation to
be flexible enough for dealing with machine learning pipelines that are unlimited
in length (cf. Chapter 4) as well as for the configuration of multi-label classifiers
(cf. Chapter 5). Especially in the multi-label classification scenario, where the
configuration space is strongly characterized by hierarchical structures, this type of
search space representation combined with a best-first search turns out to be very
promising.

However, it has also become clear in Chapter 6 that the high dimensionality of
the underlying AutoML problem for multi-label classification presents significant
challenges to well-established optimization approaches such as Bayesian optimiza-
tion and Hyperband. The high dimensionality of the CASH problem renders most
optimization algorithms more or less ineffective. Although most of these methods
still perform significantly better than a random search, a greedy best-first search
algorithm proves to be the most beneficial in the experiments.

A common assumption made in the AutoML literature concerns the dependencies
between decisions, i.e., algorithm choices and values for hyper-parameters, that
require a joint consideration of the CASH problem. More specifically, it is assumed
that, for example, fixing a pre-processing algorithm affects the optimal decision
for learning algorithms and vice versa. The same assumption is made for the
optimization of hyper-parameters. While these assumptions are certainly valid in
theory, the question still is whether they are not unnecessarily obstructive in tackling
the AutoML problem and whether a more pragmatic solution would work better in
practice.
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In particular, the research question arises whether the complexity that comes with
the high dimensionality of the search space can be made more manageable. For
example, via a divide and conquer strategy, the search space could be divided into
smaller search spaces in which known optimization algorithms can still operate ef-
fectively [Tor+21]. Alternatively, one could also try to learn how to make the search
space complexity more manageable by means of meta-learning [PS19], trading in
theoretical optimality. Hence, an open research question is whether the search space
can be safely pruned, i.e., without excluding the optimum, or in a way that the
search space still contains a near-optimal solution. From a pragmatic perspective,
the question remains whether an ”unsafe“ pruning still leads to better solutions
or competitive solutions being found within a shorter time because of the reduced
search space complexity.

Furthermore, it is questionable whether AutoML should really be considered as
a black-box optimization problem or not since knowledge about what is being
configured is completely ignored. Leveraging experience or expert knowledge from
data scientists, about the provided training data, or about the algorithms which are
combined into machine learning pipelines is difficult in a black-box optimization
setting. Per definition of black-box optimization, it is assumed that nothing is known
about the function itself. While this simplifies the AutoML problem on a conceptual
level, it also deliberately ignores potentially valuable information. Making this
knowledge accessible to black-box optimization algorithms is usually a non-trivial
endeavor. In [MW21] we propose a very naive and easy-to-implement approach
to AutoML, which, despite its simplicity, is highly competitive to state-of-the-art
AutoML systems. The basic idea of this work is to consider the AutoML process as
a modular step-by-step procedure. Each step focuses on a specific decision, e.g.,
choosing a basic learning algorithm or choosing a pre-processing algorithm. Thereby,
incorporating expert knowledge becomes easier than integrating it into black-box
optimization algorithms. The good performance of this approach suggests that
opening the black box seems to be a promising direction.

The second part of this thesis (Chapters 7 to 9) dealt with how to increase the efficacy
– through additional degrees of freedom in the configuration of learners – and the
efficiency of AutoML systems. In Chapter 7 and 8 respectively, it turned out that by
optimizing the structure of a nested dichotomy or by optimizing the base learners of
binary relevance learning for each label individually, the generalization performance
can be improved significantly. Even if this means a considerable additional effort
for the configuration of such a learner, because of the extra degrees of freedom,
this optimization can be automated and thus integrated with AutoML systems.
Furthermore, we presented in Chapter 9 a meta-learning approach for predicting the
runtimes of machine learning pipelines in order to prevent the execution of machine
learning pipelines that would take too long.
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Obviously, proposing to extend the search space contradicts the previous discussion
concerning the problem of the high dimensional AutoML search space. Therefore,
an open question is which decisions should be included in this search space. Related
to this question is, first of all, the one about the importance of hyper-parameters
of multi-label classification methods. While the choice of the base learner is ac-
knowledged as an important hyper-parameter (cf. [Riv+20], Chapter 7), if not
the most crucial hyper-parameter, it is still an open question how important other
hyper-parameters of multi-label classifiers are.

Another open research question is to what extent considering runtime predictions
of multi-label classifiers helps to avoid classifiers that require excessive time for
evaluation. Avoiding such candidates would prevent the optimization process from
stalling, and one would expect more solution candidates to be explored within a
fixed time budget.
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11Epilog – On-The-Fly Computing
for Machine Learning Services

As already mentioned at the beginning of the thesis, this work is motivated by our
work in the collaborative research center 901 with the title “On-The-Fly Machine
Learning”, we elaborate on the vision of on-the-fly computing for machine learning
services in the following.

On-the-fly (OTF) computing refers to a computing paradigm dealing with the auto-
matic, on-the-fly configuration and provision of customized IT services, which is
investigated in the eponymous collaborative research center (CRC) 9011 [Hap+13;
Kar+20]. To this end, the IT services are composed of base services, which are
available in worldwide markets, by so-called OTF providers and tailored to the
specific needs of a customer. The research on methods for the configuration and
provision of such services is accompanied by the investigation of methods for

• quality assurance,
• protection of market participants,
• target-oriented development of markets, and
• supporting interaction between participants

that account for the specific characteristics of such dynamically changing markets,
also referred to as OTF markets.

In the following, we provide more details on the participants and the structure of
OTF markets in Section 11.1 as well as the use case scenario of on-the-fly machine
learning (Section 11.2), which can be seen as an extension of AutoML, as introduced
in Section 2.1.

11.1 On-The-Fly Markets

The overall ecosystem of an OTF market comprises many entities ranging from
underlying hardware in so-called OTF compute centers to managing entities for

1https://sfb901.upb.de (accessed 2021-04-21)
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Figure 11.1: Simplified illustration of an OTF market, involving the roles customer, OTF
provider, and service provider. In this illustration, a customer sends a request
into the OTF market, which is received and processed by an OTF provider. The
OTF provider answers the customer’s request by composing a novel service
out of base services provided by the service providers to meet the customer’s
requirements. The result, which might be the composed service itself or the
output obtained by executing it, is eventually returned to the customer.

setting up markets to (human) participants of the market, which are grouped into
roles [Jaz+17]. In the following, we focus on the roles of customers, OTF providers
and service providers since those are the ones primarily involved in the process of
on-the-fly provisioning software services.

Customer As is implied by the term “on-the-fly”, in an OTF market, the requested
services are provided on demand. More specifically, after a customer sends
out a request for a service to the market, the request is processed, and the
requested service is composed just then to fulfill the requirements stated in the
request. A customer may either be interested in the result of a computation
given a specific input, provided with the request, or in the composed service
itself. In the latter case, the customer is provided access to the requested
service, for example, via a graphical interface or an application programming
interface (API).

OTF Provider The OTF provider is responsible for receiving, processing, and an-
swering requests. While processing requests means ”understanding“ what is
requested by the user, answering the requests involves the automatic composi-
tion of the requested service out of base services that are made available in the
market by service providers.

Service Provider A service provider maintains a repository of base services and
provides information about and access to these base services to OTF providers.
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Figure 11.2: Comparison of different scenarios in on-the-fly machine learning. The scenarios
differ in what is contained in the request and what needs to be provided by a
customer as well as the desired output, which ranges from one time predictions
to a service customized for a provided data set D that can be repeatedly used
for making predictions on new data points to a trainable machine learning
service. In the latter scenario, the customer does not provide any data to the
OTF provider but trains the service his- or herself.

Obviously, the functionality that can be provided to the user is highly dependent
on what base services are provided by service providers.

An illustration of these roles and their interaction is displayed in Figure 11.1.

11.2 On-The-Fly Machine Learning

While OTF computing in general deals with all kinds of IT services, a specific instance
of the OTF paradigm solely dealing with machine learning services is referred to
as on-the-fly machine learning (OTF-ML) [MWH18c; Moh+19]. In this particular
scenario, the customer is provided services with machine learning functionality that
needs to be tailored to the data in question, i.e., the customer’s data for which he
or she needs the machine learning functionality. To this end, the market provides
machine learning algorithms as base services, and OTF providers compose these
services into service-based machine learning pipelines, where the general concept of
a machine learning pipeline remains the same but, instead of algorithms, the services
representing the respective algorithms are composed into a machine learning service
pipeline [Moh+18b; MWH18a].

Generally speaking, we distinguish three different types of on-the-fly machine learn-
ing services that can be requested by a customer [Moh+19]:

Transduction In the transduction scenario, along with a task description, the
customer provides a training data set D together with a set of data points
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for which the customer is interested in obtaining predictions, referred to as
prediction data in Figure 11.2. The answer to this request consists of the
predictions for the given prediction data.

Induction In the induction scenario, the customer requests a service that can be
used (repeatedly) for labeling new data points. To this end, the customer
sends a request containing a task description and training data for which the
customer wants to obtain a corresponding machine learning service.

ML-Service In this last scenario, the customer only specifies the task the desired
machine learning service is meant to accomplish. Without providing data, the
task of the OTF provider is thus to provide a customized machine learning
service that anyhow performs well for this specific task once data for training
is provided.

Deploying AutoML services in an OTF environment offers many advantages. First,
the cloud infrastructure offers more flexible and performant computational resources
that can be used to achieve a high degree of parallelization for individual AutoML
processes, allowing for a faster exploration of the search space. Furthermore, the
abstraction from the platform through services allows for building cross-platform
machine learning pipelines, i.e., machine learning pipelines comprising algorithms
that are only available for certain platforms. More specifically, on a service level, it
is possible to combine algorithms implemented in C, Python, and Java into a single
pipeline.

Besides building machine learning service pipelines from scratch via AutoML, service
providers may also offer pre-trained machine learning services specialized in specific
tasks, e.g., object recognition for image data. While there might be multiple services
offering the same functionality, they may differ in non-functional properties, say,
financial costs and accuracy. For example, one service might be very cheap but
sometimes very inaccurate, and another service is very accurate on average, but
this also comes at a higher cost. Furthermore, other services might be available
with non-functional properties ranging between those two extremes. In [CZZ20a;
CZZ20b], it is shown that combining such services and deciding for each data point
individually which service to use can reduce the overall costs while keeping the
quality of predictions competitive to the most accurate single service. Moreover,
combining the predictions of multiple services might even result in higher accuracy,
as demonstrated in [CZZ21] within a multi-label classification setting.
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