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Abstract: The general linear model y = XS + ¢ with correlated error variables can be trans-
formed by means of the generalized singular value decomposition to a very simple model (ca-
nonical form) where the least squares solution is obvious. The method works also if X and the
covariance matrix of the error variables do not have full rank or are nearly rank deficient (rank-k
approximation). By backtransformation one obtains the solution for the original model.
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1. Introduction and summary
The general linear model is given by

(1)  y=XB+e¢, E(e)=0, var(e)=c’W, X =(nxp), W=(nxn), n>p.

oW is the covariance matrix of ¢ and we assume that the matrix W is given (symmetric and positive

semidefinite) while o

error variables €,...,€, . If tk(W) =k W can be written as W = FF T where F = (nxk) and

is unknown. If W = I,, we have the simple linear model with uncorrelated

tk(F) =1k(W) =k . The random error € can now be given in the form

(2)  e=Fu with u~(0,0%1;) i.c. with E(u)=0, var(u) =01,

as E(e)=E(Fu)=0 and var(e) = E(esT) = FE(uuT)FT =02 FFT = oW . So the general linear
model (1) can be written as

(3)  y=XB+Fu, where X =(nxp), F=(nxk) and u~(0,0%;),

and according to the method of least squares we have to determine 3 = B such that

u'u= Zuiz = min, where u must satisfy the equation (3). We want to state our estimation problem in
other words. Consider for given y, X, F the set M = {(b,e)| y=Xb+F e} . Now we are looking for
the pair (b,e) with e'e= Zﬁ;l el-2 —min. Then b= (3 is the least squares estimator of 3. If one is
interested in the model with normally distributed error variables, one assumes that u ~ N, (0,02] k)
and then one has e =Fu ~N,, (O,azW) . Note that we do not make any assumptions on the rank of

the matrices X and W.
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By means of the generalized singular value decomposition we find linear transformations that trans-
form (y, B,u ) to (y, (3,1 ), where again u ~ (O,azlk) , and where y can be decomposed in four sub-
vectors Jy,..., 74, 3 in three subvectors 3|, 35, 33 and @ in two subvectors iy, i, such that model

(3) becomes

@ =0

@ (b)  §,=CPB, + Siiy, where C and S are diagonal with C> + 8% =1,
() V3 =1y,
(d)  y4=0.

We call this the canonical form of the general linear model. We have four categories of observations
(J1,---» 74 ), three categories of parameters (Bl , Bz , 33 ) and two categories of error variables (i, i ).
The observations in (a) are completely fixed by the parameters 51 ; they possess no random error.

The observations in (b) depend on 52 and they have a random error Su; .

The observations in (c) do not depend on the parameters, they are given by y; =1, .

The observations in (d) are all zero; they are independent of the parameters and have no random error.
Note that the parameters in the third category 33 do not appear in the canonical model (4); they can
have arbitrary values and are not identifiable. As B=U"S with orthogonal U the additional condition
878 =3T3 =min (minimum length condition) entails B3 =0 and this way the whole parameter set
B as well as 3=U/3 becomes identifiable. Now it is very easy to find the least squares estimators in
the canonical model and by backtransformation we obtain the estimators for the original parameters.
The basic ideas of this treatment of the general linear model are given in Kourouklis-Paige (1981) and
Paige (1985). In this paper the derivations of Paige are simplified and we describe a clear computa-
tional procedure for finding the results; this procedure is demonstrated with a simple example. Some
more examples are to be found in Kniisel (2009). Furthermore we demonstrate how the problem of

near rank deficiency can be treated by means of the so-called rank-k-approximation.

Summary

In section 2 we describe the general linear model and in section 3 the generalized singular value de-
composition. In section 4 the general linear model is reduced to the canonical model using the gener-
alized singular value decomposition. The least squares estimators for the canonical and original model
are derived in section 5. Section 6 deals with the special case rk(W)=n (correlation matrix with full
rank) and rk(X) < p. If also X has full rank this case can be reduced to the classical linear model by
the well-known method of Aitken (see Rao-Toutenburg et al., 2008, p. 151). In section 7 we show that
the general linear model with linear restrictions can be extended to a general linear model without
explicit restrictions according to a method of Rao (1971). Section 8 deals with the question what one
can do if our matrices are nearly rank deficient (e.g. weak multicollinearity). The rank-k approxima-
tion of Golub-Van Loan (1996) is a wonderful means to overcome these problems. The example in
section 9 deals with a general linear model with nearly rank deficient X and . In a first step we de-
monstrate the application of the rank-k approximation to the given matrices and then our procedure
leads to a numerically stable solution. Section 10 gives the conclusion. In the appendix a simplified
derivation of the general singular value decomposition according to the ideas of Paige (1985) is pre-

sented.



2.  The general linear model

The general linear model is given by
(5) y=XB+e, E(€)=0, var(e)=0’W, X =nxp), W=nxn), n>p.
oW is the covariance matrix of ¢ , and we assume that the matrix W is given (symmetric and posi-
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tive semidefinite) while o is unknown. If W = I,, we have the simple linear model. W can be written

as W = FF" where F = (nxk) and rk(F)=rk(W)= k. This can be seen from the spectral decom-
position of W

W = RAR", where R is orthogonal and A = diag(X\,...,\;,0,...,0),\; >0.
Let D:(nxk):diag(\/)\i,...,\/g) and F = RD=(nxk);then DD" = (nxn)=A and
FFT =R DD'R" = RAR" =W . The random error ¢ can now be written in the form
(6) e=Fu with u~(0,0%1;) i.c. with E(u)=0, var(u)= o1,
as E(¢) = E(Fu)=0 and var(¢)=E(ec' )= FE(uu' )F' = o2 FFT =W . So model (5) can also be
given as
(7)  y=XB+Fu, where X =(nxp), F=(nxk), u~(0,0%1;),
and according to the method of least squares we have to determine (3 = B such that u'u = Zuiz =min,
where u must satisfy the equation (7). If one is interested in the model with normally distributed error
variables, one assumes that u ~ N, (O,O'ZIk) , and then we have e = Fu~ N, (0,02W) . Let

9ty = vector space of all column vectors of X' (range of X),

M = vector space of all column vectors of F' (range of F).
Obviously X3 € 97y for arbitrary 8 and Fu € 97 for arbitrary u, and so we derive from model (7)
that y € 97 U J . An observation y & (9 U 2 ) is not admissible with model (7), it were an

inconsistent observation.

3. The generalized singular value decomposition

Let X =(nx p) and F = (nxk) be real matrices. Then there exist orthogonal matrices

P=(nxn),Uy =(pxp),Uy =(kxk),V =(r,xr,.) such that

PTXU, = [—ASV]Dl
®)
P'FU, = [—A(O)V]D2
where
I, 010 0/0 0
Di=@.xp)=|0 C|0|, Dy=@.xk)=[0]S 0|,
0 0]0 0(0 I

W3

Ay = (7, xrc):diag(él,...,érc ), O 2--~26rc >0, 61,....6rc the positive singular values of (X | F),
C = (rxr)=diag(c,...,c,.), 1>¢; >--->¢, >0,

S =(rxr)=diag(s;,....s,), 0<s; <--<s. <1, C2+8*=1,
and where
r.=tk(X|F), ry =tk(X), rg =1k(F), r=ry +rg —1., H=ry —r, rh=rp —r.
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So the diagonal matrices D; and D, have the same rank as X and F. Note that

r.=dim(2y UNg), r=dim(Py N NHp), n =dim(PRy — Np), n =dim(PHp —9y).
The representation (8) is called the generalized singular value decomposition of the pair (X,F). A
proof of this decomposition can be found in Paige (1985), and in the Appendix we give a sketch of this
proof. All matrices in (8) are either orthogonal or diagonal (except X and F). Also note that D; and
D, are diagonal matrices with a rectangular format the diagonal starting in the upper left and lower

right corner, respectively.

In the general linear model (7) we have chosen F = (nx k) such that tk(F) =r, +r =k, and then the

generalized singular value decomposition (8) of (X | ') simplifies to

nor p-ry

I, 010 7
T AoV 1 1
P xU =|=%=\Dy, Dy=(,xp)=|0 C|0|= ,
0
0 010 r
9) roon

0 O ]

PTFUZ_[¥]D2’ D2 :(Fch): S 0 = 4

0 [r2 5]

4. Reduction of the general linear model to the canonical model

Now we want to apply the decomposition (9) to the general linear model (7). We have

y=X{+ Fu, where u~ (O,lek)

= XU, U{ 3+ FU, Uju
h,—‘: H/’—:’
:5 =u

and multiplying the last equation by PT we obtain
P'y=P'XU,B+P FU,i.
—

=y
Applying the generalized singular value decomposition (9) we obtain
_ [AgV = _
(10) y= [%][Dlﬁ + Dy
The last n—7,. elements of y are zero and so we write y = [yvo] where y denotes the vector of the

first 7. elements of y . Now we have from (10)
or
(1) VTAy'vy =Dy3+ Dy .

_v’v_/

Thus the general linear model (7) can be transformed to

(12) y:[%o] with Jo = (r, x1)= D3 + Dyii

where



B=U1B,
i=Uju,
- (Jo) _[VTAGL 0] o7
=|—|= P
r= )= [ha ol

The transformed model (12) is very simple as D; and D, are diagonal matrices with the same ranks
as X and F, and we call this representation the canonical form of the general linear model. Note that

i +r+r =r,. and so we write

Yol ]
Vo= xD=|yp| = r
Y03 r
and further
) 5 3
B=(pxD=|6| = r
/83 pP—ry
i=(kx1) =" = "
12%) 1)

and we obtain from (12)
sor| [ O [O)A| fo_o]
);02 =0 Cc|0 62 + S 0 [ ]

~ u
y03 0 0 0 53 0 Ir2 2

ie.
o1 =By

(13) oo =CBy +Siy
Yo3 = tl3.

So we find the following four categories of observations

(@  Jor=01xD)=0

(b) oo =(rx1)=CPy + S

() Yo3=mxh=u

d)  n=n—r)x)=0.

The observations in (a) have no measurement errors and they are identical to the parameters in Bl .

These observations can be described by the model y= X3+ Fu,where X =1 and F =0.

(14)

The number of these observations is 1 =ry —r.

The observations in (b) depend on the parameter vector Bz with a diagonal design matrix C; the dis-
tribution of the measurement errors is given by Su; ~ (0,02S 2 ), where also S is diagonal. The
observations in (b) can be described by the model y = X3+ Fu , where both X =C and
F =S are diagonal matrices with cr+8%=1 . The number of these observations is

r=ry +rg—r..

The observations in (c) do not depend on the parameter vector 3 ; their distribution is given by
Yoz = Uy ~ (0,02] r, ) - These observations can be described by the model y = X5+ Fu , where

X =0 and F' =1 . The number of these observations is 7, =rgp —r .
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The observations in (d) have no measurement errors and do not depend on the parameter vector 3,
they are all identical to zero. These observations can be described by the model y = X3+ Fu,

where X =0 and F = 0. The number of these observations is n—r, .

The total number of the observations in category (a) and (d) which possess no random error is
R +n—r1,=n—rg =n—rny . The parameter vector (35 does not show up in the canonical model (13);
these parameters can have arbitrary values, they can all be chosen as zero. Then 3’5 = 3'3 = min

(minimum length solution).

5. Least squares estimators

Now we want to estimate the unknown parameters in the canonical model (13) according to the
method of least squares. 51 = (1 x1) is completely fixed by the equation y,; = @1 ; the observations in
Y01 have no measurement errors. B3 = (r, x1) has no effect in model (13); these parameters can have
arbitrary values. If we are interested in the minimal length solution with 373 = min we have to set

Gy = 53 =0. (, =(rx1) has to be determined from the equations j, = C[3, 4 Sii; . We can choose
(3, such that & =0 namely (3, = 52 =c! Yo and this is obviously the least squares estimator. The

variance of the estimator Bz is given by

var(3,) = var(c*1 ylz) - var(C*lSﬁ1 ) —o2c282,

If we set (35 = 53 =0 we have n r  p—ry
0 0 0 A
var(B) = (px p)=0>|0 | C728% | 0| = r
0 0 0 pr
X

An unbiased estimator of o2 is found from the equation yy3 =(n x1)=1u, as u, ~ 0,621 )t

. | - 1 1. 1 - . .
(15) 62 :—(y03)T(y03):—ugu2 :—Z?_lu%i as obviously E(az):az.
n p) ) -
From equation (12) we now have
50 = D J+ Doe. where &= || =[7L) denotes the residual vect
Yo = D\B+ Dye, where e = |~ xi enotes the residual vector .

The least squares estimator has been chosen such that ¢, =0 and e, =u, . So the estimator 6% in (15)
can also be written as
A2 1 ~T ~ 1 .
0° =—=e ¢ =—/(sum of all squared residuals).
) )

Backtransformation to the original parameters
The estimators for the original parameters 3 = (p x1) are found by backtransformation. We have

B:UlTﬂ and so ,G:Ulﬁ, ﬁA:Uﬁ,
i=Uju and so u=U,u, e=Ujye
TaA—1 —1
J~/: V AO O PTy andso sz AO V 0 ~

0 1
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Note that the residuals in the original model are found from e=U, e and as U, is orthogonal we

have e'e=¢"é, and so the parameters ﬁA =U (3 are indeed the least squares estimators in the original
model and
A2 1 ~T~ 1 T 1 .
0° =—e e=—e e=—(sum of all squared residuals) .
2 ) 2

The variance-covariance matrix of 3 is

0 0 0
Var(ﬁA)zvar(Ulﬁ):Ul VM(B)UIT :azUl 0|c2s% |0 Uy .
0 0 0

How can we prevent the diagonal matrices A, C, S from becoming nearly singular such that the com-
putation of the inverse becomes numerically unstable? This question will be answered in the section 8

(rank-k approximation).

6. Special case with rk(W)=n
If k(W) =n we can apply three different procedures to find the least squares solution, the classical
method of Aitken, the method with the simple singular values decomposition and the method with the
generalized singular value decomposition.
A)  Classical procedure of Aitken
As tk(W)=n and W = FF" we also have rk(F) = rr = n and thus the matrix F is regular; /' can also
be chosen as a symmetric matrix e.g. using the spectral decomposition of W; W can be written as

W = RAR" where R is orthogonal and A = diag();,...,\,), \; >0.
We set

F=RAV2RT where AV2 = diag(\/x,...,\/x);

then F' is symmetric and F? =FF" = RAR" =W . So model @)
y=X0B+ Fu
can be written as

Fly=F'XB3+u, where u~(0,0°I,)
—

————

=y _7
ie.

(16) y=XB+u, where u~(0,021,).

This is the simple linear model and thus the least squares estimator is given by
a7 B _ (XT)?)—I)?T y= (XTF_ZX)_lXTF_Zy _ (XTW_IX)_IXTW_ly |

var(3) =2 (X X)) =2 (X T 1x)~!

This representation is only possible if tk(X)= p; if tk(X) < p the inverse (X' X )_1 in (17) does
not exist. The solution (17) is the so-called Aitken estimator (see Rao-Toutenburg et al., 2008, p. 151).
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B)  Procedure with (simple) singular value decomposition

The singular value decomposition of X in (16) gives X =UDV ", where U = (nx n) and

V' =(px p) are orthogonal matrices and D = (nx p)=diag(oy,...,0,); 01 >...20, >0 are the
singular values of X . So we obtain from (16)

Yy =UDV'3+u, where u~(0,021n)

or
U'y=DV'g+U"u,
— =
1.e.

(18) y= DB +ii, andas 1 =U"u we have again u ~ (O,UZIn ).
This is the canonical form of the original model (16). If rk(X) = rk(X) = ry we have

0120y 220, >0, 1= =0,=0.
Then the parameters Brx Laeees 3 , do not show up in the canonical model, they can have arbitrary
values; they are not identifiable and can all be chosen as zero such that 573 = "8 = Z /61-2 = min
(minimum length definition). According to the method of least squares we have to choose the vector
8= 5 in (18) such that &é'é = Zél-z = min, where ¢ =y — D@ From (18) we have
P =d;B; +a; fori=1,..,ry,

a1 -
yi=u; fori=ry+1,...,n,
and thus
éi:ji_diﬁi for izl,...,l"X,
él:j}l for l':VX—H,...,n.
Obviously Zéiz becomes minimal for ¢ =---=¢, =0 i.e. for
B =B; = 3;/d; for i=1,...,ry
Bi arbitrary for i=ry+1,...,p.

If we are interested in the minimum length solution > Biz — min, we have to choose 3; = (; =0 for

i=ry+l,...,p, and then the solution can be written as
(20) B=(F=D"y,where D" =(pxn)=diag(l/oy.....}/o, .0....,0).

The variance-covariance matrix of 3 is given by

var(3) = var(D" 7) = var(D*it) = 0% (D" (D*) ) = 2(D'D)" = o diag [iz . .,Lz,o. . .,0] .
Ul UrX

As j=U"y=U"F~ ! y the estimator for the original parameters is
Q1) B=VB=VD 5=VDUTF \y=X"F 'y,
If rk(X)= p i.e. if X has full rank this solution is equivalent to the classical Aitken estimator (17) as
X=Uprv', X'=vD'U"
X'X=vD'DVT
XXy '=v D)y v"
X' X)) ' X" 5= D)y WyDUTF ly=vDUTF ly=X"Fy.

The representation (21) is correct also if rk(X) < p i.e. if multicollinearity is present.



Remark
From (19) we see that in the canonical model we find observations falling in only two of the categories
described in (4):

(b) 3, =d:B; +i; fori=1,...,ry;

(¢) yy=u; fori=ry+l,...,n.

Observations in category (a) and (d) that have no measurement errors do not arise when rk(W)=n.

C)  Procedure with generalized singular value decomposition

We consider the generalized singular value decomposition of (X | F) in (9). As tk(F)=rp =n we
have tk(X |F)=r.=n,r=ry +rp —1. =1, <p,and  =ry —r=0. So we obtain from (9)
(22) P'XU,=AyD, and P'FU,=AyVD,

where

Dlz(nxp):[g 8], Dzz(nxk):[g ?]

Equation (10) gives

¥ = AoV [ Dy + Dyl
or

VTAy'y = D3+ Dyir.
Multiplying this equation by D, ! gives

~ -1 ~
Dy VA5 =Dy'Di+a=|5 © O3+a,
e 0 0
=y

and this equation is equivalent to (18); the matrix D, lDl is identical to the diagonal matrix D in (18)

as according to (22) X = F “x=u 2Dy 1D1U1T , and this corresponds to the singular value decompo-

sition of X in procedure B.

7.  General linear model with linear restrictions
According to Rao (1971) a general linear model (5)
y=XB+e, E()=0, Val‘(S):O'ZW, X=mxp), W=(mxn), n>p
with linear restrictions R =c¢ where R = (rX p), can be extended to a linear model (without explicit
restrictions)
(23) Yo =X +e Ble) =0, var(e,) =W,
with

el o)

The general linear model (23) is obviously equivalent to model (5) with the restrictions R3 = c, and

so the least squares estimators can be found by the methods in the above sections.
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8. Rank-k approximation
a) A useful inequality
Let A= (aij) = (mxn) be an arbitrary real matrix and o, its largest singular value. Then

max|al-j| < Omax (cf. Rao-Rao, 1998, P 11.2.5, p. 365; the parameter 6 has the value 1).

b) Optimal rank-k approximation of a real matrix (see Golub-Van Loan, 1996, p. 72)

Let A= (a,-j) = (mxn) be an arbitrary real matrix with m >n . We want to approximate 4 by a matrix
B=(mxn) with tk(B)=k <r=r1k(4). Let A=UDV" be the singular value decomposition of 4
where D = (mxn) = diag(oy,...,0,) with o1 >-->0, >0, =--=0, =0. Now let

Dy = (mxn) = diag(ay,...,0,0,...,0) and 4, =UD;, V" . Then

I

=041

where ||A|| denotes the supreme norm (spectral norm) corresponding to the Euclidian vector norm. As
the largest singular value of A= A4— A4 =(§;) is oy we have max|§ii| < Opuq-

So if the rounding errors of a; are within the range 4¢ and if there are singular values < ¢, then it is
will

sensible to use the rank-k approximation 4 = (a;;) of 4 where o} >¢> o0y as then a; —a;

also be within the range of +¢ (for some examples see Kniisel, 2009).

c) Rank-k approximation and the general linear model
We consider again the general linear model (5)

y=XpB+e, E(e)=0, Var(a):azW, X=mxp), W=(nxn), n>p.
We assume that the matrices X and W are found empirically and possess rounding errors. Let us as-
sume that X, = (nx p) is a matrix with rk(Xy) < p and let X = X; +A where A= (51']') is a ma-

trix of small perturbations (rounding errors). Even if max [¢;; | is very small X will usually have full

rank p. So if an empirical matrix X has full rank our question is to find an approximation X; to X with
a numerically stable rank in the sense that the rank of X cannot be made smaller by small perturba-

tions of X. The approximation procedure with the general linear model works as follows:

(i)  Rank-k approximation and factorization of W
In a first step we perform a rank-k approximation W, of W so that the rank of #; becomes numerically

stable. Then we perform the factorization of W, = FF' .

(1)  Rank-k approximation of X

Then we compute the rank-k approximation X; of X.

(iii)  Rank-k approximation of (X, | F})

We also need a numerically stable rank of (X7 | £/{) which is not yet guaranteed by step (i) and (ii). So
we determine the rank-k approximation of (.X; | ) and obtain (X, | F5). Although X, will differ only
little from X; one must expect that the numerically stable rank of X; goes lost with X, . But against
our expectations this is not true. Our numerous examples (cf. Kniisel, 2009) confirm the following
Conjecture: If (X, | F5) is a rank-k approximation of (X; |F) andif 0y >0, >--- and 71 > 7 >
are the singular values of X; and X, , respectively, then 7; <o;,i=12,....If 0; =0 then also

7; =0, and so the rank of X, cannot become larger than the rank of X;. A mathematical proof of

this conjecture is not yet known to the author.
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9. Example: General linear model with nearly rank deficient X and W
In this example we consider the general linear model
24) y=X0B+e, where X =(nx p) and5~<0,02W),

and where both matrices X and W are nearly rank deficient (X with weak multicollinearity). Let

3 2 4) (4243 2828  5.657
1 9 —7| |1414 12728 —9.899
Xo=(x.00,03)=(5x3)=+2]4 1 7|~|5.657 1414 9.899|=X.
7 2 12| [9.899 2828 16971
5 6 4 (7071 8485 5.657

We have x3 =2x; —x,, i.e. the third column of X|, is a linear combination of the first two columns,
and so the matrix X, has rank 2, but the matrix X (= X|) rounded to three decimal places) has full

rank 3 as all three singular values of X are positive (see Table 1). Let

-7 -8 =5 9
-8 2 7 6
F=Gxy)=| 0 -1 5 -1,
7 -7 -2 -8
4 -9 2 0

18.966 7.881 —2.252 —4.763  4.667

g x 13250 2.685 —9.007 —2.425

Wo=0Bx5=—FF =~ | x * 2338 0433 —0.087| = W.
20 x x « 14376 8227
* * * * 8.747

Fy =(5x4) hasrank 4, and so W, =(5x5) is a symmetric and positive semidefinite matrix with
rank 4. But the matrix W (= W, rounded to three decimal places) has full rank 5 as all five singular

values of W are positive (see Table 1). In addition # has become an indefinite matrix as one of the
eigenvalues is negative (see Table 2). So both X and W are nearly rank deficient. Now we consider the
general linear model (24) with X = (nx p) and W = (nxn) as given above.

Table 1: Singular values of X, X, W,, W

Xg=(5%3) | X=(5x3) | Wy=(5x5) | W=(5x5)
30.513 30.513
26.590 26.590 19.825 19.825
Singular values 17.117 17.116 6.877 6.876
0 0.000 748 0.463 0.463
0 0.000 644

Table 2: Eigenvalues of W, W

Wo=(5x5) | W=(5x5)

30.513 30.513
19.825 19.825
Eigenvalues 6.877 6.876
0.463 0.463

0 —0.000 644
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(i)  Rank-k approximation and factorization of W

The elements of W are given with three decimal places and the smallest singular value o5 = 0.000 644
is about the size of the maximal rounding error. The rank-4-approximation of W will give an ap-
proximation ;= (w})) of W = (w;) with rk(#;)=4 and with max|w; —w{})| < o5 =0.000 644
The singular value decomposition of W is given by W =UDV" where U = (5x5) and V = (5x5)
are orthogonal and D = (5x5) =diag(oy,...,05) ; 0y,...,05 are the singular values of . Now we

define W] as
(25) Wy =UDYV" (=UDUT) where D; = (5x5)=diag(c},0,,03,04,0).

Obviously rk(/;)=4 and we obtain max |w; —w};’|=0.000 427 < o5 =0.000 644 ; so W; ~W . The
rank of /] is numerically stable in the sense that it cannot be reduced by small perturbations of the

matrix elements w(l) .

In a second step we factorize W, such that W, = F|F;" with F; = (5x4). Let
(26) F=UD, where D, =(5x4)=diag(\/o1,05.,\J03.:[04).
As D,D] = diag(oy,...,04,0) = D, we have FjF;' =UD,D,U" =UD\U" =W,. So W; = FjF{' and

W) is positive semidefinite as 1.

(1)  Rank-k approximation of X = (nx p)

The elements of X are given with three decimal places and the smallest singular value o3 = 0.000 748
is about the size of the maximal rounding error. The rank-2 approximation of X will give an approxi-
mation X| = (x(l)) with rk(X;)=2 and with max |x; i~ x(1)| <03 =0.000 748 . The singular value
decomposition of X = (5x3) is given by X = UDV" where U = (5x5) and V = (3x3) are orthogo

nal and D = (5x3) =diag(0y,0,,03); 01,0,,03 are the singular values of X. Now define X; as
(27) X; =UDV'" where D; = (5x3) = diag(0,0,0).
Obviously rk(X;)=2 and we obtain max|x; —x{’|=0.000379 <03 =0.000 748 ; s0 X; ~ X . The

rank of Xj is numerically stable in the sense that it cannot be reduced by small perturbations of the

(1

matrix elements X

(111)  Rank-k approximation of (X | F})

We have X =(nx p)=(5x3) and F; =(nxk)=(5x4) and so (X |F})=(nxm)=(5xT), where
m= p+k=7.The matrices X| and /| possess numerically stable ranks, but this does not necessar-
ily mean that also the rank of the combined matrix (X; |£]) is numerically stable. It could be that the
smallest singular value of (X | /1) is very small or even zero (see the examples in Kniisel, 2009b). As
a rank-k-approximation (X, | F;) of (X | /) changes both X; and F] one must expect that X, will

again have full rank 3 and will again be nearly rank deficient, and so it would have been in vain to

compute the rank-2 approximation X; of X. But surprisingly this is not true. To demonstrate this in
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teresting fact we compute the rank-4 approximation of (X | /7). The singular value decomposition of
(X, | F) is given by
(28) (X |F)=PAQ",
where P=(5x5) and Q= (7x7) are orthogonal and A = (5x7) = diag(oy,...,05).
The singular values of (X; | /) are given in Table 3. Now the rank-4-approximation of (X | /) is
given by

(X2 | Fz) = PAIQT, where Al = (5 X 7) = diag(al,...,a4,0) .

We find obtain max|xl(jz) - xi(jl)| =0.014 and max| fij(z) — fl~1(~1)| =0.373 <05 =0.641, and the singular
values of X, , F,,(X, | F;,) are given in Table 4. By comparison of Table 3 and 4 we see that the rank-
4 approximation of (Xj | /) did not increase any singular values, and in particular the rank of X, has
not become larger than the rank of Xj . A general proof of this interesting and very useful property of
the rank-k approximation is not known to the author, but I could not find any counterexample up to
now. As the difference between (X; | F]) and (X, | F5) is too large as compared with the maximal
rounding error of X and W we will do without the rank-4 approximation (X, | F>). Instead of the origi-
nal linear model (24) we now consider the model

(29) y=X,8+ Fu, where X; = (nx p), F=(nxk) and u ~ (0,01} ) .

For the error term ¢ = Fju we have E(¢) =0 and var(e) = E(ec') = JZFIFIT = 02W1 , and as we have
seen above X; ~ X and W]} ~W . So model (29) is an approximation to the original model (24) but

now the three matrices X|, F{ and (X | /) possess all numerically stable ranks.

Table 3: Singular values of X;, F{, (X] | F})

X, =(5x3) | F=(x4) | (XY |1R)
26.905
26.590 3324 1117488
singular values 17.116 4.453 4.355
2.622
0 0.680 2.926
' 0.641

Table 4: Singular values of X5, F5, (X5 | F,)

X =(Gx3) | K =06x4 | (X; | 1)

26.905
26.590 3324 1117488
singular values 17.116 4.452 4.355
0 2.619 2.926
0.268 '
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(iv)  CS-decomposition of Q
As r, =1k(X; | F{) =n =35 we have to determine the CS-decomposition of Q = (mxm)=(7xT7)

with the format

Q:[Qn |Q12] (pxn) | (px(m=n)) (3><5)|(3><2)
Oy | 022 ) |(kxn) | (kx(m—n)) | :

We obtain orthogonal matrices

B (U] 0) (Bx3)|
U_(7X7)_[o |U2]_ « [ (@x4)
_ (O] _(6x5)] =
V_(8><8)_[0|V2]_ x| (2x2)
with
0.229 —0.530 —0.817 —0.008 0 0 1.000
—0.521 —0.295 —0.801 —0.004
U =|-0420 —0.810 0.408|, U, =
0878 —0.250 0408 0.826  0.064 —0.561  0.006
' ' ' 0.217 —0.953 0.210  0.002
0.800 —0.587 —0.032 —0.076  0.095
0.572  0.802 0.036 0.012 0.166
Vi=| 0.120 0.099 —0.089 —0.514 —0.839], sz[:g'gg _8'%2]
—0.136  0.015 —0.248 —0.814  0.507 ' ‘
—0.019 —0.036 0964 —0.260  0.050
such that
Dy | D (3x35) | (3x2)
30) UTQV =D=|-1+-2 =
( ) Q [D21 |D22 (4><5) | (4)(2)
where
1 0 00 0[]0 O
0 q 0 0 O $1 0
00 00O0O0 1
D= 0 Sl 0 0 O —Cl 0 .
001000 O
00 010[0 0
00 00 1[0 0

The diagonal elements ¢; and s; are given in Table 2. Note that clz + slz =1, and so the matrix D is
orthogonal, too. Also note that Dj, and D,; are not classical diagonal matrices as the diagonal starts

in the lower right corner and not in the upper left one.

Table 5: Diagonal elements cj, s;

i ¢ Si

1 | 0988642 | 0.150 288
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(v)  Generalized singular value decomposition and canonical model

According to (28) and (30) we have
(X, |F))=PAQ" and Q=UDV',
and from this we find the so-called generalized singular value decomposition of the pair X|,
PT XU, = Agh DY,
(1) ] 1¥1 0”1 lTl
P RUy = Ao Dy
where Ay = (5x5) =diag(oy,...,05) and where oy,...,05 are the singular values of (X] | F]) as
given above in Table 3. Our model can now be written in the canonical form
(32) y=D3+ Dy,
where
j=My with M;=VTA;'PT
B=U]B,
i=Uju,

0.023 —-0.034  0.062 —-0.007 —0.015
0.002 —-0.055 0.011 -0.056  0.005
M;=(5x5)=| 0.155 0.463 —0.602 0.883 —0.940|,
—-0.174 —-0.027 0402 -0.228  0.107
—-0.164 —-0.017 —-0.165 0.119  0.068

0
0

Dy =Dy =(x4)=|0 1
0 0

0

S~ OO O
—OoOOoOOoOo

0
From (31) we can see that rk(X]) =rk(D;;) =rk(D;) =2 andrk(F)) =rk(D,;) =rk(D,)=4. The

canonical model (32) explicitly written has the form

51=10,

Jp =1 By + 5110y,
(33) y3=uy,

Y4 =us3,

Vs = lig.

The observation y; is identical to the parameter Bl , this observation has no random error. The pa-

rameter 53 can have arbitrary values as it does not show up in the canonical model, and we set this

parameter to zero (minimum length definition). The least squares estimators are given by

Bl :)N}la
By = /e,
35 =0.

In matrix notation we can write
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. 1 0 000
B=Dy as D =[0 1l/¢g 0 0 0],
0 0 000
00 00 0
S [ s£ 0 0 0
var(y)=0"DyDy =070 0 1 0 0
00 010
00 00 1
0 0 0
var(3) = D; var(3)(D{ )" = 02D DD} (D) =52|0 st /et 0|=02Dy.
0 0 0

For the original parameters we obtain

B=UB=U\D{§=M,y

where
0.00 423 0.02198 0.00803 0.02832 —0.00587
M, = UlDfLVITAO_lPT =|-0.01146  0.05958 —0.03536 0.04859  0.00236
0.01991 —0.01562 0.05142 0.00806 —0.01410
and

A . 0.00649 0.00993 0.00306
var(B) = Uy var(B)U] = o?UyDyUT =0?|  * 001517 0.00468|.
* % 0.00144

The unknown variance o is estimated by

.2 5 N B
6= =305 + 35 +735).

Remark

In our example we have n=5, p=3, r. =1k(X; | j)=n=35 and

ry =1k(X])=2 <p=3,
rp =1k(F)=1k(W)=k=4 <n=35,
r=ry +rg—r.=1 >0.

In the canonical model (33) we have three categories of observations:

(a)  observations with no random error, that are identical to a parameter ( j in the example);
number of these observations: ry —r=n—rp =n—ny =5—4=1;
(b)  "classical" observations, that depend on the parameters and possess a random error ( y, in the

example); number of these observations: » =1;

(c)  observations, that do not depend on the parameters and possess a random error ( 33, V4, and s

in the example); number of these observations: rp —r=4—-1=3.

Furthermore we have three categories of parameters:

(o) parameters, that are completely fixed by the observations (Bl in the example); number of these
parameters: ry —r=2—1=1;

(B) "classical" parameters, that can be estimated with a random error (Bz in the example); number
of these parameters: r=1;
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(y)  parameters that do not show up in the canonical model (B3 in the example); these parameters

can have arbitrary values and they can be set to zero in order to make all parameters identifiable
(minimum length definition); number of these parameters: p —ry =3—-2=1.

Final remarks
a) If we replace in the general linear model (29) the matrices X; and F by X, and F{ (with 15
significant digits) we obtain essentially the same results.

b) The computations in the example are done with Matlab (2008) and Maple (2006). Matlab offers
a procedure gsvd (generalized singular value decomposition) that includes a subfunction csd (CS-
decomposition), and this subfunction is used for computing the CS-decomposition of an orthogonal

matrix.

10. Conclusion

With the aid of the generalized singular value decomposition the general linear model y = X3+ Fu
can be transformed to a very simple canonical form. The canonical form exhibits the basic structure of
the linear model, four categories of observations, three categories of parameters and two categories of
random errors. For this canonical form the least squares estimators can be found easily and by back-
transformation the estimators for the original parameters are found. The basic ideas of this procedure
are found in Kourouklis and Paige (1981) and Paige (1985). In Rao-Toutenburg et al. (2008) a unified
theory of the general linear model is presented being based on Rao (1971,1972,1973), but the clear
structure of the linear model shown by the canonical form is not found there. The general linear model
with linear restrictions can be extended to a general linear model without explicit restrictions as shown
by Rao (1971), and so this case offers no new problems. The generalized singular value decomposition

can be made numerically stable by using the rank-k approximation of Golub-Van Loan (1996).
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Appendix: The generalized singular value decomposition

A1 Lemma 2.1 of Paige, 1985, page 272
Let 4 and B be (nx p) matrices with rk(4) =1k(B) = p and with 97, = 97p i.e. with identical col-

umn spaces. Then there exist two orthogonal matrices U and J and two positive diagonal matrices S
and C all four with format (p x p) such that

AUS = BVC where §* +C*=1.
So the matrices AU and BV possess parallel columns, i.e. column i of AU is a multiple of column i
of BV.
Proof:
As 9%, = 91p there exists a matrix G = (p X p) such that 4 = BG i.e. such that Bg; = a; where

A=(a,...,a,) and G =(gy,...,&p) - The singular value decomposition of G has the form

G =VDU", where U and V are orthogonal and D is diagonal with positive diagonal elements. Now
we have

A=BG=BVDU" or AU =BVD.
We set

2 _/n2 -1 _

S“=(D"+I) " and C=DS,
and obtain from AU = BVD

AUS = BVDS = BVC

where

C?+82=D*S*+8*=8S*(D*>+1)=1.

A2 CS Decomposition (cf. Paige-Wei, 1994)
If

O | le]_{PXk | pxt prq=k+l=n

Q=(nxm= Ox1 | O] |axk | gxt

is an arbitrary 2x 2 partitioning of the orthogonal matrix Q, then there exist two orthogonal matrices

(U | 0) (pxp]|pxg (] 0 (kxk | kxt
U_[O|U2_q><p|q><q andV_0|V2_€><k|€><£
such that
I 0 0] 0 0 O
0 C 00 S 0
T _OOO 0 0 [_pXk|pX£_D11|D12_
0O S 00 —-C O
0 0 7|0 0 O
where

C = (rxr)=diag(cy,...,c,.), 1>¢; >-->¢, >0,
S = (rxr)=diag(sy,...,s,.), 0<s; <--- <5, <1,
Cr+st=1
Note that Dy; and D,, are rectangular diagonal matrices the diagonal starting at the upper left corner

whereas Dj, and D,; are rectangular diagonal matrices the diagonal starting at the lower right corner.
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Also note that D is again an orthogonal matrix as

I 0 00 0 0
0 C*+58% 0/|0 0 0

T |0 0 7110 0 0
D' D=5 0 01 0 0
0 0 0l0 C?+5% 0

0 0 00 0 I

and C>+8%=1.As Uand Vare orthogonal also U,,U,,V;,V, must be orthogonal. According to
(34) we have Q=UDV " and from this we derive 0= Ul-DijVjT ; this is essentially the singular value
decomposition of Q;; (i, j=1,2) as the sign and the order of the singular values can be changed by
changing the order and sign of the columns of U; and ¥; . The CS-decomposition is also called the

cosine-sine-decomposition as ¢; = cos(y;) and s; =sin(y;), 0<p; <7/2, sin” (p;)+ cos’ () =1.

A3 Generalized singular value decomposition

Let X=(nxp), F=(nxk),and r, =rk(X | F). Obviously 7. < p+k =m . Now we consider the
singular value decomposition of (X | F')

(35) (X|F)=PAQ",

where P=(nxn) and Q= (mxm) are orthogonal and

A:(nxm):[AOO 8],with Ao = (1, 1) = diag(y,...,6, ), & >+->6, >0.

A = (r. xr,.) is the reduced form of A = (m xn); it is square and regular. From (35) we derive

(36) (X|F)Q=PA=(BRA(|0), where P=(F|P) with B =(nxr,).Now we consider the CS-
decomposition of

B B pxrc |p><(m—l"c) o Q |Q .
Q(me)(erc |k><(m—rc)][Q;11 |QZ]’

there exist orthogonal matrices
U:(mxm):[U1 | 0 ]:[po | pXk]

0 [Uy) |kxp | kxk
B R4 | 0) ( rnxr | 1. X(m—r,)
V—(mxm)_[o |V2]_[(m—rc)><rc |(m—rc)><(m—rc)
such that

I 0 0O 0 O
0O C 0|0 S 0

T _ _pxrc|p><(m—rc)_0 0 0 0 0 ]_D11|D12 B
0O S 00 —C O
0 0 7|0 0 O

where
C = (rxr)=diag(cy,....c;), 1>¢ >--->¢c, >0,
S = (rxr)=diag(sy,...,s,), 0<s; <---<s, <1,
ciz—l—siz:l, i=1,...r.

From (37) we have

(38) QV=UD

where
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i R )
From (36) we have
(X |F)QV = PAV =(RA% 1 0)
and together with (38) we obtain
(39) (X |F)UD=PAV =(RAy 0).
Now

UpiDyy | UiDyp

X|F)UD=(X|F
(X[F) (X )[U2D21 U,Dsy

]: (XUDyy + FU, Dy | XUDyy + FU,Dyy )
and according to (39) we obtain

XU1D12 +FU2D22 =0 . 1.€. XU1D12 = *FU2D22 .
Thus we have proved the following result.

Result 1
There exist orthogonal matrices U (=U;) and V' (=U,) such that

010 0 I 010
XU|0|S O0|=FV|0 C|0].
010 1 0 010

This is formula (2.5) of Paige (1985) on page 273 (with interchanged X and F).

From (39) we derive further

AoV |0 AV
(40) PT(X|F)U:AVDT:[ - IO]DT:[ 0 1](0{1 | D3y

or

PTXU, = [—] Dy},
(41)

P'FU, = [%] DJ;.

Thus we have proved the following result.

Result 2
There exist orthogonal matrices P = (nxn),U; =(px p),U, = (kxk),V (=V)) = (7. xr,) such that

PTXU, = [—ASV]D1
(42)
P'FU, = [%] D,

where

1
D (=D[)=(xp)=0
0

ol o

0 0/0 0
0|, Dy (=D3))=(r.xk)=|0[S 0],
0 0|0 1

Ay = (1, xr.) = diag(¢y,.. "6rc ), 61,....6rc the positive singular values of (X | F').
(40) corresponds to formula (2.8) of Paige (1985) on page 274 (with interchanged X and F). The rep-
resentation (40) or (42) is called the generalized singular value decomposition of (X | F). Now we

summarize our result.
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Generalized singular value decomposition

Let X =(nx p) and F = (nxk) be real matrices. Then there exist orthogonal matrices

P=(nxn),U =(pxp),Uy=(kxk),V =(r, xr,.) such that

P'XU, = [—A(()’V]D1
(43)
PTFU2:[¥]D2
where
1’1 010 olo o
Di=.xp)=|0 C|0|. Dy=(r,xk)=[0|S 0
0 010 010 1,
Ay = (1, xr.) = diag(¢y,.. "6rc ), 61,....6,6 the positive singular values of (X | ), 6 >--- > 6rc >0
C = (rxr)=diag(cy,...,c,.), 1>¢; >-->¢, >0,
S = (rxr)=diag(sy,...,s,), 0<s5 <---<s, <1,
c?+8*=1,
and where

1, =1kK(X | F), ry =1k(X), rp =1k(F), r=ry +rp —t.,, n=ry —r, h=1p —r.
So the diagonal matrices D; and D, have the same rank as X and F. Note that
7. :dlm(%X U%F), V:dlm(%X D%F), n :dlm(%X _‘%F)’ 16) :dlm(%F _‘%X) .
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