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Abstract

A multi-agent system (MAS) consists of a group of agents that solve a common
task through cooperation. Many problems arising in this setting can be formu-
lated as distributed constrained optimization. In recent work, we considered
the unconstrained version of the problem. In particular, we developed a theory
to understand distributed gradient-based optimization methods, wherein the
local (state) information is communicated via a lossy wireless network. A key
contribution of the theory is that the information delay could be unbounded,
however, it does not consider constraints. In this work, we present preliminary
experimental results aimed towards extending the aforementioned work to the
constrained setting. First, the constrained optimization problem is transformed
into an unconstrained one using the penalty-based method. Then, we employ
the distributed gradient approach from our previous work to solve the uncon-
strained optimization in a decentralized manner. The illustrative experiments
are based on autonomous pattern formation tasks for robotic swarms. The
(simulated) robots cooperate to form a specified pattern (line, circle), with
the constraint that the distances between neighboring robots equal a given
constant.
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1 Introduction

A multi-agent system (MAS) is typically large-scale in nature, and a wireless
communication network is used to connect the various agents involved, due to
its convenience and cost. Examples of MAS include wireless sensor networks
and smart grids, see [3]. Many problems that arise in these systems can be cast
as constrained optimization problems that need to be solved in a distributed de-
centralized manner [6]. For example, in smart grids, a group of controllers has
a common objective to minimize the control errors in terms of AC frequency or
to maintain voltage levels in the whole grid with time-variant loads or energy
sources. The controllers cooperate to solve this problem under constraints on
the system state.

The literature on distributed algorithms to solve constrained optimization pro-
blems is rich, see e.g. [1]. However, they typically assume that the delay asso-
ciated with the transfer of information from one agent to the other is bounded.
Failed transmissions and channel delay are two main factors that contribute
to information delay. In this paper, we focus on information delay due to
failed transmissions. We study the effect of unbounded information delay on
distributed algorithms for constrained optimization. In the past, unbounded
information (update) delays were studied within the setting of unconstrained
optimization in [4, 5].

The global objective is formulated in terms of a differentiable function. The
agents solve this objective, together, by searching appropriate local subspaces
via gradient steps. The solution to the global problem is obtained by putting
together the distributed solutions. For local gradient calculations, at every step,
the agents require information from other agents. Furthermore, each agent has
to optimize subject to some local constraints. To this end, we use the penalty
method to transform the constrained problem into an unconstrained one. In
other words, the distributed gradient updates of each agent is augmented by a
penalty term that encodes the violation of local constraints. It may be noted
that the associated penalty hyper-parameter is increased over time. Since the
communication channel is lossy, the information from the peers may be de-
layed and the agent is therefore forced to carry out update steps using outdated
information. In [4], mild requirements on the quality of the wireless network
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are presented, which ensure that using outdated information does not hinder
convergence. In this paper, we conjecture and present preliminary numerical
results which suggest that similar conclusions can be drawn even in the pre-
sence of constraints.

To illustrate the ideas, we consider pattern forming tasks for robot swarms as
an application. To this end, the specified pattern (line, circle) is expressed as
an objective function. The objective is constructed, such that the minimum of
the objective is reached when the robots arrange in the pattern. The objective
function is evaluated using all robot positions, and the distances to neighboring
agents constitute the local constraint set for every agent. At every time step,
each robot moves in accordance to the local gradient update. To calculate this
gradient, it uses the last known position of the other robots in the swarm. Since
robot positions are communicated using lossy channels, the last known position
may be outdated. In our experiments, we assume that the robots are ordered
and communicate their knowledge of the swarm, only with direct neighbors in
the chain.

2 Problem Definition

Broadly speaking, we have m agents that aim to minimize a given global
objective function while satisfying local constraints. In other words, the agents
cooperate to find:

z∗ = argmin
z

Eξ
[
J(z,ξ )

]
, (1)

s.t. Gi = {gik ≤ 0 | 1≤ k ≤ ki} 1≤ i≤ m,

where z∗ = (z∗1, . . . ,z
∗
m) such that z∗i is the component of the minimum that is

calculated by the ith agent ai, Gi = {gik | 1≤ k ≤ ki} is the local constraint set
of ai containing ki inequality constraints. The stochastic objective function,
J : Rn × S → R, is such that z .

= (z1, . . . ,zm)
T ∈ Rn where zi is the local

variable associated with ai, and ξ is an S-valued random variable. In typical
applications, S is some compact subset of Rk, k ≥ 1, or Rk itself. Please note
that we allow for general vector-valued zis.
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The reader may note that the local constraint set Gi, of ai, is not visible to a j

for j 6= i. In other words, the agents are only aware of their local constraints,
not that of others. Since we use the penalty-based method to transform the
constrained optimization problem into an unconstrained one, we may associate
each Gi with the following penalty function:

Pi(z)
.
=

ki

∑
k=1

max
(
0,gik(z)

)2
. (2)

2.1 Communication Model

As stated earlier, the agents are connected using a wireless communication
network. We model this using a weighted directed graph G = (V,E). In this
graph, each agent is represented as a node and a directed edge ei j = (ai,a j)

exists if ai can directly transmit messages to a j, possibly using a dedicated
unidirectional channel. The edge-weights (∈ [0,1]) represent the probability
of successful transmission along that edge. We assume that the transmissions
along different edges are independent, i.e., there is zero interference. We allow
for graph evolution, provided it is connected at all times. In particular, at any
point in time, there exists a path connecting ai to a j such that the product of the
edge-weights (success probabilities) is strictly greater than zero, 1 ≤ i, j ≤ m.
Hence, there is a chance that the message sent by ai reaches a j.

To find a solution, z∗ = (z∗1, . . . ,z
∗
m), to the above described constrained op-

timization problem, ai searches for z∗i in its local search space Rni using the
following gradient formula:

∂J
∂zi

+β
∂Pi

∂zi
, (3)

where ∂
∂zi

is the partial derivative with respect to the variable zi , β is the

penalty parameter, and
m
∑

i=1
ni = n. In order to calculate ∂J

∂zi
, ai requires updates

from a j, j 6= i. This information is exchanged using the underlying wireless
communication network, which causes delays. In this paper, we consider the
following sources of information delays:
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• packet losses;

• routing through other agents in the system, due to
the lack of direct connection.

Note that we do not consider channel delays in this paper. However, we believe
that our ideas may be readily extended to incorporate, possibly unbounded,
channel delays. The delays directly affect the age of the information available
to an agent. In this paper, we use the term information delay and age of
information, interchangeably.

The gradient calculation in (3) deals with information delays, by using the
latest available updates from other agents in the system.

2.1.1 On unbounded information delays

Let us suppose that there are no packet losses. The delay due to indirect routing
grows linearly as a function of the distance between the nodes in the graph. We
assume that the diameters (maximum distance between any pair of nodes) of
the evolving graphs are bounded, independent of time. Hence the delay due to
indirect routing is also bounded. If we now consider packet loss, then updates
within any bounded time-frame cannot be guaranteed. Hence, packet loss is
the major contributor to information delay. The probability that ai successfully
communicates with a j within any d time-step interval is some p > 0, where
d is the above mentioned bound on the graph diameter. Note that p may vary
over time. Hence, the event of unsuccessful communication over successive
d length intervals is geometrically distributed. In other words, there is no
absolute bound on the information delay.

3 Algorithm

We are now ready to present an algorithm to solve (1). It may be noted that it is
based on penalty-based gradient descent methods for the centralized version. In
the setting considered here, agent ai updates zi in an iterative manner, through
gradients calculated using the latest available z j, j 6= i. At any time t, ai
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Algorithm 1.: Distributed Optimization

1: Initialize ai with z
2: for all time-step do
3: process received ẑt

j
4: update zt

i
5: for all a j : (ai,a j) ∈ E do
6: send ẑt

i to a j

maintains a local view, ẑt
i , of the global variable zt . Formally speaking, the

local view of ai at time t is given by ẑt
i
.
=
(

zτi1(t)
1 , . . . ,zt

i, . . . ,z
τim(t)
m

)T
, where

0 ≤ τi j(t) ≤ t, and t− τi j(t) is the age of the information from a j available to
ai at time t. The local zi is updated as follows:

zt+1
i ← zt

i−η(t)

[
∂J
(
ẑt ,ξ t

)

∂zi
+β (t)

∂Pi
(
ẑt
)

∂zi

]
, (4)

where η(t) is the learning rate and β (t) is the time-varying penalty parameter.
ξ t are statistically independent samples that have the same distribution as ξ .

3.1 Information exchange

At time t, ai sends ẑt
i to its neighbors. Simultaneously, it receives ẑt

js from a
subset of its neighbors (some may be lost due to packet drops). It uses the obtai-
ned information, and zt

i , to update ẑt
i to ẑt+1

i , such that it contains the latest vari-
ables associated with other agents. To facilitate consistent updates, we assume
that each variable is associated with a time stamp. Hence, at time-step t, ai

receives ẑt
j along with the vector of time stamps t̂i

.
= (τ j1(t), . . . , t, . . . ,τ jm(t))T ,

from a subset of its neighbors. Using the obtained information, ai updates
the entries of ẑt

i by comparing time stamps. In other words, ai checks to
see if τ jk(t) > τik(t), if yes, then updates ẑt

i(k) to ẑt
j(k). It also updates the

corresponding entry in t̂i. Otherwise, old entries are retained. Note that ẑt
i(k)

is used to represent the information that ai has of ak, at time t. Subsequently,
ai executes update step (4). Finally, the agent sends its updated ẑt+1

i along with
the updated time stamps to all its neighbors. This allows, agent a j similarly
to discard outdated updates. The reader must note that no retransmissions are
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triggered in case of failed transmissions since we do not assume that received
packets are acknowledged.

The discussion in this section has been codified in Algorithm 1.

3.2 On the convergence of Algorithm 1

We believe that a proof of convergence of the algorithm will proceed along
similar lines as the analysis in [4]. Here, we studied the unconstrained version
of Algorithm 1. Suppose the random variables associated with the age of infor-
mation, at every time-step, have bounded second moments, then it is shown, in
[4], that the associated errors are asymptotically in the order of the learning
rate. Since the learning rate diminishes to zero, the effect of information
delays vanishes asymptotically. Also, that the distributed algorithm has the
same asymptotic properties of a centralized one.

A sufficient condition on the wireless network to ensure the above mentioned
bounded second moment requirement is stated as assumption (A6) in [4]. It is
restated below for our setting:

• for each pair of agents, there is a non-zero probability of
successful transmission of the routed package,

• and the transmission probabilities of all edges are
statistically independent.

As discussed in Section 2.1, the communication graph is always connected.
Hence the above statement conditions are readily satisfied.

Now, we discuss the influence of the penalty parameters on convergence. In
our algorithm, we do not use a constant β , rather we take β (t) ↑ ∞. This is
done to avoid the scenario wherein the algorithm converges to z∞ such that:

∇J(z∞)+β
m

∑
i=1

∇Pi(z∞) = 0 and

∇J(z∞) = −β
m

∑
i=1

∇Pi(z∞) 6= 0.
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This phenomenon is explained in the literature of centralized penalty-based
method. As stated earlier, we can use the arguments from [4] to conclude that
Algorithm 1 has the same long-term behavior as its centralized counterpart. In

other words, β (t) ↑ ∞ is important to ensure that ∇J(z∞) =
m
∑

i=1
∇Pi(z∞) = 0, as

desired.

However, the main issue with a time-varying penalty parameter that goes to
infinity is the growth in the variance of the descent directions. Hence, a
diminishing learning rate is required to counteract this. More precisely, η(t)
and β (t) are chosen such that

∑
t

(
η(t) ·β (t)

)2
< ∞.

This condition is inspired by a similar assumption, A1, in [7]. Intuitively, it is
clear that a condition such as η(t)β (t)→ 0 is required. However, it is shown
in [7] that is not always sufficient.

4 Experiments

In this section, we present the results of two experimental studies, in which
mobile robots are simulated as points in the two-dimensional Euclidean space1.
The two scenarios optimize for a different objective function and have slig-
htly different penalties, while the communication model is the same for all
experiments. A simple packet reception probability model is used to calculate
the success probability of transmission as a function of robot distance. To
ensure connectedness of the communication graph, the minimal transmission
probability is bounded as follows:

ph,l(d) = clip
(

h−d
h− l

,0.01,1
)

h l

0,5
1

1 https://github.com/stheid/DDSCO
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The parameters h and l determine the thresholds of maximum and minimum
transmission probability, respectively.

The general setting of the following scenarios are robot-swarm pattern forma-
tion tasks. Each agent is represented by a point zi = (xi,yi)

T ∈ R2. In the first
scenario, the agent’s objective is to form a line on which the agents evenly
space out. In the second scenario, the agents should form a circle and also
create a constant distance to each other. The inter-robot distance is modeled by
the constraints, while the created structure is modeled in the objective function.
Initially, the agents are placed uniformly at random in a quadratic region.
The vector z is the concatenation of local position vectors zi of all agents
ai. Additionally, we denote x = (x1, . . . ,xm)

T and y = (y1, . . . ,ym)
T . In our

experiments, we simulate a swarm of m = 10 robots.

4.1 Scenario 1: Forming a Line

The objective function for forming a line consists of two parts. The first
component is the residual error of the ordinary least squares (OLS) regression
over all points. The second part is the distance between the first and last point.
Maximizing the distance along with minimizing the residual error encourages
the robots to unravel if they form a folded line.

The x-term of each position is augmented by a constant for fitting the bias
term and a random value to make the objective more challenging: φ(xi) =

(1,γi,xi) with γi ∼N (µ = 0,σ = 0.1). For ease of notation we define Φ =

(φ(x1)
T , . . . ,φ(xm)

T )T as the transformation of x. Formally the objective is
defined as follows:

J(x,y) =
eT e
n2 −

‖z1− zm‖2

n
e = y−Φb

b = (ΦT
Φ)−1

Φ
T y

Here, b is the OLS regression line and e is the residual error of the regression
estimate. Since the regression error is in the order of the magnitude of the
squared number of nodes, it has been normalized accordingly. Similarly, the

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 255



distance between the first and last agent of a chain is normalized by the number
of agents.

Each agent has up to two local constraints. The first and last agent have
only one neighbor, therefore, they will only have one constraint. All other
agents have two equality constraints to maintain a constant distance to their
neighbors.

More precisely, agent i has the following constraints:

gi1(z) = |d0−‖zi− zi−1‖2|= 0 if i > 1

gi2(z) = |d0−‖zi− zi+1‖2|= 0 if i < m

with d0 the demanded inter agent distance and ‖ · ‖2 the Euclidean distance.

4.2 Scenario 2: Forming a Circle

Several objective functions could be chosen to form a circle. A quite obvious
one would be to make the agents maximize the area of the polygon they span.
Correctly calculating the area of arbitrary polygons is a non-trivial task, as self-
intersecting polygons pose additional challenges [2]. Fortunately, the equation
for calculating the area of simple polygons can be used as a lower bound for
the actually covered area. Therefore, it is sufficient to use this equation for
arbitrary polygons in our case, since we aim for maximization:

J(x,y) =−
∣∣∣

n−1

∑
i=0

xiyi+1− xi+1yi

∣∣∣ with x0 = xm and y0 = ym

For simplicity, the constant prefix has been omitted, as it will not influence the
position of a minimum. Since the algorithm is purely guided by the gradient,
it might converge to local optima.
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The constraints are similar to the previous example, however, the first and last
agent will now be considered as neighbours:

gi1(z) =
∣∣d0−‖zi− zi−1‖2∣∣= 0

gi2(z) =
∣∣d0−‖zi− zi+1‖2∣∣= 0 with z0 = zm

The hyperparameters for learning rate and penalty scale are chosen as fol-
lows:

η(t) =
100

t +30000

β (t) = 1+

√
t

100

The learning rate is therefore decreasing in a inverse proportional manner,
while the the penalty term goes to infinity in the square root of the timestep.
The constants in the equation were tuned by hand to achieve fast conver-
gence.

4.3 Results

In both of the above experimental scenarios, we observed convergence to at
least a local minimum, while satisfying all local constraints. For the line
scenario, the robots eventually arrange on a line, however, sometimes the line
is folded into itself, which will not maximize the distance, but minimize the
regression error. For the circle scenario, we similarly see the forming of per-
fect circles or shapes like spirally intersecting circles, which represent a local
maximum of the covered area.

The rate of convergence was observed to strongly depend on the quality of the
wireless network (transmission success probabilities). Figure 1 illustrates the
evolution of the algorithm, tasked to form the circle, in the second scenario.
In the beginning, the agents were severely penalized due to large inter-agent
distances. This causes them to move towards each other, and form a closely-
knit cluster. In the next phase, the agents try to form a larger circle, due to
the design of the objective function. In the final phase, the increasing penalty
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Figure 1: Snapshots of different phases of scenario 2. Each dot represents the position of a robot,
the communication link is visualized as the blue line. The optimal solution is indicated
with the black circle.

parameter forces the agents to move closer to each other, to fulfill the distance
constraint.

4.3.1 Impact of Communication Quality on Rate of Convergence

The quality of the wireless network seems to affect the rate of convergence.
To illustrate this, we experimented with different success probabilities (net-
work qualities). Empirical results suggest that a strong correlation cannot be
directly seen. This is because aged information about the peer’s positions allow
constraints to be violated more freely in some cases. In other words, bad com-
munication may allow for a streamlined convergence to a wrong minimum (for
e.g., does not satisfy constraints). Loosely speaking, old information facilitates
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Figure 2: Convergence progression in scenario 2 after about 2000 update steps. Left picture shows
convergence with less reliable communication channels and hence slower convergence.

a more localized optimization and constraint satisfaction, and updated infor-
mation brings back a clearer picture of the global constrained optimization.
Figure 2 shows the convergence of two identical configurations of scenario 2,
which only vary in the communication channel quality. The optimal solution
subject to the distance constraints is reached when all agents arrange on the
black circle, in an equally spaced manner. The figure to the right illustrates the
scenario with good communication, and the figure on the left the bad one. The
algorithm has almost formed a circle, under good communication, only some
constraint violations are left to be addressed. In the case of bad communication,
the algorithm has not yet formed a circle and is hence lagging.

4.3.2 Constraint Satisfaction

Let us consider the first scenario, wherein the agents try to form a straight
line while maximizing the spanned distance of the collection. However, the
constraint requires that a given inter-agent distance be achieved. With small
penalty scaling factors, the constraint is very loose and can easily be violated.
Therefore, the penalty needs to be scaled continuously to allow for arbitrarily
small constraint violations. The continuous increase of penalty allows a smooth
transition from the unconstrained to the fully constrained scenario. Similarly,
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in the second scenario, the agents aim to form a circle of area. Therefore,
drifting outwards, however, again inter-agent distances must be maintained.
Again, the penalty term needs to grow to infinity, to dominate the overall
penalized objective when the solution does not satisfy constraints. In particular,
growing the penalty parameter prevents convergence to a point that satisfies
∇ f =−β∇∑

i
Pi 6= 0.

The experimental results are in agreement with the general argument of con-
vergence stated at the end of Section 3.

Videos showing the evolution of the convergence can be found in the repository
https://github.com/stheid/DDSCO.

5 Conclusion

We considered the problem of distributed constrained optimization with sto-
chastic objective and inequality-type constraints. To solve this problem, we
presented a penalty-based distributed gradient algorithm. We presented preli-
minary empirical results to support the conjecture that results from [4] naturally
extend to the inclusion of constraints. In particular, that the convergence, in the
presence of local constraints, is unaffected by stochastic information delays
with bounded second moments.

For visualization, we investigated two scenarios of pattern formation in robot
swarms. The objective function was used to specify the pattern, subject to
the inter-robot distance constraints. The agents collectively minimized the
objective function by searching in appropriate subspaces. In the experiments,
we observed that the convergence speed correlates with the quality of the com-
munication channel, although a more thorough investigation is needed to paint
a clearer picture. Also, we look forward to analyzing the setting in a more
formal way to prove the convergence theoretically.
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