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Abstract. The idea of classifier chains has recently been introduced
as a promising technique for multi-label classification. However, de-
spite being intuitively appealing and showing strong performance
in empirical studies, still very little is known about the main prin-
ciples underlying this type of method. In this paper, we provide a
detailed probabilistic analysis of classifier chains from a risk mini-
mization perspective, thereby helping to gain a better understanding
of this approach. As a main result, we clarify that the original chain-
ing method seeks to approximate the joint mode of the conditional
distribution of label vectors in a greedy manner. As a result of a the-
oretical regret analysis, we conclude that this approach can perform
quite poorly in terms of subset 0/1 loss. Therefore, we present an en-
hanced inference procedure for which the worst-case regret can be
upper-bounded far more tightly. In addition, we show that a proba-
bilistic variant of chaining, which can be utilized for any loss func-
tion, becomes tractable by using Monte Carlo sampling. Finally, we
present experimental results confirming the validity of our theoretical
findings.

1 INTRODUCTION

Multi-label classification (MLC) differs from conventional binary
classification insofar as multiple binary labels have to be predicted
simultaneously. This transition from predicting a single label to pre-
dicting multiple labels raises a number of computational and statisti-
cal challenges, such as the need for modeling statistical dependencies
between labels and optimizing a wide range of loss functions in a po-
tentially high-dimensional label space.

Indeed, various types of loss function are encountered in differ-
ent application domains of MLC. From a probabilistic perspective, it
is clear that different properties of the joint conditional distribution
over labels are needed for optimizing these loss functions. For exam-
ple, it is known that the simple binary relevance classifier can per-
form quite well in terms of label-wise decomposable loss functions
like Hamming loss, for which knowledge of the conditional marginal
distribution of labels is sufficient for deriving a risk minimizing pre-
diction. On the other hand, there are loss functions like the subset
0/1 loss and the F-measure, for which more complex properties of
the joint conditional distribution are needed, and which necessitate
the modeling of dependencies between labels [4].

For many advanced MLC algorithms, it is still unclear what type of
loss they actually intend to minimize. For example, the recently intro-
duced classifier chains (CC) [9, 10] has not been thoroughly analyzed
from a probabilistic perspective, despite being intuitively appealing
and showing strong performance in empirical studies. Its probabilis-
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tic variant (PCC), introduced in [3], explains the original CC in terms
of the application of the product rule of probability. In this view, the
output of the classifier chain is an estimate of the joint probability
distribution, for which an inference procedure is needed in order to
obtain the right prediction for a given loss. The PCC method, how-
ever, has been only analyzed with an exhaustive inference that is in-
tractable for problems with more than 12-15 labels. The procedure
used in the original CC method, in turn, can be seen as a kind of
greedy inference, but little is known about its true behavior.

In this paper, which is an extended and revised version of a previ-
ous workshop presentation [5], we aim to provide a thorough proba-
bilistic analysis of chaining methods in an attempt to unravel the true
mechanisms that lead to a state-of-the-art predictive performance of
this type of methods. Subsequent to a formal definition of multi-
label classification in Section 2 and an introduction to chaining in
Section 3, we discuss possible inference mechanisms in Section 4,
starting with exhaustive search. As a solution to the computational
burden of this approach, we propose to use a Monte Carlo sampling,
which can be easily implemented for classifier chains. Subsequently,
we show that the greedy inference method that was proposed with
the original CC algorithm intends to optimize the subset 0/1 loss,
but the regret in predictive performance can be high. Therefore, an
enhanced approximate inference algorithm is introduced, for which
substantially tighter worst-case regret bounds are derived as a func-
tion of the running time of the algorithm (assuming that conditional
probabilities can be estimated perfectly). Finally, Section 6 presents
extensive experimental results, showing that the theoretical analysis
of this paper holds in practice.

2 MULTI-LABEL CLASSIFICATION

Let X denote an instance space and L = {λ1, λ2, . . . , λm} be a fi-
nite set of class labels. An instance x ∈ X is (non-deterministically)
associated with a subset of labels L ∈ 2L; this subset is often called
the set of relevant labels, while the complement L \ L is considered
as irrelevant for x. We identify a set L of relevant labels with a bi-
nary vector y = (y1, y2, . . . , ym), in which yi = 1 iff λi ∈ L. By
Y = {0, 1}m we denote the set of possible labelings.

We assume observations to be generated independently and iden-
tically according to a probability distribution P(X,Y) on X × Y ,
i.e., an observation y = (y1, . . . , ym) is the realization of a cor-
responding random vector Y = (Y1, Y2, . . . , Ym). We denote by
P(y |x) the conditional distribution of Y = y given X = x, and
by P(yi = b|x) the corresponding marginal distribution of Yi, i.e.,
P(yi = b|x) = ∑

y∈Y:yi=b P(y|x).
Let us denote a multi-label classifier h as an X → Y mapping that

returns a vector h(x) = (h1(x), h2(x), . . . , hm(x)) for a given
instance x ∈ X . Given training data in the form of a finite set of
observations (x,y) ∈ X ×Y , drawn independently from P(X,Y),
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the goal in MLC is to learn a classifier h : X → Y that generalizes
well beyond these observations in the sense of minimizing the risk
with respect to a specific loss function. The risk of a classifier h is
defined as the expected loss over the joint distribution P(X,Y):

RL(h) = EXYL(Y,h(X)), (1)

where L(·) is a loss function on multi-label predictions. The so-
called risk-minimizing model h∗ is determined in a pointwise way
by the risk minimizer

h∗(x) = argmin
h

∑

y∈Y
P(y |x)L(y,h(x)). (2)

2.1 Joint versus Marginal Mode Prediction

As we are dealing with a multivariate conditional probability distri-
bution over the labels, two of its properties are always of interest:
the joint and the marginal mode. Predicting the joint (conditional)
mode can be considered as a core operation in many structured out-
put prediction methods such as conditional random fields, leading to
a model of the following form:

h∗(x) = argmax
y∈Y

P(y |x) (3)

The joint mode of the conditional distribution corresponds to the risk
minimizer (2) of the so-called subset 0/1 loss, which is formally de-
fined as follows:4

Ls(y,h(x)) = �y �= h(x)� (4)

Prediction of the marginal (conditional) modes, in turn, leads to the
model h∗(x) = (h∗

1(x), . . . , h
∗
m(x)) with

h∗
i (x) = arg max

b∈{0,1}
P(yi = b |x) . (5)

This is the risk minimizer (2) for the Hamming loss, defined as the
fraction of labels whose relevance is incorrectly predicted:

LH(y,h(x)) =
1

m

m∑

i=1

�yi �= hi(x)� (6)

Prediction of these two properties of the joint distribution requires
different classifiers that exploit the label dependence in a different
way, as stated below.

2.2 The Role of Stochastic Label Dependence

From the perspective of modeling label dependencies in MLC,
two related notions of label dependence should be carefully distin-
guished, namely marginal label dependence and conditional label
dependence. A vector of labels Y = (Y1, Y2, . . . , Ym) is called,
respectively, marginally independent and conditionally independent
given x if

P(Y) =
m∏

i=1

P(Yi) resp. P(Y|x) =
m∏

i=1

P(Yi|x). (7)

Conditional dependence captures the dependence of the labels
given a specific instance x ∈ X , whereas marginal dependence
can be interpreted as a kind of “expected dependence”, averaged

4 For a predicate P , the expression �P � evaluates to 1 (0) if P is true (false).

over all instances. Despite this close connection, one can easily con-
struct examples showing that conditional dependence does not imply
marginal dependence nor the other way around [1].

We note that modeling the joint conditional distribution and its
joint mode involves exploiting conditional dependence between la-
bels, unlike modeling the marginal modes, where the gain by ex-
ploiting the conditional dependence, if any, is rather small. In order to
improve the performance in estimating the marginal distributions, the
methods should rather exploit marginal dependence, as explained, for
example, in [2].

3 PROBABILISTIC CLASSIFIER CHAINS

The Probabilistic Classifier Chains (PCC) method has been intro-
duced in [3] in an attempt to provide a probabilistic interpretation
for the previously published Classifier Chains (CC) method [9, 10].
The idea underlying PCC is to repeatedly apply the product rule of
probability to the joint distribution of the labels Y = (Y1, . . . , Ym):

P(y |x) =
m∏

k=1

P(yk|x, y1, . . . , yk−1) (8)

In other words, PCC represents conditional label dependencies as a
fully connected graph. From a theoretical point of view, the order of
labels does not play any role, and (8) holds for any permutation of
Y = (Y1, . . . , Ym).

Learning a classifier chain can be considered as a simple pro-
cedure. According to (8), we decompose the joint distribution into
a sequence of marginal distributions that depend on a subset of
the labels. These marginal distributions can be learned by m func-
tions fk : X × {0, 1}k−1 → [0, 1] on an augmented input space
X × {0, 1}k−1, taking y1, . . . , yk−1 as additional input attributes:

fk : (x, y1, . . . , yk−1) �→ P(yk = 1 |x, y1, . . . , yk−1) (9)

We assume that the function fk(·) can be interpreted as a proba-
bilistic classifier whose prediction is the probability that yi = 1,
or at least a reasonable approximation thereof. Thus, for any y =
(y1, y2, . . . , ym), its probability can be estimated by

P̂(y|x) =
m∏

k=1

fk(x, y1, . . . , yk−1) . (10)

The problem is then to find the risk minimizer for a given loss func-
tion over the estimated joint conditional distribution. This process is
often referred to as inference, and it will be thoroughly analyzed in
the next section. To this end, it is convenient to represent the esti-
mated joint conditional distribution as a probability tree. We define
the probability tree as a structure (V,E,Π) with V the set of nodes,
E the set of edges and Π : E → [0, 1] a function that assigns pos-
itive weights to edges. Moreover, let us denote a node at depth k as
va = (a1, ..., ak) ∈ {0, 1}k. Then, the weight of the edge between
such a node and its ancestor pa(v) = (a1, ..., ak−1) at depth k − 1
is given by Π(va) = P(Yk = ak | x, y1 = a1, ..., yk−1 = ak−1) .
As such, depth k of the probability tree represents the decision that is
taken in the k-th classifier of the chain. The root of the tree vR = ∅
corresponds to depth k = 0 with Π(vR) = 1.

4 INFERENCE IN PCC

Originally, two approaches have been proposed for inferring a pre-
diction from an estimated chain: an approach based on greedy search,
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being the integral part of the original CC method [9], and an approach
based on exhaustive search, as considered in the PCC method [3]. We
start with an explanation of the latter, which can be used for any loss.
However, this approach turns out to be computationally intractable
for problems with many labels. As a simple remedy for this prob-
lem, we propose a Monte Carlo sampling. Subsequently, we show
that greedy search can be considered as a fast approximate inference
algorithm for the conditional joint mode. Since the worst-case re-
gret bound of this method is very high, however, we introduce an
enhanced ε-approximate algorithm that is tailored for joint mode es-
timation, resulting in a worst-case regret bound that becomes arbi-
trarily small as a function of the running time.

4.1 Exhaustive Search and Monte Carlo Sampling

In inference by exhaustive search, an optimal prediction is computed
explicitly via (2), given an estimate of P(y |x) for all y and a loss
function L(·). Obviously, this approach is extremely costly, as it
comes down to summing over an exponential (2m) number of label
combinations. Moreover, the brute-force search for the optimal solu-
tion would also require to check all possible combinations of labels.
For some loss functions, like subset 0/1 and Hamming loss, one iter-
ation through the label combinations suffices to compute the optimal
solutions, however, this still limits the applicability of the method to
datasets with a small to moderate number of labels.

A possible solution for this computational burden consists of con-
ducting a Monte Carlo sampling from the estimated conditional dis-
tribution. The sampling procedure is easy to implement by exploit-
ing the probability tree described above. In each node, we flip a bi-
ased coin to decide whether the label is relevant or not. Then, we
move down in the tree according to this decision. The probability of
tails and heads are given, respectively, by the weights Π(lc(v)) and
Π(rc(v)) of the left and right child of a node v. Thus, one obtains
one observation of the conditional distribution as soon as a leaf is
reached. Let S = {yi}ni=1 be a sample of observations obtained by
repeating the above procedure n times. The prediction is then ob-
tained by minimizing the risk over that sample, i.e.,

hS(x) = arg min
h∈{0,1}m

n∑

i=1

L(yi,h) . (11)

From this point of view, PCC can be considered as a general method
for multi-label classification, because the above risk minimization
problem can be solved efficiently for many multi-label loss functions,
including Hamming loss, rank loss and F-measure [4]. However, ap-
proximate algorithms might be needed for loss functions for which
exact inference becomes intractable, in addition to the approximation
that is made by using the sampled conditional distribution instead of
the estimated conditional distribution. Nevertheless, in our experi-
ments, we will show that sampling remains competitive in terms of
predictive performance.

4.2 Greedy Search

Inference by greedy search, for which the pseudo code is given in Al-
gorithm 1, has been introduced as an integral part of the CC method.
Briefly summarized, this inference algorithm just follows a single
path from the root to one specific leaf. For a new instance x to be
classified, the model f1 predicts y1, i.e., the relevance of λ1 for x,
as usual. Then, f2 predicts the relevance of λ2, taking x plus the
predicted value y1 ∈ {0, 1} as an input. Proceeding in this way, fi

Algorithm 1 Inference by Greedy Search
v ← the root of the probability tree
while v is not a leaf do

lc(v), rc(v)← left and right child of v
if Π(lc(v) ≥ Π(rc(v)) then

v ← lc(v)
else

v ← rc(v)
end if

end while
return v = (a1, ..., am) as the mode

predicts yi using y1, . . . , yi−1 as additional input information. The
main advantages of this approach are (a) its low cost and (b) the pos-
sibility to use non-probabilistic classifiers, as one only needs to know
whether a given label is relevant or not to take a greedy decision in
following a path from the root to a leaf. However, we will show for
two loss functions that the regret of such an approach can be large.

The regret of a classifier h with respect to a loss function Lz is
defined as follows:

rLz (h) = RLz (h)−RLz (h
∗
z), (12)

where R is the risk given by (1), and h∗
z is the Bayes-optimal classi-

fier with respect to the loss function Lz . In the following, we consider
the regret with respect to the Hamming loss, given by

rH(h) = EXYLH(Y,h(X))− EXYLH(Y,h∗
H(X)),

and the subset 0/1 loss, given by

rs(h) = EXYLs(Y,h(X))− EXYLs(Y,h∗
s(X)).

Since both loss functions are decomposable with respect to individ-
ual instances, we analyze the expectation over Y for a given x. The
following proposition summarizes the highest value of the regret for
the greedy approach in terms of the subset 0/1 loss and the Hamming
loss (we omit the proof due to space restrictions).

Theorem 1 Under the assumption that a probabilistic classifier
chain obtains a perfect estimate of the conditional probability
P(y|x), the following tight upper bounds hold for the regret of the
prediction hG(x) of the greedy approach:

sup
P

(EYLs(Y,hG(x))− EYLs(Y,h∗
s(x))) = 2−1 − 2−m,

sup
P

(EYLH(Y,hG(x))− EYLH(Y,h∗
H(x))) = 1− 1

m

m∑

i=1

2−i,

where the supremum is taken over all probability distributions on Y .

As we can see, the regret is quite high in both cases, suggesting
that inference by greedy search can yield a poor performance for both
loss functions. Nevertheless, we argue that this approach is still more
appropriate for the subset 0/1 loss. When the number of labels in-
creases, then the regret converges to 0.5 for the subset 0/1 loss, while
it even converges to the maximum possible value of 1 for the Ham-
ming loss. Hence, it is tempting to conclude that the greedy search
procedure is indeed more suitable for estimating the joint than the
marginal mode, all the more since the subset 0/1 loss, in terms of
its absolute value, is even higher than the Hamming loss (which, for
example, can already be reduced to 1/2 by random guessing). Fur-
thermore, one may wonder whether one can find an optimal order of
labels in the chain, for which the regret would decrease downward to
zero. Unfortunately, this is provably impossible (proof omitted due to
space restrictions). An interesting issue being a subject of our future
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Algorithm 2 ε-approximate inference
ordered list Q← {vR} (contains root node initially)
ordered list K ← {} (non-survived parents)
define Π(vR) = 1

ε← 2−k with k ≤ m
while Q �= ∅ do

v ← pop first element in Q
if v is a leaf then

delete all elements in K and break the while loop
end if
lc(v), rc(v)← left and right child of v
compute Π(lc(v)),Π(rc(v)) recursively from Π(v) using (13)
if Π(lc(v)) ≥ ε then

insert lc(v) in list Q sorted according to Π(lc(v))
end if
if Π(rc(v)) ≥ ε then

insert rc(v) in list Q sorted according to Π(rc(v))
end if
if lc(v) and rc(v) are not inserted to the list then

insert v in list K sorted according to Π(v)
end if

end while
ε← 0
while K �= ∅ do

v′ ← pop first element in K and apply Alg. 1 downward on it
if Π(v′) ≥ ε then

v ← v′ and ε← Π(v′)
end if

end while
return v = (a1, ..., am) as the mode

work is to check whether the maximal value of the regret becomes
smaller if the order of the labels would be changed or even optimized.

Let us remark, however, that the risk minimizers of the Hamming
loss and the subset 0/1 loss coincide in many specific situations, like
conditional independence of labels, or if the probability of the joint
mode is greater than or equal to 0.5. One can easily observe that
the worst-case regret of the greedy search algorithm is zero for both
losses in these two situations. At the same time, these facts may also
explain why algorithms not tailored for specific losses have been re-
ported to obtain good results in many empirical studies.

4.3 An ε-approximate algorithm

Since the regret of the greedy search procedure can be high, we pro-
pose in this section a specific algorithm for which a much smaller
upper bound on the regret can be derived. From a graph-theoretic
perspective, the algorithm computes the shortest path between the
root of the probability tree and a fictitious dummy node that is con-
nected to the leaves of the probability tree. Given the probability tree
structure that was introduced in the previous section, let us define the
path distance Π(va) between the root node vR = ∅ and any node va
recursively, as a product of edge weights:

Π(va) = Π(va)×Π(pa(va)) , (13)

where pa(v) denotes the parent of a given node v.
Using this notation, the pseudo code of our algorithm is summa-

rized in Algorithm 2. In a nutshell, the algorithm starts from the root
of the probability tree, which is the single element of an ordered
list Q. In every iteration, the top element of the list is popped and
the children of the corresponding node are visited. The path distance
Π(v) to the root can be recursively computed for these children, and
they are added to the list if the path distance is bigger than the thresh-
old ε = 2−k with 1 ≤ k ≤ m. Basically, they are inserted in the list
at the appropriate position, so that the order imposed by Π(v) is re-
spected.

The while loop of the algorithm stops in two situations: (1) when
the element popped from the list Q corresponds to a leaf of the prob-
ability tree or (2) when the list Q is empty. The label combination

corresponding to the leaf is then returned in the former case, while
inference by greedy search, as described above, is applied to define
a path from all non-survived nodes from the list K (i.e., nodes for
which none of their children has been added to Q) to a leaf with
corresponding prediction in the latter case. The following theorem
states that in both cases the regret of the prediction can be bounded
as a function of the number of iterations of the algorithm.

Theorem 2 Let k ≤ m. Under the assumption that a probabilistic
classifier chain obtains a perfect estimate of the conditional proba-
bility P(y|x), Algorithm 2 needs less than O(m2k) iterations to find
a prediction hε(x) with low worst-case regret for subset 0/1 loss, i.e.

sup
P

(EYLs(Y,hε(x))− EYLs(Y,h∗
s(x))) ≤ 2−k − 2−m .

Proof: The algorithm searches for the mode in an ε-approximate way,
so the bound on the regret necessarily holds for all k ≤ m. We only
need to show that the algorithm needs less than m2−k iterations. To
this end, one can observe that the list Q will always contain less than
2k nodes, because at most 2k nodes can have a value Π(v) which
is bigger than 2−k. Furthermore, every element in the list Q can be
replaced at most m times by one or two new elements. The same
reasoning can be applied to the list K. Thus, the algorithm finds an
upper bound on the regret as a function of the running time of the
algorithm. Consequently, the algorithm will always find the mode of
the distribution, if the probability mass of the mode is higher than
the upper bound on the regret. This is summarized in the following
corollary.

Corollary 1 Let k ≤ m and let P be a probability distribution for
which the joint mode has a probability mass bigger than 2−k, then
Algorithm 2 needs less than m2k iterations to find a prediction hε(x)
that corresponds to this mode.

Table 1. Statistics of datasets: training and test set sizes, number of
features and labels, minimal, average, maximal number of relevant labels.

DATA SET # TRAIN # TEST # ATTR. # LAB. MIN AVE. MAX

SCENE 1211 1196 294 6 1 1.062 3
YEAST 1500 917 103 14 1 4.228 11
TMC2007-500 21519 7077 500 22 1 2.226 10
MEDICAL 333 645 1449 45 1 1.255 3
ENRON 1123 579 1001 53 1 3.386 11
REUTERS (1) 3000 3000 500 103 1 3.176 11
MEDIAMILL 30993 12914 120 101 0 4.363 18
EMOTIONS 391 202 72 6 1 1.813 3
SYNTH1 471 5045 6000 6 1 2.045 6
SYNTH2 1000 10000 40 10 1 1 1

5 EXPERIMENTAL STUDY

Two types of experiments that we describe here intend to confirm
our theoretical claims. To this end, we follow a similar experimental
setup as in [6], in which four benchmark and two synthetic datasets
with known training and test parts have been used. We extend this
setup with four other datasets to emphasize the interesting compu-
tational complexity properties of our approach for high-dimensional
label spaces. All eight real-world datasets (summarized in Table 1)
were downloaded from the MULAN and LibSVM multi-label dataset
repositories, and the two synthetic datasets were generated using the
description in [6].5

5 The original training and test sets have not been published for the two syn-
thetic datasets. We do not describe these datasets here due to space limita-
tions, and we refer the reader to the original paper. To obtain more stable
results, we report the results as an average over 5 replications of these syn-
thetic datasets.
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Table 2. Results on benchmark data sets: Training time, test time, Hamming and subset 0/1 loss on test sets with standard error (the best results for each
dataset and loss function is highlighted in bold).

TRAIN HAMMING SUBSET 0/1 TEST TRAIN HAMMING SUBSET 0/1 TEST
TIME [S] LOSS LOSS TIME [S] TIME [S] LOSS LOSS TIME [S]

SCENE YEAST

PCC ε=.5 420.641 0.115±.004 0.417±.014 0.375 232.249 0.213±.005 0.787±.014 0.172
PCC ε=.25 SAA 0.107±.004 0.385±.014 0.375 SAA 0.211±.006 0.764±.014 0.281
PCC ε=.0 SAA 0.107±.004 0.385±.014 0.375 SAA 0.210±.006 0.761±.014 0.344
BR 417.985 0.102±.003 0.509±.014 0.328 204.405 0.199±.005 0.842±.012 0.141

MEDIAMILL REUTERS

PCC ε=.5 37202.797 0.032±.000 0.885±.003 41.234 15227.574 0.018±.001 0.615±.009 19.438
PCC ε=.25 SAA 0.032±.000 0.886±.003 53.454 SAA 0.017±.001 0.601±.009 21.938
PCC ε=.0 SAA 0.034±.000 0.885±.003 86.547 SAA 0.017±.001 0.598±.009 23.250
BR 16903.109 0.030±.000 0.902±.003 26.062 13476.883 0.017±.001 0.689±.008 15.359

SYNTH1 SYNTH2

PCC ε=.5 7591.826 0.067±.002 0.238±.006 15.828 26.968 0.000±.000 0.000±.000 0.735
PCC ε=.25 SAA 0.067±.002 0.239±.006 15.578 SAA 0.000±.000 0.000±.000 0.734
PCC ε=.0 SAA 0.067±.002 0.239±.006 15.735 SAA 0.000±.000 0.000±.000 0.766
BR 6955.159 0.067±.002 0.240±.006 12.687 16.453 0.084±.001 0.832±.004 0.609

TMC2007-500 ENRON

PCC ε=.5 21703.017 0.056±.001 0.676±.006 9.360 13387.680 0.047±.001 0.869±.014 3.547
PCC ε=.25 SAA 0.056±.001 0.670±.006 13.969 SAA 0.046±.001 0.848±.015 5.031
PCC ε=.0 SAA 0.056±.001 0.668±.006 14.359 SAA 0.047±.001 0.845±.015 8.907
BR 22942.510 0.055±.001 0.685±.006 8.312 11894.534 0.047±.001 0.886±.013 3.046

EMOTIONS MEDICAL

PCC ε=.5 14.078 0.224±.013 0.752±.030 0.015 2613.459 0.016±.001 0.546±.020 4.407
PCC ε=.25 SAA 0.219±.013 0.718±.032 0.016 SAA 0.015±.001 0.541±.020 4.109
PCC ε=.0 SAA 0.222±.014 0.718±.032 0.015 SAA 0.015±.001 0.541±.020 4.172
BR 12.328 0.226±.011 0.812±.027 0.016 2337.824 0.016±.001 0.550±.020 3.110

5.1 Greedy and ε-approximate Inference

In the first experiment, we show that inference by greedy search is
more appropriate for estimating the joint mode, while substantial per-
formance gains can be obtained by applying our ε-approximate infer-
ence algorithm. Moreover, using this strategy, we reach a computa-
tional cost that is more than fair for real-world applications. As a re-
sult, we perform a comparison of the three variants of PCC: 1) infer-
ence by greedy search for PCC, which resembles the ε-approximate
inference algorithm to PCC with ε = 0.5 (denoted PCC ε = 0.5),
2) the ε-approximate inference algorithm with ε = 0.25 (PCC
ε = 0.25), 3) the exact inference, meaning ε = 0 (PCC ε = 0.0).
We also compare with a binary relevance (BR) learner that serves as
a baseline by training a classifier for each label separately. It should
perform well for the Hamming loss, while all the variants of PCC
should perform well for the subset 0/1 loss. As a base learner, we
use a regularized logistic regression model. We apply an internal
three-fold cross-validation6 on training data for tuning the regulariza-
tion parameter with possible values {1000, 100, 1, 0.1, 0.01, 0.001}.
This tuning is performed for each base classifier by choosing the
model with lowest empirical logistic loss in order to obtain proba-
bility estimates that are as accurate as possible.

The results are given in Table 2. We can observe that our ε-
approximate inference works as expected: with decreasing ε, the sub-
set 0/1 loss usually decreases. If this is not the case, then all the in-
ference algorithms perform almost equally. Interestingly, the exact
algorithm PCC ε = 0.0 performs fast, being in the worse case only 2
times slower than the greedy approach. We can also observe that the
greedy approach is appropriate for the subset 0/1 loss. It always ob-
tained better results than BR for this loss, while BR is almost always
better for the Hamming loss. In general, BR performs the best in es-
timating the marginal modes. Two small exceptions are the Synth2

6 for large datasets (with number of training instances ≥ 10000) we used
66% split

and the Emotions datasets that we will discuss in more detail in Sub-
section 5.3. Interestingly, for datasets with many labels and for all the
algorithms, almost no difference in performance was observed on the
Hamming loss, in contrast to the subset 0/1 loss.

5.2 Comparison with Structured SVMs

Adopting the experimental setup of [6] enables us to compare our
methods with a variety of approximate inference methods for struc-
tured SVMs in a straightforward and fair manner. Unfortunately,
such a comparison can be made solely for the Hamming loss, which
was the only loss function reported in the original paper. By restrict-
ing our analysis to the six datasets that were studied in [6], it is shown
that PCC can be applied as well for Hamming loss minimization. To
this end, we show that the exhaustive search (PCC EX) and Monte
Carlo sampling (PCC MC) variants of PCC obtain a competitive per-
formance with the best inference methods for structured SVMs (de-
noted SSVM Best). We compute the empirical marginal modes for
the Monte Carlo sampling variant and the sample size is always set
to 1000 elements. Approximate inference is required in structured
SVMs as well, if fully connected Markov logic fields are considered
as underlying models. Five different inference algorithms were con-
sidered in [6], including the exhaustive search procedure. This is the
main reason for why we analyze the exhaustive variant of PCC, and
why only the most 10 frequent labels are considered for the Medi-
amill and the Reuters dataset (as in the original study).

The comparison with SSVM can be considered as fair, especially
since the underlying models are based on the same representation. In
fact, in the original SSVM method, a joint feature mapping was used
that models all pairwise dependencies between labels:

Ψ(x,y) = (y′
1x, . . . , y

′
mx, y′

1y
′
2, y

′
1y

′
3, . . . , y

′
m−1y

′
m), (14)

where y′
i = (2yi − 1) ∈ {−1, 1}. Interestingly, one can show that,

when using logistic regression as a base learner, PCC leads to a con-
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ditional probability model of the following type:

Pw(y | x) = Z(x,w)−1e−wTΨ(x,y),

with w a vector of parameters and Z(x,w) a normalization con-
stant.7 Thus, the main difference is the loss to be minimized, namely
structured hinge loss versus log-loss [8]. As a main (computational)
benefit, our approach allows one to solve m learning problems in-
dependently during the training phase, without imposing any restric-
tions on modeling label dependencies.

Table 3. Results on the data sets used in [6]; SSVM Best denotes the best
result over all inference algorithms used in SSVM for a given dataset.

TRAIN HAMMING TEST
TIME[S] LOSS TIME[S]

SCENE PCC MC 420.6 0.104±.004 1.2
PCC EX SAA 0.102±.004 5.1
SSVM BEST — 0.101±.003

YEAST PCC MC 232.2 0.203±.005 4.9
PCC EX SAA 0.201±.005 463.0
SSVM BEST — 0.202±.005 —

MEDIAMILL PCC MC 5808.1 0.172±.001 27.9
PCC EX SAA 0.170±.001 403.6
SSVM BEST — 0.182±.001 —

SYNTH 1 PCC MC 7591.8 0.067±.001 34.9
PCC EX SAA 0.067±.001 240.7
SSVM BEST — 0.069±.001 —

REUTERS (10 LABELS) PCC MC 2659.8 0.060±.002 11.3
PCC EX SAA 0.059±.002 336.7
SSVM BEST — 0.045±.001 —

SYNTH 2 PCC MC 26.9 0.000±.000 1.9
PCC EX SAA 0.000±.000 114.6
SSVM BEST — 0.058±.001 —

The results are given in Table 3, where we report the best result
of SSVM over all inference algorithms obtained on a given dataset.
As we can see, PCC is competitive to SSVM. Worse results are only
obtained on Reuters, but here we used a simple feature selection rely-
ing on picking the 500 most frequent features to speed up the logistic
regression procedure.

5.3 Discussion: Binary Relevance Revisited

One may wonder whether exploiting conditional dependence, as de-
fined in (7), could also help to improve the Hamming loss. Simple
BR obtains a very competitive performance on Hamming loss (also
on the reduced Mediamill and Reuters datasets, not reported, because
of space limitations). However, we observe two exceptions: the Emo-
tion and the Synth2 datasets. Changing the base learner from a linear
to a polynomial basis leads to a performance for BR that is compara-
ble to PCC for the former dataset (this dataset was not used in [6]).

The reasons are more involved for the latter dataset, which defines
in fact a simple ordinal classification task without noise. Theoreti-
cally, conditional independence holds in such a case, thus joint and
marginal modes coincide here. This means that the concept is learn-
able for algorithms tailored for both losses. However, as the optimal
base learner becomes strongly nonlinear for BR, more training exam-
ples are needed to reduce the error down to zero. Interestingly, PCC
succeeded in learning the concept without error using the original
size of the training set, in contrast to structured SVMs. BR performs
even worse in this case.
7 In the same way, a close connection can be established to conditional ran-

dom fields.

The performance boost of both methods in comparison to BR can
be attributed to a hypothesis space extension. Applying a linear base
classifier to PCC yields a much richer hypothesis space in compari-
son to applying the same base learner to BR. A similar argument has
been put forward in comparing one-versus-all and one-versus-one
multi-class classifiers. It was shown in [11] that the one-vs-all ap-
proach performs as good as other reduction schemes if complex base
classifiers are used. Moreover, [7] introduced another way of exploit-
ing the max-margin principle for minimizing the Hamming loss in
multi-label classification. However, a detailed comparison with this
approach is out of the scope of this paper.

6 CONCLUSIONS

Summarizing the above theoretical and empirical results, we con-
clude that our ε-approximate inference algorithm provides accurate
and efficient estimates of the joint mode. The greedy inference algo-
rithm, which is an integral part of the original CC algorithm, seems
to be mainly tailored for subset 0/1 loss. This was not clear from
the original paper. Additionally, we showed that probabilistic clas-
sifier chains can be easily extended for marginal mode estimation,
leading to a general class of models that exhibit many interesting
properties, such as mechanisms for parallelization, possibilities for
applying different base learners, strong connections with conditional
random fields and a predictive performance that is competitive with
structured SVMs.

Due to lack of space, other important issues playing a key role in
chaining could not be discussed in detail. Amongst others, we intend
to investigate in future work the effect of ensembling multiple clas-
sifiers, as considered for CC and PCC in the original papers, and the
necessity for considering conditional dependence in marginal mode
estimation, which is often put forward as the main shortcoming of
binary relevance approaches.
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