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Abstract

Geometric objects are often represented approximately in terms of a finite set of
points in three-dimensional Euclidean space. In this paper, we extend this represen-
tation to what we call labeled point clouds. A labeled point cloud is a finite set of
points, where each point is not only associated with a position in three-dimensional
space, but also with a discrete class label that represents a specific property. This type
of model is especially suitable for modeling biomolecules such as proteins and pro-
tein binding sites, where a label may represent an atom type or a physico-chemical
property. Proceeding from this representation, we address the question of how to
compare two labeled points clouds in terms of similarity. Using fuzzy modeling
techniques, we develop a suitable similarity measure as well as an efficient evolu-
tionary algorithm to compute it. Having calculated the optimal superposition it is
easy to establish an alignment in the sense of a one-to-one correspondence between
the basic units of two or more protein structures. From a biological point of view,
alignments of this kind are of great interest, as they offer important information about
evolution, heredity, and the mutual correspondence between molecular constituents.
In this paper, we therefore additionally developed a method for computing pairwise
or multiple alignments of protein structures on the basis of labeled point cloud su-
perpositions.

1 Introduction

Geometric objects are often represented in terms of a set of points in three-dimensional
Euclidean space. This type of representation is finite and hence approximate (even though
the number of points can become very large, as for example in laser range scanning),
focusing on the most important characteristics of the object while ignoring less important
details. A well-known example of a representation of this kind is the Molfile format [10],
where molecules are described in terms of the spatial coordinates of all atoms. However,
since not only the position but also the type of an atom is of interest, this representation
is not a simple point cloud. Likewise, other biomolecular structures, such as proteins and
protein binding sites, are not only characterized by their geometry but also by additional
features, such as physico-chemical properties. In this paper, we therefore introduce the
concept of a labeled point cloud. A labeled point cloud is a finite set of points, where
each point is not only associated with a position in three-dimensional space, but also with
a discrete class label that represents a specific property. Formally, a labeled point cloud
P is a set of points {p1, . . . , pn} with two associated functions: c : P → R

3 maps points
to coordinates in the Euclidean space, and ℓ : P → L assigns a label to each point.

Since theory formation in the biological sciences is largely founded on similarity-based
and analogical reasoning principles, the comparison of two (or more) objects with each
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other is a fundamental problem in bioinformatics. To compare two point clouds, the au-
thors in [14] make use of a measure based on the Gromov-Hausdorff distance of sets.
This approach is limited to unlabeled point clouds, however. Another possibility is to
transform a labeled point cloud into a (labeled) graph first, capturing, in one way or the
other, geometrical information in terms of edges, and to apply graph matching techniques
afterward. This strategy was recently proposed in [1], where the use of graph kernels as
similarity measures [5, 6, 9] has been especially advocated. At first sight, this idea looks
appealing, especially since methods for comparing graphs abound in the literature. Nev-
ertheless, it also comes with a number of disadvantages. For example, many techniques
for matching and comparing graphs capture aspects of similarity which are reasonable for
graphs but not necessarily for geometric objects. Besides, graph matching techniques are
typically quite complex from a computational point of view.

Perhaps most importantly, however, a graph representation captures the geometrical in-
formation only in an implicit way, namely through the presence, absence, and possibly
the labeling of edges. Moreover, the transformation is often not even lossless. Matching
objects while obeying geometrical constraints can then become troublesome, since the
geometrical information is not explicitly available. Instead, it must be reconstructed from
the graph representation whenever needed.

As an alternative to an indirect approach of that kind, we therefore propose the method
of labeled point cloud superposition (LPCS), which operates on labeled point clouds di-
rectly. Thus, it preserves as much geometrical information as possible and facilitates
the exploitation thereof. Related to the concept of an LPCS, we introduce a similarity
measure which makes use of modeling techniques from fuzzy set theory. This measure
proceeds from the idea of equivalence (inclusion) of point clouds in a set-theoretic sense,
but is tolerant toward exceptions (on the level of label information) and geometric defor-
mations.

Yet, in contrast to methods for multiple graph alignment as recently introduced in [17],
LPCS does not establish a one-to-one correspondence between the basic units of two or
more protein structures. From a biological point of view, alignments of this kind are of
great interest, as they offer important information about evolution, heredity, and the mu-
tual correspondence between molecular constituents. Additionally, we therefore develop
a method for computing pairwise or multiple alignments of protein structures on the basis
of labeled point cloud superpositions.

The remainder of the paper if organized as follows. Subsequent to a brief introduction
to protein binding sites and their representation in Section 2, we introduce the concept of
LPCS in Section 3. The problem of computing an LPCS is then addressed in Section 4,
where an evolution strategy is proposed for this purpose. Section 5 introduces the concept
of multiple geometrical alignments. Section 6 is devoted to the experimental validation
of the approach, and Section 7 concludes the paper.

2 Modeling Protein Binding Sites

In this paper, our special interest concerns the modeling of protein binding sites. More
specifically, our work builds upon CavBase [15], a database for the automated detection,
extraction, and storing of protein cavities (hypothetical binding sites) from experimentally
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Figure 1: Two point clouds A (left, points as circle) and B (right, points as squares): The
intra-point distances are the same in both point clouds, except for the additional gray point
in A. Labels are depicted as letters within the circles and boxes, respectively.

determined protein structures (available through the PDB). In CavBase, a set of points is
used as a first approximation to describe a binding pocket. The database currently contains
113,718 hypothetical binding sites that have been extracted from 23,780 publicly available
protein structures using the LIGSITE algorithm [11].

The geometrical arrangement of the pocket and its physicochemical properties are first
represented by predefined pseudocenters – spatial points that represent the center of a par-
ticular property. The type and the spatial position of the centers depend on the amino
acids that border the binding pocket and expose their functional groups. They are derived
from the protein structure using a set of predefined rules [15]. As possible types for pseu-
docenters, hydrogen-bond donor, acceptor, mixed donor/acceptor, hydrophobic aliphatic,
metal ion, pi (accounts for the ability to form π–π interactions) and aromatic properties
are considered.

Pseudocenters can be regarded as a compressed representation of areas on the cavity sur-
face where certain protein-ligand interactions are experienced. Consequently, a set of
pseudocenters is an approximate representation of a spatial distribution of physicochem-
ical properties. Obviously, just like in the case of Molfile, this representation is already
in the form of a labeled point cloud: pseudocenters are given with their coordinates and
labels, so that no further transformation is needed.

3 Labeled Point Cloud Superposition

Intuitively, two labeled point clouds are similar if they can be spatially superimposed.
That is, by fixing the first and “moving” the second one (as a whole, i.e., without changing
the internal arrangement of points) in a proper way, an approximate superposition of the
two structures is obtained. More specifically, we will say that two point clouds are well
superimposed if, for each point in one of the structures, there exists a point in the other
cloud which is spatially close and has the same label. As an illustration, the example
in Fig. 1 shows two point clouds A and B, for simplicity only in two dimensions. By
moving B to the left (or A to the right), a superposition can be found so that, except for
the hatched and gray nodes, all points in A spatially coincide with a corresponding point
in B having the same label, and vice versa. So, A and B can be considered as being
similar, at least to some extent.

More formally, let
A = {(x1, ℓ(x1)), . . . , (xm, ℓ(xm))}
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be a point cloud consisting of m points xi = (xi1, xi2, xi3) ∈ R
3 with associated label

ℓ(xi) ∈ L, where L is a discrete set of labels (in the context of modeling protein binding
sites, as discussed in the previous section, L is given by the seven types of pseudocenters).
Moreover, let

B = {(y1, ℓ(y1)), . . . , (yn, ℓ(yn))}
be a second point cloud to be compared with A. In the following, we define a function
SIM(·, ·) that returns a degree of similarity between two such structures A and B.

Roughly speaking, we consider similarity as a generalized (fuzzy) equivalence, which
we in turn reduce to two inclusion relations, namely the inclusion of A in B and, vice
versa, of B in A. Thus, we are first of all interested in whether each point y ∈ B is also
present in A (and each point x ∈ A also present in B). For a fixed y ∈ B, we define the
membership degree of this point in A by

µA(y) = exp (−γ · d(y,A)) , (1)

where
d(y,A) = min

x∈A
ℓ(x)=ℓ(y)

‖y − x‖1

is the distance between a point y ∈ B and the closest point x ∈ A having the same label
(d(y,A) = ∞ and hence µA(y) = 0 if no such point exists); for x ∈ A, µB(x) and
d(x,B) are defined analogously.

In its proper sense, the inclusion of a set B in a set A means that each point y ∈ B is also
contained in A or, stated differently, if a point y is in B, then it is also present in A. If
membership is a matter of degree, i.e., if A and B are fuzzy sets, this condition is often
formalized in terms of a fuzzy implication [16]:

min
y∈B

(µB(y) → µA(y)) .

Here, the minimum operator plays the role of a generalization of the universal quantifier.
In our case, µB(y) ≡ 1, so that the above expression can be simplified as follows:

inc(B,A) = min
y∈B

µA(y) . (2)

However, a universal quantification (modeled by the min operator) is too strict in our
biological context, where data is typically inexact and noisy. To relax this definition of
fuzzy inclusion, we replace the minimum by a fuzzy quantifier Q, which is specified in
the form of a non-decreasing [0, 1] → [0, 1] mapping [19, 8]. This leads to

inc(B,A) = min
i=1...|B|

max{Q(i/|B|),mi} ,

where mi is the i-th largest membership degree in the fuzzy set {µA(y) | y ∈ B}. (Note
that we recover (2) for Q defined by Q(1) = 1 and Q(t) = 0 for 0 ≤ t < 1.) Here, we
simply take Q as the identical mapping t 7→ t. Roughly speaking, inc(B,A) thus defined
can be interpreted as the generalized truth degree of the proposition that A is almost

contained in B. The degree of inclusion of A in B, inc(A,B), is defined analogously.

As mentioned above, the idea of our approach is to define the similarity between two
labeled point clouds in terms of the best superposition of these two clouds. Therefore, let
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TF(·, t) be a function that moves a point cloud via rotation and translation, as specified
by the six-dimensional vector t = (θ1, θ2, θ3, δ1, δ2, δ3) ∈ [0, 2π]3 × R

3. Thus,

B∗ = TF(B, t) = {(y∗
1, ℓ(y

∗
1)), . . . , (y

∗
n, ℓ(y∗

n))}

is the point cloud obtained by translating the point cloud B by δ = (δ1, δ2, δ3) (which
means adding δ to each point y ∈ B) and rotating the result thus obtained by the angles θ1,
θ2, and θ3. Note that this operation leaves the label information unchanged (i.e., ℓ(yi) =
ℓ(y∗

i )). The position-invariant degree of inclusion of B in A is then given by

INC(B,A) = max
t∈[0,2π]3×R3

inc(TF(B, t), A) , (3)

and INC(A,B) is defined analogously.

Based on these degrees, the similarity between A and B, in the sense of a generalized
equivalence, can be defined as

SIM(A,B) = min{ INC(A,B), INC(B,A) } . (4)

It is worth mentioning, however, that (4) is not always appropriate, especially if A and B

greatly differ in size. In some applications, it makes sense to have a high similarity degree
even if A is only a substructure of B, for example if A is a subpocket of B containing
the most important catalytic residues (while the rest of the binding site B is functionally
less important). Obviously, this is not guaranteed by (4). An interesting generalization,
therefore, is to let

SIM(A,B) =α · min{INC(A,B), INC(B,A)} (5)

+ (1 − α) · max{INC(A,B), INC(B,A)} .

Formally, this similarity measure can be motivated from a fuzzy logical point of view
as follows. Considering the min (max) operator as a generalized conjunction (disjunc-
tion), the first (second) combination of the two inclusion degrees is the truth degree of
the proposition that A is contained in B AND (OR) B is contained in A. A conjunctive
combination of the two degrees of inclusion is obviously more demanding than a disjunc-
tive one, as the former requires equality between A and B while the latter only requires
inclusion of A in B or B in A. The measure (5), which formally corresponds to an OWA
(ordered weighted average) combination of the two degrees of inclusion [18], achieves a
trade-off between these two extreme aggregation modes, which is controlled by the pa-
rameter α ∈ [0, 1]: The closer α is to 0, the closer the aggregation is to the maximum, i.e.,
the less demanding it becomes. The optimal α is application-specific and depends on the
purpose of the similarity measure.

4 Solving the LPCS Problem

The computation of the similarity (5) involves the solution of a real-valued optimization
problem, namely the problem of finding an optimal vector t in (3) and, thus, an optimal
point cloud superposition. The objective function to be maximized here is highly non-
linear and multimodal. As an illustration, Fig. 2 shows the objective function obtained
for the superposition of a randomly generated two-dimensional point cloud A (in which
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Figure 2: Example of an LPCS objective function.

all points have the same label) with itself. This function maps each two-dimensional
translation vector t = (x, y) to the corresponding similarity degree between TF(A) and
A (where we used α = 0.5 in (5) and did not consider rotation). As can be seen, there is
a sharp peak at t = (0, 0), which corresponds to the optimal superposition. Surrounding
this solution, however, there are also many local optima.

The problem of local optima also becomes clear from the small example in Fig. 1. Moving
the point cloud A from left to right, into the direction of B, has the following effect: First,
a good superposition of two sub-clouds will be found, namely the right part of cloud A

and the left part of cloud B. This results in a local maximum. Moving A further to the
right leads to a larger local maximum (sub-clouds are growing), until the global maximum
will eventually be reached.

4.1 Evolution Strategies

To solve the LPCS problem, we resort to evolution strategies (ES), a population-based,
stochastic optimization method inspired by biological evolution and specifically devel-
oped for real-valued optimization problems [3]. An evolution strategy is based on a pop-
ulation, a set of µ (sub-optimal) candidate solutions that are initially spread randomly
over the search space. In each generation, new solutions are generated by applying the
genetic operators recombination and mutation. Recombination randomly selects ρ indi-
viduals from the current population and combines them to a new solution. Mutation takes
this solution and shifts it randomly in the search space. An ES produces λ = ⌈µ · ν⌉
offsprings per iteration, so that this procedure has to be repeated λ times. A selection
operator implements the “survival of the fittest” principle by picking the best individuals
for the new population. There are two kinds of selection: The plus-selection chooses
the best µ individuals among the offsprings plus the parents, while the comma-selection
ignores the parent generation (this requires ν > 1). A main advantage of the ES is its
self-adaptation mechanism that controls the step sizes used in the mutation operator. One
property of this mechanism (the advantage during optimization is obvious) is that step
sizes decrease dramatically if the optimization reached a maximum. This property can be
used as a qualitative termination criterion (stop when the largest step size falls below a
given threshold).

Population-based optimization methods are especially advantageous for highly multi-
modal problems. Using a large population leads to an increased probability to generate
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a candidate solution in a region where the direction of descent points to the global maxi-
mum. Choosing the membership function (1) as a strictly monotone decreasing function
which converges to zero ensures to have this direction in each point t ∈ [0, 2π]3 × R

3

and thus greatly simplifies the maximization problem. However, our experiments indi-
cated that the solution we found was most often only a local maximum. Therefore, we
propose to use fast restarts of the ES. This means that the ES is started n times using
comma-selection and weak termination criteria to achieve a large and quick but inexact
exploration of our search space. We thus obtain n results in total. In a last step, we use
the ES with plus-selection and strong termination criterion. Additionally, we include the
best solution so far in the start population. The last run of the ES usually yields a globally
optimal degree of similarity.

4.2 Complexity

Even though evolution strategies are generally known to be quite efficient solvers, the
concrete complexity does of course depend on the application at hand. The application-
specific part is the fitness function, i.e., the objective function to be optimized. This func-
tion has to be evaluated frequently and, therefore, is an important factor for the runtime. In
our case, this function is given by the similarity measure (5), and its evaluation is strongly
dominated by the nearest neighbor search which has to be conducted for each single point
in both structures (recall that, according to (1), membership degrees are determined by
the distance to closest points with the same label).

There exist a lot of data structures for supporting nearest neighbor search; see e.g. [7].
The most efficient among them need time O(n log2 n) for construction and O(log3 n)
for answering a query. Unfortunately, we are not aware of an approach that allows for
updating a data structure in an efficient and dynamic way. This would be desirable for our
problem, in which the point clouds permanently change (the point cloud associated with
an individual changes in each iteration). Instead, conventional approaches necessitate a
construction from scratch in every iteration.

0 50 100 150 200 250
0

1

2

3

4

5

6

7
x 10

4

number of points

a
s
y
m

p
to

ti
c
a

l 
ru

n
ti
m

e

 

 

simple search

kd−tree

Figure 3: Runtime of a simple procedure and a more complex data structure as a function
of the number of points.

Fig. 3 compares the runtimes, as a function of the number of points, for two approaches:
(1) The use of a kd-tree data structure, which is reconstructed in each iteration and then
used for query processing. (2) The use of a simple linear data structure, in which the
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points are stored in a fixed order. It needs linear instead of logarithmic time to answer a
query but, on the other hand, does not cause additional costs for reconstruction. As can be
seen, the use of a more complex approach pays off only for sufficiently large point clouds:
The kd-tree reaches a break-even point at approximately 150 points.

In our application, we are mainly concerned with protein binding sites, which are charac-
terized by around 180 points on average (even though much larger structures do of course
exist). The use of a complex data structure did therefore not pay off. Nevertheless, we
increased efficiency by hashing the points xi of a point cloud, using the label ℓ(xi) ∈ L
as a key. Since nearest neighbors are only searched among points having the same label,
this obviously reduces runtime by a factor of approximately |L|.

5 Multiple Geometrical Alignment

When comparing homologs from different species in protein cavity space, one has to deal
with the same mutations that are also given in sequence space. Corresponding mutations,
in conjunction with conformational variability, strongly affect the spatial structure of a
binding site as well as its physicochemical properties and, therefore, its point cloud de-
scriptor. For example, a pseudocenter can be deleted or introduced due to a mutation in
sequence space. Likewise, if a mutation replaces a certain functional group by another
type of group at the same position, the physicochemical property of a pseudocenter can
change. Finally, the distance between two pseudocenters can change due to conforma-
tional differences.

Due to the above reasons, one cannot expect that point clouds of two related binding
pockets match exactly. When looking for an alignment of two structures in the form of
a one-to-one correspondence between pseudocenters, it is therefore necessary to allow
for mismatches as well as pseudocenters for which no matching partner is defined. This
situation is quite similar to sequence alignment, where mismatches between symbols and
the insertion of blanks (to compensate for non-existing matching partners) is also allowed.

In this paper, we derive alignments from labeled point cloud superpositions and, therefore,
refer to the latter as geometric alignments.

Definition 1 (Multiple Geometrical Alignment) Let P be a set of m point clouds Pi =
{pi

1, . . . , p
i
ni
}, i = 1, . . . ,m. A multiple geometrical alignment of these point clouds is a

subset A ⊆ (P1 ∪ {⊥}) × · · · × (Pm ∪ {⊥}) with the following properties:

1. for all i = 1 . . . m and for each p ∈ Pi there exists exactly one a = (a1 . . . am) ∈ A
such that p = ai;

2. for each a = (a1 . . . am) ∈ A there exists at least one 1 ≤ i ≤ n such that ai 6=⊥.

Here, the symbol ⊥ denotes a “dummy point” which is needed to compensate for non-

existing matching partners.

Each tuple in the alignment represents a mutual assignment of m points, one from each
point cloud Pi (possibly a dummy). Thus, the second property in the above definition

Proc., 19. Workshop Computational Intelligence, 2009 - S. 244



requires that each tuple of the alignment contains at least one non-dummy point, and
the first property means that each point of each point cloud occurs exactly once in the
alignment. While these properties can be satisfied by a large number of alignments, we
are of course looking for an alignment in which mutually assigned points have the same
label and nearby spatial positions.

5.1 Construction of pairwise alignments

To construct a pairwise alignment of two point clouds P1 and P2, we reduce the alignment
problem to a problem of optimal assignment. To this end, we need a square matrix M =
(mi,j), where mi,j ∈ R defines the costs for assigning point pi ∈ P1 to point pj ∈ P2.
According to definition 1, the maximal length of a pairwise alignment is n = n1 + n2 =
|P1| + |P2|. Therefore, to consider all possible alignments, the matrix M has size n × n.

The entries mi,j are derived from the optimal superposition of point clouds P1 and P2 as
produced by our LPCS method. Since this approach calculates in sum two independent
t-vectors (one for each INC function) we had to modify this approach slightly. Instead of
using eq. (4) we define the similarity as

SIM3DA(A,B) = max
t∈[0,2π]3×R3

1

2
inc(TF(B, t), A) +

1

2
inc(A, TF(B, t)) (6)

and search now for exactly one t-vector.

Given such an optimal spatial superposition, it makes sense to define mi,j by the distance
between point pi ∈ P1 and pj ∈ P2 in the superimposed point clouds. To account for
point-to-dummy mappings, the distance between a point and a dummy is specified by
a parameter k. Finally, dummy-dummy assignments are scored by zero, so that these
mappings will not influence the construction of the alignment. As an illustration, Table 1
shows a matrix M for two point clouds P1 = {a, b, c, d} and P2 = {a′, b′, c′}.

Table 1: Matrix representation of the optimal assignment problem.
a′ b′ c′ ⊥ ⊥ ⊥ ⊥

a d(a, a′) d(a, b′) d(a, c′) k k k k
b d(b, a′) d(b, b′) d(b, c′) k k k k
c d(c, a′) d(c, b′) d(c, c′) k k k k
d d(d, a′) d(d, b′) d(d, c′) k k k k
⊥ k k k 0 0 0 0
⊥ k k k 0 0 0 0
⊥ k k k 0 0 0 0

Formally, an assignment (weighted bipartite matching) problem is specified by a graph
G = (V,E) with V = V1 ∪ V2 (V1 ∩ V2 = ∅) and E = {{u, v} |u ∈ V1, v ∈ V2}. The
problem is to find a subset of edges M ⊆ E such that e ∩ e′ = ∅ for all e, e′ ∈ M (i.e.,
one point has exactly one mapping partner),

⋃

(v1,v2)∈M

{v1} = V1,
⋃

(v1,v2)∈M

{v2} = V2,

Proc., 19. Workshop Computational Intelligence, 2009 - S. 245



and
∑

e∈M

c(e) → min,

where c(e) is the cost associated with edge e. In our case, the sets V1 and V2 represent,
respectively, the points in point cloud P1 with additional |P2| dummy points and the points
in cloud P2 with additional |P1| dummy points. Moreover, the costs c(e) are given by the
corresponding matrix entries mi,j . See Figure 4 for an illustration.

To solve the weighted bipartite matching problem, we use the Hungarian algorithm [13]
that needs time O(n3). Once a cost-minimal assignment has been found, the geomet-
ric alignment is defined by the corresponding node-to-node and node-to-dummy assign-
ments, while dummy-to-dummy assignments are ignored.
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Figure 4: Illustration of the weighted bipartite graph matching problem.

5.2 Construction of Multiple Alignments

Pairwise alignments can be used, for example, to derive a measure of similarity between
two objects. From a biological point of view, however, it is even more interesting to look
for a multiple alignment, that is, the simultaneous alignment of a set of m > 2 structures.
Alignments of this type are of interest, for example, to discover conserved patterns in a
family of evolutionary related proteins.

To derive a multiple geometrical alignment (3DA) of m point clouds, we resort to the star
alignment approach [17]: One of the point clouds, say, P1, is selected and aligned in a
pairwise way with all other clouds Pi, i = 2, . . . ,m. The pairwise alignments are then
“merged” by using P1 as a pivot structure. Thus, if pij ∈ Pi denotes the point (possibly a
dummy) aligned with pj ∈ P1 in the alignment of P1 and Pi, then a single assignment in
the multiple alignment is of the form

(pj, p2j, p3j, . . . , pmj).

Since the quality of a multiple alignment is strongly influenced by the choice of the pivot
structure, we try each point cloud as a pivot and adopt the best result. Thus, m(m − 1)/2
pairwise alignments have to be computed in total.

5.3 Conserved Patterns

As already mentioned each a ∈ A corresponds to a vector of mutually assigned points
from the point clouds P1, . . . , Pm. Note that, by matching points, a mutual assignment
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of distances is determined in an implicit way. Once a 3DA has been established, it can
be used to derive approximately conserved patterns. This can be done in different ways,
we propose to use fuzzy consensus graphs [17] originally introduced for Multiple Graph

Alignments (MGA). In a first step we generate a fuzzy consensus graph G̃ = (V,E). V

contains a node for each tupel a ∈ A and all pairs of nodes are connected by an edge
e ∈ E = V × V . Each node is labeled with the distribution of the mutually assigned
points. Additionally, a degree of conservation cons(v) is calculated, which is defined
by the relative number of point clouds in which this point is present. The edges of the
consensus graph are defined accordingly; see [17] for details. For given thresholds ω, ξ ∈
(0, 1], a conserved pattern can then be defined in terms of the subgraph of G consisting of
all nodes v with cons(v) ≥ ω and maj(v) ≥ ξ , where maj(v) is the relative frequency
of the most frequent label in a.

6 Experimental Results

In our experimental study, we perform two types of experiments. Both have in common
that we compare the introduced geometrical approach with graph-based approaches. In
the first study we will only consider the similarity scores and use them for classification.
In the second study we will consider alignments and again compare the geometrical and
a graph-based approach [17].

6.1 Data

For the experimental study different data sets are needed. The first type of experiment re-
quire a data set consisting of at least two classes so that a classification can be performed.
For the second type of experiment we need a data set that consists of many structures that
share a common fragment for that we can search using the multiple alignment approaches.

6.1.1 NADH/ATP

One important problem in pharmaceutical chemistry is the identification of protein bind-
ing sites that bind a certain ligand. We selected two classes of binding sites that bind,
respectively, to NADH or ATP. This gives rise to a binary classification problem: Given a
protein binding site, predict whether it binds NADH or ATP.

More concretely, we compiled a set of 355 protein binding pockets representing two
classes of proteins that share, respectively, ATP and NADH as a cofactor. To this end,
we used CavBase to retrieve all known ATP and NADH binding pockets that were co-
crystallized with the respective ligand. Subsequently, we reduced the set to one cavity
per protein, thus representing the enzymes by a single binding pocket. As protein ligands
adopt different conformations due to their structural flexibility, it is likely that the ligands
in our data set are bound in completely different ways, hence the corresponding binding
pocket does not necessarily share much structural similarity. We thus had to ensure the
selection of binding pockets with ligands bound in similar conformation. To achieve this,
we used the Kabsch algorithm [12] to calculate the root mean square deviation (RMSD)
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between pairs of ligand structures. Subsequently, we combined all proteins whose lig-
ands yielded a RMSD value below a threshold of 0.2, thereby ensuring a certain degree
of similarity. This value was chosen as a trade-off between data set size and similarity.
Eventually, we thus obtained a two-class data set comprising 214 NADH-binding proteins
and 141 ATP-binding proteins.

6.1.2 Benzamidine

For a first proof-of-concept of the 3DA approach, we analyzed a data set consisting of 87
compounds that belong to a series of selective thrombin inhibitors and were taken from a
3D-QSAR study [4]. The data set is suitable for conducting experiments in a systematic
way, as it is quite homogeneous and relatively small (the descriptors contain 47 – 100
points, where each point corresponds to an atom). Moreover, as the 87 compounds all
share a common core fragment (which is distributed over two different regions with a
variety of substituents), the data set contains a clear and unambiguous target pattern.

6.1.3 Thermolysin

Additionally, we used a data set consisting of 74 structures derived from the Cavbase
database. Each structure represents a protein cavity belonging to the protein family of
thermolysin, bacterial proteases frequently used in structural protein analysis and anno-
tated with the E.C. number 3.4.24.27 in the ENZYME database. The data set is well-
suited for our purpose, as all cavities belong to the same enzyme family and, therefore,
evolutionary related, highly conserved substructures ought to be present. On the other
hand, with cavities (hypothetical binding pockets) ranging from about 30 to 90 pseudo-
centers and not all of them being real binding pockets, the data set is also diverse enough
to present a real challenge for matching techniques.

6.2 Classification

In our experiments, first we compared our novel method (LPCS) with existing graph-
based approaches, namely the random walk (RW) kernel [9], the shortest path (SP) ker-
nel [6], and the method of multiple graph alignment (MGA) recently introduced in [17].
Given two labeled points clouds as input, all these methods produce a degree of similarity
as an output. Yet, for the graph-based approaches, it is of course necessary to transform
a point cloud into a graph representation in a preprocessing step. This was done as as
proposed in [17]:

1. each point is transformed into a node with corresponding node label

2. for each pair of nodes:

(a) the Euclidean distance between both nodes is calculated

(b) if the distance is below a certain threshold (here 11 Å to ensure connected
graphs), an edge with weight equal to this distance is added
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Our ES was restarted n = 5 times. The parameterization was optimized with the sequen-

tial parameter optimization toolbox [2] and was chosen as follows:

• inexact ES: µ = 30, ν = 4, ρ = 2, comma-selection, termination criteria: largest
step size < 0.05, discrete recombination for strategy- and object-component.

• exact ES: µ = 30, ν = 4, ρ = 6, plus-selection, termination criteria: largest step
size < 0.00001, intermediate recombination for object and discrete recombination
for strategy-component.

A comprehensive explanation of the different ES parameters and operators can be found
in [3].

For both variants we initialized the object-component in [−150, 150]3 for translation and
[0, 2π]3 for rotation: The step sizes were initialized in [5, 15]3 and [1, π]3, respectively.
The SP-kernel is parameter-free, the RW-kernel expects a parameter λ that is set to the
largest degree of a node in the data set to ensure a geometric series during calculation,
which results in a simpler evaluation [5]. Since the geometric information of real-world
data is noisy, we also need a tolerance parameter ǫ to decide whether two edges have equal
length (difference ≤ ǫ) or not; in our experiments, we used ǫ = 0.2. For MGA, we chose
the parameterization proposed in [17].

The assessment of a similarity measure for biomolecular structures, such as protein bind-
ing sites, is clearly a non-trivial problem. In particular, since the concept of similarity
by itself is rather vague and subjective, it is difficult to evaluate corresponding measures
in an objective way. To circumvent this problem, we propose to evaluate similarity mea-
sures in an indirect way, namely by means of their performance in the context of nearest
neighbor (NN) classification. The underlying idea is that, the better a similarity measure
is, the better should be the predictive performance of an NN classifier using this measure
for determining similar cases.

6.2.1 Results

The results of a leave-one-out cross validation, using the simple 1-NN classifier for pre-
diction, are summarized in Table 2. As can be seen, the kernel-based methods (SP and
RW) perform very poorly and are hardly better than random guessing. In terms of ac-
curacy, MGA is much better, though still significantly worse than LPCS. In fact, LPCS
performs clearly best on this problem.

Table 2: Accuracy and runtimes (in seconds with standard deviation, referring to a single
comparison) of LPCS (α = 0.5, with restarts like described above), MGA, RW, and SP
on the NADH/APT data set.

Method Accuracy Runtime
MGA 0.7662 121.74 ± 418.02
SP 0.6056 9.75 ± 97.77

RW 0.5972 65.51 ± 89.07
LPCS 0.9352 20.04 ± 24.65
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Table 3 furthermore shows how the performance of LPCS depends on the choice of the
trade-off parameter α in (5). As can be seen, this parameter does indeed have an influence,
even though the differences are not extreme. For this data set, α-values around 0.5 yield
better results than extreme values close to 0 or 1; the optimal choice would be α = 0.7. In
practice, α can be considered as a tuning parameter to be adapted to the problem at hand
(e.g., by means of a cross-validation on the training data).

Table 3: Accuracy of LPCS for different values of α in (5).
α accuracy α accuracy
0 0.9042 0.6 0.9352

0.1 0.9183 0.7 0.9380
0.2 0.9126 0.8 0.9239
0.3 0.9154 0.9 0.9267
0.4 0.9267 1 0.9183
0.5 0.9352

6.2.2 Runtime

To investigate the behavior regarding runtime of the approaches applied in this paper we
used again the NADH/ATP data set and chose protein binding sites of size approximately
25, 35, . . . , 985, 995. For a size s this was done by selecting the largest binding site that
is smaller than s and a smallest binding site that is larger s. Doing this has the advantages
that first the size of the problem to solve is in mean s, and second that both selected protein
binding sites are different, so that side effects due to equivalence of both binding sites can
be avoid. For MGA, SP- and RW-kernel the runtime for each size s was evaluated once
since these methods are deterministic and have always same runtime. Since LPCS is
based on a stochastic optimizer we repeated this experiment for each s 10 times using
the same point clouds. The results are summarized in figure 5. As can be seen, from a
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Figure 5: Runtimes of LPCS, MGA, SP-, and RW-kernel w.r.t. problem size; for RW-
kernel and MGA a calculation was posible to a certain size of the problem since the
memory requirement was becoming too high

certain problem size for MGA and RW-kernel a calculation is not possible since these
methods works with the product graph that is growing quadratically with the size of the
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input graphs so that even modern computers (2 GB RAM) cannot offer sufficient memory.
The LPCS approach has for very small problems the highest runtime though the runtime
is growing very slow w.r.t. problem size, so that LPCS is already for point clouds of
size 200 faster than MGA and RW-kernel, approached that are appropriate only for small
structures. It sticks out that the LPCS runtime fluctuate strongly. The reason is quite
simple. Since we use a real world data set the distribution of point labels vary. As already
mentioned for the nearest neighbor search we hash points with equal label. So, if the
labels are distributed uniformly the search is more efficient than if there exists a label that
dominates the point cloud. The SP-kernel has cubic runtime, so that this method is for
s < 600 the most efficient of all alternatives. However, it completely fails in terms of
predictive accuracy. That LPCS is becoming the most efficient approach for s > 600 is
hardly surprising, since the dimensionality of the LPCS optimization problem is constant
(six parameters have to be optimized) and does not depend on the number of data points.
It is true that the size of the point clouds does have an influence on the evaluation of the
objective function, which involves a nearest neighbor search for each point. The increase
in runtime is at most quadratic, however.

6.3 Alignment Quality

In the second study, we compared the quality of the alignments calculated, respectively,
by 3DA and MGA. To this end, 100 alignments of size 2 were calculated for randomly
chosen structures. Restricting to pairwise alignments is justified since both 3DA and
MGA use the star alignment procedure to derive multiple alignments. The quality of a
pairwise alignment A is evaluated in terms of two criteria. The first criterion is the fraction
of assignments of pseudocenters preserving the label information:

s1 =
1

|A|
∑

(a1,a2)∈A

{

1, ℓ(a1) = ℓ(a2))
0, ℓ(a1) 6= ℓ(a2))

,

where ℓ(a1) is the label of the pseudocenter a1. Similarly, the second criterion evaluates to
what extent the geometry of the structures is preserved. Since an MGA does not include
information about the position of single psedocenters, this has to be done by looking at
distances between pairs of pseudocenters in each structure:

s2 =
1

N

∑

(a1,a2),(b1,b2)∈A

{

1, |d(a1, b1) − d(a2, b2)| ≤ ǫ

0, |d(a1, b1) − d(a2, b2)| > ǫ
,

where d(a1, b1) = |c(a1)− c(b1)| and N = |A|(|A|− 1)/2. We summarize the evaluation
by the vector

s = (s1, s2) ∈ [0, 1] × [0, 1] .

To measure the improvement of our method, we calculate the relative improvement

ri =











[s3DA]1 − [sMGA]1
[sMGA]1

[s3DA]2 − [sMGA]2
[sMGA]2











(7)

where s3DA and sMGA denote, respectively, the evaluations of 3DA and MGA and where
[s]i gives the i-th element of a vector s.
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6.3.1 Results

For our calculations we parameterized MGA as proposed in [17], for 3DA we set k = 6
and performed experiments like described above. The results for the benzamidine data set
are shown in Figure 6, where the relative improvement vectors are plotted. As one can see,
most of the ri vectors are lying in the first quadrant, indicating a positive improvement
for both criteria.

The corresponding results for the thermolysin data set are depicted in Figure 6. Here, the
picture is not as clear, and the number of negative improvements is even slightly higher
than the number of positive ones. Apparently, 3DA performs especially good on highly
similar structures while not improving on structures that are more diverse. This is hardly
surprising, since 3DA strongly exploits information about the geometry of the structures.
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Figure 6: Relative improvements (ri) obtained by substituting the MGA approach in 3DA

6.3.2 Parametrization

As an important advantage of 3DA, it deserves mentioning that it only has a single pa-
rameter, while MGA has six parameters. In spite of this, we found that if often produces
better results, even when trying to parameterize MGA in an optimal way. For example,
Figure 7 shows a set of solutions for the benzamidine data that we found by varying the
parameters in 3DA and MGA. For ease of exposition, we only plotted the solutions that
are Pareto optimal in the two respective sets of solutions; in total, 7776 result vectors s

were computed for MGA by variation its 5 parameters in a systematic way. This was
done by varying penalties from −5 to 0 and awards form 0 to 5 and considering all pos-
sible combinations (see [17] for an explanation of these parameters). For 3DA there was
only one parameter (threshold k) to vary, so that here only 12 results were calculated
by considering k = 0, . . . , 11. To have a readable plot we removed results that are not
Pareto optimal1 and plot only the remaining Pareto optimal points. The resulting plot is
illustrated in figure 7. As one can see the 3DA solutions were independent of parameteri-
zation always better than the MGA results, so that we can claim that our novel method is
easy to adjust and will lead to results that are better, even for an optimal adjusted MGA
approach.

1Given a set of results S only such results s ∈ S are called Pareto optimal that are not dominated by
other solutions. A vector x dominates another vector y if x[i] ≥ y[i] for all i and x[i] > y[i] for some i.
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Figure 7: Pareto optimal solutions found by MGA (circles) and 3DA (crosses)

6.4 Structure Retrieval

The focus of the third study is on the ability to detect common substructures in a set of
biochemical structures. We randomly selected 100 subsets of c compounds from the ben-
zamidine data set and used 3DA and MGA to calculate an alignment. Then, we checked
whether the aforementioned benzamidine core fragment, an amide derivative of benzol
which consists of 25 atoms (11 hydrogens), was fully conserved in the alignment, which
means that all pseudocenters belonging to the core were mutually assigned in a correct
way. The results, shown in Table 4 for different numbers c, clearly show that 3DA is able
to retrieve the core fragment much more reliably than MGA.

Table 4: Percent of alignments in which the benzamidine core fragment was fully con-
served in the alignment of c = {2, 4, 8, 16} structures.

c 2 4 8 16
MGA 0.85 0.38 0.14 0.04
3DA 0.96 0.92 0.80 0.76

For detecting the core fragment we searched for conserved patterns in the alignment and
used the parameter ω = 1 and ξ = 0.9.

7 Conclusions

In this paper, we have introduced labeled point cloud superposition (LPCS) as a novel
tool for structural bioinformatics, namely as a method for comparing biomolecules on
a structural level. Besides, using fuzzy modeling techniques, we have defined a related
similarity measure. The concept of a labeled point cloud appears to be a quite natural
representation for biological structures, especially since it is closely leaned on existing
database formats. In comparison to other approaches, such as the prevalent graph-based
methods, the modeling is hence simplified and does not involve any complex transforma-
tions. More importantly, a labeled point cloud preserves the full geometric information
and makes it easily accessible to computational procedures.

A labeled point cloud superposition is a spatial “alignment” of two point clouds which
is optimal in the sense of a given scoring (similarity) function. As for related problems
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in bioinformatics, such as sequence alignment, the computation of the similarity between
two objects hence involves the solution of an optimization problem. To this end, we have
proposed the use of an evolution strategy, an approach from the family of evolutionary
algorithms, which appears to be especially suitable for this problem.

First experimental results with classification data are quite promising and suggest that our
approach is able to compare protein binding sites in a reasonable way. In terms of classi-
fication accuracy, LPCS turned out to be significantly better than existing (graph-based)
methods used for comparison. Moreover, even though it is computationally more complex
than these methods for small data sets, it scales much better and becomes more efficient
for larger data sets. This is due to the fact that, in contrast to graph-based methods, the
search space does not depend on the size of the point clouds and remains low-dimensional.

In this paper, we proposed an extension of the method of labeled point cloud superpo-
sition (LPCS), too. Motivated by applications in structural bioinformatics, we extended
LPCS for the calculation of multiple geometric alignment which, based on a given super-
position, computes an one-to-one correspondence between the points. First experiments
carried out in the context of protein structure comparison are quite promising and show
that our method is competitive, if not even superior, to state-of-the-art graph-based meth-
ods for multiple structure alignment. All things considered, multiple geometric alignment
is therefore a viable option for protein structure comparison and might even be of interest
beyond the field of structural bioinformatics.
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