Children's Family Type in the German Family Panel (pairfam): Waves 2 to 14

Barbara Sawatzki, Julia Reim, Rüdiger Edinger, Sabine Walper

July 2023

Funded as long-term project by the German Research Foundation (DFG)
1 Family Type Variable

Starting with Wave 2, the syntax `familytype.sps` for SPSS or the do-file `familytype.do` for Stata generates a variable `familytypekx` in the anchor data sets, in which the family structure is stored with respect to the relationship of anchor, partner and child regarding every individual child \(kx\). This information provides not only differentiated information for each individual child, but in combination for all children in a family allows differentiating e.g., “pure” nuclear families (with exclusively biological children of both partners) from complex stepfamilies (with biological child[ren] of both partners and stepchild[ren] from previous relationships).

The variable’s values range from 1 to 20. The values 1 to 10 refer to constellations in which the child lives in the household of the anchor and, if applicable, the partner. Values 11 to 20 represent analogous constellations in which the child is not part of the household of the anchor and, if applicable, partner. Table 1 lists the values of the variable `familytypekx` with the respective description.

The variable `familytypekx` is formed based on the anchor’s relationship status and cohabitation status with partner, gender of anchor and partner as well as family relations of the child to anchor and partner (e.g., biological, step-, adoptive or foster child). Since the family type is formed regarding every individual child, different children from one family may have a different family type.

The anchor as well as the partner can both be mother or father. “Household” always refers to the anchor’s household, regardless of the anchor’s gender.

<table>
<thead>
<tr>
<th>Value / Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biological child of anchor and partner</td>
</tr>
<tr>
<td>2</td>
<td>Biological child of a single mother</td>
</tr>
<tr>
<td>3</td>
<td>Biological child of a single father</td>
</tr>
<tr>
<td>4</td>
<td>Child with biological father and stepmother</td>
</tr>
<tr>
<td>5</td>
<td>Child with biological mother and stepfather</td>
</tr>
<tr>
<td>6</td>
<td>Adopted child</td>
</tr>
<tr>
<td>7</td>
<td>Foster child</td>
</tr>
<tr>
<td>8</td>
<td>Child of a same sex anchor-partner dyad: mothers</td>
</tr>
</tbody>
</table>

1 Note: Due to a small number of cases, no further distinction was made between biological / adoptive / foster parenthood for same-sex couples.
<table>
<thead>
<tr>
<th>Value / Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Child of a same sex anchor-partner dyad: fathers</td>
</tr>
<tr>
<td>10</td>
<td>Other child</td>
</tr>
<tr>
<td>11</td>
<td>Biological child of anchor and partner, child not living in household</td>
</tr>
<tr>
<td>12</td>
<td>Biological child of external single mother</td>
</tr>
<tr>
<td>13</td>
<td>Biological child of external single father</td>
</tr>
<tr>
<td>14</td>
<td>Child of external biological father and stepmother</td>
</tr>
<tr>
<td>15</td>
<td>Child of biological external mother and stepfather</td>
</tr>
<tr>
<td>16</td>
<td>Adopted child, child not living in household</td>
</tr>
<tr>
<td>17</td>
<td>Foster child, child not living in household</td>
</tr>
<tr>
<td>18</td>
<td>Child of a same sex anchor-partner dyad: mothers, child not living in household</td>
</tr>
<tr>
<td>19</td>
<td>Child of a same sex anchor-partner dyad: fathers, child not living in household</td>
</tr>
<tr>
<td>20</td>
<td>Other child, child not living in household</td>
</tr>
</tbody>
</table>

Child not living in household

- 9: Anchor and partner are child’s biological or step- or adoptive or foster fathers (cohabiting)
- 10: Child living in the same household as anchor, cannot be assigned to other category

2 Differences Across the Waves

In Wave 2 only, the auxiliary variable `relcohab` is formed slightly differently compared to the other waves. This is also included in the syntax and do-file.

Additionally, in Wave 14 only, the event-history-calendar was not included in the survey anymore. Therefore, `ehc9kx` was generated based on the variables `di50` to `di64` as well as `bcrn5kx` in this wave. This is also included in the syntax and do-file.

Further, the syntax and do-file apply to up to 15 children per family. In Waves 2 to 9 only 10 children per family were assessed. Therefore, for these waves, variables with the prefix or suffix `k11` to `k15` can be deleted from the syntax or do-file before running it.

2 Note: The status of children already assessed in Wave 13 is stored in `di50` to `di64`, which are preloads and therefore contain information from Wave 13. The status of new children and of children of respondents who participated in PAPI mode is stored in `bcrn5kx`.

3 Distribution of Family Type Across the Waves

Table 2 shows the distribution of the family type for all children \(kx \) for the anchor data across the Waves 2 to 14 for children living in the anchor’s household. Table 3 shows the distribution of the family type regarding children who are not living in the same household as the anchor across the waves. Figure 1 and Figure 2 also show the distribution of family types regarding children living or not living in the same household as the anchor across the waves. The distributions were achieved by running the syntax `familytype.sps` for SPSS for every wave. The datasets were then restructured from wide to long format to achieve child-centered instead of anchor-centered data. Last, frequencies of `familytypekx` were run for every wave.

Table 2. Distribution of Family Type for all Children across Waves 2 to 14 (Child in Household)

<table>
<thead>
<tr>
<th>Value / Label</th>
<th>Wave 2</th>
<th>Wave 3</th>
<th>Wave 4</th>
<th>Wave 5</th>
<th>Wave 6</th>
<th>Wave 7</th>
<th>Wave 8</th>
<th>Wave 9</th>
<th>Wave 10</th>
<th>Wave 11</th>
<th>Wave 12</th>
<th>Wave 13</th>
<th>Wave 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4284</td>
<td>4828</td>
<td>4655</td>
<td>4419</td>
<td>4178</td>
<td>3966</td>
<td>3726</td>
<td>3654</td>
<td>3487</td>
<td>5103</td>
<td>4359</td>
<td>4149</td>
<td>3270</td>
</tr>
<tr>
<td>2</td>
<td>504</td>
<td>534</td>
<td>537</td>
<td>508</td>
<td>488</td>
<td>464</td>
<td>442</td>
<td>420</td>
<td>398</td>
<td>517</td>
<td>466</td>
<td>418</td>
<td>301</td>
</tr>
<tr>
<td>3</td>
<td>61</td>
<td>88</td>
<td>81</td>
<td>68</td>
<td>68</td>
<td>69</td>
<td>77</td>
<td>57</td>
<td>72</td>
<td>65</td>
<td>65</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>81</td>
<td>90</td>
<td>95</td>
<td>86</td>
<td>86</td>
<td>67</td>
<td>74</td>
<td>79</td>
<td>105</td>
<td>98</td>
<td>96</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>385</td>
<td>517</td>
<td>492</td>
<td>463</td>
<td>428</td>
<td>393</td>
<td>377</td>
<td>362</td>
<td>360</td>
<td>430</td>
<td>343</td>
<td>313</td>
<td>235</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>17</td>
<td>20</td>
<td>22</td>
<td>21</td>
<td>18</td>
<td>20</td>
<td>18</td>
<td>22</td>
<td>19</td>
<td>18</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>19</td>
<td>19</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>N total</td>
<td>5744</td>
<td>6632</td>
<td>6496</td>
<td>6214</td>
<td>5957</td>
<td>5711</td>
<td>5484</td>
<td>5417</td>
<td>5269</td>
<td>7331</td>
<td>6381</td>
<td>6127</td>
<td>4780</td>
</tr>
<tr>
<td>Wave</td>
<td>Value / Label</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>11</td>
<td>Biological child of anchor and partner, child not living in household</td>
<td>37</td>
<td>36</td>
<td>62</td>
<td>66</td>
<td>83</td>
<td>92</td>
<td>101</td>
<td>109</td>
<td>157</td>
<td>178</td>
<td>224</td>
<td>242</td>
</tr>
<tr>
<td>12</td>
<td>Biological child of external single mother</td>
<td>34</td>
<td>62</td>
<td>83</td>
<td>71</td>
<td>107</td>
<td>107</td>
<td>100</td>
<td>114</td>
<td>123</td>
<td>132</td>
<td>144</td>
<td>154</td>
</tr>
<tr>
<td>13</td>
<td>Biological child of external single father</td>
<td>127</td>
<td>150</td>
<td>130</td>
<td>124</td>
<td>140</td>
<td>142</td>
<td>145</td>
<td>149</td>
<td>139</td>
<td>166</td>
<td>162</td>
<td>149</td>
</tr>
<tr>
<td>14</td>
<td>Child of external biological father and stepmother</td>
<td>95</td>
<td>150</td>
<td>162</td>
<td>184</td>
<td>161</td>
<td>167</td>
<td>174</td>
<td>167</td>
<td>161</td>
<td>207</td>
<td>188</td>
<td>185</td>
</tr>
<tr>
<td>15</td>
<td>Child of external biological mother and stepfather</td>
<td>36</td>
<td>60</td>
<td>93</td>
<td>101</td>
<td>103</td>
<td>114</td>
<td>144</td>
<td>160</td>
<td>180</td>
<td>209</td>
<td>203</td>
<td>216</td>
</tr>
<tr>
<td>16</td>
<td>Adopted child, child not living in household</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>Foster child, child not living in household</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>18</td>
<td>Child of a same sex anchor-partner dyad: mothers, child not living in household</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>Child of a same sex anchor-partner dyad: fathers, child not living in household</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>Other child, child not living in household</td>
<td>10</td>
<td>22</td>
<td>31</td>
<td>43</td>
<td>35</td>
<td>45</td>
<td>47</td>
<td>44</td>
<td>37</td>
<td>39</td>
<td>36</td>
<td>39</td>
</tr>
</tbody>
</table>

Missing Data

- **9** Child deceased
 16 19 17 19 18 21 22 22 20 22 17 18 12

- **7** Incomplete data
 43 36 12 14 9 17 13 7 13 75 4 14 12

N total
5744 6632 6496 6214 5957 5711 5484 5417 5269 7331 6381 6127 4780
Note: other = combined n of adopted child, foster child, child of a same sex anchor-partner dyad: mothers, child of a same sex anchor-partner dyad: fathers, other child.

Figure 1. Number of Children for each Family Type across Waves 2 to 14 (Child in Household)
As can be seen in Table 2 and Figure 1, the number of children who live in the anchor’s household and have a more prevalent family type (child living with both biological parents, with single mother, or with mother and stepfather) increased between wave 2 and 3 as the DemoDiff data were integrated into pairfam starting with Wave 3 (Brüderl, Edinger et al., 2023), but decreased in later waves until wave 10 due to attrition. In wave 11, the sample refreshment contributed to a sharp increase, followed by a decline. The number of children with less prevalent family types who lived in the anchor’s household does not follow this pattern but remains overall rather stable. Throughout all waves, the number of children who do not live in the anchor’s household increased. This is particularly the case for children with both biological parents, reflecting their age-graded moving out of the parental household, whereas the number of external children of a biological father (anchor) remained rather stable. The latter are more likely to represent children from separated partnerships who live with their mother, but also may have moved out of the maternal household across time. Overall, the number of children is lowest in wave 14 due to sample loss in the online assessment which was chosen as the sample transitioned from the pairfam project to the FReDA project.
4 References
