
Learning Conditional Lexicographic
Preference Trees

Michael Bräuning and Eyke Hüllermeier

Abstract We introduce a generalization of lexicographic orders and argue that
this generalization constitutes an interesting model class for preference learn-
ing in general and ranking in particular. We propose a learning algorithm for
inducing a so-called conditional lexicographic preference tree from a given set
of training data in the form of pairwise comparisons between objects. Experi-
mentally, we validate our algorithm in the setting of multipartite ranking.

1 Introduction

Preference learning is an emerging subfield of machine learning that has re-
ceived increasing attention in recent years (Fürnkranz and Hüllermeier, 2011).
A specific though important special case of preference learning is “learning to
rank”, that is, the learning of models that can be used to predict preferences
in the form of rankings of a set of alternatives (Cohen et al, 1999; Dekel et al,
2003). Ranking problems are often reduced to problems of a simpler type,
such as learning a value function that assigns scores to alternatives (with better

Michael Bräuning
Philipps-University Marburg,
� braeunim@mathematik.uni-marburg.de

Eyke Hüllermeier
University of Paderborn,
� eyke@upb.de

ARCHIVES OF DATA SCIENCE, SERIES A DOI 10.5445/KSP/1000058747/03
KIT SCIENTIFIC PUBLISHING ISSN 2363-9881
Vol. 1, No. 1, S. 41–55, 2016

42 Michael Bräuning and Eyke Hüllermeier

alternatives having higher scores) or learning a binary predicate that compares
pairs of alternatives (Hüllermeier et al, 2008). While the former approach is
close to regression, the latter is in the realm of classification learning.

Another approach to learning ranking functions is to proceed from specific
model assumptions, that is, assumptions about the structure of the sought prefer-
ence relations. This approach is less generic than the previous one, as it strongly
depends on the concrete assumptions made. On the other hand, it typically of-
fers the advantage of being more easily understandable and interpretable. As an
example, let us mention CP-networks, that is, the representation of conditional
dependence and independence of preference statements under a ceteris paribus
(all else being equal) interpretation (Boutilier et al, 2004). Those preferences
are encoded as a graph, in which each node is annotated with a preference
table. Another example is lexicographic orders that are widely accepted as a
plausible representation of (human) preferences (Schmitt and Martignon, 2006),
especially in complex decision making domains (Ahlert, 2008). Here, the as-
sumption is that the target ranking of a set of alternatives, each one described in
terms of multiple attributes, can be represented as a lexicographic order.

From a machine learning point of view, assumptions of the above type can
be seen as an inductive bias restricting the hypothesis space. Provided the
bias is correct, this is clearly an advantage, as it may simplify the learning
problem. On the other hand, an overly strong bias may prevent the learner from
approximating the target ranking sufficiently well. For example, while being
plausible in some situations, the assumption of a lexicographic order will be
too restrictive for many applications.

In this paper, we therefore present a method for learning generalized lexi-
cographic orders. While still being simple and easy to understand, the model
class we consider relaxes some of the assumptions of a proper lexicographic
order. More specifically, we increase flexibility thanks to two extensions of
conventional lexicographic orders:

• First, we allow for conditioning (Booth et al, 2009, 2010): The importance of
attributes as well as the preferences for the values of an attribute may depend
on the values of other variables preceding that one in the underlying variable
order.

• Second, we allow for grouping (Wilson, 2009): Several (one-dimensional)
variables can be grouped into a single high-dimensional variable, and prefer-
ences can be specified on the Cartesian product of the corresponding domains.

Learning Conditional Lexicographic Preference Trees 43

The remainder of this paper is organized as follows. In the next section, we
give a brief overview of related work. In Sect. 3, we introduce generalized
lexicographic orders and the notion of conditional lexicographic preference
trees. In Sect. 4, we present an algorithm for learning such preference models
from data. An experimental study is presented in Sect. 5, prior to concluding
the paper in Sect. 6.

2 Related Work

The use of lexicographic orders in preference modeling has already been consid-
ered in the seventies of the last century (Fishburn, 1974), whereas in machine
learning, this type of structure has attracted attention only recently. Flach and
Matsubara developed a lexicographic ranker called LexRank , using a linear
preference ordering on attributes derived by the odds ratio (Flach and Matsub-
ara, 2007, 2008). Experimentally, they show that LexRank is competitive to
decision trees and naive Bayes in terms of ranking performance.

Further work on learning lexicographic orders was done by Schmitt and
Martignon (2006), Dombi et al (2007), and Yaman et al (2008). However, these
works are based on rather simplistic assumptions. More general models were
studied by Booth et al (2009, 2010), and in fact, important parts of our approach
(such as conditional importance of attributes and conditional preferences on
attribute values) are inspired by these models. Their work remains rather theo-
retical, however, without a practical realization in terms of an implementation
of algorithms or an experimental study with real data.

3 Generalized Lexicographic Orders

Formally, we proceed from an attribute-value representation of decision alterna-
tives or objects, i.e., an object is represented as a vector

o ∈ O = D(V) = D(A1)× ...×D(An),

where V = {A1, ...,An} is the set of attributes (variables) and D(Ai) is the
domain of attribute Ai. For a subset A = {Ai1 , . . . ,Aik} ⊂ V of attributes we
define D(A) = D(Ai1)× ...×D(Aik).

44 Michael Bräuning and Eyke Hüllermeier

An assignment or instantiation of a subset A⊆V of attributes is an element
a ∈ D(A); an assignment is called complete if A = V , otherwise it is called
partial. For an object o∈O and a subset A⊂V , we denote by o[A] the projection
of o from D(V) to D(A); if A = {Ak} is a single attribute, we also write o[k]
instead of o[{Ak}].

A lexicographic order on O is a total order � defined in terms of

• a total order = on V , i.e., a ranking of the attributes,
• a total order =i on each attribute domain D(Ai).

More specifically, o∗ � o (suggesting that o∗ is preferred to o) if and only if
there exists a k ∈ {1, . . . ,n} such that(

o∗[k]=k o[k]
)
∧
(
(Ai = Ak)⇒

(
o∗[i] = o[i]

))
for all i ∈ {1, . . . ,n}. The relations =i indicate preference on individual at-
tributes: a =i b means that, for a,b ∈ D(Ak), a is preferred to b as a value
for attribute Ai. Moreover, the relation = reflects the importance of attributes:
Ai = A j means that attribute Ai is more important than A j, whence the former is
considered prior to the latter. Without loss of generality, we shall subsequently
assume that A1 = A2 = · · ·= An (unless otherwise stated).

3.1 Conditional preferences on attribute values

Conventional lexicographic orders assume that preferences =k on attribute
domains are independent of each other. Needless to say, this assumption is often
violated in practice. For example, although it is possible that a person prefers
red wine to white wine in general, it is also plausible that her preference for
wine may depend on the main dish: red is preferred to white in the case of meat,
whereas white is preferred to red in the case of fish.

In order to capture attribute dependencies of that type, the preference relations
=k can be conditioned on the values of the attributes A j preceding Ak in the
order = (Booth et al, 2009, 2010). That is, =k is now replaced by a set of strict
orders {

=
(a1,...,ak−1)
k |(a1, . . . ,ak−1) ∈D({A1, . . . ,Ak−1})

}
Moreover, the order relation � on O is then defined as follows: o∗ � o for
o∗ = (a∗1, . . . ,a

∗
n) and o = (a1, . . . ,an) if and only if there exists a k ∈ {1, . . . ,n}

such that

Learning Conditional Lexicographic Preference Trees 45

(
∀ i ∈ {1, . . . ,k−1} : a∗i = ai

)
∧
(
a∗k =

(a1,...,ak−1)
k ak

)
.

3.2 Conditional attribute importance

Going one step further, one may assume that the values of the first attributes
in the attribute order = do not only influence the preferences on the values of
the attributes that follow, but also the importance of the attributes themselves
(Booth et al, 2009, 2010). Thus, we are no longer dealing with a lexicographic
order in the sense that = defines a sequence of the attributes V according to their
importance. Instead, we are dealing with a tree-like structure. This structure is
defined by the following (choice) function:

A =C
(
(Ai1 ,Ai2 , . . . ,Aik),(ai1 ,ai2 , . . . ,aik)

)
,

where (Ai1 ,Ai2 , . . . ,Aik) ∈V k is a sequence of attributes (such that Ai j 6= Aik for
j 6= k) and ai j ∈D(Ai j) for all j ∈ {1, . . . ,k}. Moreover, A ∈V \{Ai1 , . . . ,Aik}
is the most important attribute given that Ai j = ai j for all j ∈ {1, . . . ,k}.

3.3 Variable grouping

Another extension consists of grouping several variables, that is, to allow the
expression of preferences on attribute tuples instead of single attributes only
(Wilson, 2009). Formally, this means selecting an index set I ⊆ {1, . . . ,n}
and defining a total order relation =I on the Cartesian product D(VI) of the
domains D(Ai), i ∈I .

Note that the possibility of variable grouping significantly increases the
expressivity of the model class. In particular, by taking I = {1, . . . ,n}, it is
possible to define every order on D(V), that is, to sort the set of alternatives
in any way. Since this level of expressivity is normally not desirable, it is
reasonable to restrict to variable grouping of order gmax, meaning to impose the
constraint |I | ≤ gmax for a fixed gmax ≤ n.

46 Michael Bräuning and Eyke Hüllermeier

3.4 Conditional lexicographic preference trees

Combining the generalizations discussed above, we end up with what we call a
Conditional Lexicographic Preference Tree (CLPT). Graphically, this is a tree
structure in which

• every node is labeled with a subset of attributes VI and a total order on
the Cartesian product D(VI) of the corresponding attribute domains D(Ai),
i ∈I ;

• there is one outgoing edge (descendant node) for each value o[VI]∈D(VI);
• every attribute Ai ∈V occurs at most once on each branch from the root of

the tree to a leaf node (i.e., the index sets I along a branch are disjoint).

We call a CLPT complete if every attribute Ai ∈V occurs exactly once on each
branch from the root of the tree to a leaf node (i.e., the index sets I along a
branch form a partition of {1, . . . ,n}).

A (complete) CLPT can be thought of as defining an order relation on O
through recursive refinement of a weak order �, that is, by refining an order
relation with tie groups in a recursive manner (in the following,∼ and� denote,
respectively, the symmetric and asymmetric part of �):

• One starts with a single equivalence class (tie group), i.e., o∗ ∼ o for all
o∗,o ∈ O .

• Let the root of the CLPT be labeled with the attribute set VI , and let =I

denote the corresponding order on D(VI). The current order � is then
refined by letting o∗ � o whenever o∗[VI]=I o[VI]; otherwise, if o∗[VI] =
o[VI], then o∗ and o remain tied.

• Thus, a linear order of tie groups (equivalence classes) is produced.
• Each equivalence class (represented by a value a ∈ D(VI)) is then recur-

sively refined by the subtree the objects of this equivalence class are passed
to.

Note that, if the CLPT is complete, the order relation � eventually produced is
a total order �.

4 Learning CLPTs

In this section, we outline a method for inducing a CLPT from training data

Learning Conditional Lexicographic Preference Trees 47

T =
{
(o∗i ,oi)

}N
i=1 (1)

that consists of a set of object pairs (o∗i ,oi) ∈O2, suggesting that o∗i is preferred
to oi. Roughly speaking, this means finding a CLPT whose induced order rela-
tion � on O is as much as possible in agreement with the pairwise preferences
in T (without overfitting the training data). The induced order relation � is a
total order � if the CLPT is complete.

4.1 Performance and evaluation measures

In order to evaluate the predictive performance of a CLPT, there is a need to
compare the order relation � (with asymmetric part �) induced by this model
with a ground truth order �∗. As will be seen below, the same measures can
be used to fit a CLPT to a given set of training data (1) during the training
phase. In this case, the “ground truth” is not a total order but a set of pairwise
comparisons between objects. Since a total order �∗ can be decomposed into
(a quadratic number of) such comparisons, too, we can assume (without loss of
generality) that we compare � with a set T of pairs (o∗,o) ∈O2, suggesting
that o∗ should be ranked higher than o.

Inspired by the corresponding notions introduced in Cheng et al (2010), we
define two performance measures of correctness and completeness, respectively,
as follows:

CR(�,T) =
|C|− |D|
|C|+ |D|

, (2)

CP(�,T) =
|C|+ |D|
|T |

, (3)

where

C =
{
(o∗,o) ∈T |o∗ � o

}
,

D =
{
(o∗,o) ∈T |o� o∗

}
.

Note that CR(�,T) assumes values between −1 (complete disagreement) and
+1 (complete agreement), while CP(�,T) ranges between 0 (no comparisons)
and 1 (full comparison).

48 Michael Bräuning and Eyke Hüllermeier

4.2 A greedy learning procedure

We implement an algorithm for learning a CLPT as a (greedy) search in the
space of tree structures based on the greedy algorithms presented by Schmitt
and Martignon (2006) as well as Booth et al (2009, 2010). This is done by
constructing the tree from the root to the leaves in a recursive manner. In each
step of the recursion, a new node is created with an associated subset VI of
attributes, where |VI | ≤ gmax, and a total order =I on D(VI).

4.2.1 Creating a node

The problem to be solved in each recursion is the following: Given a set of
pairwise comparisons T and a set V ′ ⊆V of attributes still available, select the
most suitable subset VI ⊆V ′ and an order =I . Following a greedy strategy,
we choose (VI ,=I) so as to maximize correctness (2), using completeness (3)
as a second criterion to break ties. In the (unlikely) event of both correctness
and completeness having ties, the first subset VI and order =I identified are
selected.

The selection of an attribute subset VI can be done through exhaustive
search if its size is sufficiently limited, i.e., if the upper bound gmax is small.
Otherwise, a complete enumeration of all possibilities may become too ex-
pensive. Moreover, for each candidate subset VI , a total order =I needs to
be determined. Again, all such orders can be tried if D(VI) is not too large.
Otherwise, heuristic ranking procedures such as a Borda count can be used
(counting the number of “wins” and “losses” of each value a ∈D(VI) in the
training data T and sorting according to the difference).

4.2.2 Limiting the number of candidate subsets

In order to avoid a complete enumeration of all candidate subsets VI of size
≤ gmax, we combine a greedy search with a kind of lookahead procedure: We
provisionally create a node by selecting a single attribute instead of a subset,
i.e., we tentatively set gmax to 1; apart from that, exactly the same selection
procedure (as outlined above) is applied. This step is repeated gmax times,
thereby producing a subtree of depth gmax. Let V ∗ ⊆ V denote the subset of
attributes that occur in this subtree, i.e., that are chosen in at least one of the

Learning Conditional Lexicographic Preference Trees 49

nodes. Then, as candidate subsets VI , we only try subsets V ∗, i.e., subsets
VI ⊆V ∗ such that |VI | ≤ gmax. Obviously, the underlying assumption is that
an attribute that has not been chosen in any of the gmax steps is not important at
this point.

4.2.3 Recursion

Once an optimal subset VI has been chosen, the training examples (o∗,o)
with o∗[VI] 6= o[VI] are removed from T (since they are sorted at this node).
Moreover, for each value a ∈D(VI), a data set

Ta =
{
(o∗,o) ∈T |o∗[VI] = o[VI] = a

}
is created and passed to the corresponding successor node (together with V ′\VI

as the attributes that have not been used so far). The same recursive procedure
is then applied to each of these successor nodes.

4.2.4 Initialization and termination

The learning procedure is called with the original training set T and the full
set V of attributes as candidates. The recursion terminates if no attribute is left
(V ′ = /0) or if the set of training examples is empty (T = /0). A description of
the basic algorithm in the form of pseudocode is provided in Algorithm 1.1

4.2.5 CLeRa

We call the algorithm outlined above CLeRa, which is short for Conditional
Lexicographic Ranker . The CLPT induced by CLeRa can be used to compare
new object pairs {o∗,o} ⊂ O . To this end, the tuple is submitted to the root
and propagated through the tree until either a leaf node is reached or a node at
which o∗[VI] 6= o[VI]; in this case, o∗ � o is decided if o∗ =I o and o � o∗

if o =I o∗. Otherwise, if o∗[VI] = o[VI] in all nodes traversed by the two
objects, then o∗ ∼ o.

Given not only a pair but a complete set of objects to be ranked, the pairwise
comparison realized by the CLPT can be embedded in any standard sorting

1 The pseudocode does not consider the lookahead procedure.

50 Michael Bräuning and Eyke Hüllermeier

Algorithm 1: CLeRa
Input : training data T , set of attributes V , maximal grouping size gmax
Output :CLPT ct

ct← /0, V ′←V , I ′←{1, . . . ,n}
if T 6= /0 && V ′ 6= /0 then

I′← /0, CR← 0, CP← 0
for I ⊆I ′, |I | ≤ gmax do

determine =I on D(VI) maximally consistent with T
compute CR(=I ,T) and CP(=I ,T)
if CR(=I ,T) = CR && CP < CP(=I ,T) then

CP← CP(=I ,T)
I′←I

else if CR(=I ,T)> CR then
CR← CR(=I ,T)
CP← CP(=I ,T)
I′←I

I ′←I ′\I′
V ′←V ′\VI′

remove every (o,o′) ∈T decided by =I′

add node (VI′ ,=I′) to ct
for a ∈D(VI) do

Ta =
{
(o∗,o) ∈T |o∗[VI] = o[VI] = a

}
return CLeRa[Ta,V ′,gmax]

return ct

algorithm, such as insertion sort. Note that, since o∗ ∼ o is possible in a pairwise
comparison, the result of the sorting procedure will in general only be a weak
order �.

5 Experimental Results

We evaluate our approach on 15 benchmark data sets from the Statlog and the
UCI repository (Asuncion and Newman, 2007). These data sets, which define
binary or ordinal classification problems, were pre-processed as follows: numer-
ical attributes and attributes with more than five values were discretized into
four values using equal frequency binning. Moreover, instances with missing
values were neglected.

The learning problem we consider is multipartite ranking (Fürnkranz et al,
2009): Given a set of test instances X ⊂ O , the goal is to predict a ranking �
that agrees with the (ordered) class labels of these instances. Formally, this

Learning Conditional Lexicographic Preference Trees 51

agreement is measured in terms of the so-called C-index, which can be seen as
an extension of the area under the ROC curve (AUC):

C =
1

∑i< j nin j
∑

1≤i< j≤m
∑

(o,o∗)∈Xi×X j

I(o∗ � o)+
1
2
I(o∗ ∼ o),

where Xi ⊆ X denotes the set of instances with class labels yi, and these class
labels are assumed to have the order y1 < y2 < · · · < ym. I(·) is the indicator
function mapping false predicates to 0 and true predicates to 1. The training data
consists of a set of labeled instances, just like in classification. Since CLeRa
is learning from pairwise comparisons of the form (o∗,o), it first extracts
such comparisons from the original data by looking at the class information:
A preference (o∗,o) is generated for each pair (o∗,y j) and (o,yi) of labeled
instances in the (original) training data such that yi < y j.

The ranking performance of CLeRa (with maximum grouping size of
gmax = 2) is compared with LexRank, which was implemented as proposed by
(Flach and Matsubara, 2007, 2008); therefore, this method was only applied to
binary (two-class) problems but not to problems with more than two classes.2

We applied naive Bayes (NB) and decision tree (J48) learning as additional
baselines, using the standard implementations3 in the Weka machine learning
toolbox Hall et al (2009) and sorting instances according to the estimated prob-
ability of the positive class; note that these methods are not applicable to the
multi-class case either.

The results of a 10-fold cross-validation are given in Table 1. Since CLeRa
produced a completeness of 1 or extremely close to 1 throughout, these values
are not reported here. Overall, the performance of the methods is quite compa-
rable but slightly in favour of NB. In particular, CLeRa and LexRank produce
quite similar results on many data sets (Asuncion and Newman, 2007). In some
cases, however, the results are strongly in favor of CLeRa:

• Census Income: The census data provides information about whether an
income exceeds 50,000 USD over a year. The root node of the CLPT is
labeled with a single attribute (capital-loss) as well as the descendant node.
The preferences on attribute values of the descendant nodes at the third stage
depend on the values of the node following the root node. This is also true

2 The red wine data actually has a target attribute with values between 1 and 10; it was binarized by
thresholding at the median.
3 Trees are not pruned.

52 Michael Bräuning and Eyke Hüllermeier

Table 1 Average performance in terms of C-index based on a 10-fold cross-validation (best results
per data set highlighted in bold font).

Dataset CLeRa LexRank J48 NB

Red Wine 0.7827 ± 0.0479 0.8011 ± 0.0475 0.7378 ± 0.0272 0.8110 ± 0.0225
Census Income 0.7952 ± 0.0523 0.5776 ± 0.0256 0.7401 ± 0.0356 0.8607 ± 0.0192
Credit Approval 0.9201 ± 0.0298 0.9229 ± 0.0389 0.8517 ± 0.0480 0.9061 ± 0.0377
Mammographic Mass 0.8831 ± 0.0289 0.8960 ± 0.0327 0.8524 ± 0.0430 0.8999 ± 0.0307
Mushroom 1.0000 ± 0.0000 0.9865 ± 0.0021 1.0000 ± 0.0000 0.9484 ± 0.0164
SPECT Heart 0.6740 ± 0.0767 0.6590 ± 0.1430 0.5106 ± 0.0961 0.7409 ± 0.0957
Ionosphere 0.9198 ± 0.0494 0.5748 ± 0.0740 0.8059 ± 0.1290 0.9061 ± 0.0805
MAGIC Gamma Telescope 0.8218 ± 0.0302 0.7263 ± 0.0517 0.7841 ± 0.0304 0.8241 ± 0.0329
Breast Cancer Wisconsin 0.9837 ± 0.0171 0.9901 ± 0,0093 0.9793 ± 0.0392 0.9909 ± 0.0091
German Credit 0.6285 ± 0.0880 0.4523 ± 0.1092 0.6251 ± 0.0902 0.7835 ± 0.0647
Car Evaluation 0.9198 ± 0.0185 n/a n/a n/a
Nursery 0.9052 ± 0.0288 n/a n/a n/a
Tic-Tac-Toe Endgame 0.7728 ± 0.0389 n/a n/a n/a
Vehicle 0.7554 ± 0.0459 n/a n/a n/a
Cardiocraphic 0.9551 ± 0.0138 n/a n/a n/a

for the importance of the attributes at this stage. One level below, the CLPT
also contains nodes that are labeled with grouped attributes.

• Ionosphere: The radar data contains information about whether radar re-
turns are “good” or “bad”.4 With regard to the conditional dependencies
and the grouping, the basic structure of the CLPT is very similar to the
aforementioned case.

• MAGIC Gamma Telescope: The gamma telescope data contains information
about the registration of gamma particles. The basic structure of the CLPT
differs from the aforementioned CLPTs with respect to the occurrence of con-
ditional dependencies. Already the first descendant nodes exhibit conditional
dependencies on the attribute values of the root node.

• German Credit: In the credit data, customers are classified as good or bad.
The respective CLPT makes even stronger use of the proposed extensions
compared to the CLPT for the MAGIC Gamma Telescope data set. The first
descendant nodes are labeled with grouped attributes.

Overall, these results indicate that the bias imposed by the assumption of
a standard lexicographic order is inadequate for these data sets, and hence

4 Good returns show evidence of some type of structure in the ionosphere.

Learning Conditional Lexicographic Preference Trees 53

our extensions (conditional attribute importance, conditional value preferences,
variable grouping) clearly pay off.

6 Conclusion and Future Work

Lexicographic orders constitute an interesting model class for preference learn-
ing, which allows for representing rankings of a set of objects in a very compact
and comprehensible way. Yet, as we have argued in this paper, this model class
may not be flexible enough for many real-world applications. Therefore, we
have proposed to weaken the assumptions underlying a lexicographic order in
various directions, allowing for conditional attribute importance, conditional
preferences on attribute values, and variable grouping. Moreover, we have pro-
posed an algorithm called CLeRa, which learns preference models in the form
of conditional lexicographic preference trees from training data in the form of
pairwise comparisons between objects.

First experimental results in the setting of multipartite ranking are quite
promising and show CLeRa to be competitive with other methods. In a direct
comparison with an existing lexicographic ranker, the benefit of our extensions
are becoming quite obvious.

Important topics of future work can be found both on the theoretical and
practical side. In particular, we are currently studying formal properties of our
generalized model class, such as its expressiveness and means for regularization
and complexity control. Practically, there is certainly scope for improving our
current algorithm, for example by devising a suitable procedure for estimating
an optimal value gmax for the oder of variable grouping. Moreover, improving
the computational efficiency of CLeRa would be desirable, too. Last but not
least, we are of course interested in real applications for which (generalized)
lexicographic models appear to be an adequate representation.

References

Ahlert M (2008) Aggregation of lexicographic orderings. Homo Oeconomicus
25(3):301–317

Asuncion A, Newman DJ (2007) UCI machine learning repository. URL http:
//archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

54 Michael Bräuning and Eyke Hüllermeier

Booth R, Chevaleyre Y, Lang J, Mengin J, Sombattheera C (2009) Learning
various classes of models of lexicographic orderings. In: Hüllermeier E,
Fürnkranz J (eds) Preference Learning, Springer, Berlin, European Con-
ference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, pp 1–16

Booth R, Chevaleyre Y, Lang J, Mengin J, Sombattheera C (2010) Learning
conditionally lexicographic preference relations. In: Proc. ECAI 2010, IOS
Press, Amsterdam, The Netherlands, pp 269–274

Boutilier C, Brafman RI, Domshlak C, Hoos HH, Poole D (2004) CP-nets: A
tool for representing and reasoning with conditional ceteris paribus preference
statements. Journal of Artificial Intelligence 21:135–191

Cheng W, Rademaker M, De Baets B, Hüllermeier E (2010) Predicting partial
orders: Ranking with abstention. In: Balcázar J, Bonchi F, Gionis A, Sebag
M (eds) Machine Learning and Knowledge Discovery in Databases, Lecture
Notes in Computer Science, vol 6321, Springer, Berlin, pp 215–230, DOI
10.1007/978-3-642-15880-3_20

Cohen W, Schapire R, Singer Y (1999) Learning to order things. Journal of
Artificial Intelligence Research 10:243–270, DOI 10.1613/jair.587

Dekel O, Manning CD, Singer Y (2003) Log-linear models for label ranking.
In: Thrun S, Saul LK, Schölkopf B (eds) Advances in Neural Information
Processing Systems, MIT, 16, pp 497–504

Dombi J, Imreh C, Vincze N (2007) Learning lexicographic orders. European
Journal of Operational Research 183(2):748–756, DOI 10.1016/j.ejor.2006.
10.029

Fishburn PC (1974) Lexicographic orders, utilities and decision rules: A survey.
Management Science 20(11):1442–1471, DOI 10.1287/mnsc.20.11.1442

Flach P, Matsubara E (2008) On classification, ranking, and probability estima-
tion. In: de Raedt L, Dietterich T, Getoor L, Kersting K, Muggleton SH (eds)
Probabilistic, Logical and Relational Learning - A Further Synthesis, Interna-
tionales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Dagstuhl, Germany, no. 07161 in Dagstuhl Seminar Proceedings

Flach PA, Matsubara ET (2007) A simple lexicographic ranker and probability
estimator. In: Proceedings of the 18th European Conference on Machine
Learning, Springer, Berlin, Heidelberg, ECML ’07, pp 575–582, DOI 10.
1007/978-3-540-74958-5_55

Fürnkranz J, Hüllermeier E (2011) Preference Learning. Springer-Verlag, Berlin,
Heidelberg, DOI 10.1007/978-3-642-14125-6

Learning Conditional Lexicographic Preference Trees 55

Fürnkranz J, Hüllermeier E, Vanderlooy S (2009) Binary decomposition meth-
ods for multipartite ranking. In: Buntine W, Grobelnik M, Mladenić D, Shawe-
Taylor J (eds) Machine Learning and Knowledge Discovery in Databases,
Lecture Notes in Computer Science, vol 5781, Springer, Berlin, pp 359–374,
DOI 10.1007/978-3-642-04180-8_41

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The
WEKA data mining software: An update. SIGKDD Explorations 11(1):10–
18, DOI 10.1145/1656274.1656278

Hüllermeier E, Fürnkranz J, Cheng W, Brinker K (2008) Label ranking by
learning pairwise preferences. Artificial Intelligence 172(16–17):1897–1916,
DOI 10.1016/j.artint.2008.08.002

Schmitt M, Martignon L (2006) On the complexity of learning lexicographic
strategies. Journal of Machine Learning Research 7:55–83

Wilson N (2009) Efficient inference for expressive comparative preference
languages. In: Proceedings of the 21st International Joint Conference on
Artificial Intelligence, Morgan Kaufmann, San Francisco, IJCAI’09, pp 961–
966

Yaman F, Walsh TJ, Littman ML, desJardins M (2008) Democratic approxi-
mation of lexicographic preference models. In: Proc. ICML-08, Helsinki,
Finland, pp 1200–1207

	Learning Conditional Lexicographic Preference Trees

