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Abstract

We propose an extension of choquistic regression
from the case of binary to the case of ordinal classi-
fication. Choquistic regression itself has been intro-
duced recently as a generalization of conventional
logistic regression. The basic idea of this method is
to replace the linear function of predictor variables
in the logistic regression model by the Choquet in-
tegral. Thus, it becomes possible to capture nonlin-
ear dependencies and interactions among predictor
variables while preserving two important properties
of logistic regression, namely the comprehensibility
of the model and the possibility to ensure its mono-
tonicity in individual predictors. In experimental
studies, choquistic regression consistently improves
upon standard logistic regression in terms of predic-
tive accuracy, especially when being combined with
a novel regularization technique that prevents from
exceeding the required level of nonadditivity.

Keywords: logistic regression, ordinal classifica-
tion, Choquet integral, monotone classification, at-
tribute interaction

1. Introduction

Logistic regression is a well-established statistical
method for (probabilistic) classification [1]. Its pop-
ularity is due to a number of appealing properties,
including the following ones:

• Since the model, at least in its basic form, is es-
sentially linear in the input attributes, it is eas-
ily comprehensible. In particular, the strength
of influence of each predictor is directly re-
flected by the corresponding regression coeffi-
cient.
• The model behaves monotone in each predic-
tor variable; in the binary case, for example,
this means that an increase of the value of the
variable can only increase (decrease) the prob-
ability of the positive class.

Both of the above points, comprehensibility and
monotonicity, are important prerequisites for the
acceptance of a model by a domain expert. In-
deed, in many cases, monotonicity is a very nat-
ural requirement. In a medical context, for exam-
ple, tobacco consumption is expected to increase the
probability of cancer, and each model violating this
property will not be considered as trustworthy.

Nevertheless, the linearity of a logistic regression
model is of course a strong restriction from a learn-
ing point of view. Quite often, the response vari-
able (output) depends on the predictor variables
(inputs) in a nonlinear way. In previous work [2,3],
we therefore proposed an extension of logistic re-
gression that allows for modeling nonlinear relation-
ships between input and output variables while pre-
serving the aforementioned advantages of the ap-
proach, namely comprehensibility and monotonic-
ity. Roughly speaking, the basic idea of our ap-
proach, called “choquistic regression”, is to replace
the linear function in the logistic regression model
by the Choquet integral.

Choquistic regression as proposed in [2, 3] is re-
stricted to the dichotomous case, i.e., to the case
of classification with two classes. From a decision
making point of view, this means that, based on
a set of criteria, alternatives are simply classified
as “positive” or “negative” (“good” or “bad”). In
this paper, we generalize choquistic regression to
the polychotomous case or, more specifically, the
case of ordinal classification, where instances (al-
ternatives) can be assigned to one among several
ordered categories. For example, based on criteria
such as the number of citations, scientific journals
might be categorized as A∗, A, B or C [4].
The rest of this paper is organized as follows. In

the next section, we give a brief introduction to the
problem of (ordinal) classification. In Section 3, we
recall the basics of (ordinal) logistic regression. The
discrete Choquet integral is briefly recalled in Sec-
tion 4. Ordinal choquistic regression is then intro-
duced in Section 5. Experimental results are pre-
sented in Section 6, prior to concluding the paper
in Section 7.

2. Problem setting

We consider the problem of classification, that is,
predicting the value of an output (response) variable
y ∈ Y given the values of a set of input attributes
(predictors) xi ∈ Xi, i = 1, . . . ,m. The vector

x = (x1, . . . , xm)> ∈ X = X1 ×X2 × . . .×Xm

is called an instance, and X the instance space. In
binary classification, Y = {0, 1} consists of only two
classes, typically called the negative (0) and the pos-
itive (1) class. In ordinal classification,

Y = {y1, y2, . . . , yK} (1)
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consists ofK classes that are assumed to be ordered:
y1 < y2 < . . . < yK .
The goal is to learn a classifier L : X → Y from

a given set of training data

D =
{

(x(i), y(i))
}n
i=1
⊂ (X × Y)n. (2)

The data D is supposed to be an i.i.d. (independent
and identically distributed) sample generated by an
underlying (though unknown) probability measure
PXY on X ×Y. A common goal, then, is to induce
a classifier with minimal risk, where the risk R(L)
of a classifier L is defined in terms of its expected
loss:

R(L) =
∫
X×Y

`(L(x), y) dPXY (x, y) ,

where `(·) is a loss function penalizing incorrect pre-
dictions. In binary classification, the most com-
monly used loss is the simple 0/1 loss given by

`(ŷ, y) =
{

0 if ŷ = y
1 if ŷ 6= y

. (3)

Although this loss can of course also be used in or-
dinal classification, it does not take the order of the
classes (1) into account; therefore, one often uses
the L1 loss instead:1

`(ŷ, y) = | ind(ŷ)− ind(y)| , (4)

with ind(yj) = j for all yj ∈ Y.

3. Background on logistic regression

3.1. The binary case

In the binary case, logistic regression models the
probability of the positive class (and hence of the
negative class) as a linear (affine) function of the
input attributes. More specifically, since a linear
function does not necessarily produce values in the
unit interval, the response is defined as a generalized
linear model, namely in terms of the logarithm of
the probability ratio:

log
(

P(y = 1 |x)
P(y = 0 |x)

)
= β0 +w>x , (5)

where w = (w1, w2, . . . , wm)> ∈ Rm is a vector
of regression coefficients and β0 ∈ R a constant
bias (the intercept). A positive regression coeffi-
cient wi > 0 means that an increase of the predictor
variable xi will increase the probability of a positive
response, while a negative coefficient implies a de-
crease of this probability. Besides, the larger the
absolute value |wi| of the regression coefficient, the
stronger the influence of xi.
Since P(y = 0 |x) = 1 − P(y = 1 |x), a simple

calculation yields the posterior probability

P(y = 1 |x) = 1
1 + exp(−β0 −w>x) . (6)

1Note that this loss implicitly assumes an equal “distance”
between the ordinal categories, which is clearly arguable.

3.2. Ordinal logistic regression

Now, consider the case of ordinal classification,
where we are given K ordered classes {y1, . . . , yK}.
The idea of ordinal logistic regression is to reduce
the corresponding classification problem to the bi-
nary case while taking into account (and actually
exploiting) the class order. To this end, it models
a probability ratio similar to (5), but this time for
the cumulative distribution:

log
(

πk(x)
1− πk(x)

)
= βk +w>x (7)

for k ∈ [K − 1] = {1, . . . ,K − 1}, where

πk(x) = P(y ≤ yk |x)

is the (conditional) probability that the class y ob-
served for x is at most yk; correspondingly,

1− πk(x) = P(y > yk |x)

is the probability that the class y is larger than
yk. Obviously, the left-hand side in (7) is non-
decreasing in k. Therefore, since the right-hand
side only differs in the intercepts (thresholds) βk,
we need to impose the condition

β1 ≤ β2 ≤ · · · ≤ βK−1 .

From (7), one derives

πk(x) = P(y ≤ yk |x)

= exp(βk) exp(w>x)
1 + exp(βk) exp(w>x)

Moreover, exploiting the definition of the cumula-
tive distribution, the class probabilities can be de-
rived as

P(y = yk |x) = P(y ≤ yk |x)−P(y ≤ yk−1 |x)
= πk(x)− πk−1(x)

for k ∈ [K] (where πK(x) = 1 and π0(x) = 0 by
definition).

Given a set of training data (2), the estimation of
the parameters β = (β1, . . . , βK−1) and w is then
accomplished through maximum likelihood estima-
tion, i.e., by maximizing the log-likelihood

l(β,w) =
n∑
i=1

log P
(
y(i) |x(i)

)
=

n∑
i=1

K∑
k=1

I(y(i) = yk) log (πk(x)− πk−1(x))

4. The discrete Choquet integral

In this section, we recall the basic definition of the
Choquet integral and related notions. The first defi-
nition of the Choquet integral for additive measures
is due to Vitali [5]. For the general case of a capac-
ity (i.e., a non-additive measure or fuzzy measure),
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it was later on introduced by Choquet [6]. Yager
proposed a generalized version in [7].
Let C = {c1, . . . , cm} be a finite set and µ : 2C →

[0, 1] a measure. For each A ⊆ C, the value µ(A)
can be interpreted as the weight or, say, the im-
portance of the set of elements A. A standard as-
sumption on a measure µ(·), which is, for exam-
ple, at the core of probability theory, is additivity:
µ(A∪B) = µ(A) +µ(B) for all A,B ⊆ C such that
A ∩ B = ∅. Unfortunately, additive measures can-
not model any kind of interaction between elements:
Extending a set of elements A by a set of elements
B always increases the weight µ(A) by the weight
µ(B), regardless of the “context” A.
This lack of expressivity motivates the use of non-

additive measures, also called capacities or fuzzy
measures, which are simply normalized and mono-
tone but not necessarily additive [8]:

µ(∅) = 0, µ(C) = 1
µ(A) ≤ µ(B) for all A ⊆ B ⊆ C

(8)

A useful representation of non-additive measures,
that we shall explore later on for learning Choquet
integrals, is in terms of the Möbius transform:

µ(B) =
∑
A⊆B

mµ(A) (9)

for all B ⊆ C, where the Möbius transform m =
mµ of the measure µ is defined as follows:

mµ(A) =
∑
B⊆A

(−1)|A|−|B|µ(B) . (10)

A measure µ is said to be k-order additive, or sim-
ply k-additive, if k is the smallest integer such that
m(A) = 0 for all A ⊆ C with |A| > k. This prop-
erty is interesting for several reasons. In particular,
as can be seen from (9), it means that a measure µ
can formally be specified by significantly fewer than
2m values, which are needed in the general case.

Suppose the “criteria” ci ∈ C are simply consid-
ered as binary features, which are either present or
absent in a set A. Mathematically, µ(A) can then
also be seen as an integral of the indicator function
of A, namely the function fA given by fA(c) = 1
if c ∈ A and = 0 otherwise. Now, suppose that
f : C → R+ is any non-negative function that as-
signs a value to each criterion ci; for example, f(ci)
might be the degree to which a candidate satisfies
criterion ci. An important question, then, is how
to aggregate the evaluations of individual criteria,
i.e., the values f(ci), into an overall evaluation, in
which the criteria are properly weighted according
to the measure µ. Mathematically, this overall eval-
uation can be considered as an integral Cµ(f) of the
function f with respect to the measure µ.
Indeed, if µ is an additive measure, the standard

integral just corresponds to the weighted mean

Cµ(f) =
m∑
i=1

wi · f(ci) =
m∑
i=1

µ({ci}) · f(ci) , (11)

which is a natural aggregation operator in this case.
A non-trivial question, however, is how to generalize
(11) in the case where µ is non-additive.

This question, namely how to define the integral
of a function with respect to a non-additive measure
(not necessarily restricted to the discrete case), is
answered in a satisfactory way by the Choquet in-
tegral [6].

In the discrete case, the Choquet integral is for-
mally defined as follows:

Cµ(f) =
m∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ
(
A(i)

)
,

where (·) is a permutation of [m] such that 0 ≤
f(c(1)) ≤ f(c(2)) ≤ . . . ≤ f(c(m)) (and f(c(0)) = 0
by definition), and A(i) = {c(i), . . . , c(m)}. In terms
of the Möbius transform of µ, the Choquet integral
can also be expressed as follows:

Cµ(f) =
∑
T⊆C

m(T ) ·min
i∈T

f(ci) (12)

where T(i) =
{
S ∪ {c(i)} |S ⊂ {c(i+1), . . . , c(m)}

}
.

5. Ordinal choquistic regression

5.1. The choquistic model

In order to model non-linear dependencies between
predictor variables and response, and to take inter-
actions between predictors into account, we propose
to extend the logistic regression model by replacing
the (affine) linear function x 7→ βk +w>x in (7) by
the Choquet integral. More specifically, we propose
the following model

log
(

πk(x)
1− πk(x)

)
= γ

(
Cµ(fx)− βk

)
(13)

where Cµ(fx) is the Choquet integral (with respect
to the measure µ) of the evaluation function

fx : {c1, . . . , cm} → R+

that maps each attribute ci to a value xi = fx(ci);
γ ≥ 0 and β1, . . . , βK−1 are real constants such that
0 = β1 ≤ β2 ≤ · · · ≤ βK−1 ≤ 1.

The value of ci is normalized in order to turn each
predictor variable into a criterion, i.e., a “the higher
the better” attribute, and to assure commensurabil-
ity between the criteria [9]. A simple transforma-
tion, that we shall also employ in our experimental
studies, is given by the mapping

zi = F−1
i (xi) , (14)

where Fi is the cumulative distribution function
x 7→ P(Xi ≤ x). Of course, since this function
is in general not known, it has to be replaced by
an estimate F̂i; to this end, we simply adopt the
empirical distribution of the training data:

F̂i(x) = #
{

(x1, . . . , xm) ∈ D |xi ≤ x
}
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Figure 1: Illustration of the ordinal choquistic regression model for Y = {y1, y2, y3, y4}: Class assignment via
hard thresholding (left) versus probabilistic classification. The cumulative distribution yk 7→ πk(x) is shown
in the middle, the probability distribution yk 7→ P(y = yk |x) = πk(x)− πk−1(x) on the right.

The model (13) can be seen as a discrete choice
process consisting of two steps: The first step con-
sists of an assessment of the input x in terms of a
utility degree

U(x) = Cµ(fx) ∈ [0, 1].

Then, in a second step, this utility degree is com-
pared with the thresholds βk, which become increas-
ingly demanding. The question whether or not the
alternative should be classified as “at least as good
as yk” depends on whether or not U(x) exceeds the
threshold βk.
The second step is a probabilistic version of a

(hard) thresholding procedure (see Figure 1): In-
stead of simply assigning x to the class yk• such that
βk•−1 ≤ U(x) < βk• , each class has a certain prob-
ability. The level of determination of the decision
is specified by γ, which serves as a scaling parame-
ter: The larger γ, the more peaked the probability
distribution becomes; in the limit γ →∞, the class
yk• will be chosen deterministically.

5.2. Parameter estimation

The model (13) has several degrees of freedom: The
fuzzy measure µ (Möbius transform m = mµ) de-
termines the (latent) utility function, while the util-
ity thresholds β = (β1, . . . , βK−1) and the scaling
parameter γ determine the discrete choice model.
The goal of learning is to identify these degrees of
freedom on the basis of the training data (2). Like in
the case of standard logistic regression, it is possible
to harness the maximum likelihood (ML) principle
for this purpose.

The log-likelihood of the parameters can be writ-
ten as

l(m, γ,β) = log P
(
D |m,β, γ

)
= log

n∏
i=1

P
(
y(i) |x(i);m, β, γ

)
(15)

=
n∑
i=1

K∑
k=1

I
(
y(i) = yk

)
log π∗k(x,m,β, γ),

where

π∗k(x,m,β, γ) = exp(−γβk) exp(γCµ(fx))
1 + exp(−γβk) exp(γCµ(fx))

− exp(−γβk−1) exp(γCµ(fx))
1 + exp(−γβk−1) exp(γCµ(fx))

One can verify that (15) is convex with respect to
m, γ, and β. In principle, maximization of the
log-likelihood can hence be accomplished by means
of standard gradient-based optimization methods.
However, since we have to assure that µ is a proper
fuzzy measure and, hence, that m guarantees the
corresponding monotonicity and boundary condi-
tions, we actually need to solve a constrained op-
timization problem, namely the maximization of
(15) under the following conditions (recall that C =
{c1, . . . , cm} denotes the set of predictor variables):

0 ≤ β1 ≤ β2 ≤ · · · ≤ βK−1 ≤ 1

0 < γ∑
T⊆C

m(T ) = 1

∑
B⊆A\{ci}

m(B ∪ {ci}) ≥ 0 ∀A ⊆ C, ci ∈ C

A solution to this problem can be produced by
standard solvers. Concretely, we used the fmincon
function implemented in the optimization toolbox
of Matlab. This method is based on a sequential
quadratic programming approach.

5.3. Regularization

Since the (full) Choquet integral is a complex and
highly nonlinear function with many degrees of free-
dom, ML estimation obviously comes with the dan-
ger of over-fitting the data. Therefore, a kind of
regularization of the estimation process is clearly
advisable from a learning point of view. Apart
from improving generalization performance, regu-
larization may also serve the purpose of obtaining
simpler models that are smaller in size.



Regularization is typically done by adding a com-
plexity term to the objective function (in our case
the log-likelihood (15)), the influence of which is
controlled by a regularization parameter ρ. Thus,
the idea is to penalize overly complex models or,
stated differently, to find a compromise between the
complexity of a model and its fit to the data. The
key question, of course, it how to quantify the no-
tion of “complexity” of a model.
In our approach to ordinal choquistic regression,

adding a regularization term of the form

−ρ
∑
A⊆C

g(|A|) |m(A)| (16)

to the objective function (15) turned out to produce
good results. Defining g(·) as a strictly increasing
function, this term encourages m(A) = 0 for larger
subsets of criteria A; in other words, it encourages
a restriction to measures with a low level of nonad-
ditivity. We note that (16) can be seen as a specific
instance of the idea of “hierarchical regularization”
as introduced in [10], with a hierarchy on the power
set 2C defined through subset cardinality (i.e., the
first level of the hierarchy are the singletons {ci},
the second level the two-subsets {ci, cj}, etc.).

data set #instances m K
ESL 488 4 9
ERA 1000 4 9
MPG 398 8 7
LEV 1000 4 5
CEV 1728 6 4
CYD 1 (Blue 26) 120 3 5
CYD 2 (Brown 1) 120 3 5
CYD 3 (Blue 56) 120 3 5
CYD 4 (Red 60) 120 3 5
CYD 5 (Yellow 7) 120 3 5
CYD 6 (Yellow 23) 120 3 5
CYD 7 (Mixture) 120 3 5

Table 1: Data sets and their properties (number
of instances, number of attributes (m), number of
classes (K).

5.4. Prediction

Once a choquistic model (13) has been learned on a
given set of training data, it can be used to predict
the class of a new query instance x ∈ X . This pre-
diction, however, is not straightforward, since (13)
does not produce a class prediction directly. In-
stead, it maps x to a probability distribution(

P(y1 |x), . . . ,P(yK |x)
)
∈ [0, 1]Y ,

from which a class prediction has to be derived. The
most obvious prediction, of course, is the mode of
this distribution:

ŷ = arg max
{

P(yk |x) | yk ∈ Y
}

(17)

Indeed, this prediction minimizes the risk with re-
spect to the 0/1 loss (3). The risk minimizer with
respect to the L1 loss (4), however, is the median of
the distribution:

ŷ = arg med
(

P(y1 |x), . . . ,P(yK |x)
)

(18)

6. Experimental evaluation

Experimentally, we compared our generalized vari-
ant (13) to the standard version (5) of logistic re-
gression on several benchmark data sets. What we
expect, of course, is an improved predictive accu-
racy thanks to the increased flexibility of choquistic
regression, namely its ability to capture nonlinear
dependencies between predictor variables and res-
ponse. It should be noted, however, that such an
improvement, despite being plausible, is not self-
evident. In fact, if the true underlying dependency
is indeed linear or close to linear, then standard lo-
gistic regression will be the model of choice, whereas
choquistic regression may tend to overfit the train-
ing data and hence generalize worse.

The following methods were included in the ex-
periments:

• Ordinal logistic regression (OLR). Actually,
OLR was implemented as ordinal choquistic re-
gression restricted to the case of an additive
measure. These two variants are essentially
equivalent, except for the fact that the latter
incorporates monotonicity constraints. Given
that our data sets (see below) are monotone,
this constraint is clearly reasonable.
• Two variants of ordinal choquistic regres-
sion as introduced in Section 5, namely with
(OCR+R) and without (OCR) hierarchical
regularization (16).

6.1. Data

Even though the topic of monotone classification is
receiving more and more interest in the machine
learning community [11–15], benchmark data for
this problem is not as abundant as for conventional
classification; for our purpose, the class attribute
also needs to be polychotomous and ordered, which
restricts the choice of data sets even further. Never-
theless, we managed to collect a number of suitable
benchmark data sets, mostly from the UCI repos-
itory2 and the WEKA machine learning toolbox.3
In what follows, we give a brief description of each
of these data sets; an overview of the data sets to-
gether with their main properties is given in Table 1.

• Employee Selection (ESL): This data set con-
tains profiles of applicants for certain industrial
jobs. The values of the four input attributes
were determined by psychologists based upon

2http://archive.ics.uci.edu/ml/
3http://www.cs.waikato.ac.nz/ml/weka/
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data set OLR OCR OCR+R
ESL .3094±.0325(1) .3504±0.0939(3) .3361±.0427(2)
ERA 1.2520±.0393(1) 1.2770±0.0279(3) 1.2617±.0292(2)
MPG .3667±.0314(1) .3761±0.0318(2) .3830±.0419(3)
LEV .4264±.0148(3) .4184±0.0187(1) .4224±.0242(2)
CEV .2310±.0075(3) .1097±0.0361(1) .1097±.0361(1)
CYD–1 .3167±.0441(3) .1778±0.0536(2) .1611±.0509(1)
CYD–2 .7722±.0712(3) .3500±0.0810(2) .3472±.0885(1)
CYD–3 .4667±.0471(3) .2722±0.0360(2) .2694±.0386(1)
CYD–4 .5133±.0414(3) .2833±0.0583(2) .2783±.0634(1)
CYD–5 .3100±.0465(3) .2633±0.0477(2) .2500±.0373(1)
CYD–6 .5083±.0874(3) .2556±0.0750(2) .2500±.0667(1)
CYD–7 .7150±.0541(3) .3867±0.0628(2) .3850±.0739(1)
ESL .3400±.0504(1) .3488±.0464(3) .3456± .0184(2)
ERA 1.2824±.0648(2) 1.292±.0552(3) 1.2712±.0384(1)
MPG .3365±.0375(3) .3105±.0335(2) .3045±.0310(1)
LEV .4372±.0344(3) .4164±.0140(1) .4204±.0148(2)
CEV .2205±.0096(3) .1203±.0291(2) .1137±.0246(1)
CYD–1 .3479±.0490(3) .1952±.0498(2) .1896±.0493(1)
CYD–2 .8167±.1017(3) .3483±.0644(2) .3425±.0698(1)
CYD–3 .4167±.0786(3) .2700±.0375(1) .2733±.0425(2)
CYD–4 .4633±.0576(3) .3000±.0437(2) .2933±.0432(1)
CYD–5 .3067±.0562(3) .2833±.0360(2) .2724±.0410(1)
CYD–6 .5583±.0748(3) .2867±.0461(2) .2783±.0409(1)
CYD–7 .7711±.0727(3) .3289±.0682(1) .3380±.0610(2)

Table 2: Average L1 loss ± standard deviation (in brackets the rank). The results above refer to the median
predictor (18), the results below to the mode predictor (17).

psychometric test results and interviews with
the candidates. The output is an overall score
on an ordinal scale between 1 and 9, corre-
sponding to the degree of suitability of each
candidate to this type of job.
• Employee Rejection/Acceptance (ERA): This
data set originates from an academic decision-
making experiment. The input attributes are
features of a candidate such as past experience,
verbal skills, etc., and the output is the subjec-
tive judgment of a decision-maker, measured on
an ordinal scale from 1 to 9, to which degree
he or she tends to accept the applicant for the
job.
• Auto MPG (MPG): This data set was used in
the 1983 American Statistical Association Ex-
position. The data is about the city-cycle fuel
consumption of cars in miles per gallon, to be
predicted in terms of 3 multivalued discrete and
5 continuous attributes (cylinders, displace-
ment, horsepower, weight, acceleration, model
year, origin). We removed incomplete instances
and discretized the numerical output (mpg)
into 7 ordinal classes using equi-with binning.
• Lecturers Evaluation (LEV): This data set con-
tains examples of anonymous lecturer evalua-
tions, taken at the end of MBA courses. Stu-
dents were asked to score their lecturers ac-
cording to four attributes such as oral skills
and contribution to their professional/general

knowledge. The output was a total evaluation
of each lecturer’s performance, measured on an
ordinal scale from 0 to 4.
• Car Evaluation (CEV): This data set contains
6 attributes describing a car, namely, buy-
ing price, price of the maintenance, number of
doors, capacity in terms of persons to carry, the
size of luggage boot, estimated safety of the car.
The output is the overall evaluation of the car:
unacceptable, acceptable, good, very good.
• Color Yield (CYD): Finally, we took data from
an industrial polyester dyeing process that was
also analyzed in [16]. Here, the output variable
is the color yield, which has been measured as
a function of three important factors: disperse
dyes concentration, temperature and time of
dyeing. Corresponding experiments have been
made for 7 different colors, giving rise to 7 data
sets. Each of these data sets was discretized by
equi-frequency binning of the color yield.

6.2. Experimental setup and results

We use an experimental setup that randomly splits
the data into two parts, one half for training and
one half for testing. The model induced from train-
ing data is then evaluated on the test data. This
procedure is repeated 100 times, and the results are
averaged.

The function g(·) in the regularization term (16)
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data set temperature time concentration
CYD–1 0.6147 0.1342 0.2511
CYD–2 0.4612 0.0878 0.4510
CYD–3 0.3935 0.1191 0.4874
CYD–4 0.4473 0.1051 0.4476
CYD–5 0.2477 0.0330 0.7193
CYD–6 0.4238 0.1146 0.4616
CYD–7 0.4939 0.0311 0.4749

Table 3: Shapley values of criteria for the color data.

was defined as g(k) = kα. Thus, two hyperparam-
eters need to be tuned for OCR+R, namely ρ and
α. This tuning was done by searching the grid

(α, ρ) ∈ {2, 4, 6, 8} × {10−4, 10−3, . . . , 104}

and evaluating parameter combinations by means
of a (nested) cross validation on the training data.
Table 2 provides a summary of the results in

terms of the average L1 loss (4). As can be seen,
OCR often achieves clear improvements over OLR,
especially on those data sets for which the response
is known to depend on the predictors in a nonlinear
way (e.g., CEV and CYD). Moreover, our regular-
ization method is paying off, too, since the results of
OCR+R are mostly even better than those of OCR.
As already mentioned, the Choquet integral offers

interesting means to support model interpretation,
notably measures of attribute importance and inter-
action [17]. As an example, we derived the Shapley
value, which measures the importance of individual
criteria, for temperature, time and concentration in
the color data. These values, shown in Table 3,
nicely agree with domain knowledge: temperature
and concentration are more important than time,
i.e., a high temperature and a high concentration
have a stronger influence on the color yield than the
time of dyeing. Moreover, comparing temperature
and concentration, the former tends to be slightly
more important than the latter for Mono Azo and
Anthraquinone colors (Blue, Brown, Red), and vice
versa for Diazo colors (Yellow).

7. Summary and conclusion

This paper is a continuation of previous work [2,3],
in which we have advocated the use of the dis-
crete Choquet integral in the context of classifica-
tion with monotonicity constraints. More specif-
ically, the idea of our approach, called choquistic
regression, is to use the Choquet integral for rep-
resenting a latent utility function in the logistic re-
gression model. Thus, it becomes possible to cap-
ture nonlinear dependencies and interactions among
predictor variables in a convenient way. Hitherto,
choquistic regression was restricted to the case of
binary classification. Here, we have proposed an
extension of this method to the case of ordinal clas-
sification.

As already pointed out in [2,3], nonlinearity in lo-
gistic regression can of course also be incorporated
in other ways, for example by using polynomials of
higher degrees instead of linear functions in the lo-
gistic model. Then, however, some important prop-
erties of logistic regression may get lost. First, en-
suring monotonicity may become quite difficult for
nonlinear functions such as polynomials. Moreover,
the comprehensibility of the (linear) logistic model
might be affected. The Choquet integral is espe-
cially appealing from this point of view, as it offers
measures of the importance of individual attributes
(Shapley value) and the interaction among subsets
of attributes.

In future work, our method ought to be com-
pared, both conceptually and experimentally, with
related work on using the Choquet integral in classi-
fication, such as [4,18]. Moreover, we plan to extend
the empirical validation of choquistic regression by
searching for further benchmark data for monotone
ordinal classification as well as real applications.
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