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Abstract

The problem of “learning to aggregate” (LTA) has recently been introduced as a novel
machine learning setting, in which instances are represented in the form of a composition of
a (variable) number on constituents. Such compositions are associated with an evaluation,
which is the target of the prediction task, and which can presumably be modeled in the
form of a suitable aggregation of the properties of its constituents. An especially interesting
class of LTA problems arises when the evaluations of the constituents are not available at
training time, and instead ought to be learned simultaneously with the aggregation function.
This scenario is referred to as the “aggregation/disaggregation problem”. In this paper,
we tackle this problem for an interesting type of aggregation function, namely the Ordered
Weighted Averaging (OWA) operator. In particular, we provide an algorithm for learning
the OWA parameters together with local utility scores of the constituents, and evaluate
this algorithm in a case study on predicting the performance of classifier ensembles.

Keywords: supervised learning, aggregation operator, learning to aggregate, OWA

1. Introduction

The idea of combining models and aggregation functions from the field of (multi-criteria)
decision making with data-driven approaches for model identification from the field of ma-
chine learning has attracted increasing attention in recent years. Examples of such com-
binations include methods for learning the majority rule model (Sobrie et al., 2013), the
non-compensatory sorting model (Sobrie et al., 2015), or the Choquet integral (Tehrani
et al., 2012b,a). In contrast to many other machine learning approaches, corresponding
models are interpretable and meaningful from of decision making point of view, a property
that has gained increasing attention in the recent past (Guo et al., 2019). Besides, aggre-
gation operators offer other appealing properties that might be desirable from a machine
learning point of view.

In this paper, we address the problem of “learning to aggregate”, which has recently
been introduced as a novel machine learning task by Melnikov and Hiillermeier (2016).
Roughly speaking, learning-to-aggregate (LTA) problems are supervised learning problems,
in which instances are represented in the form of a composition of a (variable) number on
constituents; such compositions are associated with an evaluation, score, or label, which is
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the target of the prediction task, and which can presumably be modeled in the form of a
suitable aggregation of the properties of its constituents. Thus, LTA establishes another
connection between machine learning and the study of aggregation functions. Indeed, from
a machine learning point of view, a key concern is to take advantage of useful properties of
aggregation functions, such as monotonicity, associativity, etc.

As an illustration and motivating example, consider the problem of learning to rate
playlists of songs: A playlist can be considered as a composition (either a list, or, when
ignoring the sequential structure, even a set) of individual songs, and it is reasonable to
assume that the overall evaluation of a playlist (for example, on a scale ranging from one
to five stars) can be expressed as a suitable aggregation of the evaluation of the constituent
songs. The learning task may consist of inducing a predictive model, which can (hypothet-
ically) rate any new playlist, on the basis of a set of training data in the form of playlists
together with their ratings. From a machine learning point of view, this problem comes
with a number of challenges. For example, note that playlists, which form the input of the
sought predictor, might be of different length. Moreover, we may want the predictor to
be invariant toward permutations of the songs in a list, at least to some extent. Standard
feature representations as commonly used in supervised learning might therefore not be
appropriate.

An especially interesting class of learning problems arises when the evaluations of the
constituents are not available at training time, and instead ought to be learned simultane-
ously with the aggregation function. In our playlist example, for instance, it is reasonable to
assume that ratings are only available at the level of entire lists, but not at the level of indi-
vidual songs. This scenario is referred to as the “aggregation/disaggregation problem” — the
notion of disaggregation (Jacquet-Lagreze and Siskosb, 2001) refers to the decomposition of
global scores into several local scores, which inverts the direction of aggregation (from local
scores to global ones).

In this paper, we tackle the aggregation/disaggregation problem for a specific type of
aggregation function, namely the Ordered Weighted Averaging (OWA) operator (Yager,
1988). OWA is a family of parametrized averaging functions with several appealing prop-
erties. Although the learning of OWA operators from data has already been addressed in
the literature (Filev and Yager, 1994; Beliakov, 2002, 2005), the problem of simultaneously
learning OWA weights as well as its arguments has not been considered so far. To the best
of our knowledge, this problem was not considered for other aggregation operators either.
Instead, existing methods for learning aggregation functions, like for example the Choquet
integral (Tehrani et al., 2012a; Islam et al., 2018; Dias et al., 2019; Aggarwal and Tehrani,
2019), assume that local scores y; j of the constituents ¢; ; are already given, and consider
the task of learning their aggregation into an overall score y;.

The paper is organized as follows. In the next section, we recall the LTA framework
as introduced by Melnikov and Hiillermeier (2016). In Section 3, the OWA operator is
introduced, along with a corresponding learning algorithm. We evaluate this algorithm in
Section 4 on synthetic data and in a practical use case in the context of ensemble learning.
A summary and a discussion of directions for future work conclude the paper in Section 5.
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Figure 1: Hlustration of the basic structure of a learning-to-aggregate model.

2. Learning to Aggregate

In spite of certain generalizations that have been proposed in the recent past, the bulk of
methods for supervised machine learning still proceeds from a formal setting in which data
objects (instances) are represented in the form of feature vectors. Thus, an instance x is
described in terms of a vector (z1,...,24) € X = X1 X -+ X Xy, where X; is the domain
of the ith attribute or feature. The corresponding view of instances as points in a space of
fixed dimension d has largely influenced the way in which learning problems are studied and
methods developed: Supervised learning is considered as embedding objects as data points
in the space X, and then separating these points (in the case of classification) or fitting
them (in the case of regression) using models that have a natural geometric interpretation,
such as hyperplanes or any other type of decision boundary or manifold in the space X'. A
prediction ¢ of the output y € ) associated with an instance @ is then obtained by means
of a corresponding function f: X — ).

While this approach to formalizing and tackling learning problems proved to be highly
successful, there are problems for which the production of predictions § by means of a
(single) function f defined on the space X is arguably less appropriate. One such class of
problems is “aggregation”. The view we promote is to consider data objects as compositions
of individual constituents; moreover, we assume that the output associated with such a
composition is obtained as an aggregation of the properties of the individual constituents,
using a suitable type of aggregation function (Grabisch et al., 2009).

In the remainder of this section, we recall the formal framework of LTA as introduced
by Melnikov and Hiillermeier (2016) and elaborate on some of its properties. An overview
of the framework is given in Fig. 1.

2.1. Formal Setting and Notation

We proceed from a set of training data

D= {(c,p1),--,(en,yn)} CCx Y, (1)

where C is the space of compositions and Y a set of possible (output) values associated with a
composition; since aggregation is often used for the purpose of evaluating a composition, we
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also refer to the values y; as scores. A composition ¢; € C is a multiset (bag) of constituents

ci={ci1,.-.,Cin} ,

where n; = |¢;| is the size of the composition; scores y; are typically scalar values (real
numbers or values from an ordinal scale, such as 1 to 5 star ratings in recommender systems).
Constituents ¢; j can be of different type. In particular, the description of a constituent may
or may not contain the following information:

e Constituent roles: A label specifying the role of the constituent in the composition.
For example, suppose a composition is a menu consisting of constituents in the form of
dishes; each dish could then be labeled with appetizer, main dish, or dessert, thereby
providing information about the part of the menu it belongs to (and hence adding
additional structure to the composition).

e Constituent properties: A description of properties of the constituent. For exam-
ple, each dish could be described in terms of certain nutritional values. Formally, we
assume properties to be given in the form of a feature vector v;; € V, where V is a
corresponding feature space. We note, however, that more complex descriptions are
conceivable; for example, the description could itself be a composition.

e Constituent quantities: A quantity representing the amount of the constituent in
the composition (instead of simply informing about the presence or absence of the
constituent).

e Constituent scores: A local evaluation in the form of a score y; j, which is typically
real-valued (i.e., y; ; € Ry) but may also be binary or ordinal.

Finally, a composition can also be equipped with an additional structure in the form of a
(binary) relation on its constituents. In this case, a composition is not simply an unordered
set (or bag) of constituents but a more structured object, such as a sequence or a graph.

Like in standard supervised learning, the goal in learning to aggregate is to induce
a model h : C — Y that predicts scores for compositions. More specifically, given a
hypothesis space H and a loss function L : Y2 — R, the goal is to find a risk-minimizing
hypothesis

h* e argmin/ L(y,h(c)) dP(c,y)
heH CxYy

on the basis of the training data (1).

2.2. Disaggregation

As already said, existing methods for learning aggregation functions assume the local scores
y;,; of the constituents ¢; ; to be given, and consider the task of learning their aggregation
into an overall score y;. This is indeed the genuine purpose of aggregation functions, which
typically assume that all scores are commensurable and elements of the same scale )). For
example, one might be interested in how the scores on a conference paper (strong reject,
reject, ..., strong accept) coming from a (variable) number of reviewers are aggregated into
an overall rating by the program chairs. Sometimes, the additional assumption is made
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that individual scores are criteria (which, in our terminology, means that they have a
unique role, and that n; is given by the number of criteria and hence the same for each
composition). The main question, then, is how the rating of an alternative on different
criteria is aggregated into an overall rating. For example, one might be interested in how
reviewers combine their ratings on criteria such as readability, novelty, etc. into an overall
rating of a paper.

Now, suppose that local scores y;; are not part of the training data. Instead, the
constituents c¢; ; are only described in terms of properties in the form of feature vectors
v;j € V, or, even simpler, in the form of labels (i.e., their names). In our playlist example,
for instance, individual songs may just be identified by their title, or perhaps described in
terms of features such as genre, artist, length, etc. A natural way to tackle the learning
problem, then, is to consider the local scores as latent variables, and to induce them as
functions f : V — Y of the properties.

In the following, we assume these functions to be parametrized by a vector 6, and the
aggregation function A by a parameter XA. The model is then of the form

Yi = A)\(yi,la e 7yml) = Ax <f9(’vi,1), SR fe(vi,ni)> ) (2)

and the problem consists of learning both the aggregation function A, i.e., the parameter A,
and the mapping from features to local scores, i.e., the parameter 6, simultaneously. Here,
supervision only takes place at the level of the entire composition, namely in the form of
scores y;, whereas the “explanation” of these scores via induction of local scores is part of
the learning problem.

As already mentioned, the decomposition of global scores into several local scores is
referred to as disaggregation. For example, suppose we observe a user’s ratings of different
playlists, each one considered as a collection of songs, but not of the individual songs
themselves. In order to predict the user’s rating of new playlists, we could then try to
learn how she rates individual songs and, simultaneously, how she aggregates several (local)
ratings into a global rating.

Obviously, there is a strong interaction between the local ratings and their aggregation
into a global score. For example, if we consistently observe low scores for different playlists,
this could be either because the user dislikes (almost) all songs, or because she dislikes only
a few but aggregates very strictly (i.e., a playlist gets a low score as soon as is contains a
single or a few poor songs). An important question, therefore, concerns the identifiability
of the model, i.e., the question whether different parametrizations imply different models
(or, more formally, whether (X, 0) # (X', 0") implies that the corresponding models assign
different scores y; # y. for at least one composition).

3. Learning the OWA Operator

Even in its basic form shown in Figure 1, the LTA framework can be instantiated in various
ways and gives rise to a number of different learning problems, in particular depending on
the type of data that is observed and can be used for training: Compositions are of the
same size or vary in size; a composition is a simple (multi-)set or has a more structured
description, for example as a sequence or graph; constituent roles, constituent properties,
constituent quantities, and constituent scores are available or not.
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In this paper, we are interested in a setting of the following kind: Compositions ¢; are
bags of varying size n; but have no additional structure. Moreover, constituents are taken
from a finite set

O:{Ol,...,OM} (3)

of objects, which are only identified by their name but not described in terms of any other
properties. Perhaps most importantly, no information about local evaluations, i.e., scores
of the constituents, is supposed to be given.

An aggregation function that appears to be suitable in this setting is the Ordered
Weighted Averaging (OWA) operator (Yager, 1988). In the following, we first recall the
definition of the OWA operator and some of its properties, prior to addressing the problem
of learning this operator by means of an aggregation/disaggregation approach.

3.1. The OWA Operator

Recall that, in our model (2), the aggregation step consists of combining the local scores
Yil,---,Yin, into an overall score y;, using a suitable aggregation function Ay. As already
said, we instantiate the latter by the OWA operator. Simplifying notation by omitting
the index ¢ and writing (z1,...,2y,) for the vector of local scores (yi1,-..,Yin,), the OWA
operator is defined as follows:

Ax(z) = Ax(z1, 22, .-, Zn) :Z:)‘iz(i)7 (4)
i=1

where (A1,...,\,) € [0,1]" is a weight vector such that \; + ...+ A, = 1, and (-) a
permutation {1,...,n} — {1,...,n} such that z) < 29 < --- < 2(,). Thus, as an
important difference to the standard weighted average (and, more generally, linear models
typically used in machine learning), the weight ); pertains to the i*" largest element of the
input vector z = (21, ..., 2m), not to the ith element. This makes perfect sense if, like in the
context of LTA, this vector is actually supposed to represent a set with no specific order of
the elements. Reconsider, for example, the problem to aggregate reviewer scores z1, 29, 23
on a conference article. Obviously, a (generalized) linear model A1z + Ayz2 + A323, in which
\i quantifies the influence of the i** reviewer, would be meaningless, simply because the
reviewers have no natural order and may vary from article to article. What does make
sense, on the other side, is to quantify the influence of the best, the second best, and the
worst evaluation on the overall score.

According to (4), min(z) < Ax(z) < max(z) holds for every input vector z, and both
operators min and max are special cases of OWA. Indeed, the minimum can be obtained by
the weight vector A = (1,0,...,0) and the maximum by Apqr = (0,...,0,1). Likewise,

the arithmetic mean is recovered as a special case for Ay, = (1/n,1/n,...,1/n).
Additional mathematical properties of the OWA operator include piecewise linearity,
Lipschitz continuity, symmetry (i.e., invariance toward permutation of the inputs z1, ..., 2,),

and shift-invariance (Beliakov et al., 2011):

n

AA(Z/) = Z )\i ZEZ) = Z )\i (Z(z) + C) = Z )\12’(1) + Z )\i c= Z )\ZZ(Z) +c= A)\(Z) +c
P i1 i—1 i—1

=1

1115



MELNIKOV HULLERMEIER

for 2/ = z+¢, ¢ € R. Obviously, the OWA operator is also identifiable: Consider two OWA
functions Ay and Ay parametrized by A and X', respectively, and such that Ax(z) = Ay/(2)
for all z € R™. Then, A = X immediately follows from

N——

k entries k entries

k
Aj=Ax(1,...,1,0,...,0) = Ay (1,...,1,0,...,0) = N

for all k € {1,...,n}.

3.2. BUM Functions

In spite of its many appealing mathematical properties, the OWA operator is not associative.
Indeed, as already shown by Dubois and Prade (1984), the only symmetric associative means
are the a-medians (Grabisch et al., 2009). For the OWA operator, this implies that only the
special cases min and max are associative. Since we assume that the size of compositions
n; can vary even inside the same dataset, we have to find another way to construct OWA
operators of varying arity n.

One solution was proposed by Yager (1996, 2004). Intuitively, the idea is to parametrize
a whole family of “similar” OWA operators by a so-called basic unit interval monotone
(BUM) function ¢ : [0,1] — [0, 1], for which ¢(0) = 0 and ¢(1) = 1. The i*" weight \; of
the OWA operator with the arity n is defined as

vea() ()

An interesting choice for BUM functions are monotone splines. As argued by Beliakov
(2005), linear splines are especially appealing from a computational point of view. Although
other types of monotone splines exist, we make use of monotone univariate B-splines in this
paper. A BUM function ¢ is then given by

m+k—1

g(x)= Y aBilr), (5)
1=0

where k is the spline order, m is the number of equidistant spline knots ¢; in [0, 1], and a; is
the coefficient of the basis spline By ;(x). B-splines are recursively defined (De Boor, 2001)
as

B (.%') _ 1, ifx € [tlatl—i-l)
L0 0, otherwise

T — 1 tiykr1 — @

Bip-1(r) + ————— By p-1(2),

Blk xTr) =
#(@) tipk+1 — i1

otk — 1

where the set of spline knots {tl}}fg% is chosen such that tp < --- < ¢t =0 < --- <

tmtk—1 =1 < -+ <tpiok. The position of the knots outside the interval [0, 1] is arbitrary.
As shown by De Boor (2001), a sufficient condition for (5) to be monotone is a;41 > a; for
l€{0,1,...,m+ k — 1}, i.e., the set of spline coefficients should be non-decreasing. The
boundary constraints of the BUM function are satisfied if ag = 0 and @, 11 = 1 (Beliakov,
2000).
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3.3. Learning Model and Algorithm

Recall the learning problem as outlined in Section 2.1: From training data (1) consisting
of compositions ¢; = {¢;1,...,¢in,} together with scores y;, we seek to induce a model
(2). Here, we assume that the constituents c; ; are taken from the set of objects (3). The
local scores of these constituents, s = (s1,...,sy7) € RM, are assumed to be unknown and
therefore considered as parameters of the model. More specifically, our (noisy) OWA model
assumes the following dependency:

Yi = Fa,s,kz,m({oi,la cee 70i,ni}) + € (6)

where ¢; is an additive noise term, and

j j—1
Fa,s,k,m({oi,la v 70i,ni}) = Z )\j Si,(j) = Z (q (n> —q ( oy >> Si,(j)
= ) i

j=1
n; m+k—1 ] m+k—1 ] 1
= B.lL) - B.(l—= L
(5w (1) -5 wme () o
j=1 =0 =0
n; m+k—1 ] ] _1
(S (L) - () o
j=1 =0
n; m+k—1
= 9] [ SRETE) P
j=1 \ =0
m+k—1 n;
= > |« Gy
1=0 j=1
with s; ;) the 4t largest score among the constituents {0i1,...,0in;}, and a € RT*’“ the

(unknown) spline coefficients (i.e., the parameters of the OWA operator). Moreover, m and
k are hyper-parameters of the BUM function as described in the previous section.
Notice that the computation of basis spline differences

Gi(j) = Bk (;) — B (‘7;1) (7)

is independent of the model parameters s and a, and can therefore be precomputed for every
meaningful n, k, m combination for a given dataset. In addition, it rarely makes sense to
go beyond a piecewise linear spline (k = 2) and set the number of knots in the unit interval
m > n, since only the difference of basis splines at n points and not the approximation
between those points is considered.

As for the learning process, our goal is to find the model parameters s € [0,1]™ and
ac RT““ minimizing the squared error loss

L(s.a) = 3 (v~ Fassm({oin - 0in})) (8)

=1
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To this end, we make use of (standard) gradient-based optimization techniques, which
essentially presumes an efficient way to compute the empirical risk (8). We tackle this
problem by processing the training data in chunks (or blocks) consisting of instances with
the same composition size n. The overall empirical risk is then obtained by summing the
results over these chunks (cf. Algorithm 1). In the following, we explain the computation
for one data chunk containing d < N compositions of size n.

Notice that the model (6) can be stated in matrix form (and therefore be efficiently
computed on modern architectures). Since the data is assumed to be fixed in the learning
process, we rewrite the model as a function of its parameters s € [0,1]™ and a € RTH“
(and hyper-parameters m, k) as follows:

H(s,a)mp=r (sort (O o (]lgs))) (Gmk’mLaT) , (9)
S AT

where S corresponds to the row-wise sorted matrix of constituent scores for the given data
chunk and A are the estimated OWA weights. The single components have the following
interpretation:

o 71 Algn] = Adm+k] 1S @ row-wise projection, which removes the first M — (m + k)
columns from the matrix A.

e sort : A — A is a row-wise sorting operation on a given matrix A.

e O is the d x M 0/1 data matrix. A row corresponds to the “one hot” encoding of a
single composition.

o Gy km is the n x (m + k) matrix of spline differences as in (7).

e L is the lower triangle matrix of size (m+k) x (m-+k) consisting of ones. The product
of this matrix and the parameter vector a allows us to produce a non-decreasing set
of spline coefficients.

e o is the Hadamard (element-wise) product.

The model parameters are estimated by minimizing a regularized version of the empirical
risk (8), i.e., of the squared loss function Ly : R? x R? — R? (matrix form):

R(H) =d 'Ly (H(s,a)p 4, y) 17 +llall3, (10)
where y = (y1, . ..,yq) is the vector of composition scores. Recall that the spline coefficients

a have to satisfy ag = 0 and a,, 1 = 1. The hyper-parameters v, k and m allow for
controlling the smoothness of the BUM function as well as the model complexity. We
discuss their influence in Section 4.

The major challenge in the minimization of (10) is the sorting operation sort. Indeed,
for a sufficiently small vector € € R™, the sorted sequence sort(s) is almost surely the same
as for sort(s 4+ €). The corresponding Jacobian matrix dsort(s)/0s is zero-filled almost
everywhere. As discussed by Grover et al. (2019), this restricts the use of any sorting
operation in a backpropagation framework. In our current solution, we avoid this problem
by using the optimization algorithm L-BFGS (Byrd et al., 1995), which approximates the
gradient numerically.
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Algorithm 1 OWA empirical risk
Data: s, a, {Ola SR Ol}v {Gb SR) Gl}7 {yla s 7yl}7 L, M, ~
Result: R(H), the regularized empirical risk over [ data chunks
foriec {1,2,...,l} do
H,=r (Sort (Oi o (]lcdris))) (GiLaT)
R; =Ly (HI, y;) 17

end
R(H) = (X Ri) /M +1|lall3

4. Experimental Evaluation

In this section, we present experimental results for the OWA model! proposed in Section 3.3.
First, as a sanity check and to investigate the convergence behavior of the learning process,
we conduct experiments with synthetic data, for which the data-generating process can
be controlled. Then, to show that our approach can be used successfully for a practical
problem, we apply it in a case study on predicting classifier ensemble performance.

As discussed before, we are not aware of existing learning methods for the problem of
aggregation/disaggregation as stated in this paper. As a baseline, we therefore use the
approach that is arguably most obvious in this setting, namely a linear (additive) model.
This model defines the overall score y; of a composition ¢; by the sum of the local scores
of the constituents involved. More specifically, to account for the variability in the size of
compositions, the sum of local scores is normalized by n;. Thus, we formally arrive at the
following normalized linear model (NLM):

M
1

Yi = EZﬁj {oj € cit + € (11)
(2 le

where I denotes the indicator function. Since the model is linear in the constituent scores
Bj, these coefficients can be estimated easily by standard least squares regression. We
deliberately omit an intercept, because the model is also shift-invariant. Interestingly, (11)
can be obtained as a special case of the OWA model (6) for \y =... =\, = 1/n.

4.1. Synthetic Data

In the first experiment, we assume data to be produced according to our model (6) with
normally distributed noise? (zero expectation and standard deviation o € {0,0.1,0.3,0.5}).
We generate a set of M = 100 constituent scores as random numbers in [0,1]. These
scores are fixed and do not change throughout the experiment. In the second step, 1000
compositions are generated uniformly at random by sampling without replacement. In the
last step, we randomly generate 100 OWA weight vectors A of size n = 10, such that every
A; is chosen independently from the unit interval, and the vector A is then rescaled. The
hyper-parameters of the OWA model are set to k = 2, m = 21 and v = 107°.

1. Python implementation is available at https://github.com/v-melnikov/LTA-OWA
2. Due to the noise, it may happen that y; falls outside the range [0, 1]. In this case, it is clamped at the
boundary points.
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generating process for different noise levels o: (a) composition scores, (b) con-
stituent scores, (¢) OWA weight vectors A.

Figure

Both models are trained on 500 compositions and tested on the remaining ones. Fig. 2
compares the model performance in terms of the parameter fit. The estimates of the com-
position scores are comparable across all noise levels, with a slight advantage in favor of the
OWA model. More interesting is the comparison of the constituent score estimates. Here,
the OWA model clearly outperforms the baseline, especially for higher noise levels—even
then, the ground truth vectors A are estimated quite well by OWA.

In the second experiment with synthetic data, we use the same setup as before, but
additionally vary the OWA model hyper-parameters k € {1,2,3} (ranging from piecewise
constant to cubic splines) and m € {5,10,15,20}. Again, we measure the mean absolute
error of the estimated composition scores and the parameters of the data-generating process.
The results in Fig. 3 suggest some trends, which appear to be stable across all considered
scenarios. For all three quantities, the estimation error increases with increasing noise.
However, like in the first experiment, we observe a saturation of the OWA weight error,
which is independent of the model hyper-parameters m and k.

No performance gain can be observed on our dataset when increasing the order of splines
beyond k = 2. As expected, a piecewise linear BUM function (k = 2) is flexible enough
to approximate all OWA operators. Interestingly, even a piecewise constant BUM (k = 1)
has a competitive performance in cases with high noise for the composition and constituent
scores. The effect of the number of spline knots in the unit interval (m) is less obvious.
Although smaller values of m < n lead to a drop in performance and higher variance for all
types of error, no significant performance increase can be observed if m > n. Based on this
experiment, we recommend the following default hyper-parameters for the OWA model:
k = 2 and m = expected number of constituents (provided this information is available).
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Figure 3: Mean absolute error in estimation of the ground truth parameters of the data-
generating process for different noise levels ¢ and different combinations of m
and k: composition scores (blue), constituent scores (yellow), and OWA weight
vectors (green).

4.2. Case Study: Predicting Classifier Ensemble Performance

In so-called “ensemble pruning”, the goal is to select an optimal subset of members of an
ensemble of classifiers. Zhou (2012) indeed shows that, in ensemble learning, a properly
chosen subset of a set of individual learners can indeed perform better than the entire
set (“many could be better than all”). Motivated by this observation, we investigate the
problem of predicting the performance of an ensemble of classifiers (which, if successful,
may support the search for an optimal subset).

We generate the ensemble meta-dataset using five different types of learners: Gaussian
Naive Bayes, CART decision tree, k-Nearest Neighbors, stochastic gradient descent (SGD)
with hinge loss (i.e., linear SVM), and SGD with log-loss (i.e., logistic regression). The
last two learners are extended to the multi-class case using a one-vs-rest decomposition.
In total, we generate 61 individual models by randomly instantiating the hyper-parameters
(and the random seed) of all learners except for Naive Bayes. The classifier ensembles are
chosen randomly without replacement. The ensemble sizes vary between 3 and 21 (only odd
numbers). In total, 1000 ensembles following the majority vote decision rule are generated.
The ensembles are evaluated on well-known multi-class benchmark datasets. The detailed
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Table 1: Mean absolute error (MAE) and Kendall’s 7 for both models (mean and standard
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deviation over 10 random shuffled folds).

name (id) MAEow a MAENLMm TOW A TNLM

LED (40496) 0.023 £0.001 0.053+0.002 0.57+£0.019  0.472+0.026
ecoli (39) 0.021 +0.001  0.044 £0.001 0.826 +=0.012 0.74 £0.017
glass (41) 0.035+0.001 0.046 £0.001 0.636 +0.018 0.572 £+ 0.032
kr-vs-k (1481) 0.013 £0.001 0.0174+0.001 0.755+0.023 0.728 +0.016
letter (6) 0.052 £0.003 0.079+0.002 0.69+0.022  0.552 4+ 0.035
mfeat-factors (12) 0.016 £0.003 0.034+£0.006 0.273 £0.049 0.139 4+ 0.05
mfeat-fourier (14) 0.035+0.002 0.066+0.002 0.633+0.025 0.47240.03
mfeat-karhunen (16) 0.018 +0.002 0.036 £0.004 0.382 +0.047 0.266 £ 0.055
mfeat-morphological (18) 0.045 £0.002 0.061 +£0.002 0.585 +0.024 0.465 + 0.039
mfeat-pixel (20) 0.018 £0.002 0.036 +0.004 0.368 £0.057 0.228 + 0.05
mfeat-zernike (22) 0.018 £0.002 0.032£0.002 0.291+£0.071 0.201 £0.044
optdigits (28) 0.018 £0.003 0.035+0.003 0.375+£0.071 0.261 +0.044
page-blocks (30) 0.005+0.001 0.004 £0.0 0.334 £0.045 0.484 +£0.024
pendigits (32) 0.021 +0.003 0.034 £0.003 0.555 £ 0.077 0.409 £ 0.043
satimage (182) 0.012+0.001 0.017£0.001 0.821+£0.012 0.72+£0.021
segment (36) 0.023 £0.005 0.033+0.001 0.571+£0.111 0.5134+0.028
200 (62) 0.031 £0.003 0.084+0.002 0.716 £0.018 0.621 +0.013
mean 0.024 +0.002 0.042 £0.002 0.552 £0.041 0.461 +0.033

description of every dataset can be found in the OpenML? database using the corresponding
dataset id provided in Table 1. On every dataset, we perform a 5-fold cross-validation and
store the mean test accuracy as the composition score.

The performance comparison between the OWA model (with hyper-parameters k = 2,
m = 21, v = 107°) and the baseline NLM is provided in Table 1. To assess the prediction
variance, a Monte Carlo cross-validation (50% train, 50% test) was repeated ten times. In
addition to the mean absolute error (MAE), we also compare the predicted performance
scores using Kendall’s 7 ranking metric (ranging between —1 and 1). This is motivated
by the observation that, when searching for an optimal subset of classifiers, the relative
comparison of ensembles (i.e., their ranking) might actually be more important than their
comparison in terms of absolute performance differences. For both metrics, the OWA model
outperforms the baseline on all datasets except page-blocks, where the MAE performance
is comparable (although the baseline achieves slightly better ranking performance). The
prediction variance is quite low and comparable for both models, suggesting that our OWA
learning algorithm is stable.

To verify the plausibility of the learned OWA weights \;, Fig. 4 shows the distribution
of these weights for an ensemble of size n = 20. For most datasets, the distribution is
left skewed, i.e., the aggregation tends to be “maximum-like”, giving higher weight to
higher local scores. In the context of classifier ensembles, this is indeed quite plausible: the
performance of an ensemble is typically worse than the best-performing ensemble member,

3. www.openml.org
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Figure 4: Mean and standard deviation (shaded) of the learned OWA weights instantiated
for an ensemble of size n = 20.
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Figure 5: Learned OWA weights for the datasets pendigits and zoo compared to the ground
truth performance of single classifiers on these datasets.

but better than the average. In Fig. 5, the OWA weights learned on the datasets pendigits
and zoo are shown together with the ground truth performance of single ensemble members.
For the first dataset, the majority of classifiers has a good accuracy. It is therefore enough
to give the most weight to the ensemble members that are ranked higher (based on their
estimated accuracy) and ignore the other ones. For the second dataset, however, there is
a large group of classifiers with low accuracy. In this case, it is more reasonable to weight
the middle-ranked ensemble members the most, since their performance will be decisive for
the overall performance of the ensemble.
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5. Summary and Outlook

We tackled the “aggregation/disaggregation problem”, a novel type of machine learning
problem, for the case of the OWA operator, and developed a learning algorithm specifically
tailored for this task. First experimental results on synthetic data as well a practical case
study on predicting the performance of classifier ensembles are very encouraging.

One promising direction for future work is to develop a customized learning algorithm for
the OWA model. An efficient algorithm can take advantage of a differentiable approximation
of the sorting function, like the one recently proposed by Cuturi et al. (2019).

Also interesting is a generalization of our model toward the description of constituents
in terms of feature vectors wv;;. In this case, the local scores y;; would no longer be
constants, but instead be expressed as functions fg(v; ;), where € is another parameter to
be learned. An extension of that kind will also enable the handling of a potentially infinite
set of constituents (instead of a restricted set of finite size M).
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