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Abstract

In this paper, we propose a weighted rank correlation measures on the
basis of fuzzy order relations. Our measure, called scaled gamma, is re-
lated to Goodman and Kruskal’s gamma rank correlation and parametrized
by a fuzzy equivalence relation on the rank positions. To specify this re-
lation in a convenient way, we make use of so-called scaling functions.
The usefulness of our approach is indicated in a first experimental study, in
which we analyze a real-world ranking data set.

1 Introduction

Rank correlation measures such as Kendall’s tau [1] and Spearman’s rho
[2], which have originally been developed in statistics, are becoming in-
creasingly important in fields like information retrieval and preference lear-
ning [3]. In particular, such measures are commonly used as performance
metrics to quantify the similarity between an ideal or “true” ranking of a
set of items and a prediction produced by a ranking algorithm or learning-
to-rank method. Formally, a rank correlation measure is a mapping SN ×
SN → [−1,+1], with SN the set of permutations of [N ] = {1, 2, . . . , N}
and N the number of items to be ranked.

In many applications, such as Internet search engines, one is not equally
interested in all parts of a predicted ranking. Instead, accuracy in the top of
the ranking, i.e., accurate predictions of the ranks of the top-items, is typ-
ically considered more important than accuracy in the middle and bottom
part. Standard rank correlation measures, however, put equal emphasis on
all positions and, therefore, are not able to make distinctions of that kind.
This is why weighted variants have been proposed for some correlation
measures, as well as alternative measures specifically focusing on the top
of a ranking, such as the Discounted Cumulative Gain [4].

In this paper, we develop a formal framework for designing weighted rank
correlation measures based on the notion of fuzzy order relation. More
specifically, the key ingredients of our approach are as follows:
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• Fuzzy order relations [5] are generalizations of the conventional or-
der relations on the real numbers: SMALLER, EQUAL and GREATER.
They enable a smooth transition between these predicates and allow
for expressing, for instance, that a number x is smaller than y to a
certain degree, while to some degree these numbers are also consid-
ered as being equal. Here, the EQUAL relation is understood as a kind
of similarity relation that seeks to model the “perceived equality”
(instead of the strict mathematical equality).

• Fuzzy rank correlation [6, 7] generalizes conventional rank correla-
tion on the basis of fuzzy order relations, thereby combining proper-
ties of standard rank correlation (such as Kendall’s tau) and conven-
tional numerical correlation measures (such as Pearson correlation).
Fuzzy rank correlation measures are especially useful in cases where
computations with numerical differences are meaningful within a
certain range but less reasonable if these differences are too small.

• Scaling functions for modeling fuzzy equivalence relations [8]. For
each element x of a linearly ordered domain X , a scaling function
s(·) essentially expresses the degree s(x) to which x can be (or
should be) distinguished from its neighboring values. A measure
of distance (or, equivalently, of similarity) on X can then be derived
via accumulation of local degrees of distinguishability.

The rest of the paper is organized as follows. In the next two sections, we
briefly recall the basics of fuzzy order relations and fuzzy rank correlation,
respectively. Our scaled gamma measure is then introduced in Section 5.
A small experimental study is presented in Section 6, prior to concluding
the paper in Section 7.

2 Fuzzy Order Relations

A fuzzy relationE : X×X→ [0, 1] is called fuzzy equivalence with respect
to a t-norm >, for brevity >-equivalence, if it is

• reflexive: E(x, x) = 1,

• symmetric: E(x, y) = E(y, x),

• and >-transitive: >(E(x, y), E(y, z)) ≤ E(x, z).
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Moreover, a fuzzy relation L : X×X→ [0, 1] is called fuzzy ordering with
respect to a t-norm > and a >-equivalence E, for brevity >-E-ordering,
if it is

• E-reflexive: E(x, y) ≤ L(x, y),

• >-E-antisymmetric: >(L(x, y), L(y, x)) ≤ E(x, y),

• and >-transitive: >(L(x, y), L(y, z)) ≤ L(x, z).

We call a >-E-ordering L, which plays the role of a LESS or EQUAL rela-
tion, strongly complete if max(L(x, y), L(y, x)) = 1 for all x, y ∈ X.

Finally, letR denote a strict fuzzy ordering associated with a strongly com-
plete>-E-ordering L. As will be seen below, the well-known Łukasiewicz
t-norm >(x, y) = max(0, x + y − 1) will be most relevant for us. In this
case, R can simply be taken as R(x, y) = 1− L(y, x) [5]. Obviously, R is
playing the role of a (strictly) GREATER relation.

3 Fuzzy Rank Correlation

In this section, we briefly recall Goodman and Kruskal’s gamma rank cor-
relation measure [9] as well as its fuzzy extension as proposed by Boden-
hofer and Klawonn [6] and further analyzed by Ruiz and Hüllermeier [7].

Consider n ≥ 2 paired observations {(xi, yi)}Ni=1 ⊂ X×Y of two variables
X and Y , where X and Y are two linearly ordered domains; we denote
x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN). The goal of a rank corre-
lation measure is to capture the dependence between the two variables in
terms of their tendency to increase and decrease in the same or the opposite
direction. If an increase in X tends to come along with an increase in Y ,
then the (rank) correlation is positive. The other way around, the correla-
tion is negative if an increase in X tends to come along with a decrease in
Y . If there is no dependency of either kind, the correlation is (close to) 0.

Several rank correlation measures are defined in terms of the number C
of concordant, the number D of discordant, and the number of tied data
points. For a given index pair (i, j) ∈ [N ]2, we say that (i, j) is concordant,
discordant or tied depending on whether (xi−xj)(yi−yj) is positive, neg-
ative or 0, respectively. A well-known example is Goodman and Kruskal’s
gamma rank correlation [9], which is defined as

γ =
C −D
C +D

.
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Now, assume two >-equivalences EX and EY to be given on X and Y,
respectively, as well as strict fuzzy order relations RX and RY. Using these
relations, the concepts of concordance and discordance of data points can
be generalized as follows [6]: Given an index pair (i, j), the degree to
which this pair is concordant, discordant, and tied is defined, respectively,
as

Ĉ(i, j) = >(RX(xi, xj), RY(yi, yj)), (1)

D̂(i, j) = >(RX(xi, xj), RY(yj, yi)), (2)

T̂ (i, j) = ⊥(EX(xi, xj), EY(yi, yj)), (3)

where > is a t-norm and ⊥ is the dual t-conorm of > (i.e., ⊥(x, y) =

1 − >(1 − x, 1 − y)). With C̃(i, j) = Ĉ(i, j) + Ĉ(j, i) the degree of
concordance of the index pair (i, j) and D̃(i, j) = D̂(i, j) + D̂(j, i) the
degree of discordance, the following equality holds for all (i, j):

C̃(i, j) + D̃(i, j) + T̂ (i, j) = 1.

Adopting the simple sigma-count principle to measure the cardinality of a
fuzzy set, the number of concordant and discordant pairs can be computed,
respectively, as

C̃ =
∑

1≤i<j≤N

C̃(i, j), D̃ =
∑

1≤i<j≤N

D̃(i, j).

The fuzzy ordering-based gamma rank correlation measure γ̃, or simply
“fuzzy gamma”, is then defined as

γ̃ =
C̃ − D̃
C̃ + D̃

. (4)

From this definition, it is clear that the basic idea of the fuzzy gamma is
to decrease the influence of “close-to-tie” pairs (xi, yi) and (xj, yj). Such
pairs, whether concordant or discordant, are turned into a partial tie, and
hence are ignored to some extent. Or, stated differently, there is a smooth
transition between being concordant (discordant) and being tied.

4 The Scaled Gamma Measure

In the previous section, X and Y could be any linearly ordered domains.
Coming back to our original goal of a (weighted) comparison of two rank-
ings, we now take X = Y = [N ], i.e., both domains are given by the set
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of rank positions. Then, the relation E = EX = EY is simply express-
ing to what degree two ranks are considered as being equivalent, i.e., as
not being distinguished. The basic idea is to modulate the influence of a
concordance or discordance involving two rank positions according to the
degree of indistinguishability of these positions.

The fuzzy equivalence E can be defined quite conveniently by means of a
so-called scaling function [8]. For each element of a linearly ordered do-
main, a scaling function s(·) essentially expresses the degree to which this
element can be (or should be) distinguished from its neighboring values. A
measure of distance (or, equivalently, of similarity) on the whole domain
can then be derived via accumulation (summation or integration) of local
degrees of distinguishability.

More concretely, a scaling function s′(·) can be defined on X = [N ] in our
case, with s′(x) indicating the degree to which rank x ought to be distin-
guished from its neighbor rank x + 1. These degrees of distinguishability
between neighbors can then be extended to degrees of distinguishability
between any pair of ranks x and y via

∆(x, y) =

max(x,y)−1∑
r=min(x,y)

s′(r) . (5)

As we find it more convenient to work with a continuous scaling function
s : [1, N ]→ R+, we define s′(·) via s(·) as follows:

s′(x) =

∫ x+1

x

s(z) dz (6)

The function s(·) scales the positions of the ranks in the sense of replacing
the constant distance 1 between two adjacent ranks x and x+ 1 by s′(x) as
defined in (6). Thus, (5) becomes

∆(x, y) =

∫ max(x,y)

min(x,y)

s′(z) dz . (7)

Based on this distinguishability relation, we define the relation E by

E(x, y) = max
(
1−∆(x, y), 0

)
.

From the results of [8], it follows that E thus defined is indeed a proper
fuzzy equivalence relation, namely a>-equivalence with> the Łukasiewicz
t-norm. Thus, the fuzzy gamma coefficient as introduced in the previous
section can be derived on the basis of this fuzzy equivalence on ranks.
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More concretely, consider two rankings specified, respectively, by permu-
tations π, π′ : [N ] → [N ], where π(i) denotes the position of object i
in the ranking defined by π. The pair of objects (i, j) is concordant if
(π(i) − π(j))(π′(i) − π′(j)) > 0. However, instead of counting an incre-
ment of +1, the overall level of concordance D is increased by

mi,j = max
(
1− E(π(i), π(j))− E(π′(i), π′(j)), 0

)
,

which can be seen as the weight attached to the pair (i, j). Thus, full con-
cordance is counted only of the ranks π(i) and π(j) as well as the ranks
π′(i) and π′(j) are sufficiently distinguished. Otherwise, the degree of
concordance is reduced in correspondence with the respective degrees of
indistinguishability (equivalence). Computing the overall level of discor-
dance in the same way, we eventually obtain our weighted rank correlation
measure, which we call scaled gamma, as the fuzzy gamma (4) with

C̃(i, j) =

{
mi,j if (π(i)− π(j))(π′(i)− π′(j)) > 0

0 otherwise

and

D̃(i, j) =

{
mi,j if (π(i)− π(j))(π′(i)− π′(j)) < 0

0 otherwise

This measure has a number of desirable properties. In particular, the scaled
gamma inherits all formal properties of γ̃ as shown in [7]. Moreover, sev-
eral interesting measures can be recovered as special cases. For example,
the original gamma correlation measure is obtained for the scaling function
s ≡ 1 (all ranks are fully distinguished, i.e., E(x, y) = 0 for all x 6= y).
Another interesting special case is obtained for the top-k scaling function
s(x) = 1 for x ≤ k and s(x) = 0 for x > k. Then, mi,j = 1 unless either
π(i) and π(j) or π′(i) and π′(j) both exceed k, in which case mi,j = 0.
In other words, concordances and discordances in the bottom part of the
ranking are completely ignored.

5 Illustration

To show the usefulness of our weighted rank correlation measure, we con-
ducted experiments with a data set introduced in [10]. The data originates
from a study in which 409 students aged 15–18 were asked to rank 16
goals such as “I want to feel calm, at ease” and “I want to get along with
my parents” according to how important they personally find these goals.
Thus, each student is characterized by a ranking of 16 goals. An obvious
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idea, then, is to define a degree of similarity between two students in terms
of the correlation between the corresponding rankings.

We computed binary similarity relations (409 × 409 matrices) using Ken-
dall’s tau and Spearman’s rho as correlation measures. Moreover, as it is
plausible that higher ranks carry more information than lower ones (while
reliably sorting the top 3 to 5 goals might be feasible, the remaining ones
are likely to be put in a more or less random order), we also applied
weighted rank correlation measures that put more emphasis on the top-
ranks. More specifically, we used the Canberra distance [11], a weighted
variant of Spearman’s footrule, and a weighted version of Kendall’s tau
introduced by Kumar and Vassilvitskii [12].

Finally, we also applied our scaled γ with a parametrized scaling function

sM(x) =
1− c

1 + exp(a(x− b))
+ c . (8)

Figure 1 illustrates the influence of the three parameters a, b, and c on the
shape of the function. The weighted Kendall measure has (weight) param-
eters δi, too. Since these parameters are serving a purpose very similar
to the scaled distance between adjacent ranks in our case, we set them to
δi =

∫ i+1

i sM(x) dx.

0

1

1 2 3 4 5 6 7 8 9 10
X

y

b

b

a
b
c

Figure 1: Parametrizable scaling function.

We embedded the 409 data objects (students) in R2 by applying kernel
principle component analysis (kPCA) [13] to the binary similarity rela-
tions. The results are shown in Figure 2 in the form of a scatter plot. As
can be seen, neither Kendall and Spearman nor Canberra are able to pro-
duce any structure in the data. More structure does clearly become visible
by choosing appropriate parameters for the two parametrized measures,
the weighted Kendall and our scaled gamma—the increased flexibility of
these measures is obviously an advantage. The results of our scaled gamma
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are perhaps the most interesting ones. In fact, the scaled gamma is able
to produce well-defined clusters that arguably correspond to subgroups of
students with similar moral concepts.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Two-dimensional embedding of similarity relations by means of
kernel PCA. Similarities were produced using Kendall’s tau (a), Spear-
man’s rho (b), Canberra (c), weighted Kendall (d, e, f) and scaled gamma
(g, h, i). The three versions of the last two measures were produced using
the scaling function sM with the parameters a = 10, b = 3, c = 0 in (d)
and (g), c = 0.0125 in (e) and (h), c = 0.025 in (f) and (i).

6 Conclusion

We introduced a weighted rank correlation measure called scaled gamma.
This measure is a special case of a recently proposed generalization of
the gamma rank correlation based on fuzzy order relations. The scaled
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gamma allows for specifying the importance of rank positions in a quite
convenient way by means of a scaling function. Thanks to the underlying
formal foundation, such a scaling function immediately translates into a
concrete version of our measure, in which the rank positions are processed
within an appropriate weighting scheme.

The usefulness of the scaled gamma was indicated in a first experimental
study, in which we analyzed a real-world ranking data set. Here, interesting
structure in the data could be revealed through kernel PCA when using
the scaled gamma as a correlation measure, whereas no such structure is
uncovered by standard rank correlation measures.

More applications of that kind will be considered in future work. Apart
from that, we are planning a detailed formal comparison of the scaled
gamma and other weighted rank correlation measures.
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