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Abstract
Various strategies for active learning have been proposed in the machine learning liter‑
ature. In uncertainty sampling, which is among the most popular approaches, the active 
learner sequentially queries the label of those instances for which its current prediction is 
maximally uncertain. The predictions as well as the measures used to quantify the degree 
of uncertainty, such as entropy, are traditionally of a probabilistic nature. Yet, alternative 
approaches to capturing uncertainty in machine learning, alongside with corresponding 
uncertainty measures, have been proposed in recent years. In particular, some of these 
measures seek to distinguish different sources and to separate different types of uncertainty, 
such as the reducible (epistemic) and the irreducible (aleatoric) part of the total uncertainty 
in a prediction. The goal of this paper is to elaborate on the usefulness of such measures 
for uncertainty sampling, and to compare their performance in active learning. To this end, 
we instantiate uncertainty sampling with different measures, analyze the properties of the 
sampling strategies thus obtained, and compare them in an experimental study.
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1 Introduction

The goal in standard supervised learning, such as binary or multi‑class classification, is to 
learn models with high predictive accuracy from labelled training data (Hastie et al. 2005; 
Vapnik 1999). However, labelled data does not come for free. On the contrary, labelling 
can be expensive, time‑consuming, and costly. The ambition of active learning, therefore, 
is to exploit labelled data in the most effective way. More specifically, the idea is to let the 
learning algorithm itself decide which examples it considers to be most informative. Com‑
pared to random sampling, the hope is to achieve better performance with the same amount 
of training data, or to reach the same performance with less data (Fu et al. 2013; Settles 
2009).

The selection of training examples is often done in an iterative manner, i.e., the active 
learner alternates between re‑training and selecting new examples. In each iteration, the 
usefulness of a candidate example is estimated in terms of a utility score, and the one with 
the highest score is queried. In this regard, the notion of utility typically refers to uncer‑
tainty reduction: To what extent will the knowledge about the label of a specific instance 
help to reduce the learner’s uncertainty about the sough model? In uncertainty sampling 
(Settles 2009), which is among the most popular approaches, utility is quantified in terms 
of predictive uncertainty, i.e., the active learner selects those instances for which its current 
prediction is maximally uncertain. The predictions as well as the measures used to quantify 
the degree of uncertainty, such as entropy, are almost exclusively of a probabilistic nature. 
Such approaches indeed proved to be successful in many applications.

Yet, as pointed out by Sharma and Bilgic (2017), existing approaches can be criticized 
for not informing about the reasons for why an instance is considered uncertain, although 
this might be relevant for judging the potential usefulness of an example. They propose 
an evidence‑based approach to active learning, in which conflicting-evidence uncertainty 
is distinguished from insufficient-evidence uncertainty. A similar distinction between two 
types of uncertainty, called epistemic and aleatoric uncertainty, has been made in the 
recent machine learning literature (Hüllermeier and Waegeman 2021; Kendall and Gal 
2017; Senge et al. 2014). Roughly speaking, aleatoric uncertainty is due to inherent ran‑
domness, whereas epistemic uncertainty captures the lack of knowledge of the learner. 
Thus, the latter corresponds to the reducible and the former to the irreducible part of the 
total uncertainty in a prediction. Last but not least, measures of uncertainty are also dis‑
cussed in connection with generalizations of standard probability theory, most notably 
imprecise probability (De Campos et al. 1994; Zaffalon 2002). Here, incomplete informa‑
tion is captured in the form of credal sets, that is, (convex) sets of probability distributions; 
correspondingly, standard uncertainty measures for single probability distributions (such as 
entropy) are generalized toward credal uncertainty measures.

This paper is an extension of (Nguyen et al. 2019), in which the authors conjecture that, 
in uncertainty sampling, the usefulness of an instance is better reflected by its epistemic 
than by its aleatoric uncertainty, and provide first evidence in favor of this conjecture. The 
goal of the current paper is to elaborate more broadly on the usefulness of different meas‑
ures for uncertainty sampling, and to compare their performance in active learning. To this 
end, we instantiate uncertainty sampling with different measures, analyze the properties of 
the sampling strategies thus obtained, and compare them in an experimental study.

The rest of this paper is organized as follows. In the next section, we first recall the 
general framework of uncertainty sampling and provide a brief survey of related work on 
active learning. We present different approaches for measuring the learner’s uncertainty 
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in a query instance and a comparison of the approaches in Sects.  3 and 4, respectively. 
Experimental evaluations for local learning (Parzen window classifier), decision trees and 
logistic regression are presented in Sect. 5, prior to concluding the paper in Sect. 6. Tech‑
nical details for instantiations of aleatoric and epistemic uncertainty are deferred to the 
appendices.

2  Uncertainty sampling

In this section, we briefly recall the basic setting of uncertainty sampling. As usual in 
active learning, we assume to be given a labelled set of training data � and a pool of unla‑
beled instances � that can be queried by the learner:

Instances are represented as features vectors xi =
(
x1
i
,… , xd

i

)
∈ X = ℝ

d . In this paper, we 
only consider the case of binary classification, where labels yi are taken from Y = {0, 1} , 
leaving the more general case of multi‑class classification for future work. We denote by 
H ⊂ Y

X the underlying hypothesis space, i.e., the class of candidate models h ∶ X ⟶ Y 
the learner can choose from. Often, hypotheses are parametrized by a parameter vector 
� ∈ Θ ; in this case, we equate a hypothesis h = h� ∈ H with the parameter � , and the 
model space H with the parameter space Θ.

In uncertainty sampling, instances are queried in a greedy fashion. Given the current 
model � that has been trained on � , each instance xj in the current pool � is assigned a 
utility score s(�, xj) , and the next instance to be queried is the one with the highest score 
(Lewis and Gale 1994; Settles 2009; Settles and Craven 2008; Sharma and Bilgic 2017). 
The chosen instance is labelled (by an oracle or expert) and added to the training data � , 
on which the model is then re‑trained. The active learning process for a given budget B (i.e, 
the number of unlabelled instances to be queried) is summarized in Algorithm 1.

Algorithm 1: Uncertainty sampling
Input: U, D, θ- initial pool, training data, classifier, and B-budget
Output: U, D, θ - updated pool, training data, classifier

1 initialize b = 0;
2 while b < B do
3 foreach x ∈ U do
4 compute s(θ,x)

5 query the label of the optimal instance x∗ with respect to s(θ,x)
D = D ∪ {x∗, y∗} ;

6 U = U \ {x∗, y∗} ;
7 train θ from D;
8 b = b+ 1;

9 Return U, D, θ;

Assuming a probabilistic model producing predictions in the form of probability distri‑
butions p�(⋅ | x) on Y , the utility score is typically defined in terms of a measure of uncer‑
tainty. Thus, instances on which the current model is highly uncertain are supposed to be 
maximally informative (Settles 2009; Settles and Craven 2008; Sharma and Bilgic 2017). 
Popular examples of such measures include

� =
{
(x1, y1),… , (xN , yN)

}
, � =

{
x1,… , xJ

}
.
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– the entropy: 

– the least confidence: 

– the smallest margin: 

 where ym = argmaxy∈Y p�(y | x) and yn = argmaxy∈Y⧵ym p�(y | x).
While the first two measures ought to be maximized, the last one has to be minimized. 
In the case of binary classification, i.e, Y = {0, 1} , all these measures rank unlabelled 
instances in the same order and look for instances with small difference between p�(0 | x) 
and p�(1 | x).

3  Measures of uncertainty

In this section, we present different frameworks for measuring the learner’s uncertainty 
in a query instance: evidence‑based uncertainty (EBU), credal uncertainty (CU), and an 
approach focusing on a distinction between epistemic and aleatoric uncertainty (EAU). 
While the first one has been specifically developed for the purpose of active learning, the 
other two are more general approaches to uncertainty quantification in machine learning. 
Yet, their potential usefulness for active learning has been pointed out as well (Antonucci 
et al. 2012; Nguyen et al. 2019).

3.1  Evidence‑based uncertainty (EBU)

In their evidence‑based uncertainty sampling approach, Sharma and Bilgic (2013, 2017) 
propose to differentiate between uncertainty due to conflicting evidence and insufficient 
evidence. The corresponding measures of conflicting-evidence uncertainty and insufficient-
evidence uncertainty are mainly motivated for the Naïve Bayes (NB) classifier as a learning 
algorithm. In the spirit of this classifier, evidence‑based uncertainty sampling first looks 
at the influence of individual features xm in the feature representation x = (x1,… , xd) of 
instances. More specifically, given the current model � , denote by p�(xm | 0) and p�(xm | 1) 
the class‑conditional probabilities on the values of the mth feature. For a given instance x , 
the authors partition the set of features into those that provide evidence for the positive and 
for the negative class, respectively:

Then, the total evidence for the positive and the negative class is determined as follows:

(1)s(�, x) = −
∑
y∈Y

p�(y | x) log p�(y | x) ,

(2)s(�, x) = 1 −max
y∈Y

p�(y | x) ,

(3)s(�, x) = p�(ym | x) − p�(yn | x) ,

(4)P𝜃(x) =

{
xm

||||
p𝜃(x

m | 1)
p𝜃(x

m | 0) > 1

}
,

(5)N𝜃(x) =

{
xm

||||
p𝜃(x

m | 0)
p𝜃(x

m | 1) > 1

}
.
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The authors consider a situation as conflicting evidence if both E0(x) and E1(x) are high, 
because in such as situation, there is strong evidence in favor of the positive as well as 
strong evidence in favor of the negative class. Likewise, a situation in which both evi‑
dences are low is considered as insufficient evidence. Measuring these conditions in terms 
of the product1 E1(x) × E0(x) , the conflicting evidence‑based approach simply queries 
the instance with the highest conflicting evidence, while the insufficient evidence‑based 
approach looks for the one with the highest insufficient evidence:

Note that the selection is restricted to the set � of instances x in the pool � having the high‑
est scores s(�, x) according to standard uncertainty sampling; the size of this set, t = |�| , is 
a parameter of the method (and hence a hyper‑parameter for the active learning algorithm). 
The restriction to the most uncertain cases puts evidence‑based uncertainty sampling close 
to standard uncertainty sampling. Instead of using conflicting‑evidence and insufficient‑
evidence uncertainties as selection criteria on their own, they are merely used for prioritiz‑
ing cases that appear to be uncertain in the traditional sense.

3.1.1  A note on evidence‑based uncertainty

Interestingly, to motivate their approach, Sharma and Bilgic (2017) note that “regardless 
of whether we want to maximize or minimize E1(x) × E0(x) , we want to guarantee that 
the underlying model is uncertain about the chosen instance”, thereby suggesting that 
the evidence‑based uncertainties alone do not necessarily inform about this uncertainty. 
Indeed, it is true that these uncertainties are not easy to interpret (see also our discussion in 
Sect. 4.1), and that their relationship to standard uncertainty measures is not fully obvious.

In particular, note that the latter also comprises the influence of the prior class probabil‑
ities, which is completely neglected by the evidence‑based uncertainties (which only look 
at the likelihood). This is especially relevant in the case of imbalanced class distributions. 
In such cases, evidence‑based uncertainty may strongly deviate from standard uncertainty, 
i.e., the entropy of the posterior distribution. For instance, E0(x) and E1(x) could both be 
very large, and p�(x | 0) ≈ p�(x | 1) , although p�(0 | x) is very different from p�(1 | x) due to 
unequal prior odds, and hence the entropy small. Likewise, the entropy of the posterior can 
be large although both evidence‑based uncertainties are small.

(6)E1(x) =
∏

xm∈P� (x)

p�(x
m | 1)

p�(x
m | 0) ,

(7)E0(x) =
∏

xm∈N� (x)

p�(x
m | 0)

p�(x
m | 1) .

(8)s∗
conf

= argmax
x∈�

E1(x) × E0(x) ,

(9)s∗
insu

= argmin
x∈�

E1(x) × E0(x) .

1 This is the measure used in (Sharma and Bilgic 2013, 2017). The authors mention, however, that other 
measures could be used as well.
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3.1.2  A note on uncertainty sampling for Naïve Bayes

The evidence‑based approach to uncertainty sampling has been introduced with a focus on 
Naïve Bayes as a base learner. In this regard, we like to note that uncertainty sampling for 
this learner might be considered critical in general.

It is clear that active learning may always incorporate a bias, simply because the data is 
no longer produced by sampling independently according to the true underlying distribu‑
tion. Thus, the data is no longer completely representative. While this may affect any learn‑
ing algorithm, the effect appears to be especially strong for NB, so that uncertainty sam‑
pling for NB appears to be questionable in general. In fact, a sample bias has a very direct 
influence on the probabilities estimated by NB. In particular, the estimated class priors are 
strongly biased toward the conditional class probabilities of those instances with a high 
uncertainty, because these are sampled more often. This bias may in turn affect the classi‑
fier as a whole, and lead to suboptimal predictions.

As an illustration of the problem, let us consider a small example with only two binary 
attributes x1 and x2 . This example may appear unrealistic, because the instance space is 
finite and actually quite small. Please note, however, that even in practice NB is typically 
applied to discrete attributes with finite domains (possibly after a discretization of numeri‑
cal attributes in a pre‑processing step).

Suppose the class priors to be given by p(y = 0) = 0.3 and p(y = 1) = 0.7 , and the 
class‑conditional probabilities as follows:

From these, one derives the following posterior probabilities:

Now, consider an active learner that can sample from a large (in principle infinite) pool of 
unlabeled data points (i.e., multiple copies of each of the four instances). Since the second 
instance (x1, x2) = (0, 1) has the highest entropy, standard uncertainty sampling will sooner 
or later focus on this instance and sample it over and over again2. This of course has an 
influence on the estimation of priors and conditional probabilities by NB. In particular, the 
estimated class priors p̂(y = 0) and p̂(y = 1) will converge to the conditional posteriors, 
i.e., the posteriors of y given (x1, x2) = (0, 1) . Consequently, we will produce a bias in the 
estimates, and will obtain

p(x1 = 1 | y = 0) = 0.4 ,

p(x1 = 1 | y = 1) = 0.2 ,

p(x2 = 1 | y = 0) = 0.8 ,

p(x2 = 1 | y = 1) = 0.4 .

p(y = 0 | x1 = 0, x2 = 0) ≈ 0.10 , p(y = 1 | x1 = 0, x2 = 0) ≈ 0.90 ,

p(y = 0 | x1 = 0, x2 = 1) ≈ 0.40 , p(y = 1 | x1 = 0, x2 = 1) ≈ 0.60 ,

p(y = 0 | x1 = 1, x2 = 0) ≈ 0.22 , p(y = 1 | x1 = 1, x2 = 0) ≈ 0.78 ,

p(y = 0 | x1 = 1, x2 = 1) ≈ 0.63 , p(y = 1 | x1 = 1, x2 = 1) ≈ 0.37 .

2 We confirmed this in a simulation study.
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As one can see, this will even have an effect on the Bayes‑optimal predictor: For 
(x1, x2) = (1, 1) , the prediction will be ŷ = 1 instead of the actually optimal prediction 
ŷ = 0 . Similar effects can be found for the evidence‑based approach. For example, when 
applying the insufficient evidence approach, it can happen that the active learner will com‑
pletely focus on the third instance, which has the highest insufficient evidence, and then 
produce the following estimates:

So again, the prediction for (x1, x2) = (1, 1) will be ŷ = 1 instead of ŷ = 0.

3.1.3  Extension to other learners

As explained above, the approach by Sharma and Bilgic (2017) is specifically tai‑
lored for Naïve Bayes as a learning algorithm. Yet, the authors also propose vari‑
ants of their measures for logistic regression and support vector machines. For exam‑
ple, if the decision boundary obtained by fitting a logistic regression model is given by 
h�(x) = �0 +

∑d

i=1
�i ⋅ x

i , the evidences for the positive and the negative class are defined, 
respectively, as follows (Sharma and Bilgic 2017):

where

Obviously, evidence‑based uncertainty measures can be derived is a quite natural way 
for models in which the features independently contribute to the prediction. However, the 
approach becomes much less straightforward in the case where features may interact with 
each other. In any case, new measures need to be derived for every model class separately. 
The approaches to be discussed next are more generic (and hence more principled) in the 
sense of being independent of the model class. That is, concrete measures of uncertainty 
can be derived for any model class in a generic way.

3.2  Credal uncertainty (CU)

Consider an instance space X  , output space Y = {0, 1} , and a hypothesis space H consist‑
ing of probabilistic classifiers h ∶ X ⟶ [0, 1] . Assuming that each hypothesis h = h� is 
identified by a (unique) parameter vector � ∈ Θ , we can equate H with the parameter space 

p̂(y = 0 | x1 = 0, x2 = 0) ≈ 0.19 , p̂(y = 1 | x1 = 0, x2 = 0) ≈ 0.81 ,

p̂(y = 0 | x1 = 0, x2 = 1) ≈ 0.38 , p̂(y = 1 | x1 = 0, x2 = 1) ≈ 0.62 ,

p̂(y = 0 | x1 = 1, x2 = 0) ≈ 0.24 , p̂(y = 1 | x1 = 1, x2 = 0) ≈ 0.76 ,

p̂(y = 0 | x1 = 1, x2 = 1) ≈ 0.45 , p̂(y = 1 | x1 = 1, x2 = 1) ≈ 0.56 .

p̂(y = 0 | x1 = 0, x2 = 0) ≈ 0.14 , p̂(y = 1 | x1 = 0, x2 = 0) ≈ 0.86 ,

p̂(y = 0 | x1 = 0, x2 = 1) ≈ 0.36 , p̂(y = 1 | x1 = 0, x2 = 1) ≈ 0.64 ,

p̂(y = 0 | x1 = 1, x2 = 0) ≈ 0.23 , p̂(y = 1 | x1 = 1, x2 = 0) ≈ 0.78 ,

p̂(y = 0 | x1 = 1, x2 = 1) ≈ 0.49 , p̂(y = 1 | x1 = 1, x2 = 1) ≈ 0.51 .

(10)E1(x) =
∑

xm∈P� (x)

�m ⋅ xm, E0(x) = −
∑

xm∈N� (x)

�m ⋅ xm ,

(11)P𝜃(x) =
{
xm || 𝜃m ⋅ xm > 0

}
, N𝜃(x) =

{
xm || 𝜃m ⋅ xm < 0

}
.
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Θ . We denote by p�(1 | x) = h�(x) and p�(0 | x) = 1 − h�(x) the (predicted) probability that 
instance x ∈ X  belongs to the positive and negative class, respectively.

Credal uncertainty sampling (Antonucci et al. 2012) seeks to differentiate between the 
reducible and irreducible part of the uncertainty in a prediction. Denote by C ⊆ Θ a credal 
set of models, i.e., a set of plausible candidate models. We say that a class y dominates 
another class y′ if y is more probable than y′ for each distribution in the credal set, that is

The credal uncertainty sampling approach simply looks for the instance x with the highest 
uncertainty, i.e, the least evidence for the dominance of one of the classes. In the case of 
binary classification with Y = {0, 1} , this is expressed by the score

Practically, the computations are based on the interval‑valued probabilities

assigned to each class y ∈ {0, 1} , where

Such interval‑valued probabilities can be produced within the framework of the Naïve 
credal classifier (Antonucci et al. 2012; Antonucci and Cuzzolin 2010; De Campos et al. 
1994; Zaffalon 2002). In the case of binary classification, where p�(0 | x) = 1 − p�(1 | x) , 
the score �(1, 0, x) can be rewritten as follows:

Likewise,

Finally, the uncertainty score (13) can simply be expressed as follows:

3.3  Epistemic and aleatoric uncertainty (EAU)

A distinction between the epistemic and aleatoric uncertainty (Hora 1996) in a prediction 
for an instance x has been motivated by Senge et al. (2014)3. Their approach is based on 

(12)𝛾(y, y�, x) = inf
𝜃∈C

p𝜃(y | x)
p𝜃(y

� | x) > 1 .

(13)s(x) = −max
(
�(1, 0, x), �(0, 1, x)

)
.

p(y | x), p(y | x)] ,

(14)p(y | x) = inf
�∈C

p�(y | x) , p(y | x) = sup
�∈C

p�(y | x) .

(15)�(1, 0, x) = inf
�∈C

p�(1 | x)
p�(0 | x) = inf

�∈Θ

p�(1 | x)
1 − p�(1 | x) =

p(1 | x)
1 − p(1 | x) .

(16)�(0, 1, x) = inf
�∈C

p�(0 | x)
p�(1 | x) = inf

�∈C

1 − p�(1 | x)
p�(1 | x) =

1 − p(1 | x)
p(1 | x) .

(17)s(x) = −max

( p(1 | x)
1 − p(1 | x) ,

1 − p(1 | x)
p(1 | x)

)
.

3 More recently, this distinction has also attracted attention in the deep learning community (Kendall and 
Gal 2017).
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the use of relative likelihoods, historically proposed by Birnbaum (1962) and then justified 
in other settings such as possibility theory (Walley and Moral 1999).

Given a set of training data � = {(xi, yi)}
N
i=1

⊂ X × Y , the normalized likelihood of a 
model h� is defined as

where L(�) =
∏N

i=1
p�(yi � xi) is the likelihood of � , and �ml ∈ Θ the maximum likelihood 

estimation on the training data. For a given instance x , the degrees of support (plausibility) 
of the two classes are defined as follows:

So, �(1 | x) is high if and only if a highly plausible model supports the positive class much 
stronger (in terms of the assigned probability mass) than the negative class (and �(0 | x) 
can be interpreted analogously)4. Note that, with f (a) = 2a − 1 , we can also write

Given the above degrees of support, the degrees of epistemic uncertainty ue and aleatoric 
uncertainty ua are defined as follows:

Thus, epistemic uncertainty refers to the case where both the positive and the negative 
class appear to be plausible, while the degree of aleatoric uncertainty (22) is the degree to 
which none of the classes is supported. Roughly speaking, aleatoric uncertainty is due to 
influences on the data‑generating process that are inherently random, whereas epistemic 
uncertainty is caused by a lack of knowledge. Or, stated differently, ue and ua measure the 
reducible and the irreducible part of the total uncertainty, respectively.

It is thus tempting to assume that epistemic uncertainty is more relevant for active learn‑
ing: While it makes sense to query additional class labels in regions where uncertainty can 
be reduced, doing so in regions of high aleatoric uncertainty appears to be less reasonable. 
This leads us to suggest the principle of epistemic uncertainty sampling, which prescribes 
the selection

(18)�Θ(�) =
L(�)

L(�ml)
=

L(�)

max��∈Θ L(��)
,

�(1 | x) = sup
�∈Θ

min
[
�Θ(�), p�(1 | x) − p�(0 | x)

]
,

�(0 | x) = sup
�∈Θ

min
[
�Θ(�), p�(0 | x) − p�(1 | x)

]
.

(19)�(1 | x) = sup
�∈Θ

min
[
�Θ(�), f (h�(x))

]
,

(20)�(0 | x) = sup
�∈Θ

min
[
�Θ(�), f (1 − h�(x))

]
.

(21)ue(x) =min
[
�(1 | x),�(0 | x)] ,

(22)ua(x) =1 −max
[
�(1 | x),�(0 | x)] .

(23)x
∗ = argmax

x∈�
ue(x) .

4 Technically, we assume that, for each x ∈ X  , there are hypotheses h, h� ∈ H such that h(x) ≥ 0.5 and 
h
�(x) ≤ 0.5 , which implies �(1 | x) ≥ 0 and �(0 | x) ≥ 0.
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For comparison, we will also consider an analogous selection rule based on the aleatoric 
uncertainty, i.e.,

As already said, this approach is completely generic and can in principle be instantiated 
with any hypothesis space H . The uncertainty measures (21–22) can be derived very eas‑
ily from the support degrees (19–20). The computation of the latter may become difficult, 
however, as it requires the solution of an optimization problem, the properties of which 
depend on the choice of H . We are going to present practical methods to determine (19–20) 
for the cases of a simple Parzen window classifier and logistic regression in Sects.  A.1 
and A.2, respectively.

4  Discussion and comparison of the approaches

4.1  EAU versus EBU

Although the concepts of “conflicting evidence” and “insufficient evidence” of Sharma 
and Bilgic (2017) appear to be quite related, respectively, to aleatoric and epistemic uncer‑
tainty, the correspondence becomes much less obvious (and in fact largely disappears) 
upon a closer inspection. Besides, a direct comparison is complicated due to various tech‑
nical issues with the evidence‑based approach to uncertainty sampling. In particular, due 
to the preselection of the top‑t uncertain instances (the set � ), evidence‑based uncertainty 
sampling is actually a variant of standard (entropy‑based) uncertainty sampling, and com‑
pletely degenerates to the latter for t = 1 . As we are more interested in alternative measures 
of uncertainty, we will subsequently ignore the preselection step, and instead focus our dis‑
cussion on the nature of the evidence measures themselves. In other words, we consider a 
version of evidence‑based uncertainty sampling with a very large t. Before proceeding, let 
us emphasize that this is not the version proposed by the authors. Therefore, our discussion 
should be taken with a grain of salt.

As a first important observation, note that the evidences E0(x) and E1(x) solely depend 
on the relation of the class‑conditional probabilities p�(xm | 1) and p�(xm | 0) , which hides 
the number of training examples they have been estimated from, and hence their confi‑
dence. The latter, however, has an important influence on whether something is qualified 
as aleatorically or epistemically uncertain. As an illustration, consider a simple exam‑
ple with two binary attributes, the first with domain {a1, a2} and the second with domain 
{b1, b2} . Denote by ni,j = (n+

i,j
, n−

i,j
) the number of positive and negative examples observed 

for (x1, x2) = (ai, bj) . Here are two scenarios: 

b
1

b
2

b
1

b
2

a
1

(1, 1) (1, 1) a
1

(100, 100) (100, 100)
a
2

(1, 1) (1, 1) a
2

(100, 100) (100, 100)

 In the both scenarios, the insufficient evidence would be high, because all class‑condi‑
tional probabilities are equal. In EAU, however, the first scenario would largely be a case 
of epistemic uncertainty, due to the few number of training examples, whereas the second 

(24)x
∗ = argmax

x∈�
ua(x) .
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would be aleatoric, because the equal posteriors5 are sufficiently “confirmed”. Similar 
remarks apply to conflicting evidence. In the scenario 

b
1

b
2

a
1

(1, 1) (10, 1)
a
2

(1, 10) (1, 1)

the latter would be high for (a1, b1) , because p𝜃(a1 | 1) ≫ p𝜃(a1 | 0) and 
p𝜃(b1 | 0) ≫ p𝜃(b1 | 1) . The same holds for (a2, b2) , whereas the uncertainties for (a1, b2) 
and (a2, b1) would be low. Note, however, that in all these cases, exactly the same condi‑
tional probability estimates p�(xm | 1) and p�(xm | 0) are involved.

We would argue that epistemic uncertainty should directly refer to these probabilities, 
because they constitute the parameter � of the model. Thus, to reduce epistemic uncertainty 
(about the right model � ), one should look for those examples that will mostly improve the 
estimation of these probabilities. Aleatoric uncertainty may occur in cases of posteriors 
close to 1/2, in which the conflicting evidence may indeed be high (although, as already 
mentioned, the latter ignores the class priors). Yet, we would not necessarily call such 
cases a “conflict”, because the predictions are completely in agreement with the underlying 
model (Naïve Bayes), which assumes class‑conditional independence of attributes, i.e., an 
independent combination of evidences on different attributes.

Another illustration is provided in Fig. 1, now for the case of logistic regression. A first 
important observation is that the uncertainties due to conflicting and insufficient evidence 
are exactly the same in both scenarios in Fig. 1, the left and the right one. This is because 
these uncertainties are merely derived from the single model h� learned from the training 
data. Thus, like in the example for Naïve Bayes, the evidence‑based approach does not 
capture model uncertainty, i.e., uncertainty about the truly optimal model (which is clearly 
larger on the left and smaller on the right), which EAU essentially measures in terms of 
epistemic uncertainty.

For the first three queries, the evidence‑based uncertainties are very differ‑
ent: The first query has a high insufficient‑evidence uncertainty, the third has a high 

Fig. 1  Two scenarios for logistic regression: training data with positive (red crosses) and negative examples 
(black circles) and five query instances

5 The class priors are ignored here.
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conflicting‑evidence uncertainty, and the second none of the two. According to EAU, 
the uncertainties for these three cases are all high (because they are all located close 
to the decision boundary) and, more importantly, of the same nature: mostly aleatoric 
in the right and a mix of aleatoric and epistemic in the left scenario. For the second, 
fourth and fifth query, the evidence‑based uncertainties are roughly the same. Again, 
this is very different from EAU, which assigns a high uncertainty to the second but 
very low uncertainties to the fourth and fifth query.

Figure  2 shows two very similar scenarios, but now with a bias term. As already 
said, the evidence‑approach does not account for such a bias. Moreover, since w1 ≈ 0 
(the first feature does not seem to have an influence), there is essentially no negative 
evidence, i.e., E0(x) is always close to 0. Consequently, the product E0(x) × E1(x) will 
be small, too, suggesting that conflicting‑evidence uncertainty is always low and insuf‑
ficient‑evidence uncertainty always high.

As shown by these examples, the additional uncertainty captured by EBU is very 
different from aleatoric and epistemic uncertainty in EAU. In particular, the evidence‑
based approach can be criticized for ignoring model uncertainty as well as properties 
of the model class. Although the measures of evidence for the positive and negative 
class, such as (10), are derived from the model, the evidences are “feature‑based” in 
the sense of considering the evidence provided by each feature in isolation. What is not 
taken into account, however, is the way in which the model combines the features into 
an overall prediction. In logistic regression, for example, the features are linearly com‑
bined into a single score, and the class probabilities are expressed as a function of this 
score. For instance, a model like the one we considered in our example,

assumes that the probability of the positive class is a function of the difference between x2 
and x1 . One may wonder, therefore, why one should consider a case where both x1 and x2 
are large as a conflict (and, likewise, a case with both values being small as not providing 
sufficient evidence for a prediction). From this point of view, the very idea of conflicting 
(and, likewise, insufficient) evidence may appear somewhat questionable.

p(y = 1 | x) = 1

1 + exp(−�(x2 − x1))
,

Fig. 2  Two scenarios for logistic regression: training data with positive (red crosses) and negative examples 
(black circles) and five query instances
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4.2  EAU versus CU

Credal uncertainty (sampling) seems to be closer to EAU, at least in terms of the underly‑
ing principle. In both approaches, model uncertainty is captured in terms of a set of plau‑
sible candidate models from the underlying hypothesis space, and this (epistemic) uncer‑
tainty about the right model is translated into uncertainty about the prediction for a given 
x . In credal uncertainty sampling, the candidate set is given by the credal set C, which 
corresponds to the distribution �Θ in EAU—as a difference, we thus note that the latter is a 
“graded set”, to which a candidate � belongs with a certain degree of membership (the rela‑
tive likelihood), whereas a credal set is a standard set in which a model is either included 
or not. Using machine learning terminology, C plays the role of a version space (Mitchell 
1977), whereas �Θ represents a kind of generalized (graded) version space (Hüllermeier 
2003).

More specifically, the wider the interval [p(1 | x), p(1 | x)] in (17), the larger the score 
s(x) , with the maximum being obtained for the case [0,  1] of complete ignorance. This 
is well in agreement with the degree of epistemic uncertainty in EAU. In the limit, when 
[p(1 | x), p(1 | x)] reduces to a precise probability p(1 | x) , i.e., the epistemic uncertainty dis‑
appears, (17) is maximal for p(1 | x) = 1∕2 and minimal for p(1 | x) close to 0 or 1. Again, 
this behavior is in agreement with the conception of aleatoric uncertainty in EAU. More 
generally, comparing two intervals of the same length, (17) will be larger for the one that 
is closer to the middle point 1/2. Thus, it seems that the credal uncertainty score (17) com‑
bines both epistemic and aleatoric uncertainty in a single measure.

Yet, upon closer examination, its similarity to epistemic uncertainty is much higher than 
the similarity to aleatoric uncertainty. Note that, for EAU, the special case of a credal set 
C can be imitated with the measure �Θ(�) = 1 if � ∈ C and �Θ(�) = 0 if � ∉ C . Then, (19) 
and (20) become

and ue and ua can be derived from these values as before. Figure 3 shows a graphical illus‑
tration of the credal uncertainty score6 (17) as a function of the probability bounds p and 

�(1 | x) = sup
�∈C

max[ 2 p�(1 | x) − 1, 0 ] = max[ 2 p(1 | x) − 1, 0 ] ,

�(0 | x) = sup
�∈C

max[ 2 p�(0 | x) − 1, 0 ] = max[ 1 − 2 p(1 | x), 0 ] ,
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Fig. 3  From left to right: exponential rescaling of the credal uncertainty measure (17), epistemic uncer‑
tainty u

e
 and aleatoric uncertainty u

a
 for intervals [p, p] with lower probability p (x‑axis) and upper prob‑

ability p (y‑axis). Lighter colors indicate higher values

6 The score s is not well scaled, and may assume very large negative values. For better visibility, we there‑
fore plotted the monotone transformation exp(s).
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p , and the same illustration is given for epistemic uncertainty ue and aleatoric uncertainty 
ua . From the visual impression, it is clear that the credibility score closely resembles ue , 
while behaving quite differently from ua . This impression is corroborated by a simple cor‑
relation analysis, in which we ranked the intervals

i.e., a quantization of the class of all probability intervals, according to the different meas‑
ures, and then computed the Kendall rank correlation. While the ranking according to (17) 
is strongly correlated with the ranking for ue (Kendall is around 0.86), it is almost uncor‑
related with ua.

In summary, the credal uncertainty score appears to be quite similar to the measure 
of epistemic uncertainty in EAU. As potential advantages of the latter, let us men‑
tion the following points. First, the degree of epistemic uncertainty is normalized and 
bounded, and thus easier to interpret. Second, it is complemented by a degree of alea‑
toric uncertainty—the two degrees are carefully distinguished and have a clear seman‑
tics. Third, handling candidate models in a graded manner, and modulating their influ‑
ence according to their plausibility, appears to be more reasonable than creating an 
artificial separation into plausible and non‑plausible models (i.e., the credal set and its 
complement).

5  Experiments

This section starts with a description of the experimental setting and the data sets used 
in the experiments. Some technical details, e.g., regarding the choice of the model 
parameters and instantiations of aleatoric and epistemic uncertainty, are deferred to 
Sects. 1.1 and 1.2 in the appendix. Finally, the results of the experiments are presented 
and analyzed.

[p, p] ∈
{
Ia,b =

[
a

100
,

b

100

] ||| a, b ∈ {0, 1,… , 100}, a ≤ b
}
,

Table 1  Data sets used in the experiments

# name # instances # features attributes % of major class

1 parkinsons 197 22 real 75.0
2 vertebral 310 6 real 67.7
3 ionosphere 351 34 real 64.1
4 climate 540 18 real 91.4
5 breast 569 30 real 62.7
6 blood 748 5 real 76.2
7 QSAR 1055 41 integer, real 66.2
8 banknote 1372 4 real 55.0
9 madelon 4400 500 real 50.0
10 spambase 4601 57 integer, real 60.5
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5.1  Data sets and experimental setting

We perform experiments on binary classification data sets from the UCI repository7, the 
properties of which are summarized in Table 1. To make sure that the data is amenable 
to all methods without the need for further preprocessing, we only selected data with 
numerical features. Each data set is randomly split into 10% training, 80% pool, and 10% 
test data. The training data is used to obtain an initial model. Then, in each iteration, the 
learner is allowed to evaluate the instances from the pool and query a (mini‑)batch of these 
instances  —  according to the strategy of uncertainty sampling, the learner selects those 
instances with the highest degrees of uncertainty. The chosen instances are labelled (by an 
oracle or expert) and added to the training data � , on which the model is then re‑trained. 
The budget of the active learner is fixed to the size of the pool, and the performance of 
the classifiers is monitored over the entire active learning process. The whole procedure is 
repeated 1000 times and test accuracies are averaged. The following variants of uncertainty 
sampling are included in the experimental studies:

• Rand: Random sampling
• ENT: Standard uncertainty sampling based on the entropy measure8 (1)
• CEU: Conflicting‑evidence uncertainty sampling (8)
• IEU: Insufficient‑evidence uncertainty sampling (9)
• CU: Credal uncertainty sampling9 (17)
• EU: Epistemic uncertainty sampling(21)
• AU: Aleatoric uncertainty sampling (22)

5.1.1  Local learning

By local learning, we refer to a class of non‑parametric models that derive predictions from 
the training information in a local region of the instance space, for example the local neigh‑
borhood of a query instance (Bottou and Vapnik 1992; Cover and Hart 1967). As a simple 
example, we consider the Parzen window classifier (Chapelle 2005), to which most of the 
mentioned approaches can be applied in a quite straightforward way. For a given instance 
x , we define the set of its neighbours as follows:

where � is the width of the Parzen window. In binary classification, a local region R(x, �) 
can be associated with a constant hypothesis h� , � ∈ Θ = [0, 1] , where p�(1|x) = h�(x) ≡ � . 
With p and n the number of positive and negative instances, respectively, within a Parzen 
window R(x, �) , the likelihood function and the maximum likelihood estimate are, respec‑
tively, given by

R(x, �) =
�
(xi, yi) ∈ � � ‖xi − x‖ ≤ �

�
,

7 http:// archi ve. ics. uci. edu/ ml/ index. php
8 In all the experiments, we use entropy as a measure of uncertainty to select unlabelled instances.
9 The interval‑valued probabilities associated to each region can be determined using the numbers of posi‑
tive and negative instances as described in (Antonucci et al. 2012).

http://archive.ics.uci.edu/ml/index.php


104 Machine Learning (2022) 111:89–122

1 3

Since the likelihood function is well‑defined, we can determine the degrees of epistemic 
and aleatoric uncertainty as described in Sect. 3.3; we refer to Sect. A.1 for the technical 
details.

How to determine the width � of the Parzen window? This value is difficult to assess, 
and an appropriate choice strongly depends on properties of the data and the dimension‑
ality of the instance space. Intuitively, it is even difficult to say in which range this value 
should lie. Therefore, instead of fixing � , we fixed an absolute number K of neighbors in the 
training data, which is intuitively more meaningful and easier to interpret. A corresponding 
value of � is then determined in such a way that the average number of nearest neighbours 
of instances xi in the training data � is just K. In other words, � is determined indirectly via 
K. Furthermore, since we are not, in the first place, interested in maximizing performance, 
but in analyzing the effectiveness of active learning approaches, we simply fix the neigh‑
borhood size K as the square root of the size of the data set (number of instances in the 
initial training and pool set) as suggested by Lall and Sharma (1996). A practical algorithm 
for determining � given K, and the way in which we handle empty Parzen windows, are 
also given in Sect. A.1.

In a similar way, the approach can be applied to decision tree learning (Quinlan 1986; 
Safavian and Landgrebe 1991). In fact, recall that a decision tree partitions the instance 
space X  into (rectangular) regions R1,… ,RL (i.e., 

⋃L

i=1
Ri = X  and Ri ∩ Rj = � for i ≠ j ) 

associated with corresponding leafs of the tree (each leaf node defines a region R). Again, 
in the case of binary classification, we can assume each region R to be associated with a 
constant hypothesis h� , � ∈ Θ = [0, 1] , where h�(x) ≡ � is the probability of the positive 
class. Therefore, degrees of epistemic and aleatoric uncertainty can be derived in the same 
way as described for Parzen window.

For the Parzen window classifier and decision trees10, we fixed the batch size to 1% of 
the initial pool dataset. For the approach based on credal uncertainty (CU), we determine 
the lower and upper probabilities based on the number of positive and negative examples in 
a region, following the procedure described in "Appendix 1 and 2" of (Antonucci and Cuz‑
zolin 2010). Note that the evidence‑based approach (Sect. 3.1) is not immediately applica‑
ble to these learners, and therefore omitted from the experiments.

5.1.2  Logistic regression

In contrast to nonparametric, local learning methods such as the Parzen window classifier, 
logistic regression is a parametric class of linear models, and hence coming with compara‑
tively restrictive assumptions. Recall that logistic regression assumes posterior probabili‑
ties to depend on feature vectors x = (x1,… , xd) ∈ ℝ

d in the following way:

(25)L(𝜃) =

(
p + n

p

)
𝜃p(1 − 𝜃)n , and �̂� =

p

p + n
.

h(x) = p(1 � x) =
exp

�
�0 +

∑d

i=1
�i x

i
�

1 + exp
�
�0 +

∑d

i=1
�i x

i

� .

10 For an implementation in Python, see https:// scikit‑ learn. org/ stable/ modul es/ tree. html

https://scikit-learn.org/stable/modules/tree.html
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This means that learning the model comes down to estimating a parameter vector 
� = (�0,… , �d) , which is commonly done through likelihood maximization (Menard 
2002). For numerical stability, we employ L2‑regularization, which comes down to maxi‑
mizing the following strictly concave function (Rennie 2005):

where the regularization term � is fixed to 1. On the basis of this likelihood function, the 
degrees of epistemic and aleatoric uncertainty can again be determined as described in 
Sect. 3.3; as before, technical details and a practical algorithm are deferred to Sect. 1.2 in 
the appendix.

For the case of logistic regression, the evidence‑based approach can be applied as well 
(cf. Sect. 3.1.3). Following Sharma and Bilgic (2017), we set the number of the top uncer‑
tain instances to be evaluated to 5 times of the batch size.

5.2  Results

As can be seen in Fig. 4, in the case of the Parzen window classifier, EU performs the best 
and AU the worst. Moreover, standard uncertainty sampling (ENT) and random sampling 
are in‑between the two. This is in agreement with our expectations and supports our con‑
jecture that, from an active learning point of view, epistemic uncertainty is the more useful 
information. Even if the improvements compared to ENT are not huge, they are still visible 
and quite consistent. The performance provided by CU is competitive to the one of EU, 
and again in agreement with our expectations — as discussed in Sect. 4.2, both CU and 
EU have the ability of capturing model uncertainty. The results for decision tree learn‑
ing (cf. Fig. 5) are quite similar. Now, however, standard uncertainty sampling based on 
entropy performs worse, and the advantage of epistemic uncertainty sampling is even more 
pronounced.

In the case of logistic regression (cf. Fig. 6), the picture looks a bit different. Here, epis‑
temic, aleatoric, and standard uncertainty sampling perform more or less the same (and 
all significantly better than random sampling), whereas no general pattern can be drawn 
for the evidence‑based uncertainty measures. As a plausible explanation, note that, in con‑
trast to the local learning methods in the first experiment, logistic regression comes with a 
very strong learning bias in the form of a linearity assumption. Therefore, the epistemic (or 
model) uncertainty disappears quite quickly: The linear decision boundary stabilizes rela‑
tively early in the learning process, and then, the learner is rather “certain” about its pre‑
dictions (regardless of whether this certainty is warranted or not). According to the logistic 
model, the uncertain cases are those closest to the current decision boundary, some of them 
with a slightly higher epistemic and others with a higher aleatoric uncertainty. In any case, 
all three methods, EU, AU, and ENT, are sampling near the decision boundary. Thus, it is 
hardly surprising that they show similar performance.

Overall, the experiments nevertheless confirm that, in the context of uncertainty 
sampling for active learning, epistemic uncertainty is a viable alternative to standard 

(26)l(�) = log L(�) =

N∑
n=1

yn

(
�0 +

d∑
i=1

�ix
i
n

)

(27)−

N∑
n=1

ln

(
1 + exp

(
�0 +

d∑
i=1

�ix
i
n

))
−

�

2

d∑
i=1

�2
i
,
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Fig. 4  Average accuracies (y‑axis) for the Parzen window classifiers as a function of the number of 
instances queried from the pool (x‑axis)
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Fig. 5  Average accuracies (y‑axis) for the decision trees as a function of the number of instances queried 
from the pool (x‑axis)
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Fig. 6  Average accuracies (y‑axis) for logistic regression as a function of the number of instances queried 
from the pool (x‑axis)
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uncertainty measures like entropy: For local learning methods, in which epistemic uncer‑
tainty tends to be higher, epistemic uncertainty sampling improves upon standard uncer‑
tainty sampling, and for global methods with a strong learning bias, it performs at least on 
a par. Credal uncertainty, which behaves similarly to epistemic uncertainty (cf. Sect. 4.2), 
shows strong performance as well.

As an aside, note that the learning curves are not all monotone increasing, which might 
be surprising at first sight. Actually, however, this kind of behavior is not uncommon and 
may occur if a data set, in addition to useful examples, also comprises low‑quality (e.g., 
noisy or otherwise misleading) instances. In this case, a strong active learning strategy 
may succeed in selecting the informative, high‑quality examples first, leading to a good 
model with strong predictive performance. In the end, if the pool needs to be exhausted, 
the active learner is “forced” to pick the low‑quality examples, too, thereby causing a drop 
in performance.

5.3  Influence of model bias

The results presented above suggest that epistemic uncertainty might be more advanta‑
geous for (active) learners with a low bias and less so for learners with a strong bias. To 
corroborate this conjecture, we conducted an additional experiment, using decision trees 
with a maximum depth limit as model classes. This allows for contolling the bias in a 
seamless manner: The higher the depth limit, the less restricted the model class, the lower 
the bias.

Figure  7 shows the learning curves for the depth limits {2, 3, 5, 10} on the data sets 
blood and QSAR. As expected, different depth limits appear to be optimal for different 
problems (the best limit for blood is 3, for QSAR 10). However, more interesting for our 
purpose is the slope of the learning curves, which indeed seem to support our conjecture: 
For epistemic uncertainty, the learning curves increase faster for larger and slower for 
lower depth limits —  for aleatoric uncertainty, it is just the other way around. To make 
this even clearer, Fig. 8 plots the relative performance in comparison to standard (entropy‑
based) uncertainty sampling, i.e., the performance ratio, both for epistemic and aleatoric 
uncertainty. As can be seen, EU tends to be superior, because the ratio is mostly larger than 
1, while the opposite holds for AU. Again more importantly, the depth limit (bias) is in per‑
fect agreement with the “order” of the curves: The higher the limit, the better EU (worse 
AU) in terms of relative performance.

5.4  Uncertainty as stopping criterion

In a last experiment, we analyze the potential of epistemic uncertainty to serve as a stop‑
ping criterion for an active learning process. Indeed, this appears to be a rather natural idea, 
because epistemic uncertainty — as opposed to aleatoric or total uncertainty —  reflects 
the state of knowledge of the learner, and the potential to improve this knowledge through 
additional data. If the epistemic uncertainty is low for all instances remaining in the pool, 
this suggests that almost nothing can be gained anymore through additional sampling.

The criterion just outlined is an instance of the third type of stopping criteria commonly 
used in active learning (Li and Sethi 2006; Zhu et al. 2010): The active learning process 
ends if
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Fig. 7  Average accuracies (y‑axis) for decision tree as a function of the number of instances queried from 
the pool (x‑axis)
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• the training data set reaches a desired size;
• a targeted performance level is achieved;
• no informative examples are available anymore.

While it is difficult to pre‑define either a desirable size of the training data set or a targeted 
performance level, the last criterion can be easily implemented by setting some predefined 
uncertainty threshold and stopping the active learning process if the degree of uncertainty 
falls below the threshold (Zhu et al. 2010).

The potential usefulness of epistemic uncertainty is confirmed by our results (shown in 
Fig. 9 for two data sets–results for the other data sets are similar and can be found in Sect. 2 
in the appendix).

6  Conclusion

This paper reconsiders the principle of uncertainty sampling in active learning from the 
perspective of uncertainty modeling and quantification. More specifically, it starts from the 
supposition that, when it comes to the question which instances to select from a pool of 

Fig. 8  Average accuracies (y‑axis) for decision tree as a function of the number of instances queried from 
the pool (x‑axis)
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candidates, a learner’s predictive uncertainty due to “not knowing” should be more rel‑
evant than its uncertainty due to confirmed randomness.

To corroborate this conjecture, we revisited recent approaches to uncertainty quantifica‑
tion in machine learning, with a specific emphasis on methods that allow for separating 
different types of uncertainty, and incorporated them in the general uncertainty sampling 
procedure. Following a comparison and critical discussion of these approaches, a series 
of experiments with different learning algorithms was conducted. In these experiments, a 
distinction between so‑called epistemic and aleatoric uncertainty proved to be especially 

Fig. 9  Average accuracies and degrees of epistemic uncertainty (mean and maximum over instances in the 
pool, y‑axis) as functions of the number of instances queried from the pool (x‑axis)
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useful. More specifically, epistemic uncertainty sampling in the sense of uncertainty sam‑
pling based on measures of epistemic uncertainty in a prediction shows strong performance 
and consistently improves on standard uncertainty sampling. These results, which we inter‑
pret as clear evidence in favor of our conjecture, and indeed quite plausible: Epistemic and 
aleatoric uncertainty can be thought of, respectively, as the reducible and irreducible part 
of the total uncertainty. Consequently, querying an instance with a high epistemic uncer‑
tainty may provide useful information for the learner, whereas an aleatorically uncertain 
instance is unlikely to do so.

Given this affirmation, we are now encouraged to elaborate on epistemic uncertainty 
sampling in more depth, and to develop it in more sophistication. In this regard, there are 
various directions to be followed:

• Depending on the underlying model class, the quantification of epistemic uncertainty 
based on the generic approach by Senge et al. (2014) can be computationally expen‑
sive. Therefore, efficient instantiations for important learning methods would be desir‑
able.

• Similar approaches for measuring epistemic uncertainty, which have been proposed in 
the literature more recently, should be investigated as possible alternatives (Depeweg 
et al. 2018).

• Our experimental results suggest that a distinction between epistemic and aleatoric 
uncertainty is more useful for learners with a weak inductive bias and less useful for 
learners with a strong bias. This observation ought to be analyzed in more detail and 
corroborated by further experiments. In fact, the learning algorithms included in our 
study constitute extremes on this spectrum (Parzen classifier and decision trees have a 
very low bias, logistic regression a very strong one), and additional experiments with 
learners having a “mediocre” bias would certainly be useful.

• Quite interestingly, the very notion of epistemic uncertainty seems to share many com‑
monalities with other principles that have been suggested for active learning — proba‑
bly not by chance. One example is so‑called expected model change or the related prin‑
ciple of expected model output change (EMOC), where the idea is to query instances 
that, if added to the training data, are likely to cause large changes of the hypothesis 
or the predictions produced by the hypothesis (Freytag et al. 2014). According to our 
quantification of epistemic uncertainty (but also other formalizations), such instances 
should also have a high epistemic uncertainty. Therefore, epistemic uncertainty sam‑
pling seems to have much in common with EMOC, perhaps with the notable difference 
that the former looks at the uncertainty for a single instance, whereas the latter consid‑
ers the expected change over all instances. Nevertheless, elaborating on this connection 
more closely seems to be worthwhile. The same holds true for another well‑established 
active learning strategy, namely query‑by‑committee (QBC) approach (Seung et  al. 
1992). In fact, the diversity of the predictions of an ensemble of hypotheses, which 
is used as a selection criterion in QBC, has recently also been advocated as a suitable 
means for quantifying epistemic uncertainty (Shaker and Hüllermeier 2020).

• It might be interesting to combine the quantification of uncertainty with the notion of rel-
evance or representativeness in active learning (McCallum and Nigam 1998; Lindenbaum 
et al. 2004): How relevant is a certain improvement of the current model for the overall 
performance of the learner? In local learning algorithms, for example, epistemic uncer‑
tainty tends to be high in sparse regions of the instance space, so that an active learner is 
tempted to sample here. At the same time, however, such regions appear to be less impor‑
tant for the generalization performance, simply because future queries will more likely 
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occur in dense regions. Overall, a small improvement in a dense region may thus be more 
beneficial than a big improvement in a sparse region. This observation motivates a kind of 
density weighting, i.e., the combination (multiplication) of an uncertainty degree with the 
(estimated) density of a data point (Krempl et al. 2015).

• Last but not least, going beyond uncertainty sampling for binary classification as 
considered in this paper, the idea of epistemic uncertainty sampling should also be 
extended toward other learning problems, such as multi‑class classification and regres‑
sion.

Appendix 1: Instantiations of aleatoric and epistemic uncertainty

This section presents an instantiation of the approach outlined in Sect. 3.3 for the case of 
local learning using a Parzen window classifier (Chapelle 2005), as well as logistic regres‑
sion. As already said, instantiating the approach essentially means to address the question 
of how to compute the degrees of support (19–20), from which everything else can easily 
be derived.

Appendix 1.1: Local learning

With the likelihood function and the the maximum likelihood estimate defined in (25), the 
degrees of support for the positive and negative classes are

(28)�(1 � x) = sup
�∈[0,1]

min

⎛⎜⎜⎝
�p(1 − �)n� p

n+p

�p� n

n+p

�n , 2� − 1

⎞⎟⎟⎠
,

(29)�(0 � x) = sup
�∈[0,1]

min

⎛⎜⎜⎝
�p(1 − �)n� p

n+p

�p� n

n+p

�n , 1 − 2�

⎞⎟⎟⎠
.

Fig. 10  From left to right: epistemic, aleatoric, and total uncertainty (epistemic + aleatoric) as a function 
of the numbers p, n ∈ {0, 1,… , 10} of positive and negative examples in a region (Parzen window) of the 
instance space (lighter colors indicate higher values)
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Solving (28) and (29) comes down to maximizing a scalar function over a bounded 
domain, for which standard solvers can be used. We applied Brent’s method11 (which is 
a variant of the golden section method) to find a local minimum in the interval � ∈ [0, 1] . 
From (28–29), the epistemic and aleatoric uncertainty associated with the region R can 
be derived according to (23) and (24), respectively. For different combinations of n and p, 
these uncertainty degrees can be pre‑computed (cf. Fig. 10).

Algorithm 2: Determining the width ε.
Input: D-normalized data, K-number
Output: the local width εK

1 foreach xn ∈ D do
2 foreach xm �= xn do
3 compute d xn,xm

)
;

4 form 1× (n− 1) vector dn = d xn,xm
)
|n �= m

)
;

5 sort dn by increasing order and determine the K-th element dK
n ;

6 return εK =
∑ |D |

n=1 dK
n

|D | ;

Given a number K, the corresponding � is determined using Algorithm 2. Furthermore, 
as K is an average, individual instances may have more or less neighbors in their Parzen 
windows. In particular, a Parzen window may also be empty. In this case, we set ue(x) = 1 
by definition, i.e., we consider this as a case of full epistemic uncertainty. Likewise, the 
uncertainty is considered to be maximal for all other sampling techniques. If the accuracy 
of the Parzen classifier needs to be determined, we assume that it yields a wrong prediction.

For the approach based on credal uncertainty (CU), we determine the lower and upper 
probabilities based on the number of positive p and negative n examples in a region. The 
probability p(y | x) , y ∈ {0, 1} , obtained from the counts a region is

which corresponds to a Bayesian learning approach with Dirichlet priors with parameters 
{t(y) | y ∈ {0, 1}} . The problem of learning the lower and upper probabilities (Antonucci 
and Cuzzolin 2010) can be rewritten as

where

Thus,

p(y | x) = p + q ⋅ t(y)

p + n + q
,

p(1 | x) = inf
t(1)

p + q ⋅ t(1)

p + n + q
and p(1 | x) = sup

t(1)

p + q ⋅ t(1)

p + n + q
,

�

2
≤ t(y) ≤ 1 −

�

2
, y ∈ {0, 1} ,

∑
y∈{0,1}

t(y) = 1 and � ∈ (0, 1) .

11 For an implementation in Python, see https:// docs. scipy. org/ doc/ scipy‑0. 19.1/ refer ence/ gener ated/ scipy. 
optim ize. minim ize_ scalar. html

https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.optimize.minimize_scalar.html
https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.optimize.minimize_scalar.html
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To this end, we set q = 1 and � = 0.001 and refer to (Bernard 2005) for an intensive discus‑
sion on choosing these parameters.

Appendix 1.2: Logistic regression

In the following, we present a practical procedure for determining the degree of support 
(19) for the positive class, and then summarize the results for the negative class (which 
can be determined in a similar manner). Associating each hypothesis h ∈ H with a vector 
� ∈ ℝ

d+1 , the degree of support (19) can be rewritten as follows:

It is easy to see that the target function to be maximized in (30) is not necessarily concave. 
Therefore, we propose the following approach.

Let us first note that whenever h(x) < 0.5 , we have 2h(x) − 1 ≤ 0 and 
min

[
�H(h), 2h(x) − 1

]
≤ 0 . Thus the optimal value of the target function (19) can only be 

achieved for some hypotheses h such that h(x) ∈ [0.5, 1] . For a given value � ∈ [0.5, 1] , the 
set of hypotheses h such that h(x) = � corresponds to the convex set

The optimal value �∗
�
(1 | x) that can be achieved within the region (31) can be determined 

as follows:

Thus, to find this value, we maximize the concave log‑likelihood over a convex set:

As the log‑likelihood function (26) is concave and has second‑order derivatives, we tackle 
the problem with a Newton‑CG algorithm (Nocedal and Wright 2006). Furthermore, the 
optimization problem (33) can be solved using sequential least squares programming12 
(Philip and Elizabeth 2010). Since regions defined in (31) are parallel hyperplanes, the 
solution of the optimization problem (19) can then be obatined by solving the following 
problem:

p(1 | x) =
p + q ⋅

�

2

p + n + q
and p(1 | x) =

p + q ⋅ (1 −
�

2
)

p + n + q
.

(30)�(1 | x) = sup
�∈ℝd+1

min
[
�(�), 2h(x) − 1

]
.

(31)�� =

{
� || �0 +

d∑
i=1

�ix
i = ln

(
�

1 − �

)}
.

(32)�∗
�
(1 | x) = sup

�∈��
min

[
�(�), 2� − 1

]
= min

[
sup
�∈��

�(�), 2� − 1
]
.

(33)�∗
�
= arg sup

�∈��
l(�) .

(34)sup
�∈[0.5,1)

�∗
�
(1|x) = sup

�∈[0.5,1)

min
[
�(�∗

�
), 2� − 1

]
.

12 For an implementation in Python, see https:// docs. scipy. org/ doc/ scipy/ refer ence/ gener ated/ scipy. optim 
ize. minim ize. html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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Following a similar procedure, we can estimate the degree of support for the negative class 
(20) as follows:

Note that limit cases � = 1 and � = 0 cannot be solved, since the region (31) is then not 
well‑defined (as ln(∞) and ln(0) do not exist). For the purpose of practical implementation, 
we handle (34) by discretizing the interval over � . That is, we optimize the target function 
for a given number of values � ∈ [0.5, 1) and consider the solution corresponding to the � 
with the highest optimal value of the target function �∗

�
(1 | x) as the maximum estimator. 

Similarly, (35) can be handled over the domain (0, 0.5]. In practice, we evaluate (34) and 
(35) on uniform discretizations of cardinality 50 of [0.5, 1) and (0, 0.5], respectively. We 
can further increase efficiency by avoiding computations for values of � for which we know 
that 2� − 1 and 1 − 2� are lower than the current highest support value given to class 1 and 
0, respectively. See Algorithm 3 for a pseudo‑code description of the whole procedure.

Algorithm 3: Degrees of support for logistic regression
Input: Q, D, θml, x- initial pool, training data, classifier, unlabelled instance
Output: π(1 |x), π(0 |x) - degrees of support

1 initialize subsets Qp, Qn of cardinality Q;
2 π(1 |x) = max(2hml(x)− 1, 0) , π(0 |x) = max(1− 2hml(x), 0) ;
3 for q = 1, . . . , Q do
4 αp = max(Qp); αn = min(Qn) ;
5 if 2αp − 1 > π(1 |x) then
6 solve (33) for x, αp and return θ;
7 π(1 |x) = max(π(1 |x),min(πH(θ), 2αp − 1)) ;

8 if 1− 2αn > π(0 |x) then
9 solve (33) for x, αn and return θ;

10 π(0 |x) = max(π(0 |x),min(πH(θ), 1− 2αp)) ;

11 Qp = Qp \ {αp}, Qn = Qn \ {αn} ;

12 Return π(1 |x), π(0 |x) ;

Appendix 2: Additional experiments

In addition to the experiments which presented in Sect. 5.4, similar results for the other 
data sets are presented in Figs. 11, 12 and 13.

(35)sup
�∈(0,0.5]

�∗
�
(0|x) = sup

�∈(0,0.5]

min
[
�(�∗

�
), 1 − 2�

]
.
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Fig. 11  Average accuracies and degrees of epistemic uncertainty (y‑axis) for Parzen window classifiers as 
functions of the number of instances queried from the pool (x‑axis)
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Fig. 12  Average accuracies and degrees of epistemic uncertainty (y‑axis) for decision tree as functions of 
the number of instances queried from the pool (x‑axis)
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