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Abstract: The general linear model y = Xβ + ε  with correlated error variables can be trans-
formed by means of the generalized singular value decomposition to a very simple model (ca-
nonical form) where the least squares solution is obvious. The method works also if X and the
covariance matrix of the error variables do not have full rank or are nearly rank deficient (rank-k
approximation). By backtransformation one obtains the solution for the original model. 
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1. Introduction and summary
The general linear model is given by

(1) 2, E( ) 0, var( ) , ( ), ( ),y X W X n p W n n n pβ ε ε ε σ= + = = = × = × > .
2Wσ  is the covariance matrix of ε  and we assume that the matrix W is given (symmetric and positive

semidefinite) while 2σ  is unknown. If nW I=  we have the simple linear model with uncorrelated
error variables 1, , nε ε… . If rk( )W k=  W can be written as W FF= T  where ( )F n k= ×  and
rk( ) rk( )F W k= = . The random error ε  can now be given in the form
(2) 2 2  with  ~ (0, ) i.e. with E( ) 0, var( )k kFu u I u u Iε σ σ= = =

as E( ) E( ) 0Fuε = =  and 2 2var( ) E( ) E( )F uu F FF Wε εε σ σ= = = =T T T T . So the general linear

model (1) can be written as

(3) 2, where  ( ), ( )  and  ~ (0, )ky X Fu X n p F n k u Iβ σ= + = × = × ,

and according to the method of least squares we have to determine ˆβ β=  such that
2 miniu u u=∑ =T , where u must satisfy the equation (3). We want to state our estimation problem in

other words. Consider for given , ,y X F  the set { }( , )M b e y Xb Fe= = + . Now we are looking for

the pair ( , )b e  with 2
1 mink

iie e e== =∑T . Then ˆb β=  is the least squares estimator of β . If one is

interested in the model with normally distributed error variables, one assumes that 2~ (0, )k ku N Iσ ,

and then one has Fuε=  2~ (0, )nN Wσ . Note that we do not make any assumptions on the rank of

the matrices X and W.
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By means of the generalized singular value decomposition we find linear transformations that trans-

form ( , ,y uβ ) to ( , ,y uβ�� � ), where again 2~ (0, )ku Iσ� , and where y�  can be decomposed in four sub-

vectors 1 4, ,y y� �… , β�  in three subvectors 1 2 3, ,β β β� � �  and u�  in two subvectors 1 2,u u� �  such that model

(3) becomes

(4)

1 1
2 2

2 2 1

3 2

4

( ) ,
( ) ,  where  and  are diagonal with ,
( ) ,
( ) 0.

a y
b y C Su C S C S I
c y u
d y

β
β

=
= + + =
=
=

��
�� �

� �
�

We call this the canonical form of the general linear model. We have four categories of observations
( 1 4, ,y y� �… ), three categories of parameters ( 1 2 3, ,β β β� � � ) and two categories of error variables ( 1 2,u u� � ).
The observations in (a) are completely fixed by the parameters 1β� ; they possess no random error.
The observations in (b) depend on 2β�  and they have a random error 1Su� .
The observations in (c) do not depend on the parameters, they are given by 3 2y u=� � .
The observations in (d) are all zero; they are independent of the parameters and have no random error.
Note that the parameters in the third category 3β�  do not appear in the canonical model (4); they can
have arbitrary values and are not identifiable. As Uβ β=� T  with orthogonal U the additional condition

minβ β β β= =� �T T  (minimum length condition) entails 3 0β =�  and this way the whole parameter set
β�  as well as Uβ β= �  becomes identifiable. Now it is very easy to find the least squares estimators in
the canonical model and by backtransformation we obtain the estimators for the original parameters.
The basic ideas of this treatment of the general linear model are given in Kourouklis-Paige (1981) and
Paige (1985). In this paper the derivations of Paige are simplified and we describe a clear computa-
tional procedure for finding the results; this procedure is demonstrated with a simple example. Some
more examples are to be found in Knüsel (2009). Furthermore we demonstrate how the problem of
near rank deficiency can be treated by means of the so-called rank-k-approximation.

Summary 
In section 2 we describe the general linear model and in section 3 the generalized singular value de-
composition. In section 4 the general linear model is reduced to the canonical model using the gener-
alized singular value decomposition. The least squares estimators for the canonical and original model
are derived in section 5. Section 6 deals with the special case rk( )W n=  (correlation matrix with full
rank) and rk( )X p≤ . If also X has full rank this case can be reduced to the classical linear model by
the well-known method of Aitken (see Rao-Toutenburg et al., 2008, p. 151). In section 7 we show that
the general linear model with linear restrictions can be extended to a general linear model without
explicit restrictions according to a method of Rao (1971). Section 8 deals with the question what one
can do if our matrices are nearly rank deficient (e.g. weak multicollinearity). The rank-k approxima-
tion of Golub-Van Loan (1996) is a wonderful means to overcome these problems. The example in
section 9 deals with a general linear model with nearly rank deficient X and W. In a first step we de-
monstrate the application of the rank-k approximation to the given matrices and then our procedure
leads to a numerically stable solution. Section 10 gives the conclusion. In the appendix a simplified
derivation of the general singular value decomposition according to the ideas of Paige (1985) is pre-
sented. 
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2. The general linear model

The general linear model is given by

(5) 2, ( ) 0, var( ) , ( ), ( ),y X E W X n p W n n n pβ ε ε ε σ= + = = = × = × > .
2Wσ  is the covariance matrix of ε , and we assume that the matrix W is given (symmetric and posi-

tive semidefinite) while 2σ  is unknown. If nW I=  we have the simple linear model. W can be written

as W FF= T  where ( )F n k= ×  and rk( ) rk( )F W k= = . This can be seen from the spectral decom-

position of W

1,   where   is orthogonal and  diag( , , ,0, ,0), 0k iW R R R λ λ λ= Λ Λ= >… …T .

Let 1( ) diag( , , )kD n k λ λ= × = …  and ( )F RD n k= = × ; then ( )DD n n= × =ΛT  and

FF R DD R R R W= = Λ =T T T T . The random error ε  can now be written in the form

(6) 2 2  with  ~ (0, ) i.e. with E( ) 0, var( )k kFu u I u u Iε σ σ= = = ,

as E( ) E( ) 0Fuε = =  and 2 2var( ) E( ) E( )F uu F FF Wε εε σ σ= = = =T T T T . So model (5) can also be

given as

(7) 2, where  ( ), ( ), ~ (0, )ky X Fu X n p F n k u Iβ σ= + = × = × ,

and according to the method of least squares we have to determine ˆβ β=  such that 2 miniu u u=∑ =T ,

where u must satisfy the equation (7). If one is interested in the model with normally distributed error

variables, one assumes that 2~ (0, )k ku N Iσ , and then we have 2~ (0, )nFu N Wε σ= . Let 

 vector space of all column vectors of  (range of ),
 vector space of all column vectors of  (range of ).

X

F

X X
F F

=
=

R

R

Obviously XXβ ∈R  for arbitrary β  and FFu ∈R  for arbitrary u, and so we derive from model (7)

that X Fy ∈ ∪R R . An observation ( )X Fy ∉ ∪R R is not admissible with model (7), it were an

inconsistent observation.

3. The generalized singular value decomposition

Let ( )X n p= ×  and ( )F n k= ×  be real matrices. Then there exist orthogonal matrices

1 2( ), ( ), ( ), ( )c cP n n U p p U k k V r r= × = × = × = ×  such that

(8)

0
1 1

0
2 2

0

0

VP XU D

VP FU D

 ∆ =   
 ∆ =   

T

T

where 

1

2

1 2

0 0 0 0 0
( ) 0 0 , ( ) 0 0 ,

0 0 0 0 0

r

c c
r

I
D r p C D r k S

I

         = × = = × =           

0 1 1( ) diag( , , ), 0
c cc c r rr r δ δ δ δ∆ = × = ≥ ≥ >… " , 1, .  the positive singular values of ( | ),

cr X Fδ δ…

1 1
2 2

1 1

( ) diag( , , ), 1 0,

( ) diag( , , ), 0 1, ,
r r

r r

C r r c c c c

S r r s s s s C S I

= × = > ≥ ≥ >

= × = < ≤ ≤ < + =

… "

… "
and where

1 2rk( | ), rk( ), rk( ), , ,c X F X F c X Fr X F r X r F r r r r r r r r r r= = = = + − = − = − .
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So the diagonal matrices 1D  and 2D  have the same rank as X and F. Note that

1 2dim( ), dim( ), dim( ), dim( )c X F X F X F F Xr r r r= ∪ = ∩ = =R R R R R - R R -R .

The representation (8) is called the generalized singular value decomposition of the pair ( , )X F . A
proof of this decomposition can be found in Paige (1985), and in the Appendix we give a sketch of this
proof. All matrices in (8) are either orthogonal or diagonal (except X and F). Also note that 1D  and

2D  are diagonal matrices with a rectangular format the diagonal starting in the upper left and lower
right corner, respectively.

In the general linear model (7) we have chosen ( )F n k= ×  such that 2rk( )F r r k= + = , and then the

generalized singular value decomposition (8) of ( | )X F  simplifies to

(9)

1

2

0
1 1 1

0
2 2 2

0 0
, ( ) 0 00 0 0 0

0 0
, ( ) 00 0

r

c

c
r

I
VP XU D D r p C

VP FU D D r k S
I

   ∆    = = × = =        

   ∆   = = × = =        

T

T

4. Reduction of the general linear model to the canonical model

Now we want to apply the decomposition (9) to the general linear model (7). We have

N N

2

1 1 2 2

,   where  ~ (0, )ky X Fu u I

XU U FU U u
u

β σ

β
β

= +

= +
== � �

T T

and multiplying the last equation by PT  we obtain

N 1 2P y P XU P FU u
y

β= +
=

� �T T T .

Applying the generalized singular value decomposition (9) we obtain

(10) 0
1 20

Vy D D uβ
 ∆  = +     

� � .

The last cn r−  elements of y  are zero and so we write 0
0
yy

 =   
 where 0y  denotes the vector of the

first cr  elements of y . Now we have from (10)

0 0 1 2y V D D uβ =∆ +  
� �

or

(11) 1
0 0 1 2

0

V y D D u
y

β−∆ = +
=

� �����	���

�

T .

Thus the general linear model (7) can be transformed to

(12) 0
0 1 2   with   ( 1)0 c

yy y r D D uβ
 = = × = +  
� �� � �

where

1r r Xp r−

1r
r
2r

r 2r

1r
r
2r
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1

2

,

,

U

u U u

β β=

=

�

�

T

T

1
0 0 0

0 0
y Vy P y

I

−   ∆  = =      
�

�
T

T .

The transformed model (12) is very simple as 1D  and 2D  are diagonal matrices with the same ranks

as X and F, and we call this representation the canonical form of the general linear model. Note that

1 2 cr r r r+ + =  and so we write

01
0 02

03

( 1)c

y
y r y

y

   = × = =    

�
� �

�

and further

1

2

3

( 1)p
β

β β
β

    = × = =    

�
� �

�

1
2

( 1) uu k u
 = × = =  
�� �

and we obtain from (12)

1

2

101
1

02 2
2

03 3

0 0 0 0
0 0 0
0 0 0 0

r

r

Iy uy C S uIy

β
β
β

                   = +                        

�� ��� ���

i.e.

(13)
01 1

02 2 1

03 2.

y

y C Su
y u

β

β

=

= +
=

��
�� �

� �

So we find the following four categories of observations

(14)

01 1 1

02 2 1

03 2 2

1

( ) ( 1)

( ) ( 1)
( ) ( 1)
( ) (( ) 1) 0.c

a y r

b y r C Su
c y r u
d y n r

β

β

= × =

= × = +
= × =
= − × =

��
�� �

� �
�

The observations in (a) have no measurement errors and they are identical to the parameters in 1β� .
These observations can be described by the model y X Fuβ= + , where X I=  and 0F = .
The number of these observations is 1 Xr r r= − .

The observations in (b) depend on the parameter vector 2β�  with a diagonal design matrix C; the dis-
tribution of the measurement errors is given by 2 2

1 ~ (0, )Su Sσ� , where also S is diagonal. The
observations in (b) can be described by the model y X Fuβ= + , where both X C=  and
F S=  are diagonal matrices with 2 2

rC S I+ = . The number of these observations is

X F cr r r r= + − .

The observations in (c) do not depend on the parameter vector β� ; their distribution is given by

2
2

03 2 ~ (0, )ry u Iσ=� � . These observations can be described by the model y X Fuβ= + , where

0X =  and F I= . The number of these observations is 2 Fr r r= − .

1r
r

Xp r−

r

2r

1r
r
2r
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1r r Xp r−

1r
r

Xp r−

The observations in (d) have no measurement errors and do not depend on the parameter vector β� ,
they are all identical to zero. These observations can be described by the model y X Fuβ= + ,
where 0X =  and 0F = . The number of these observations is cn r− .

The total number of the observations in category (a) and (d) which possess no random error is

1 c F Wr n r n r n r+ − = − = − . The parameter vector 3β� does not show up in the canonical model (13);
these parameters can have arbitrary values, they can all be chosen as zero. Then minβ β β β= =� �T T

(minimum length solution).

5. Least squares estimators

Now we want to estimate the unknown parameters in the canonical model (13) according to the
method of least squares. 1 1( 1)rβ = ×�  is completely fixed by the equation 01 1y β= �� ; the observations in

01y�  have no measurement errors. 3 2( 1)rβ = ×�  has no effect in model (13); these parameters can have
arbitrary values. If we are interested in the minimal length solution with minβ β =� �T  we have to set

3 3
ˆ 0β β= =� � . 2 ( 1)rβ = ×�  has to be determined from the equations 02 2 1y C Suβ= +�� � . We can choose

2β�  such that 1 0u =�  namely 1
2 2 02

ˆ C yβ β −= =� � �  and this is obviously the least squares estimator. The
variance of the estimator 2β̂�  is given by

( ) ( )1 1 2 2 2
2 12 1

ˆvar( ) var varC y C Su C Sβ σ− − −= = =� � � .

If we set 3 3
ˆ 0β β= =� �  we have

2 2 2
0 0 0

ˆvar( ) ( ) 0 0
0 0 0

p p C Sβ σ −
    = × = =    

�

An unbiased estimator of 2σ  is found from the equation 03 2 2( 1)y r u= × =� �  as 
2

2
2 ~ (0, )ru Iσ� :

(15) ( )22 2 2 2
03 03 2 2 212 2 2

1 1 1ˆ ˆ( ) ( )   as obviously  r
ii

y y u u u E
r r r

σ σ σ
=

= = = =∑� � � � �T T .

From equation (12) we now have

1
0 1 2

22

1ˆ ,   where    denotes the residual vector1
e ry D D e e reβ
   ×  = + = =     ×   
��� � � � .

The least squares estimator has been chosen such that 1 0e =�  and 2 2e u=� � . So the estimator 2σ̂  in (15)

can also be written as

2

2 2

1 1ˆ (sum of all squared residuals)e e
r r

σ = =� �T .

Backtransformation to the original parameters
The estimators for the original parameters ( 1)pβ = ×  are found by backtransformation. We have

1 1 1

2 2 2
1 1

0 0

ˆˆand so    , ,

and so    ,

0 0and so   .
0 0

U U U

u U u u U u e U e

V Vy P y y P y
I I

β β β β β β

− −

= = =

= = =
   ∆ ∆   = =        

� � �

� � �

� �

T

T

T
T
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Note that the residuals in the original model are found from 2e U e= �  and as 2U  is orthogonal we

have e e e e= � �T T , and so the parameters 1
ˆˆ Uβ β= �  are indeed the least squares estimators in the original

model and

2

2 2 2

1 1 1ˆ (sum of all squared residuals)e e e e
r r r

σ = = =� �T T .

The variance-covariance matrix of β̂  is

( ) ( ) 2 2 2
1 1 1 1 1

0 0 0
ˆ ˆˆvar( ) var var 0 0

0 0 0
U U U U C S Uβ β β σ −

    = = =     

� � T T .

How can we prevent the diagonal matrices 0∆ , C, S from becoming nearly singular such that the com-
putation of the inverse becomes numerically unstable? This question will be answered in the section 8
(rank-k approximation).

6. Special case with  rk(W) = n
If ( )rk W n=  we can apply three different procedures to find the least squares solution, the classical

method of Aitken, the method with the simple singular values decomposition and the method with the
generalized singular value decomposition.

A) Classical procedure of Aitken

As rk( )W n=  and W FF= T  we also have rk( ) FF r n= =  and thus the matrix F is regular; F can also

be chosen as a symmetric matrix e.g. using the spectral decomposition of W; W can be written as

1 where  is orthogonal and diag( , , ), 0n iW R R R λ λ λ= Λ Λ= >…T .

We set

( )1 2 1 2
1  where  diag , , nF R R λ λ= Λ Λ = …T ;

then F is symmetric and 2F FF R R W= = Λ =T T . So model (7)
y X Fuβ= +

can be written as

N
1 1 2, where  ~ (0, )n
y X

F y F X u u Iβ σ− −

= =

= +
���	��


i.e.

(16) 2, where  ~ (0, )ny X u u Iβ σ= + .

This is the simple linear model and thus the least squares estimator is given by

(17)
1 2 1 2 1 1 1

2 1 2 1 1

ˆ ( ) ( ) ( )
ˆvar( ) ( ) ( )

X X X y X F X X F y X W X X W y

X X X W X

β

β σ σ

− − − − − − −

− − −

= = =

= =

T T T T T T

T T
.

This representation is only possible if rk( )X p= ; if rk( )X p<  the inverse 1( )X X −T  in (17) does

not exist. The solution (17) is the so-called Aitken estimator (see Rao-Toutenburg et al., 2008, p. 151).
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B) Procedure with (simple) singular value decomposition

The singular value decomposition of X  in (16) gives X UDV= T , where ( )U n n= ×  and

( )V p p= ×  are orthogonal matrices and 1( ) diag( , , )pD n p σ σ= × = … ; 1 0pσ σ≥ ≥ ≥…  are the

singular values of X . So we obtain from (16)
2, where  ~ (0, )ny UDV u u Iβ σ= +T

or

N N NU y DV U u
uy

β
β

= +
== = � ��

T T T ,

i.e.
(18) 2, and as    we have again  ~ (0, )ny D u u U u u Iβ σ= + =�� � � �T .

This is the canonical form of the original model (16). If rk( ) rk( ) XX X r= =  we have

1 2 1 0
X Xr r pσ σ σ σ σ+≥ ≥ ≥ > = = =" " .

Then the parameters 1, ,
Xr pβ β+
� �…  do not show up in the canonical model, they can have arbitrary

values; they are not identifiable and can all be chosen as zero such that 2 miniβ β β β β= = =∑� �T T

(minimum length definition). According to the method of least squares we have to choose the vector
ˆβ β=� �  in (18) such that 2 minie e e=∑ =� � �T , where e y Dβ= − �� �  From (18) we have

(19)
  for 1, , ,

  for 1, , ,
X

X

i i i i

i i

y d u i r
y u i r n

β= + =
= = +

�� � …
� � …

and thus
  for  1, , ,

for  1, , .
X

X

i i i i

i i

e y d i r
e y i r n

β= − =
= = +

�� � …
� � …

Obviously 2
ie∑�  becomes minimal for 1 0

Xre e= = =� �"  i.e. for

ˆ for  1, ,

  arbitrary for  1, , .
Xi i i i

i X

y d i r

i r p

β β

β

= = =

= +

� � � …
� …

If we are interested in the minimum length solution 2 miniβ∑ =� , we have to choose ˆ 0i iβ β= =� �  for
1, ,Xi r p= + … , and then the solution can be written as 

(20) ˆ D yβ β += =� � � , where 1( ) (1 , ,1 ,0, ,0)
XrD p n diag σ σ+ = × = … … . 

The variance-covariance matrix of β̂�  is given by

( )2 2 2
2 2
1

1 1ˆvar( ) var( ) var( ) ( ) ( ) diag , , ,0 ,0
Xr

D y D u D D D Dβ σ σ σ
σ σ

+ + + + +
  = = = = =    

� � � … …T T .

As 1y U y U F y−= =� T T  the estimator for the original parameters is

(21) 1 1ˆˆ V VD y VD U F y X F yβ β + + +− −= = = =� � T .

If ( )rk X p=  i.e. if X has full rank this solution is equivalent to the classical Aitken estimator (17) as

1 1

1 1 1 1 1

,

( ) ( )

( ) ( ) .

X UDV X VD U

X X VD DV

X X V D D V

X X X y V D D V VD U F y VD U F y X F y+ +

− −

− − − − −

= =

=

=

= = =

T T T T

T T T

T T T

T T T T T T T

The representation (21) is correct also if rk( )X p<  i.e. if multicollinearity is present.
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Remark
From (19) we see that in the canonical model we find observations falling in only two of the categories
described in (4):

( )   for 1, , ;
( )   for 1, , .

X

X

i i i i

i i

b y d u i r
c y u i r n

β= + =
= = +

�� � …
� � …

Observations in category (a) and (d) that have no measurement errors do not arise when rk( )W n= .

C) Procedure with generalized singular value decomposition
We consider the generalized singular value decomposition of ( | )X F  in (9). As rk( ) FF r n= =  we
have rk( | ) cX F r n= = , XX F cr r r r r p= + − = ≤ , and 1 0Xr r r= − = . So we obtain from (9)

(22) 1 0 1 2 0 2   and   P XU VD P FU VD=∆ =∆T T

where

1 2
0 0( ) , ( )0 0 0

C SD n p D n k I
     = × = = × =       

.

Equation (10) gives

0 1 2y V D D uβ =∆ +  
� �

or
1

0 1 2V y D D uβ−∆ = +� �T .

Multiplying this equation by 1
2D−  gives

11 1 1
2 0 2 1

0
0 0

y

S CD V y D D u uβ β
−− − −

=

  ∆ = + = +   �

� �� �������	�����

T ,

and this equation is equivalent to (18); the matrix 1
2 1D D−  is identical to the diagonal matrix D in (18)

as according to (22) 1 1
2 2 1 1X F X U D D U− −= = T , and this corresponds to the singular value decompo-

sition of X  in procedure B.

7. General linear model with linear restrictions
According to Rao (1971) a general linear model (5)

2, ( ) 0, var( ) , ( ), ( ),y X E W X n p W n n n pβ ε ε ε σ= + = = = × = × >

with linear restrictions R cβ =  where ( )R r p= × , can be extended to a linear model (without explicit

restrictions)

(23) 2, E( ) 0, var( )e e e e e ey X Wβ ε ε ε σ= + = = ,

with
0, , ,0 0 0e e e e

y X Wy X Wc R
εε

             = = = =                   
.

The general linear model (23) is obviously equivalent to model (5) with the restrictions R cβ = , and

so the least squares estimators can be found by the methods in the above sections.
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8. Rank-k approximation
a) A useful inequality
Let ( ) ( )ijA a m n= = ×  be an arbitrary real matrix and maxσ  its largest singular value. Then

maxmax ija σ≤  (cf. Rao-Rao, 1998, P 11.2.5, p. 365; the parameter θ  has the value 1).

b) Optimal rank-k approximation of a real matrix (see Golub-Van Loan, 1996, p. 72)
Let ( ) ( )ijA a m n= = ×  be an arbitrary real matrix with m n≥ . We want to approximate A by a matrix

( )B m n= ×  with rk( ) rk( )B k r A= < = . Let A UDV= T  be the singular value decomposition of A
where 1( ) diag( , , )nD m n σ σ= × = …  with 1 1 0r r nσ σ σ σ+≥ ≥ > = = =" " . Now let

1( ) diag( , , ,0, ,0)k kD m n σ σ= × = … …  and k kA UD V= T . Then

1
rk( )

min k k
B k

A B A A σ +
=

− = − =

where A  denotes the supreme norm (spectral norm) corresponding to the Euclidian vector norm. As

the largest singular value of ( )k ijA A δ∆= − =  is 1kσ +  we have 1max ij kδ σ +≤ .

So if the rounding errors of ija  are within the range ε±  and if there are singular values ε< , then it is

sensible to use the rank-k approximation ( )k ijA a= �  of A where 1k kσ ε σ +≥ >  as then ij ija a−�  will

also be within the range of ε±  (for some examples see Knüsel, 2009).

c) Rank-k approximation and the general linear model
We consider again the general linear model (5)

2, ( ) 0, var( ) , ( ), ( ),y X E W X n p W n n n pβ ε ε ε σ= + = = = × = × > .

We assume that the matrices X and W are found empirically and possess rounding errors. Let us as-
sume that 0 ( )X n p= ×  is a matrix with 0rk( )X p<  and let 0X X= +∆  where ( )ijδ∆=  is a ma-

trix of small perturbations (rounding errors). Even if max | |ijδ  is very small X will usually have full

rank p. So if an empirical matrix X has full rank our question is to find an approximation 1X  to X with

a numerically stable rank in the sense that the rank of 1X  cannot be made smaller by small perturba-

tions of X. The approximation procedure with the general linear model works as follows:

(i) Rank-k approximation and factorization of W
In a first step we perform a rank-k approximation 1W  of W so that the rank of 1W  becomes numerically
stable. Then we perform the factorization of 1 1 1W F F= T .

(ii) Rank-k approximation of X
Then we compute the rank-k approximation 1X  of X.

(iii) Rank-k approximation of 1 1( | )X F

We also need a numerically stable rank of 1 1( | )X F  which is not yet guaranteed by step (i) and (ii). So
we determine the rank-k approximation of 1 1( | )X F  and obtain 2 2( | )X F . Although 2X  will differ only
little from 1X  one must expect that the numerically stable rank of 1X  goes lost with 2X . But against
our expectations this is not true. Our numerous examples (cf. Knüsel, 2009) confirm the following
Conjecture: If 2 2( | )X F  is a rank-k approximation of 1 1( | )X F  and if 1 2σ σ≥ ≥"  and 1 2τ τ≥ ≥"
are the singular values of 1X  and 2X , respectively, then , 1,2,i i iτ σ≤ = …. If 0iσ =  then also

0iτ = , and so the rank of 2X  cannot become larger than the rank of 1X . A mathematical proof of
this conjecture is not yet known to the author.
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9. Example: General linear model with nearly rank deficient X and W
In this example we consider the general linear model

(24) ( )2,  where ( ) and ~ 0,y X X n p Wβ ε ε σ= + = × ,

and where both matrices X and W are nearly rank deficient (X with weak multicollinearity). Let

0 1 2 3

3 2 4 4.243 2.828 5.657
1 9 7 1.414 12.728 9.899

( , , ) (5 3) 2 4 1 7 5.657 1.414 9.899
7 2 12 9.899 2.828 16.971
5 6 4 7.071 8.485 5.657

X x x x X

       − −     = = × = ≈ =               

.

We have 3 1 22x x x= − , i.e. the third column of 0X  is a linear combination of the first two columns,

and so the matrix 0X  has rank 2, but the matrix X ( 0X=  rounded to three decimal places) has full

rank 3 as all three singular values of X are positive (see Table 1). Let

0

7 8 5 9
8 2 7 6

(5 4) 0 1 5 1
7 7 2 8
4 9 2 0

F

 − − −  − −   = × = − −   − − −    − − 

,

0 0 0

18.966 7.881 2.252 4.763 4.667
13.250 2.685 9.007 2.4253(5 5) 2.338 0.433 0.087

20 14.376 8.227
8.747

W F F W

 − −   ∗ − −   = × = ≈ =∗ ∗ −   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 

T .

0 (5 4)F = ×  has rank 4, and so 0 (5 5)W = ×  is a symmetric and positive semidefinite matrix with

rank 4. But the matrix W ( 0W=  rounded to three decimal places) has full rank 5 as all five singular

values of W are positive (see Table 1). In addition W has become an indefinite matrix as one of the
eigenvalues is negative (see Table 2). So both X and W are nearly rank deficient. Now we consider the
general linear model (24) with ( )X n p= ×  and ( )W n n= ×  as given above. 

Table 1: Singular values of 0 0, , ,X X W W

0 (5 3)X = × (5 3)X = × 0 (5 5)W = × (5 5)W = ×

Singular values
26.590
17.117

0

       

26.590
17.116

0.000 748

       

30.513
19.825
6.877
0.463

0

             

30.513
19.825
6.876
0.463

0.000 644

             

Table 2: Eigenvalues of 0 ,W W

0 (5 5)W = × (5 5)W = ×

Eigenvalues

30.513
19.825
6.877
0.463

0

             

30.513
19.825
6.876
0.463

0.000 644

            − 
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(i) Rank-k approximation and factorization of W

The elements of W are given with three decimal places and the smallest singular value 5 0.000 644σ =

is about the size of the maximal rounding error. The rank-4-approximation of W  will give an ap-

proximation (1)
1 ( )ijW w=  of ( )ijW w=  with 1( ) 4rk W =  and with (1)

5max 0.000 644ij ijw w σ− ≤ = .

The singular value decomposition of W is given by W UDV= T  where (5 5)U = ×  and (5 5)V = ×

are orthogonal and 1 5(5 5) diag( , , )D σ σ= × = … ; 1 5, ,σ σ…  are the singular values of W. Now we

define 1W  as

(25) 1 1 1( )W UD V UD U= =T T  where 1 1 2 3 4(5 5) diag( , , , ,0)D σ σ σ σ= × = .

Obviously 1rk( ) 4W =  and we obtain (1)
5max 0.000 427 0.000 644ij ijw w σ− = < = ; so 1W W≈ . The

rank of 1W  is numerically stable in the sense that it cannot be reduced by small perturbations of the

matrix elements (1)
ijw . 

In a second step we factorize 1W  such that 1 1 1W F F= T  with 1 (5 4)F = × . Let 

(26) 1 2F UD=   where  ( )2 1 2 3 4(5 4) diag , , ,D σ σ σ σ= × = .

As 2 2 1 4 1diag( , , ,0)D D Dσ σ= =…T  we have 1 1 2 2 1 1F F UD D U UD U W= = =T T T T . So 1 1 1W F F= T  and

1W  is positive semidefinite as 0W .

(ii) Rank-k approximation of ( )X n p= ×

The elements of X are given with three decimal places and the smallest singular value 3 0.000 748σ =

is about the size of the maximal rounding error. The rank-2 approximation of X will give an approxi-

mation (1)
1 ( )ijX x=  with 1rk( ) 2X =  and with (1)

3max 0.000 748ij ijx x σ− ≤ = . The singular value

decomposition of (5 3)X = ×  is given by X UDV= T  where (5 5)U = ×  and (3 3)V = ×  are orthogo-

nal and 1 2 3(5 3) diag( , , )D σ σ σ= × = ; 1 2 3, ,σ σ σ  are the singular values of X. Now define 1X  as

(27) 1 1X UD V= T  where ( )1 1 2(5 3) diag , ,0D σ σ= × = .

Obviously 1rk( ) 2X =  and we obtain (1)
3max 0.000 379 0.000 748ij ijx x σ− = < = ; so 1X X≈ . The

rank of 1X  is numerically stable in the sense that it cannot be reduced by small perturbations of the

matrix elements (1)
ijx .

(iii) Rank-k approximation of 1 1( | )X F

We have 1 ( ) (5 3)X n p= × = ×  and 1 ( ) (5 4)F n k= × = ×  and so 1 1( | ) ( ) (5 7)X F n m= × = × , where

7m p k= + = . The matrices 1X  and 1F  possess numerically stable ranks, but this does not necessar-

ily mean that also the rank of the combined matrix 1 1( | )X F  is numerically stable. It could be that the

smallest singular value of 1 1( | )X F  is very small or even zero (see the examples in Knüsel, 2009b). As

a rank-k-approximation 2 2( | )X F  of 1 1( | )X F  changes both 1X  and 1F  one must expect that 2X  will

again have full rank 3 and will again be nearly rank deficient, and so it would have been in vain to
compute the rank-2 approximation 1X  of X. But surprisingly this is not true. To demonstrate this in
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teresting fact we compute the rank-4 approximation of 1 1( | )X F . The singular value decomposition of

1 1( | )X F  is given by

(28) 1 1( | )X F P Q= ∆ T ,

where (5 5)P= ×  and (7 7)Q= ×  are orthogonal and 1 5(5 7) diag( , , )σ σ∆= × = … . 

The singular values of 1 1( | )X F  are given in Table 3. Now the rank-4-approximation of 1 1( | )X F  is

given by

2 2 1 1 4( | ) ,   where  (5 7) diag( , , ,0)X F P Q σ σ1= ∆ ∆ = × = …T .

We find obtain (2) (1)max 0.014ij ijx x− =  and (2) (1)
5max 0.373 0.641ij ijf f σ− = < = , and the singular

values of 2 2 2 2, , ( | )X F X F  are given in Table 4. By comparison of Table 3 and 4 we see that the rank-

4 approximation of 1 1( | )X F  did not increase any singular values, and in particular the rank of 2X  has

not become larger than the rank of 1X . A general proof of this interesting and very useful property of

the rank-k approximation is not known to the author, but I could not find any counterexample up to

now. As the difference between 1 1( | )X F  and 2 2( | )X F  is too large as compared with the maximal

rounding error of X and W we will do without the rank-4 approximation 2 2( | )X F . Instead of the origi-

nal linear model (24) we now consider the model
(29) ( )2

1 1 1 1,  where ( ), =( ) and ~ 0, ky X F u X n p F n k u Iβ σ= + = × × .

For the error term 1F uε=  we have E( ) 0ε =  and 2 2
1 1 1var( ) E( ) F F Wε εε σ σ= = =T T , and as we have

seen above 1X X≈  and 1W W≈ . So model (29) is an approximation to the original model (24) but

now the three matrices 1 1,X F  and 1 1( | )X F  possess all numerically stable ranks.

Table 3: Singular values of 1 1 1 1, , ( | )X F X F

1 (5 3)X = × 1 (5 4)F = × 1 1( | )X F

singular values
26.590
17.116

0

       

5.524
4.453
2.622
0.680

          

26.905
17.488
4.355
2.926
0.641

             

Table 4: Singular values of 2 2 2 2, , ( | )X F X F

2 (5 3)X = × 2 (5 4)F = × 2 2( | )X F

singular values
26.590
17.116

0

       

5.524
4.452
2.619
0.268

          

26.905
17.488
4.355
2.926

0

             
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(iv) CS-decomposition of Q
As 1 1rk( | ) 5cr X F n= = =  we have to determine the CS-decomposition of ( ) (7 7)Q m m= × = ×

with the format 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

11 12
21 22

( ) 3 5 3 2
( ) 4 5 4 2

Q Q p n p m nQ Q Q k n k m n
     × × − × ×    = = =          × × − × ×     

. 

We obtain orthogonal matrices 

1
2

0 (3 3)(7 7) 0 (4 4)
UU U
   × ∗  = × = =     ∗ ×  

1
2

0 (5 5)(8 8) 0 (2 2)
VV V
   × ∗  = × = =     ∗ ×  

with

1 2

0.008 0 0 1.0000.229 0.530 0.817 0.521 0.295 0.801 0.0040.420 0.810 0.408 , 0.826 0.064 0.561 0.0060.878 0.250 0.408 0.217 0.953 0.210 0.002

U U

 −  − −  − − − −  = − − =      −   −    − 

1 2

0.800 0.587 0.032 0.076 0.095
0.572 0.802 0.036 0.012 0.166 0.778 0.629,0.120 0.099 0.089 0.514 0.839 0.629 0.7780.136 0.015 0.248 0.814 0.507
0.019 0.036 0.964 0.260 0.050

V V

 − − −      − −  = =− − −   −− − −    − − − 

 

such that

(30) 11 12
21 22

(3 5) (3 2)
(4 5) (4 2)

D DU QV D D D
   × ×  = = =     × ×  

T

where

1 1

1 1

1 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

c s

s cD

         −=           

.

The diagonal elements 1c  and 1s  are given in Table 2. Note that 2 2
1 1 1c s+ = , and so the matrix D is

orthogonal, too. Also note that 12D  and 21D  are not classical diagonal matrices as the diagonal starts

in the lower right corner and not in the upper left one.

Table 5: Diagonal elements 1 1,c s

i ic is

1 0.988 642 0.150 288
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(v) Generalized singular value decomposition and canonical model

According to (28) and (30) we have

1 1( | )      and     X F P Q Q UDV= ∆ =T T ,

and from this we find the so-called generalized singular value decomposition of the pair 1 1,X F

(31) 1 1 0 1 11

1 2 0 1 21

,

,

P X U V D

P F U V D

=∆

=∆

T T

T T

where 0 1 5(5 5) diag( , , )σ σ∆ = × = …  and where 1 5, ,σ σ…  are the singular values of 1 1( | )X F  as

given above in Table 3. Our model  can now be written in the canonical form
(32) 1 2y D D uβ= +�� � ,

where
1

1 1 1 0

1

2

   with   

,

,

y M y M V P

U

u U u

β β

−= = ∆

=

=

�
�

�

T T

T

T

1

0.023 0.034 0.062 0.007 0.015
0.002 0.055 0.011 0.056 0.005

(5 5) 0.155 0.463 0.602 0.883 0.940
0.174 0.027 0.402 0.228 0.107
0.164 0.017 0.165 0.119 0.068

M

 − − −   − −   = × = − −  − − −   − − − 

,

1
1 11

1
2 21

1 0 0
0 0

(5 3) ,0 0 0
0 0 0
0 0 0

0 0 0 0
0 0 0

(5 4) .0 1 0 0
0 0 1 0
0 0 0 1

c
D D

s
D D

     = = × =      
     = = × =      

T

T

.

From (31) we can see that 1 11 1rk( ) rk( ) rk( ) 2X D D= = =  and 1 21 2rk( ) rk( ) rk( ) 4F D D= = = . The

canonical model (32) explicitly written has the form

(33)

1 1

2 1 2 1 1

3 2

4 3

5 4

,

,
,
,
.

y

y c s u
y u
y u
y u

β
β

=

= +
=
=
=

��
�� �

� �
� �
� �

The observation 1y�  is identical to the parameter 1β� , this observation has no random error. The pa-

rameter 3β�  can have arbitrary values as it does not show up in the canonical model, and we set this

parameter to zero (minimum length definition). The least squares estimators are given by

1 1

2 2 1

3

ˆ ,
ˆ ,
ˆ 0.

y

y c

β

β

β

=

=

=

� �

� �

�

In matrix notation we can write
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11 1

1 0 0 0 0
ˆ    as   0 1 0 0 0

0 0 0 0 0
D y D cβ + +

   = =    
� � ,

2
12 2

2 2

0 0 0 0 0
0 0 0 0

var( ) 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

s
y D Dσ σ

       = =        

� T

2 2 2 2 2
2 2 1 1 01 1 1 1

0 0 0
ˆvar( ) var( )( ) ( ) 0 0

0 0 0
D y D D D D D s c Dβ σ σ σ+ + + +

    = = = =    

� � T T T .

For the original parameters we obtain

1 1 21
ˆˆ U U D y M yβ β += = =� �

where

1
2 1 1 01

0.00 423 0.02198 0.00 803 0.02 832 0.00 587
 0.01146 0.05 958 0.03 536 0.04 859 0.00 236

0.01991 0.01562 0.05142 0.00 806 0.01 410
M U D V P+ −

 −   = ∆ = − −    − − 

T T

and

2 2
1 1 1 0 1

0.00 649 0.00 993 0.00 306
ˆˆvar( ) var( ) 0.01517 0.00 468

0.00144
U U U D Uβ β σ σ

   = = = ∗    ∗ ∗ 
� T T .

The unknown variance 2σ  is estimated by
2 2 2 21

3 4 53ˆ ( )y y yσ = + +� � � .

Remark
In our example we have 5n= , 3p= , 1 1rk( | ) 5cr X F n= = =  and

1

1 1

rk( ) 2 3,
rk( ) rk( ) 4 5,

1 0.

X

F

X F c

r X p
r F W k n
r r r r

= = < =
= = = = < =
= + − = >

In the canonical model (33) we have three categories of observations:

(a) observations with no random error, that are identical to a parameter ( 1y�  in the example);
number of these observations: 5 4 1X F Wr r n r n r− = − = − = − = ;

(b) "classical" observations, that depend on the parameters and possess a random error ( 2y�  in the
example); number of these observations: 1r= ;

(c) observations, that do not depend on the parameters and possess a random error ( 3y� , 4y� , and 5y�
in the example); number of these observations: 4 1 3Fr r− = − = .

Furthermore we have three categories of parameters:

(α) parameters, that are completely fixed by the observations ( 1β�  in the example); number of these
parameters: 2 1 1Xr r− = − = ;

(β) "classical" parameters, that can be estimated with a random error ( 2β�  in the example); number
of these parameters: 1r= ;
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(γ) parameters that do not show up in the canonical model ( 3β�  in the example); these parameters
can have arbitrary values and they can be set to zero in order to make all parameters identifiable
(minimum length definition); number of these parameters: 3 2 1Xp r− = − = .

Final remarks
a) If we replace in the general linear model (29) the matrices 1X  and 1F  by 0X  and 0F  (with 15
significant digits) we obtain essentially the same results.

b) The computations in the example are done with Matlab (2008) and Maple (2006). Matlab offers
a procedure gsvd (generalized singular value decomposition) that includes a subfunction csd (CS-
decomposition), and this subfunction is used for computing the CS-decomposition of an orthogonal
matrix.

10. Conclusion

With the aid of the generalized singular value decomposition the general linear model y X Fuβ= +
can be transformed to a very simple canonical form. The canonical form exhibits the basic structure of
the linear model, four categories of observations, three categories of parameters and two categories of
random errors. For this canonical form the least squares estimators can be found easily and by back-
transformation the estimators for the original parameters are found. The basic ideas of this procedure
are found in Kourouklis and Paige (1981) and Paige (1985). In Rao-Toutenburg et al. (2008) a unified
theory of the general linear model is presented being based on Rao (1971,1972,1973), but the clear
structure of the linear model shown by the canonical form is not found there. The general linear model
with linear restrictions can be extended to a general linear model without explicit restrictions as shown
by Rao (1971), and so this case offers no new problems. The generalized singular value decomposition
can be made numerically stable by using the rank-k approximation of Golub-Van Loan (1996).
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Appendix:  The generalized singular value decomposition

A1 Lemma 2.1 of Paige, 1985, page 272

Let A and B be ( )n p×  matrices with rk( ) rk( )A B p= =  and with A B=R R i.e. with identical col-

umn spaces. Then there exist two orthogonal matrices U and V and two positive diagonal matrices S
and C all four with format ( )p p×  such that

AUS BVC=  where 2 2S C I+ = .
So the matrices AU and BV possess parallel columns, i.e. column i of AU is a multiple of column i
of BV.
Proof:
As A B=R R  there exists a matrix ( )G p p= ×  such that A BG=  i.e. such that i iBg a=  where

1( , , )pA a a= …  and 1( , , )pG g g= … . The singular value decomposition of G has the form

G VDU= T , where U and V are orthogonal and D is diagonal with positive diagonal elements. Now
we have

A BG BVDU= = T  or AU BVD= .
We set

2 2 1( )S D I −= +  and C DS= ,

and obtain from AU BVD=
AUS BVDS BVC= =

where
2 2 2 2 2 2 2( )C S D S S S D I I+ = + = + = .

A2 CS Decomposition (cf. Paige-Wei, 1994)
If

11 12
21 22

( ) ,
Q Q p k pQ n n p q k nQ Q q k q
   × ×  = × = = + = + =     × ×  

A AA

is an arbitrary 2 2×  partitioning of the orthogonal matrix Q, then there exist two orthogonal matrices

1
2

0
0

U p p p qU U q p q q
   × ×  = =     × ×  

 and 1
2

0
0

V k k kV V k
   × ×  = =     × ×  

A
A A A

such that

(34) 11 12
21 22

0 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0 0

I
C S

D Dp k pIU QV Dq k q D DI
S C

I

         × ×   = = = =    × ×−       −    

A
A

T

where

1 1

1 1
2 2

( ) diag( , , ), 1 0,
( ) diag( , , ), 0 1,

.

r r

r r

C r r c c c c
S r r s s s s

C S I

= × = > ≥ ≥ >
= × = < ≤ ≤ <

+ =

… "
… "

Note that 11D  and 22D  are rectangular diagonal matrices the diagonal starting at the upper left corner

whereas 12D  and 21D  are rectangular diagonal matrices the diagonal starting at the lower right corner.



19

Also note that D is again an orthogonal matrix as

2 2

2 2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

I
C S

ID D I
C S

I

    +    =       +   

T

and 2 2C S I+ = . As U and V are orthogonal also 1 2 1 2, , ,U U V V  must be orthogonal. According to
(34) we have Q UDV= T  and from this we derive ij i ij jQ U D V= T ; this is essentially the singular value
decomposition of ijQ  ( , 1,2i j= ) as the sign and the order of the singular values can be changed by
changing the order and sign of the columns of iU  and jV . The CS-decomposition is also called the
cosine-sine-decomposition as cos( )i ic ϕ=  and sin( )i is ϕ= , 0 2iϕ π< < , 2 2sin ( ) cos ( ) 1i iϕ ϕ+ = .

A3 Generalized singular value decomposition

Let ( )X n p= × , ( )F n k= × , and ( | )cr rk X F= . Obviously cr p k m≤ + = . Now we consider the

singular value decomposition of ( | )X F

(35) ( | )X F P Q= ∆ T , 

where ( )P n n= ×  and ( )Q m m= ×  are orthogonal and 

0 0( ) 0 0n m
 ∆ ∆= × =   

, with  0 1 1( ) diag( , , ), 0
c cc c r rr r δ δ δ δ∆ = × = ≥ ≥ >… " .

0 ( )c cr r∆ = ×  is the reduced form of ( )m n∆= × ; it is square and regular. From (35) we derive

(36) ( )1 0( | ) | 0X F Q P P= ∆= ∆ , where 1 2 1( | ) with  ( )cP P P P n r= = × . Now we consider the CS-
decomposition of 

11 12
21 22

( )
( ) ( )

c c
c c

p r p m r Q QQ m m k r k m r Q Q
   × × −   = × = =    × × −   

; 

there exist orthogonal matrices 
1

2

0
( ) 0

U p p p kU m m U k p k k
   × ×  = × = =     × ×  

1
2

( )0
( ) 0 ( ) ( ) ( )

c c c c
c c c c

r r r m rVV m m V m r r m r m r
   × × −  = × = =     − × − × −   

such that

(37) 11 12
21 22

0 0 0 0 0
0 0 0 0

( ) 0 0 0 0 0( ) ( ) 0 0 0 0 0
0 0 0 0
0 0 0 0 0

c c
c c

I
C S

p r p m r D DIU QV m m Dk r k m r D DI
S C

I

         × × −    = × = = = =    × × − −       −    

T

where

1 1

1 1
2 2

( ) diag( , , ), 1 0,
( ) diag( , , ), 0 1,

1, 1, , .

r r

r r

i i

C r r c c c c
S r r s s s s

c s i r

= × = > ≥ ≥ >
= × = < ≤ ≤ <

+ = =

… "
… "

…

From (37) we have
(38) QV UD=

where
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11 1 12 1 1 11 1 12
21 2 22 2 2 21 2 22

   and   
Q V Q V U D U DQV UDQ V Q V U D U D

     = =        
.

From (36) we have

( )1 0 1( | ) | 0X F QV P V P V= ∆ = ∆

and together with (38) we obtain
(39) ( )1 0 1( | ) | 0X F UD P V P V= ∆ = ∆ .

Now

( )1 11 1 12
1 11 2 21 1 12 2 22

2 21 2 22
( | ) ( | )

U D U DX F UD X F XU D FU D XU D FU DU D U D
 = = + +  

and according to (39) we obtain

1 12 2 22 0XU D FU D+ = , i.e. 1 12 2 22XU D FU D=− .

Thus we have proved the following result.

Result 1
There exist orthogonal matrices 1( )U U=  and 2( )V U=  such that

0 0 0 0 0
0 0 0 0
0 0 0 0 0

I
XU S FV C

I

        =         
.

This is formula (2.5) of Paige (1985) on page 273 (with interchanged X and F).

From (39) we derive further

(40) ( )0 1 0 1
11 21

0( | ) 0 0 0
V VP X F U VD D D D

   ∆ ∆  =∆ = =        
T T T T T

or

(41)

0 1
1 11

0 1
2 21

,0

.0

VP XU D

VP FU D

 ∆ =   
 ∆ =   

T T

T T

Thus we have proved the following result.

Result 2
There exist orthogonal matrices 1 2 1( ), ( ), ( ), ( ) ( )c cP n n U p p U k k V V r r= × = × = × = = ×  such that

(42)

0
1 1

0
2 2

0

0

VP XU D

VP FU D

 ∆ =   
 ∆ =   

T

T

where 

1 11 2 21

0 0 0 0 0
( ) ( ) 0 0 , ( ) ( ) 0 0

0 0 0 0 0
c c

I
D D r p C D D r k S

I

        = = × = = = × =         

T T ,

0 1 1( ) diag( , , ), , .  the positive singular values of ( | )
c cc c r rr r X Fδ δ δ δ∆ = × = … … .

(40) corresponds to formula (2.8) of Paige (1985) on page 274 (with interchanged X and F). The rep-
resentation (40) or (42) is called the generalized singular value decomposition of ( | )X F . Now we

summarize our result.
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Generalized singular value decomposition
Let ( )X n p= ×  and ( )F n k= ×  be real matrices. Then there exist orthogonal matrices

1 2( ), ( ), ( ), ( )c cP n n U p p U k k V r r= × = × = × = ×  such that

(43)

0
1 1

0
2 2

0

0

VP XU D

VP FU D

 ∆ =   
 ∆ =   

T

T

where 

1

2

1 2

0 0 0 0 0
( ) 0 0 . ( ) 0 0

0 0 0 0 0

r

c c
r

I
D r p C D r k S

I

         = × = = × =           

0 1 1 1( ) diag( , , ), , .  the positive singular values of ( | ), 0
c c cc c r r rr r X Fδ δ δ δ δ δ∆ = × = ≥ ≥ >… … "

1 1

1 1
2 2

( ) diag( , , ), 1 0,
( ) diag( , , ), 0 1,

,

r r

r r

C r r c c c c
S r r s s s s

C S I

= × = > ≥ ≥ >
= × = < ≤ ≤ <

+ =

… "
… "

and where

1 2rk( | ), rk( ), rk( ), , ,c X F X F c X Fr X F r X r F r r r r r r r r r r= = = = + − = − = − .

So the diagonal matrices 1D  and 2D  have the same rank as X and F. Note that

1 2dim( ), dim( ), dim( ), dim( )c X F X F X F F Xr r r r= ∪ = ∩ = =R R R R R - R R -R .
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