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Abstract

In machine learning, nested dichotomies are used to decompose a multi-
class classification problem into a set of binary problems. The performance
of a nested dichotomy strongly depends on the structure of such a
decomposition. In this paper, we compare the random-pair heuristic, a
state-of-the-art approach for optimizing the structure, with an extremely
simple alternative: Leveraging a procedure for uniform sampling of
dichotomies, the Best-of-K heuristic picks the (presumably) best among
𝐾 randomly generated dichotomies. Interestingly, Best-of-K turns out to
be highly competitive, and outperforms the random-pair heuristic in the
case of simple base learners such as logistic regression.

1 Introduction

Nested dichotomies are known as models for polychotomous data in
statistics and used as classifiers for multi-class problems in machine
learning [4]. Based on a recursive binary partitioning of the set of classes,
nested dichotomies reduce the original multi-class problem to a set of
binary problems, for which any (probabilistic) binary classifier can be
used. For example, the dichotomy shown in Fig. 1 decomposes a problem
with four classes into three binary problems: The first classifier (𝐶1) is
supposed to separate class 3 from the meta-class {1, 2, 4}, i.e., the union
of classes 1, 2, and 4; likewise, the second classifier separates classes
{2, 4} from 1, and the third classifier the classes 2 and 4.
Once the hierarchy of classifiers required by a nested dichotomy have
been trained, a new instance 𝑥 can be classified in a straightforward way,
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Figure 1: Example of a nested dochotomy.

namely by submitting 𝑥 to the root of the dichotomy and propagating it
to one of the leaf nodes, based on the decisions of the classifiers along
the corresponding path. As an appealing property, we note that nested
dichotomies allow for producing probability estimates (instead of hard
class assignments) in a very natural way, provided each classifier predicts
suitable conditional class probabilities at the inner nodes. In that case,
the probability of any class 𝑦 is simply given by the product of conditional
probabilities on the path from the root to the leaf node marked with 𝑦.
In practice, nested dichotomies have been shown to yield superb predictive
accuracy [4, 6, 8]. Yet, the performance of the multi-class classifier even-
tually produced may strongly depend on the structure of the dichotomy.
In fact, the structure of a dichotomy specifies the subset of all binary
problems that need to be solved, and some of them might be much more
difficult than others. This is illustrated in Fig. 2, where the distribution
of predictive accuracies (on the test data) of nested dichotomies is shown
for the pendigits dataset. As can be seen, the variance is higher if logistic
regression is used as a base learner, and smaller with decision trees. This
observation can be explained by the fact that the latter is much more
flexible than the former: A decision tree is a complex, highly nonlinear
model, which can compensate a suboptimal structure much better than a
simple linear model as fit by logistic regression (but of course also comes
with a higher danger of poor generalization due to overfitting); or, stated
differently, the choice of a suitable structure is much more critical when
using simple models such as linear discriminants.
Consequently, finding a suitable structure is an important prerequisite
for successful learning with nested dichotomies. Since the number of
candidate structures is huge (double factorial in the number of classes),
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Figure 2: Gaussian kernel density estimation of accuracy distribution for the
pendigits dataset based on a random sample of 10000 nested dichotomies,
using decision tree (CART, in the top plot) and logistic regression (in the
bottom plot) as base learner.

several heuristic methods have been proposed for constructing dichotomies
specifically tailored for the data at hand [2, 6, 3]. Although some heuristics
are designed to select an optimal subset of nested dichotomies, to be
used as an ensemble of classifiers, we focus on finding a single dichotomy
in this paper (for example because an ensemble is not desirable, due to
reasons of complexity or interpretability).
According to recent empirical studies, the current state of the art is
the random-pair selection heuristic (RPND) proposed by Leathart et al.
[6]. At each inner node of a nested dichotomy, this approach obtains a
split of the classes 𝒴 associated with that node into two meta-classes
as follows: Two classes 𝑌𝑖, 𝑌𝑗 ∈ 𝒴 are selected (uniformly) at random,
and the base learner is used to train a classifier 𝐶𝑖,𝑗 discriminating these
two classes. Both classes define the seed for a meta-class 𝒴𝑖 and 𝒴𝑗 ,
respectively, and each remaining class 𝑌 ∈ 𝒴 ∖ {𝑌𝑖, 𝑌𝑗} is added to one
of these meta-classes, depending on whether 𝐶𝑖,𝑗 assigns the majority of
instances of 𝑌 to 𝒴𝑖 or 𝒴𝑗 . Once the complete structure of the dichotomy
has been determined, the classifiers at the inner nodes are trained on the
corresponding splits.
In this paper, we reconsider the random-pair heuristic, challenging it
with the arguably most simple heuristic one may image: generating 𝐾
dichotomies at random and selecting the (presumably) best one. In
Section 4, we demonstrate that this simple Best-of-K heuristic is highly
competitive and, depending on the value 𝐾, even able to outperform
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interesting contribution, namely an efficient algorithm for sampling nested
dichotomies uniformly at random. Although sampling procedures have
already been used in several papers [4, 6, 2], an explicit algorithm has
never been provided; interestingly, a naive sampling procedure will yield
a non-uniform distribution.

2 Uniform random sampling of nested dichotomies

On the structural side, there is a one-to-one correspondence between
nested dichotomies and binary trees. Since each node in a nested dicho-
tomy has either none or exactly two children, every nested dichotomy
is a (rooted) full binary tree. In addition, each leaf node in a nested
dichotomy is labeled with the corresponding class. This labeling uniquely
determines the dichotomies at all inner nodes. The problem of generating
a nested dichotomy can therefore be divided into two steps: (i) generation
of a rooted terminally labeled full binary tree and (ii) propagation of
leaf labels towards the root in order to determine the dichotomies at the
inner nodes.
For the problem (i), several strategies were proposed in the literature [9, 5].
Here, we provide a two-step procedure for uniform random sampling of
rooted terminally labeled full binary trees as suggested by Furnas [5]:

1. Generation of an unrooted terminally labeled full binary tree 𝑇𝑐.
Given is a set of 𝑐 terminal nodes (leafs).

a) Create a doublet “tree” 𝑇2 by connecting nodes 1 and 2 by a
single edge.

b) Until all 𝑐 terminal nodes are connected to the tree, proceed
with the following random augmentation:

i. Given a tree 𝑇𝑘 on 𝑘 < 𝑐 terminal nodes, select an edge
of 𝑇𝑘 uniformly at random.

ii. On this edge, a new internal node of degree 3 is added
and the (𝑘 + 1)st terminal node is connected. The result
is a binary tree 𝑇𝑘+1 on 𝑘 + 1 terminal nodes.

2. Transformation of 𝑇𝑐 into a rooted tree.
a) Choose an edge of 𝑇𝑐 randomly with uniform probability.
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Furnas proved this procedure to provide a uniform random sampling of
rooted terminally labeled full binary trees. The time complexity of the
first step is linear in the number of classes 𝑐. The second step can be
implemented in constant time, leading to an overall time complexity of
𝑂(𝑐).
For the label propagation problem (ii), we suggest the following solution.
Every leaf node is labeled with the number 𝑏𝑐𝑖 = 2𝑐𝑖 , where 𝑐𝑖 is the
corresponding class in the original problem. The dichotomies at the inner
nodes are encoded with a pair of numbers [𝑑𝑙, 𝑑𝑟], denoting the sum of
all leaf labels in the left and right subtree, respectively. Since all leaf
nodes are encoded uniquely (with only a single ’1’ in the corresponding
bit string), the dichotomy encodings are also unique. To propagate the
leaf labels, we traverse the nested dichotomy in postorder and encode
every inner node with the sum of the dichotomies of its child nodes
[𝑑𝑙𝑙

+ 𝑑𝑙𝑟
, 𝑑𝑟𝑙

+ 𝑑𝑟𝑟
]. Since the complexity of tree traversal is linear in the

number of nodes and the summation, and generating the leaf labels is
nearly constant for a usual number of classes1, step (ii) has an overall
time complexity of 𝑂(𝑐). Using this approach, a single nested dichotomy
can be sampled uniformly with the time complexity 𝑂(𝑐), i.e., linear in
the number of classes in the original problem.

3 The Best-of-K Heuristic

Equipped with the sampling procedure for nested dichotomies from the
previous section, the algorithm for the Best-of-K heuristic is quite straig-
htforward. It is parametrized by the number 𝐾 of nested dichotomies
to be generated and evaluated. Given a (training) dataset with 𝑐 classes
and a base learner, Best-of-K consists of three steps:

1. Sample 𝐾 nested dichotomies on 𝑐 terminal nodes uniformly at
random.

2. Train these models on the given data with the provided base learner.
3. Select the best performing model based on the validation on the

training data (e.g., with the smallest training error).

1The length of the encoding number (as a bit string) is at most 𝑐. Both encoding
operations (bit shift and summation) will have roughly constant time for up to
several hundred classes.
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Several remarks on this approach are in order. First, since the sampling
procedure only depends on the number of classes 𝑐, and not on the data
itself, it can be carried out in a preprocessing step, thereby reducing
the overall execution time. Second, the training in the second step can
be done independently for each nested dichotomy. Thus, Best-of-K is
naturally implemented in a parallel way. If 𝐾 cores are available, a
speedup factor close to 𝐾 can be achieved in comparison to a standard
(sequential) implementation (the runtime is the maximal training time of
a single nested dichotomy). Third, while being computationally cheap,
the selection of the best performing model based on the training error is
arguably not optimal—a better selection could probably be made on the
basis of a validation error. However, our experiments in the next section
suggest this strategy to be good enough in general.

4 Empirical Study

We compare the Best-of-K heuristic with the state of the art RPND on
15 multi-class datasets (Table 1) from the UCI repository [1]. On every
dataset, we perform the following evaluation: For a given parameter
𝐾 ∈ {1, 5, 10, 20, 50, 100}, we generate a single nested dichotomy using
the Best-of-K heuristic and a single nested dichotomy using RPND. Both
models are tested with two base learners: decision tree (CART) and
logistic regression from the scikit-learn framework (ver. 0.19) [7]. The
hyper-parameters of the base learners are set to default values, except for
the minimal decrease of the impurity in CART, which is set to .0001 to
prevent overfitting. Every generated nested dichotomy is trained multiple
times by using 10-fold cross-validation, and the mean predictive accuracy
is stored. Since both heuristics are randomized, we repeat this procedure
50 times for every dataset to stabilize the results. The mean and the
standard deviation of predictive accuracy over these runs are given in
the Table 2.
In Fig. 3, the difference 𝐴𝑑𝑖𝑓𝑓 = 𝐴𝐵𝑜𝐾 − 𝐴𝑅𝑃 𝑁𝐷 in mean accuracy is
shown. Unsurprisingly, the performance of Best-of-K increases for higher
values of 𝐾. For 𝐾 > 5, Best-of-K outperforms the RPND heuristic on
most of the datasets if logistic regression is used as the base learner. For
example, for 𝐾 = 5 and logistic regression as base learner, the mean time
ratio over all datasets is 0.58 and the mean accuracy difference is 0.015. In
the case of CART as a base learner, both heuristics perform comparable.
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Table 1: The datasets used in the study. For the datasets krkopt and vowel, a
one-hot encoding has been used for categorical features.

dataset Classes Features Instances

LED24 10 25 5000
zoo 7 18 101
krkopt-bin 18 7 28056
segment 7 20 2310
mfeat-morphological 10 7 2000
mfeat-factors 10 217 2000
mfeat-fourier 10 77 2000
mfeat-karhunen 10 65 2000
mfeat-pixel 10 241 2000
letter 26 17 20000
optdigits 10 65 5620
page-blocks 5 11 5473
pendigits 10 17 10992
vowel-bin 11 14 990
yeast 10 9 1484

This seems plausible for the reason already mentioned: Since (unpruned)
decision trees are able to generate complex models (with a tendency to
overfit), they can compensate for a possibly suboptimal structure of a
dichotomy. The small decrease in the performance of such models for
higher values of 𝐾 suggests that, at least for some datasets, the selection
of a nested dichotomy based on the training error is too optimistic.
In Table 3, the mean and standard deviation of the generation time
are given. The time was measured for the Best-of-K heuristic with
parallelization, i.e., we assume to have 𝐾 cores available and measure
the maximal generation time for a single nested dichotomy. On a single
core CPU, this heuristics would be roughly 𝐾 times slower. The time
comparison is provided in Fig. 4. The mean time ratio is defined as the
ratio of mean times for generating a single nested dichotomy with both
heuristics: 𝑇 = 𝑇𝐵𝑜𝐾/𝑇𝑅𝑃 𝑁𝐷. Since the RPND heuristic depends on
the size of the dataset, this ratio is lower for larger datasets such as letter
or krkopt.
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Table 2: Mean and standard deviation of the predictive accuracy for (a) CART and
(b) logistic regression as the base learner. ’Bo’ is the corresponding
Best-of-K heuristic.

(a)
dataset Bo1 Bo5 Bo10 Bo20 Bo50 Bo100 RPND

LED24 .61 ± .01 .61 ± .01 .61 ± .01 .60 ± .01 .60 ± .01 .60 ± .02 .62 ± .01
zoo .92 ± .02 .92 ± .02 .92 ± .02 .92 ± .02 .92 ± .02 .92 ± .02 .90 ± .01
krkopt-bin .71 ± .02 .72 ± .01 .73 ± .01 .74 ± .01 .74 ± .01 .75 ± .01 .70 ± .01
segment .96 ± .01 .96 ± .01 .96 ± .00 .96 ± .00 .96 ± .00 .96 ± .00 .96 ± .00
mfeat-morph. .65 ± .01 .65 ± .01 .65 ± .01 .65 ± .01 .65 ± .01 .65 ± .01 .65 ± .00
mfeat-factors .87 ± .01 .87 ± .01 .87 ± .01 .87 ± .01 .87 ± .01 .87 ± .01 .87 ± .01
mfeat-fourier .69 ± .01 .69 ± .01 .69 ± .01 .69 ± .01 .69 ± .01 .69 ± .01 .70 ± .00
mfeat-karhunen .78 ± .01 .78 ± .01 .78 ± .01 .78 ± .01 .78 ± .02 .78 ± .02 .78 ± .01
mfeat-pixel .86 ± .01 .85 ± .01 .86 ± .01 .85 ± .01 .85 ± .01 .85 ± .01 .86 ± .01
letter .85 ± .00 .85 ± .00 .85 ± .00 .85 ± .00 .85 ± .00 .85 ± .00 .84 ± .00
optdigits .89 ± .01 .89 ± .01 .89 ± .01 .89 ± .01 .89 ± .01 .89 ± .01 .89 ± .00
page-blocks .97 ± .00 .97 ± .00 .97 ± .00 .97 ± .00 .97 ± .00 .97 ± .00 .97 ± .00
pendigits .95 ± .00 .95 ± .00 .95 ± .00 .95 ± .00 .95 ± .00 .95 ± .00 .95 ± .00
vowel-bin .76 ± .01 .76 ± .01 .76 ± .01 .76 ± .01 .76 ± .01 .76 ± .01 .77 ± .01
yeast .52 ± .01 .52 ± .01 .52 ± .01 .51 ± .01 .51 ± .01 .51 ± .01 .51 ± .01

(b)
dataset Bo1 Bo5 Bo10 Bo20 Bo50 Bo100 RPND

LED24 .71 ± .02 .72 ± .01 .72 ± .01 .72 ± .01 .72 ± .01 .72 ± .00 .72 ± .00
zoo .91 ± .02 .91 ± .02 .92 ± .02 .91 ± .02 .91 ± .02 .92 ± .02 .91 ± .01
krkopt-bin .29 ± .01 .31 ± .01 .31 ± .01 .31 ± .01 .32 ± .01 .32 ± .01 .29 ± .01
segment .89 ± .04 .91 ± .04 .92 ± .03 .93 ± .03 .94 ± .03 .94 ± .03 .86 ± .01
mfeat-morph. .64 ± .04 .67 ± .03 .68 ± .02 .68 ± .02 .69 ± .02 .69 ± .01 .59 ± .02
mfeat-factors .96 ± .01 .96 ± .01 .96 ± .01 .96 ± .01 .96 ± .01 .96 ± .01 .96 ± .00
mfeat-fourier .79 ± .01 .79 ± .01 .80 ± .01 .80 ± .01 .80 ± .01 .80 ± .01 .79 ± .00
mfeat-karhunen .91 ± .01 .91 ± .01 .91 ± .01 .92 ± .01 .92 ± .01 .92 ± .01 .91 ± .00
mfeat-pixel .88 ± .02 .88 ± .02 .89 ± .02 .89 ± .01 .89 ± .01 .89 ± .01 .91 ± .01
letter .55 ± .03 .58 ± .03 .59 ± .02 .60 ± .02 .61 ± .01 .62 ± .01 .58 ± .01
optdigits .93 ± .01 .94 ± .01 .94 ± .01 .94 ± .01 .95 ± .01 .95 ± .00 .94 ± .00
page-blocks .96 ± .01 .96 ± .01 .96 ± .00 .96 ± .00 .96 ± .00 .96 ± .00 .95 ± .00
pendigits .89 ± .02 .91 ± .02 .91 ± .02 .92 ± .01 .93 ± .01 .93 ± .01 .91 ± .00
vowel-bin .42 ± .04 .47 ± .04 .49 ± .03 .51 ± .03 .53 ± .02 .54 ± .02 .46 ± .02
yeast .52 ± .01 .53 ± .01 .53 ± .01 .53 ± .01 .54 ± .01 .54 ± .01 .52 ± .01
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Table 3: Mean and standard deviation of the generation time in seconds with (a)
CART and (b) logistic regression as the base learner.

(a)
dataset Bo1 Bo5 Bo10 Bo20 Bo50 Bo100 RPND

LED24 .03 ± .00 .03 ± .00 .03 ± .00 .03 ± .00 .03 ± .00 .03 ± .00 .09 ± .00
zoo .00 ± .00 .00 ± .00 .00 ± .00 .01 ± .00 .01 ± .00 .01 ± .00 .02 ± .00
krkopt-b. .39 ± .02 .41 ± .02 .42 ± .02 .43 ± .02 .44 ± .01 .45 ± .01 2.04 ± .04
segment .04 ± .01 .04 ± .00 .04 ± .01 .04 ± .01 .04 ± .01 .05 ± .01 .07 ± .01
mfeat-mo. .02 ± .00 .02 ± .00 .02 ± .01 .02 ± .01 .02 ± .01 .03 ± .01 .06 ± .00
mfeat-fa. .70 ± .05 .74 ± .05 .76 ± .05 .78 ± .04 .80 ± .04 .82 ± .03 1.03 ± .03
mfeat-fo. .51 ± .04 .54 ± .05 .55 ± .04 .56 ± .04 .58 ± .04 .59 ± .03 .69 ± .02
mfeat-ka. .50 ± .04 .53 ± .04 .55 ± .04 .56 ± .04 .57 ± .04 .59 ± .03 .66 ± .01
mfeat-pi. .19 ± .01 .20 ± .01 .20 ± .01 .20 ± .01 .20 ± .01 .21 ± .01 .40 ± .02
letter .52 ± .04 .56 ± .03 .58 ± .03 .59 ± .02 .60 ± .02 .61 ± .02 3.01 ± .04
optdigits .23 ± .01 .23 ± .01 .24 ± .01 .24 ± .01 .24 ± .01 .25 ± .01 .45 ± .03
page-bl. .05 ± .00 .05 ± .00 .06 ± .00 .06 ± .00 .06 ± .00 .06 ± .00 .07 ± .01
pendigits .20 ± .01 .21 ± .01 .21 ± .01 .21 ± .01 .22 ± .01 .22 ± .01 .42 ± .01
vowel-bin .03 ± .00 .03 ± .00 .03 ± .00 .03 ± .00 .03 ± .00 .03 ± .00 .06 ± .01
yeast .02 ± .00 .02 ± .00 .02 ± .00 .02 ± .00 .02 ± .00 .02 ± .00 .05 ± .00

(b)
dataset Bo1 Bo5 Bo10 Bo20 Bo50 Bo100 RPND

LED24 .23 ± .02 .25 ± .01 .25 ± .01 .25 ± .01 .26 ± .01 .26 ± .01 .42 ± .07
zoo .03 ± .00 .03 ± .00 .03 ± .00 .03 ± .00 .03 ± .00 .03 ± .00 .05 ± .01
krkopt-b. .97 ± .12 1.11 ± .13 1.17 ± .11 1.20 ± .10 1.25 ± .08 1.30 ± .07 5.46 ± 1.1
segment .27 ± .04 .30 ± .03 .30 ± .03 .31 ± .03 .33 ± .03 .34 ± .03 .37 ± .09
mfeat-mo. .04 ± .00 .05 ± .00 .05 ± .00 .05 ± .00 .05 ± .00 .05 ± .00 .10 ± .01
mfeat-fa. .93 ± .08 1.02 ± .07 1.05 ± .06 1.07 ± .07 1.12 ± .11 1.18 ± .14 1.54 ± .19
mfeat-fo. .27 ± .03 .29 ± .01 .29 ± .01 .30 ± .01 .31 ± .01 .31 ± .01 .41 ± .09
mfeat-ka. .45 ± .04 .49 ± .03 .50 ± .03 .51 ± .03 .53 ± .02 .54 ± .02 .65 ± .10
mfeat-pi. .68 ± .05 .74 ± .03 .76 ± .03 .76 ± .03 .79 ± .02 .80 ± .02 1.10 ± .15
letter 1.6 ± .21 1.89 ± .21 2.03 ± .19 2.11 ± .17 2.24 ± .16 2.32 ± .14 9.34 ± 1.6
optdigits .74 ± .04 .78 ± .03 .80 ± .03 .82 ± .03 .83 ± .03 .85 ± .02 1.31 ± .14
page-bl. .57 ± .12 .70 ± .06 .72 ± .05 .73 ± .04 .73 ± .03 .73 ± .03 .69 ± .13
pendigits .95 ± .08 1.02 ± .07 1.05 ± .07 1.08 ± .07 1.11 ± .07 1.14 ± .05 1.70 ± .20
vowel-bin .02 ± .00 .02 ± .00 .02 ± .00 .02 ± .00 .02 ± .00 .02 ± .00 .06 ± .01
yeast .02 ± .00 .02 ± .00 .02 ± .00 .02 ± .00 .02 ± .00 .02 ± .00 .06 ± .02
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Figure 3: Difference in the mean accuracy between Best-of-K and RPND heuristic
with logistic regression as the base learner.

5 Conclusion and Outlook

In this paper, we compare the state-of-the-art RPND heuristic for op-
timizing the structure of nested dichotomies with an extremely simple
Best-of-K heuristic. To this end, an efficient algorithm for uniform sam-
pling of nested dichotomies for a given number of classes 𝑐 is also provided;
the time complexity of this algorithm is 𝑂(𝑐). As the main result, we
observe an increase in the predictive accuracy if logistic regression is
used as a base learner. In the case of decision trees, both heuristics show
similar performance.
While the focus of this study was on the optimization of a single nested
dichotomy, the Best-of-K heuristic can easily be adapted for building
ensembles of nested dichotomies. For example, this can be achieved
by returning not only the single best performing nested dichotomy but
multiple ones.
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Figure 4: The ratio of mean total time (single nested dichotomy generation and
training) between Best-of-K and RPND heuristic with logistic regression as
base learner.
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