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Abstract
Some authors claim that minimal models have limited epistemic value (Fumagalli,
2016; Grüne-Yanoff, 2009a). Others defend the epistemic benefits of modelling by
invoking the role of robustness analysis for hypothesis confirmation (see, e.g., Levins,
1966; Kuorikoski et al., 2010) but such arguments find much resistance (see, e.g.,
Odenbaugh & Alexandrova, 2011). In this paper, we offer a Bayesian rationalization
and defence of the view that robustness analysis can play a confirmatory role, and
thereby shed light on the potential of minimal models for hypothesis confirmation.
We illustrate our argument by reference to a case study from macroeconomics. At the
same time,we also show that there are cases inwhich robustness analysis is detrimental
to confirmation. We characterize these cases and link them to recent investigations on
evidential variety (Landes, 2020b, 2021; Osimani and Landes, forthcoming). We con-
clude that robustness analysis over minimal models can confirm, but its confirmatory
value depends on concrete circumstances.

Keywords Robustness analysis · Minimal models · Agent-based models ·
Confirmation · Variety of evidence · Stylized facts of finance

1 Introduction

In recent years, philosophy of science has paid much attention to so-called “minimal”
models. Minimal models may be informally characterized as models lacking clear
world-linking properties: they are highly idealized, not constructed starting fromwell-
confirmed laws or structural identities, not even in the sense of isolating some real
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causal factor, and not purporting to represent any specific target (see Grüne-Yanoff,
2009a, p. 83). What, if anything, can be learned from such models?

A paradigmatic example of aminimalmodel is Thomas Schelling’s (1971) checker-
board model. This model is designed to study the unintended emergence of housing
segregation patterns out of uncoordinated individual actions. The phenomenon is stud-
ied on an artificial grid. Each cell in the grid corresponds to a space which an artificial
agent can occupy. Agents, belonging to two groups, are represented by pennies and
dimes. They aim to satisfy just one preference, namely, they want to live in a cell
whose neighbourhood comprises at least a certain proportion of their own group. At
each time step, they can either stay where they are, if their preference is satisfied,
or move to a free cell whose neighbourhood satisfies their preference. As a result of
simulating the agent’s moves, segregation obtains across many initial distributions of
agents on the grid and preference strengths.What can one learn from this model, given
that it is built without a specific target inmind, that it misrepresents human interactions
and decision making in many ways, and that it idealizes any causal factor possibly
responsible for segregation?

Philosophers’ opinions tend to be sceptical. The received view on the epistemic
benefits of highly idealized models is that these models are useful to explore a theory’s
consequences but—unlike experiments (Grüne-Yanoff, 2009b; Guala, 2002; Morgan,
2005)—they cannot establish any hypothesis about the real world (see, e.g., Hausman,
1992, ch. 5). With few exceptions (e.g., Casini, 2014; Knuuttila, 2009; Sugden, 2000),
similar claims have been made with regard to minimal models. Minimal models can
establish possibilities and impossibilities (Grüne-Yanoff, 2009a), that is, what may or
may not be the case; however, they cannot establish what is the case. Some (Fumagalli,
2016) go as far as claiming that minimal models do not grant any learning at all,
precisely due to their lackof clearworld-linkingproperties. In otherwords, the received
view is that minimal models cannot serve to confirm any empirical hypothesis.1

A reply to which an advocate of the confirmatory use of minimal models could
resort is to say that one minimal model cannot confirm, but several of them can.
The idea is that results obtained from a single minimal model may depend on any of
the idealized and possibly false assumptions of the model and/or on the tractability
constraints introduced when building the model. Thus, one cannot exclude that it is
those assumptions and constraints, rather than any hypothesis the modeller would like
to confirm, which explain the result. However, the same is not true of a collection
of such models, which all make the same to-be-tested hypothesis, but otherwise vary
all other assumptions and constraints, in order to rule out that they are necessary to
generate the results, and thus to lend support to the target hypothesis. This strategy
is often referred to in the literature as “robustness analysis” (RA).2 The rationale of
RA is the following: suppose a number of models share one “core” assumption, but

1 We shall here not touch on the related question on how computer simulations differ from experimentation
Parker, forthcoming.
2 Several kinds of RA are distinguished in the literature. For instance, Woodward (2006) distinguishes
derivational robustness, viz. insensitivity of the results of the inference across alternative background
assumptions, from inferential robustness, viz. the insensitivity of the results of the inference to alternative
specifications, and from measurement robustness, viz. agreement of measurement results across measure-
ment techniques. We will only be concerned with derivational RA, henceforth “RA”.
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differ with respect to their auxiliary assumptions (none of which being more realistic
or justified than any other); then, if all models determine the same result, the result
does not hinge on those auxiliary assumptions, but is explained by (among other facts)
the core assumption. In Richard Levins’ words,

if these models, despite their different assumptions, lead to similar results, we have what we can call

a robust theorem that is relatively free of the details of the model. Hence, our truth is the intersection

of independent lies. (Levins, 1966, p. 20)

Since Levins, who first proposed this idea, others have attempted to defend RA’s
confirmatory value, amongwhomWimsatt (1981, 1987),Weisberg (2006), Kuorikoski
et al. (2010, 2012), Lloyd (2015), and most recently, Fuller and Schulz (2021), Sakai
(2020), and Boge (forthcoming) as well as Schupbach (2022, Sect. 3.3).

Yet, the view that model exploration is conducive to confirmation has encountered
much resistance (see, e.g., Orzack&Sober 1993; Sugden 2000;Odenbaugh&Alexan-
drova 2011; Fumagalli 2016 Lisciandra 2016; Stegenga & Menon 2017). Exploring
the behaviour of a model by varying its assumptions may be useful to make more
transparent its consequences; yet, so the objection goes, the mere fact that certain
conclusions are robustly derivable from certain assumptions across variation in other
assumptions is insufficient to confirm that the former assumptions are true of the real
world. Following Odenbaugh and Alexandrova (2011), the worries about the confir-
matory value of RA may be perspicuously grouped into two categories. First, there
are worries about undischarged idealizations:

By and large only some, not all, of the idealizations of models are discharged by robustness analysis.

As a result many robust theorems praised by theoreticians remain empirically questionable and thus

explanatorily weak. (Odenbaugh & Alexandrova, 2011, p. 759)

And second, there are worries about the non-independence of the assumptions:

Robustness analysis crucially depends on showing that the assumptions of different models are inde-

pendent of one another. However, […] reports of their independence have been greatly exaggerated.

(ibid.)

In this paper,weproduce a rationalization of the view thatminimalmodels can confirm,
by defending the view that RA on minimal models can increase the confirmation that
eachmodel individually lends to some target hypothesis. This rationalizationwill allow
us to address the above worries. Our argument is embedded in a Bayesian framework,
where confirmation depends on an increase in the probability of a hypothesis in the
light of the evidence.

Our case is buttressed by a case study from macroeconomics. The case in ques-
tion is the recent explanation of certain stable statistical features of the time series of
financial prices, which go under the name of “stylized facts of finance”. The explana-
tion is advanced by non-orthodox economists, who reject a standard macroeconomic
assumption, the so-called rational expectation hypothesis, whichmaintains that agents
are alike—or homogeneous—in their having rational expectations.More precisely, we
look at two models of the asset pricing mechanism that, albeit minimal, adequately
recover a number of stylized facts, viz. a model that views the market as analogous
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to a fluid undergoing phase transition (Lux & Marchesi, 1999, 2000), and a model
that views the market as a population subject to natural selection (Arthur et al., 1997,
LeBaron et al., 1999). We argue that the evidence from both models can confirm the
hypothesis that the agents’ heterogeneity is necessary to the stylized facts.

At the same time, we also report cases, in which a variation of modelling assump-
tions is detrimental to confirmation. The availability of multiple sources of evidence,
or “evidential variety”, was long thought to be a universal boon for confirmation. This,
however, is no longer the case (Bovens & Hartmann, 2003). Drawing on literature on
the so-called Variety of Evidence Thesis (Landes, 2020b, 2021; Osimani and Lan-
des, forthcoming), we show that there are a number of cases in which replication is
more confirmatory than variation, if auxiliary assumptions of different models are not
independent from one another. This means that, although RA can confirm, it is not
always the most-confirming strategy. Finally, in addition to the variation of auxiliaries,
which is the object of Odenbaugh and Alexandrova’s objections, we also consider the
variation (or different implementation) of the hypothesis to be confirmed while the
auxiliaries are held fixed, which too falls under the umbrella of RA as variation of
modelling assumptions. In sum, we investigate the conditions for variation to confirm
more than replication—in short, for RA to be confirmatory—in both cases.

Two general points should be made from the outset about our argument. First, we
are concerned with providing possibility results. We show that in certain scenarios
there is confirmation (or disconfirmation) by establishing certain inequalities. In order
to establish these inequalities, we motivate and impose constraints on a Bayesian prior
probability function inspired by our case study. Our conclusions are general in that
they apply to a class of prior probability functions and in that the model provided may
be easily reinterpreted with reference to other phenomena. We are not interested in
amounts of confirmation (or disconfirmation). Whilst wide ranges of parameter values
suffice for confirmation, specific amounts of confirmation depend on specific values.
A justification of such values would require a lengthy discussion. Moreover, it would
depend on the details of the case study at hand, and thus not necessarily translate to
other cases. Given the general nature of our analysis, thus, a discussion of the strength
of confirmation is not only difficult but also beyond the scope of this paper.

Second, we are interested in rationalizing the practice of RA in those scientific
communities, whose efforts are directed at developing and exploring models of target
systems, since the direct inspection of such targets is either difficult (e.g., economics,
paleontology, archaeology3) or impossible (e.g., cosmology, theories of quantumgrav-
ity4). This is not to say that these communities are just concerned with hypothesis
confirmation. In particular, scientists may use RA for many reasons, from theoretical
explorations, to personal preferences, to a publish or perish culture incentivising pub-
lication, etc. We are not concerned with revealing what fraction of scientists is driven
by one purpose rather than another.Whilst believing that hypothesis confirmation is an
important driver, we also believe that an investigation of the scientists’ motivations for
RA would require an entirely different kind of study, based on interviews, extensive

3 SeeCurrie (2018) on the epistemic advantages ofmodels and simulations in paleontology and archaeology.
4 See the contributions to (Dardashti et al., 2019) for an in-depth discussion of the various controversial
methodologies used to confirm inaccessible target systems in fundamental physics.
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literature reviews, etc. Here, we rather demonstrate that, if the scientists’ goal were
indeed confirmation, the use of RA to this end could be rationally justified.

The rest of the paper is organized as follows. In Sect. 2, we introduce our case
study. In Sect. 3, we present our model for a Bayesian reconstruction of confirmation
by RA. Section 4 contains the formal analysis of the model and the explanations of
our results. Section 5 concludes the paper.

2 What Explains the Stylized Facts of Finance?

2.1 The Discontent with Rational Expectations

Our case study is best introduced against the backdrop of the dominant paradigm in
macroeconomics, namely the “neoclassical” theory and more recent developments
of it. The theory is based on the fundamental assumption of rational expectations,
or rational expectation hypothesis (REH), which holds that agents choose among
alternative courses of action the one that maximizes their expected utility or profits.
This entails that, in the financial market, given full information about the assets (e.g.,
bonds, stocks, other financial instruments), agents sell those assets, which are priced
above their fundamental values, and buy those assets, which are priced below their
fundamental values. Since agents are equal (or “homogeneous”) in this respect, their
aggregate behavior is reducible to the behavior of one representative agent. Given that
prices immediately and unbiasedly reflect the behaviour of rational agents, the market
is at equilibrium (demand and offer balance each other, such that the market clears),
and the equilibrium is optimal (market prices are always the immediate and unbiased
reflection of the underlying fundamental values of the assets)—which is known as the
efficient market hypothesis (EMH). Variations in price are thus uniquely imputable to
exogenous shocks (typically, technological innovations), because all information on
how the shocks affect the fundamentals is learned by the agents, who immediately
exploit any profit opportunity due to temporary differences between assets’ prices and
their fundamentals, such that prices quickly revert to the underlying fundamentals.
Given EMH and the unpredictable character of the shocks, prices should follow a
random walk.

A weakness of the neoclassical theory, as applied to financial markets, is that it
is unable to explain bubbles and crashes and more general statistical features of the
time series of prices. Such features are known as “stylized facts”, due to their quali-
tative nature and their stability across different instruments, times and markets.5 The
neoclassical theory correctly predicts one such fact, namely that the unconditional
distribution of returns (i.e., relative price changes) at low (e.g., annual) frequencies
is roughly Gaussian, which entails that the direction of returns is generally unpre-
dictable, in agreement with the random walk hypothesis. However, it cannot explain
other stylized facts, for instance why the unconditional distribution of returns at higher
(e.g., daily) frequencies is fat-tailed (i.e., with too many observations near the mean

5 There exists no exhaustive list of such facts. For partial lists, see Cont (2001) and Chakraborti et al.
(2011).
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and in the tails, and too few in the mid range). Moreover, the theory does not explain
certain features of the conditional distribution of returns: returns at different times
are not independent (volatility persistence), and price changes of the same size tend
to follow one another (volatility clustering). In particular, the decay of the autocor-
relation of returns is slower than predicted by the theory, meaning that information
about price trends is useful. This contradicts EMH, which entails that information on
past prices should be discounted given information on current prices, because current
prices correctly reflect the underlying fundamentals, and are thus the best predictors
of future prices. Other stylized facts have been reported, but the above list will suffice
for present purposes.

Ideally, onewould like to explain all of these stylized facts.Moreover, policymakers
are particularly interested in controlling financial crises. To achieve these (and other)
goals, it has become popular to supplement the neoclassical tenets that output changes
are caused by shocks in technology and that markets are efficient (at least in the long
run)with theKeynesian idea that short-runfluctuations—and, consequently, inefficient
equilibria—are still possible, due to market imperfections. The combination of these
views is known as “new neoclassical synthesis” (see, e.g., Woodford, 2009). The
models informed by this refined theory—viz. dynamic stochastic general equilibrium
(DSGE) models—purport to predict the dynamics of aggregate phenomena, such as
economic growth, business cycles, and the effects of monetary and fiscal policies,
starting from microeconomic principles, most notably REH. Central banks have until
now used DSGE models to respond to financial crises, whether because of trust or,
more simply, for lack of a better alternative.

Different DSGE models underpin correspondingly different accounts of the styl-
ized facts. One example are models allowing for the possibility of “sunspot” equilibria
(Cass & Shell, 1983). A sunspot is an exogenous cause of shocks that does not affect
the fundamentals but can still affect economic outcomes, when agents have imperfect
information on what affects the fundamentals and what doesn’t, and coordinate their
choices on the sunspot, thereby generating inefficient equilibria with excess volatility.
Another example are models introducing “frictions” in the form of “nominal” rigidi-
ties, such as “sticky” prices and wages, or financial rigidities, such as bankruptcy
costs, and credit and equity rationing. One such model is the financial accelerator
model (Bernanke et al., 1996). Firms (borrowers) and banks (lenders) have asymmet-
ric information about the real value of the assets. This generates a self-reinforcing
process that amplifies the shocks’ effects on the assets’ prices: a shock decreases a
firm’s activity, which lowers the asset’s price, which reduces the net worth of the firm’s
collateral, which limits the firm’s access to credit, which slows activity, and so on.

A large variety ofDSGEmodels exist (for two reviews, seeMilani, 2012 andDilaver
et al., 2018). What is important for our purposes is that: first, although these models
may relax this or that neoclassical assumption, they all share the core neoclassical prin-
ciple, viz. REH; second, they purport to explain the stylized facts of finance in terms
of exogenous shocks to the economy; but, third, they have a hard time in accounting
for these facts, let alone correctly predict the effect of policies during or after finan-
cial crises (see Haldane & Turrell 2018, p. 227). The resistence of many economists
to abandon REH in the face of apparent disconfirmations (for a recent example, see
Balfoussia et al. 2018, Sect. 7) has been criticized by several influential economists
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(Kirman, 2010; Krugman, 2011; Romer, 2016; Stiglitz, 2016), who have condemned
the effort devoted to save REH by playing with peripheral assumptions, often with-
out much theoretical justification. At the same time, a new research programme is
emerging, which moves away from the neoclassical paradigm.

2.2 The Heterogeneity Hypothesis

The new research programme in question is agent-based computational economics
(see Tesfatsion, 2002, 2006a, 2006b; on the application to financial macroeconomics,
see LeBaron, 2006a, 2006b and Fagiolo & Roventini, 2017). Agent-based computa-
tional economics rejects REH. Agents are heterogeneous. Since asset prices cannot be
calculated by maximizing the utility of a representative agent, population-based mod-
els must be replaced by agent-based models, which directly compute the aggregate
demand of heterogeneous agents. We now briefly describe two models in this new
research programme, which will later serve to illustrate our proposal.

The two models in question aim to reproduce a number of stylized facts by provid-
ing idealized—minimal—analogues of the asset pricing mechanism in the financial
market. They take inspiration from mechanisms in other domains—viz. phase tran-
sition in physics (Lux & Marchesi, 1999, 2000) and natural selection in biology
(Arthur et al., 1997, LeBaron et al., 1999)—that are known to generate stylized
facts (of a non-financial kind) as a result of self-reinforcing feedbacks—respectively,
state transitions catalyzing themselves and genetic traits becoming more and more
entrenched—ultimately due to the dishomogeneity among the components of the
system—respectively, among the particles’ states and among the individuals’ genetic
codes. It is typically assumed that market bubbles and crashes obtain when some force
drives the market away from equilibrium, by making price fluctuations become self-
reinforcing in the upward or downward direction. The modellers’ conjecture is that,
in spite of the obvious diversity between physical and biological systems on the one
hand, and financial markets on the other hand, the components’ heterogeneity is in
both cases essential to the process that generates stylized facts. Consequently, guided
by the above analogies (cf. Lux &Marchesi, 1999, p. 498; Arthur et al., 1997, Sect. 5),
they represent agents as particles in a fluid undergoing phase transition, where the dif-
ferent states correspond to different groups of agents, in one case, and as populations
of genetic codes subject to natural selection, each code representing a trading strategy,
in the other case. In both cases, agents are heterogeneous and boundedly rational.
Heterogeneity is realized by different dispositions in the phase transition model, and
by different expectations in the evolutionary model. Dispositions and expectations
change over time. In the phase transition model, agents switch between groups. In the
evolutionary model, agents learn new strategies. Let us examine the two models in
some more detail.

In the phase transition model, traders are divided into two main groups: fundamen-
talists, who sell (respectively, buy) when the price is above (below) the fundamental
value; and chartists (or “noise traders”), subdivided in turn into optimists and pes-
simists, who buy or sell depending on trends and opinions. Traders can switch between
different groups, like particles switch between different states. The number of indi-

123



L. Casini, J. Landes

Fig. 1 Left: the time series of prices closely tracks that of fundamentals (top); still, their difference shows
volatility clustering (bottom) (Lux &Marchesi, 1999, p. 498). Right: price fluctuations (top) depend on the
fraction of chartists in the market (bottom) (Lux & Marchesi, 2000, p. 689)

viduals in each group determines the aggregate excess demand, which results—via
the operation of a market maker, or Walrasian auctioneer—in changes in actual price,
which in turn affect the agents’ trading attitudes. Changes in fundamental value are
governed by a randomprocess. Switching between groups is governed by time-varying
probability functions: the fundamentalist-chartist switch depends on a comparison of
the respective profits (realized profits for the chartists, expected profits for the funda-
mentalists); the optimist-pessimist switch depends on an opinion index (representing
the average opinion among chartists) and the price trend.

In the evolutionary model, in contrast, each agent is a “theory” of trading rules.
Each theory is like a genotype, made of 100 rules. Each rule is like a chromosome,
and consists in a set of predictors, comprising a condition part (which may represent
fundamental or chartist information) and a forecast part (a linear model of price and
dividend). A random process governs changes in dividends. At the start of the time
period the current dividend is posted and observed by all agents. Each agent checks
which of his predictors are “active”, that is, match the current state of the market.
He then forecasts future price and dividend based on the most accurate of his active
predictors andmakes the appropriate bid or offer. The price is calculated by aggregating
the agents’ demands and automatically clearing the market. At regular intervals, but
asynchronously, agents engage in a learning process for updating their theories, where
they discard unsuccessful strategies and evolve successful ones by a genetic algorithm,
which mimics the process of natural selection by mutation and cross-over of the best
performing rules.

Simulations of the two models’ behaviour show that stylized facts obtain in both
cases. In particular, simulations of the phase transition model show that the time series
of the market price stays close to the time series of the fundamentals, in agreement
with the hypothesis that price variations are unpredictable (Fig. 1, left, top). How-
ever, random changes in fundamentals (Fig. 1, left, bottom) do not result in similarly
normally distributed returns, the time series of returns exhibiting a higher-than-normal
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Fig. 2 Left: the time series of prices closely tracks that of fundamentals (top); still, their difference (bottom)
shows volatility clustering (LeBaron et al., 1999, p. 1500). Right: with fast learning, agents retain chartist
strategies (top); conversely, with slow learning, agents discard them (bottom) (LeBaron et al., 1999, pp.
1506–1507)

frequency of extreme events and volatility clustering (Fig. 1, left, middle).6 For a wide
range of parameter values, volatility bursts (Fig. 1, right, top) robustly depend on
whether or not the proportion of chartists in the market exceeds a critical value (Fig.
1, right, bottom). Hence, the modellers conclude, volatility bursts are explained by the
switching process (see Lux & Marchesi, 1999, p. 500, and Lux & Marchesi, 2000, p.
679).

Analogously, in the case of the evolutionary model, the price series tracks very
closely the fundamental value series. Still, the time series of differences between
prices and fundamental values shows the presence of both tranquil periods and severe
fluctuations (Fig. 2, left). Moreover, the simulations reveal that different parameter
values governing the learning speed result in different regimes. In slow learning con-
ditions, the price series are indistinguishable fromwhat should be produced in the case
of homogeneous rational expectation equilibrium. In fast learning conditions, instead,
stylized facts obtain. Statistical analyses show that with slow learning, traders learn
that chartist bits are of no use and as time advances tend to eliminate them from their
trading strategy (Fig. 2, bottom right); with fast learning, in contrast, chartist bits are
useful, and thus their use does not decay as a result of learning (Fig. 2, top right). The
modellers conclude that complex regimes arise in the absence of exogenous shocks
because of the endogenous learning process.

It is important to emphasize that, in each case, the authors do not simply intend to
explore the space of possible mechanisms responsible for the data but also to support
a specific hypothesis in contradiction to EMH. The purported explanation of why
stylized facts obtain is that they are the result of an endogenous self-reinforcing process
and, ultimately, of the heterogeneity of the agents, in violation of REH (cf. Casini,
2014). In the authors’ own words:

Financial prices have been found to exhibit some universal characteristics that
resemble the scaling laws characterizing physical systems in which large num-
bers of units interact. This raises the question of whether scaling in finance

6 In particular, the modellers show that the stylized facts do not depend on the behaviour of the exogenous
force, that is, the changes in fundamental value, because fundamental value changes and (absolute) returns
have different scaling properties (see Lux & Marchesi, 1999, p. 499).
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emerges in a similar way from the interactions of a large ensemble of market
participants. However, such an explanation is in contradiction to the prevalent
‘efficient market hypothesis’ in economics, which assumes that the movements
of financial prices are an immediate and unbiased reflection of incoming news
about future earning prospects. Within this hypothesis, scaling in price changes
would simply reflect similar scaling in the ‘input’ signals that influence them.
Here we describe a multi-agent model of financial markets which supports the
idea that scaling arises from mutual interactions of participants. Although the
‘news arrival process’ in our model lacks both power-law scaling and any tem-
poral dependence in volatility, we find that it generates such behaviour as a result
of interactions between agents (Lux & Marchesi, 1999, p. 498, our emphasis).

By now, enough statistical evidence has accumulated to question efficient-market
theories and to show that the traders’ viewpoint cannot be entirely dismissed. As
a result, the modern finance literature has been searching for alternative theories
that can explain these market realities. (Arthur et al., 1997, Sect. 1) […] We
conjecture a simple evolutionary explanation. Both in real markets and in our
artificial market, agents are constantly exploring and testing new expectations.
Once in awhile, randomly,more successful expectationswill be discovered. Such
expectations will change the market, and trigger further changes in expectations,
so that small and large “avalanches” of change will cascade through the system.
(Arthur et al., 1997, Sect. 5, our emphasis)

Both mechanisms rely on differences in individual behaviour—the emergence of
chartist behaviour of some agents at some time, in one case, and the differences in
the agents’ inductive and adaptive behaviour, in the other case. These differences trig-
ger positive feedbacks inducing a self-reinforcing, endogenous process—by making
switches between groups catalyse more switches, in one case, and by making success-
ful use of chartist (or non-“rational”) strategies induce more and more agents to learn
to behave in a chartist way, in the other case. This process generates the aforemen-
tioned stylized facts, namely fat tails, volatility persistence, and volatility clustering.7

The match between the model behaviour and the real data is interpreted by the authors
as a confirmation of the heterogeneity hypothesis.

3 TheModel

3.1 Informal Motivation

Howdo thesemodels confirm the hypothesis that the agents’ heterogeneity is necessary
to the stylized facts, given that many unrealistic components also enter the derivation
of the stylized facts in each model? The answer, in short, is that the confirmation
can depend on the robust dependence of the stylized facts on heterogeneity. Before

7 The model by Arthur et al. purports to reproduce yet another fact, namely trading volume oscillations.
This difference is, however, irrelevant to our argument.
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presenting our formal reconstruction, let us provide an informal explication of this
idea.

The two agent-based models at hand represent their target system, namely the
financial market, in analogy with better-known source systems, in this case physical
and biological systems. They are built on the assumption that the agents’ heterogeneity
contributes to the stylized facts of finance. The way heterogeneity is represented,
in turn, varies depending on the analogy that guides the model’s construction—the
analogy between the market and a fluid undergoing phase transition in one case, and
between the market and a population undergoing natural selection in the other case. It
is as if agents switched or evolved and as if—as a result of this switch or evolution—
transition cascades or evolution cascades obtained. The analogies have some intuitive
plausibility. However, in light of the potential disanalogies involved in the models’
assumptions, the overall merit of these analogies is hard to evaluate a priori. It is here
that RA comes into play.

In agent-basedmodels, RA aims to assess the variability of the results depending on
themodel’s internal structure (Railsback&Grimm, 2011, pp. 302–306)—for instance,
on the probability distributions used to set the parameters, on the functional forms used
to relate the objects’ attributes, on the spatial/relational structure throughwhich objects
interact, on the objects’ invoking order and scheduling (on the last two aspects, see
Axtell, 2001; Miller & Page, 2004). Rarely are empirical data available to calibrate
all of these aspects of an agent-based model. This may generate scepticism as regards
its results (see, e.g., Grüne-Yanoff, 2009b, p. 547). RA evaluates how the results
vary when the non-calibrated components receive a different implementation. The
more stable the results against such changes, the larger our confidence that the model
explains the results.

In our chosen example, by varying assumptions for which no obvious justification
is available, RA shows that the stylized facts are likely not an artifact of the model
design, that is, an artifact of the possibly false idealizations used in the results’ deriva-
tion. To begin with, consider the assumptions on the exact nature of heterogeneity. The
phase transition model assumes no learning (agents can only switch back and forth
between groups), whereas the evolutionary model implements a simple form of learn-
ing (via the genetic algorithm). The phase transition model allows agents to interact
(just as particles may bump into each other and change their state, so agents can meet
and change their trading attitude), whereas the evolutionary model assumes no direct
interaction (agents interact only indirectly, via the observation of prices, which are
the aggregate result of all agents’ choices). Although agents are somewhat different
from one another, both models involve misrepresentations of real-world heterogene-
ity.8 Since there is no intuitive reason for preferring one realization of heterogeneity
to another, RA varies the respects in which heterogeneity is realized. Analogously,
the auxiliary assumptions of the models are somewhat credible, but also involve mis-
representations of their real-world counterparts. At the same time, one has no reason
to prefer one misrepresentation to another—for instance, to prefer a price determina-
tion determined by a Walrasian auctioneer, as in the phase transition model, to one
governed by a market clearing condition, as in the evolutionary model. Therefore,

8 This entails that neither model explains stylized facts by “isolating” heterogeneity.
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RA varies the auxiliary assumptions of the models that cannot be calibrated. Since
heterogeneity, albeit differently realized, is always part of the assumptions leading
to the stylized facts, whereas the auxiliary assumptions vary from case to case, the
hypothesis that heterogeneity (broadly construed) is necessary to the stylized facts gets
more credible—or, in other words, confirmed—in light of the evidence, namely the
results of the simulations. As it happens, in the case at hand not all model components
are varied, and not all of them are varied to the same extent. For instance, both models
assume that all agents have a simple portfolio consisting of one bond and one stock
at all times. We will return to whether the lack of variation affects the possibility of
confirmation by RA in Sect. 4.2.

In particular, we would want our account of confirmation by RA to rationalize
the following intuitions: the more systems with heterogeneous agents reproduce the
stylized facts, the larger the confirmation of the target hypothesis, and conversely, the
more systems with homogeneous agents that comply with REH reproduce the stylized
facts, the larger the disconfirmation. Moreover, the less dependent the auxiliaries of
the former systems, the larger the confirmation, and conversely, the less dependent
the auxiliaries of the latter systems, the larger the disconfirmation. Below, we show
how and when one can rationalize these intuitions in Bayesian terms. Our choice is
motivated by the goal of defending the confirmatory role of RA from an argument
by Odenbaugh and Alexandrova (2011, p. 759) that hinges on the difficulty in using
RA to “discharge” all of the auxiliaries employed in deriving a result of interest and
on the lack of independence between the auxiliaries of the models obtained by RA.
The analysis will be completed by an examination of cases of RA that go beyond
the scope of Odenbaugh and Alexandrova’s own objections, namely the variation of
the implementation of heterogeneity rather than the auxiliaries. In both cases, we will
identify the conditions for RA to be confirmatory with respect to a target hypothesis.

In the literature, there are suggestions on using hypothetico-deductivism (H-D) to
reconstruct RA (Levins, 1993, p. 553; Cartwright, 2009, p. 52; cf. Weisberg, 2006, p.
732; Kuorikoski et al., 2010, p. 560; for an elaboration, see Lehtinen, 2016, 2018).
Very roughly, H-D is an account of scientific method, according to which scientists
test scientific hypotheses by logically deducing observable consequences from them,
and by falsifying the hypotheses if said consequences are not observed in reality, and
corroborate, or confirm, them if the consequences are observed. There is a vast liter-
ature on the pros and cons of H-D. What is relevant for our purposes is that H-D does
not allow one to explicitly formalize the notion of degree of confirmation. As such,
it is not very suitable to address the critical target or our paper, namely the claim by
Odenbaugh and Alexandrova that the difficulty in discharging all of the auxiliaries
weakens the dependence of the phenomenon of interest on the hypothesis confirmed
by RA. A counterargument must formally show what happens to the degree of con-
firmation of this hypothesis when not all auxiliaries may be discharged. Moreover,
the second of Odenbaugh and Alexandrova’s objections is equally hard to address
in the framework of H-D. Odenbaugh and Alexandrova argue that confirmation by
RA hinges on the independence of the auxiliary assumptions of the models. What
they mean is something stronger than non-identity: two auxiliaries may be dependent
even if they are not fully dependent. Again, a suitable counterargument should show
what happens when the idealization that the auxiliaries are independent is relaxed, and
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residual dependencies (which needn’t be as strong as full dependence) are introduced.
To this end, it seems desirable to have a framework in which these dependencies may
be formally represented.

To address Odenbaugh and Alexandrova’s objections, a natural option for us to
explore is to adopt a framework, which is widely used to represent degrees of con-
firmation, namely Bayesian confirmation theory. Not only is the theory much more
mainstream than H-D, nowadays, as a tool for reconstructing confirmation. There
are also numerous suggestions in the literature to the point that Bayesianism may
be fruitfully applied to the task of reconstructing RA (Schupbach, 2015, 2018; Ste-
genga & Menon 2017, ; see also Kuorikoski et al., 2010, p. 545). Another advantage
of Bayesianism over H-D is that the former allows one to seamlessly integrate con-
flicting evidence, for instance, to integrate the existence of both models that confirm
that heterogeneity is necessary to the stylized facts and of models that disconfirm this
hypothesis.9

3.2 Model Specification

In the following, we provide a Bayesian networkmodel (adapted fromBovens &Hart-
mann, 2003, Sect. 4.4, using binary propositional variables) of how a target hypothesis
is (dis)confirmed. Let us consider for concreteness the heterogeneity hypothesis of our
example, which we denote by the variable X :

X =
{
x : In reality, heterogeneous agents are necessary for all stylized facts.

x̄ : In reality, heterogeneous agents are not necessary for some stylized facts.

Note that the random walk of prices is a stylized fact that constitutes a benchmark for
any acceptable model of asset pricing. This stylized fact is recovered by neoclassical
models, where agents are homogeneous as entailed by REH. Henceforth, whenever we
talk of “stylized facts” we mean those, which neoclassical economics has problems
recovering, in particular the three stylized facts mentioned in Sect. 2.1—fat tails,
volatility persistence, and volatility clustering—namely, those that, in addition to the
random walk of prices, the aforementioned agent-based models but no neoclassical
model can recover.

X = x is logically equivalent to: stylized facts obtaining in reality entails that REH
is false. In turn, the falsity ofREHcanbe realized inmanyways, because there aremany
ways for a group of agents to behave differently from one another, or heterogeneously.
Thus, by “heterogeneous agents” we mean some form of heterogeneity or other, and
not any specific type of heterogeneity. Conversely, X = x̄ means that at least one of
those three stylized facts does not necessitate heterogeneity.

Prior to the development of heterogeneous models recovering stylized facts, it
was somewhat plausible that X = x is true (cf. quotes in Sect. 2.2 above). Hence,
0 < P(x) < 1.

9 See Proposition 3 and Theorem 1 for our Bayesian treatment of conflicting evidence.
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Following (Bovens & Hartmann, 2003) we insert intermediate variables between
the hypothesis and the evidence to account for the fact that a hypothesis, in our case
X = x , is confirmed via its testable consequences, in our case the existence of het-
erogeneous (HET) models that recover stylized facts. In general, models cannot be
used to establish necessity claims, only the consistency of certain assumptions with
the evidence. Moreover, any model only allows us to reason about those stylized facts
it actually investigates. For a given HET model Mi we hence define the intermediate
variable as:

Hi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hi : In reality, heterogeneous agents as described bymodel Mi are consistent with all stylized facts

investigated bymodel Mi .

h̄i : In reality, heterogeneous agents as described bymodel Mi are inconsistent with some stylized

facts investigated bymodel Mi .

Confirmation of these intermediary variables, which are about specific kinds of hetero-
geneity being compatible with a number of stylized facts (fat tails, volatility clustering,
and volatility persistence), raises the probability that heterogeneity of some kind or
other is necessary to all stylized facts.

Since Hi mentions a particular type of heterogeneity, the (non-)necessity of some
kind of heterogeneity does not rule out nor does it imply the consistency of a
particular kind of heterogeneity with the observation of stylized facts. Therefore,
P(hi |x), P(hi |x̄) ∈ (0, 1).

Let us compare P(hi |x) to P(hi |x̄). In the former case it holds that heterogeneity
is necessary for stylized facts in reality. Then some form of heterogeneity has to be
consistent with the observed stylized facts. In the latter case it holds that, heterogeneity
is not necessary for stylized facts in reality. It is hence possible that homogeneity
is consistent with stylized facts in reality. The presence of x rather than x̄ hence
makes it more likely that some form of heterogeneity has to be consistent with the
observed stylized facts. This in turn raises the probability that a particular heterogeneity
assumption (Hi ) is consistent with all stylized facts. Hence, P(hi |x) > P(hi |x̄).10

Crucially, HET models rely on auxiliary assumptions, by which we mean all spec-
ifications of the model that do not concern the heterogeneity of the agents. To model
this, we employ a variable Ai with the following intended interpretation:

Ai =
{
ai : The auxiliaries of modelMi describe a system, which is similar to reality.

āi : The auxiliaries of modelMi describe a system, which is not similar to reality.

Since Ai = ai is neither fully credible nor incredible, we have 0 < P(ai ) < 1.11

10 Notice that the difference P(hi |x)− P(hi |x̄) could be rather small, but as long as it is strictly positive—
which it is here—the Hi are testable consequences of X in the sense of (Bovens & Hartmann, 2003).
11 Our auxiliary variable corresponds to the reliability variable in Bovens & Hartmann’s (2003) model (see
also Merdes et al., 2021).
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Not every HET model is designed to recover all stylized facts.12 Our evidence
variables Ei are hence defined relative to a given subset of stylized facts (fat tails,
volatility clustering, and volatility persistence):

Ei =
{
ei : TheHETmodel Mi recovers all the stylized facts investigated bymodel Mi .

ēi : TheHETmodel Mi does not recover some of the stylized facts investigated bymodel Mi .

Notice that Hi screens off Ei from X : knowing the value of Hi renders the value of X
irrelevant to the probability of Ei . In the absence of knowledge of Ai , Hi being true
rather than false (i.e., the relevant heterogeneity is consistent with the stylized facts
investigated by the model) renders ei more likely, P(ei |hi ) > P(ei |h̄i ). Since also
P(hi |x) > P(hi |x̄), it follows that P(ei |xi ) > P(ei |x̄i ). That is, these ei have Bayes
factors greater than 1.13

The variables X , Hi and Ai all refer to facts in reality. To obtain evidence for the
corresponding propositions, the result of the simulation, that is, the recovery of the
stylized fact in the model, needs to be empirically validated. This empirical validation
amounts to a non-trivial comparison of statistical features of simulation results and of
real-world datasets, which themselves need to be empirically analysed.14 This is a non-
trivial task for at least three reasons. First, the statistical assessment of the empirical
properties of real-world datasets themselves is difficult, and not a yes-no matter (see,
e.g., Cont, 2001). Second, there is still an opendebate about how to adequately compare
simulated data and real-world data, and different comparison methods may indicate
that simulated datamatch real-world data to different degrees (for a review, see Fagiolo
et al., 2019). Finally, there is an ongoing methodological debate on what counts as
a successful replication in general, (see, e.g., Atmanspacher, 2016; Fletcher, 2021;
Freedman, 2015; Rubin, 2021). So, while the result of the simulation contributes to
the probability of ei , it is not sufficient to determine the value of Ei with certainty.
Hence, 0 < P(ei ) < 1.

Notice that the value of Ei is not a direct consequence of the model’s assumptions,
because knowledgeof the values of Hi and Ai does not entail thematchbetween the sta-
tistical properties of simulated data and real-world data. Thus, the conditional probabil-
ities of Ei are also non-extreme, 1 > P(ei |hia), P(ei |hi āi ), P(ei |h̄i ai ), P(ei |h̄i āi ) >

0. Moreover, whether or not the auxiliaries describe facts that are similar to reality
(fixed truth value of Ai ), the fact that the relevant heterogeneity is consistent with the
stylized facts investigated by themodel Mi makes the model Mi more likely to recover
the investigated stylized facts, P(ei |hiai ) > P(ei |h̄i ai ) and P(ei |hi āi ) > P(ei |h̄i āi ).

12 As documented by Samanidou et al. (2007) and Chakraborti et al. (2011), recent models improve on the
first, pioneering models in that they—among other things—capture more and more of these stylized facts.
13 This is demonstrated in the proof of Theorem 1.
14 The level of empirical validation can vary: onemaywish to recover the qualitative behaviour of empirical
macro structure, the quantitative behavior of macro structure or the quantitative behaviour of micro structure
(see, e.g., Barde & van der Hoog, 2017).
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Finally,whether or not the relevant heterogeneity is consistentwith the stylized facts
investigated by the model (fixed truth value of Hi ), the fact that the auxiliaries describe
facts that are similar to reality makes ei more probable, P(ei |hiai ) > P(ei |hi āi ) and
P(ei |h̄i ai ) > P(ei |h̄i āi ). In sum, we obtain:

1 > P(ei |hia) > P(ei |hi āi ), P(ei |h̄i ai ) > P(ei |h̄i āi ) > 0 .

Note that P(ei |hi āi ), P(ei |h̄i āi ) > 0guarantees the possibility ofadhocHETmodels,
which recover stylized facts thanks to auxiliaries explicitly designed to match the
statistical features of observed data. As we explain in the next section, however, in
that case the posterior of X = x is approximately equal to its prior. That is, our
Bayesian model does not rationalize, or justify, RA over ad hoc models, as it should
be.

So far, our Bayesian model features edges from X pointing to the Hi , and edges
from Hi and Ai pointing to Ei (Fig. 3b). There are no edges between the Ai and X and
no edges between the Ai and Hj due to the lack of unconditional correlations between
these variables. As regards the relation between the Ai , in Sect. 4.1 we assume that
they are mutually independent. This assumption will be relaxed in Sect. 4.2.

Finally, to keep the mathematics tractable, we assume that the Hi are also inde-
pendent. This is a formal limitation of our model. If X = x is true, then there is
some (hypothetical) model which employs the sort of heterogeneous agents which
are necessary for stylized facts in reality. Knowing that some other sorts of het-
erogeneity are not consistent with stylized facts clearly increases the probability
that a so-far not-investigated sort of heterogeneity is consistent with stylized facts,
P(hi |xh̄1 . . . h̄i−1) > P(hi |x). There should hence be dependencies between the Hi

(cf. Claveau & Grenier, 2019). To alleviate the worry that the lack of dependencies
drives our results below, we point to the fact that we establish strict inequalities, which
continue to hold under small enough variations of our model due to the continuous
dependence of posterior probabilities on prior probabilities, and that the great number
of possible realizations of heterogeneity makes for weak dependencies between the
Hi .

Our model can be extended to handle homogeneous (HOM) systems, namely sys-
tems with homogeneous agents that disconfirm X = x , if they recover stylized facts
(Fig. 3c).

We again insert an intermediate variable, K , between the evidence from these
models and X :

K =
{
k : In reality, homogeneous agents as described by REH are consistent with all stylized facts.

k̄ : In reality, homogeneous agents as described by REH are inconsistent with some stylized facts.

Notice that, contrary to the case of HET systems, where we distinguish between dif-
ferent kinds of heterogeneity, compliance with REH entails one kind of homogeneity.
The difference between HOMmodels depends on the different auxiliary assumptions
they make. We hence chose to employ only a single binary propositional variable K
to model homogeneity.
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There are (still) economists who hold that P(k) > 0, and so dowe. Note that X = x
entails K = k̄, and so P(k̄|x) = 1 and P(k|x) = 0. If heterogeneity is not necessary
for all stylized facts, then at least one stylized fact in addition to the random walk
of prices is consistent with REH, namely P(k|x̄) > 0. Furthermore, it is consistent
with x̄ that one stylized fact (e.g., volatility clustering) is consistent with the REH but
another stylized fact (e.g., fat tails) is not. In this case, REH is not consistent with all
stylized facts and so P(k|x̄) < 1.

Similarly to the HET models, we use subscripted variables En+ j to denote the
evidence from HOM models with the intended interpretation that en+ j indicates that
HOM model Mn+ j recovers the stylized facts it investigates.

En+ j =
{
ei : TheHOMmodelMn+ j recovers all the stylized facts investigated bymodel Mn+ j .

ēn+ j : TheHOMmodelMn+ j does not recover some stylized fact investigated bymodelMn+ j .

Finally, we use variables Bj to denote the auxiliary assumptions of HOM models.

Bj =
{
b j : The auxiliaries of model Mn+ j describe a system, which is similar to reality.

b̄ j : The auxiliaries of model Mn+ j describe a system, which is not similar to reality.

Since Bj = b j is neither fully credible nor incredible, 0 < P(b j ) < 1.
To illustrate, the match between the statistical features of simulated data and

observed data, en+ j , may confirm that rational expectations are consistent with all
stylized facts, K = k, in the presence of such-and-such auxiliaries as described by b j

(say, a sunspot assumption or a financial accelerator assumption, plus other assump-
tions). This, in turn, would cast doubt on the necessity of heterogeneous agents to
stylized facts, X = x .

As was the case for ei , the unconditional and conditional probabilities of en+ j are
non-extreme, for the same reasons. P(en+ j |kb̄ j ), P(en+ j |k̄b̄ j ) > 0 guarantees the
possibility of ad hoc HOM models. Being the models ad hoc, however, the prior of
Bj = b j will be low, entailing no disconfirmation for X = x (again, see next section
for an explanation).

Note that P(en+ j |k̄) < P(en+ j |k): a homogeneous model is more likely to recover
stylized facts, if stylized facts can obtain in reality without giving up REH. It follows
that P(en+ j |x) < P(en+ j |x̄): ceteris paribus, a homogeneous model is less likely to
recover stylized facts, if stylized facts cannot obtain in reality without heterogeneity.
This means that HOM models recovering stylized facts disconfirm X = x (see Theo-
rem 1). As it happens, there are no (well-accepted) HOM models recovering stylized
facts. The existence of HOM models not recovering stylized facts actually confirms
X = x .

4 Analysis

Having motivated and detailed our model we now proceed to derive formal results.
We begin by investigating independent auxiliary variables and later introduce
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Table 1 Overview of employed variables, their intended interpretation and (conditional) probabilities

VariableIntended interpretation (Conditional) probabilities

X Observed stylized facts entail the negation of REH 0 < P(x) < 1

Hi Heterogeneityi is consistent with some stylized facts0 < P(hi |x̄) < P(hi |x) < 1

Ai Auxiliary assumptionsi resemble reality 0 < P(ai ) < 1

Ei HET modeli recovers some stylized facts 1 > P(ei |hi a) > P(ei |hi āi ), P(ei |h̄i ai )
P(ei |hi āi ), P(ei |h̄i ai )>P(ei |h̄i āi )>0

K REH is consistent with all stylized facts P(k|x) = 0 and 0 < P(k|x̄) < 1

B j Auxiliary assumptions j resemble reality 0 < P(b j ) < 1

En+ j HOM modeln+ j recovers some stylized facts P(en+ j |k̄) < P(en+ j |k)

dependencies between assumptions—be they auxiliary assumptions or assumptions o
the implementation of heterogeneity.

4.1 Independent Assumptions

For the Bayesian networks defined above with conditional probabilities as recalled in
Table 1 we obtain our first result:15

Proposition 1 (One HET model, Fig. 3a) The confirmation function, �H (x) =
P(x |e) − P(x), is positive.

While there is no RA due to the lack of variation across auxiliaries, there is some
confirmation by a single HETmodel recovering stylized facts. Notice that the values of
P(e|ha) and P(e|h̄a)matter significantly to the confirmation of X = x only when the
prior of A = a is far from 0. The smaller the prior, the less they matter. In particular,
if A = a is very unlikely, then the amount of confirmation (mostly) depends on the
quotient P(e|hā)

P(e|h̄ā)
.

Moreover, if A = ā has been manufactured to reproduce the stylized facts indepen-
dently of the other parts of themodel (i.e., themodel is ad hoc), P(e|āh) ≈ P(e|āh̄) ≈
1, then that quotient ( P(e|hā)

P(e|h̄ā)
) is very close to 1. This quotient is a Bayes factor. Ceteris

paribus, the further away it is from one, the greater the (dis)confirmation. As a result,
the posterior of X = x is very close to the prior of X = x , such that no significant
confirmation for X = x obtains.

Note that these considerations always apply to the posterior probability of X = x
given the evidence generated by certain models. The prior probability of X = x is
not affected by the existence of this evidence. In particular, it is not affected by the
existence of ad hocmodels; the existence of ad hocmodels does not make the prior 0.

15 Propositions 1 and 2 are instances of Theorem 1 (n = 1 and n = 2,m = 0) which is proved in Appendix
1.
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(a) (b) (c)

Fig. 3 a A one-HET model; b a two-HET model; c a one-HET and one-HOM model

We may now similarly represent a second heterogeneous system, HET’, with three
additional variables H ′, A′ and E ′ (Fig. 3b). Note that, although HET and HET’ are
based on a heterogeneity assumption, this assumption is differently implemented by
the two models. We represent the different implementations as different variables H
and H ′, which become independent given X . Similarly, the sets of auxiliaries in the
two models, A and A′, are different. These variations make the addition of the second
system, HET’, a case of RA relative to X . Under the assumptions that A and A′ are
independent (to be relaxed in Sect. 4.2), and that both models recover stylized facts,
one gets the first instance of confirmation of X = x by RA:

Proposition 2 (Two HET models, Fig. 3b) The confirmation function, �HH ′
(x) =

P(x |ee′) − P(x |e), is positive.
What we said on the dependence of confirmation on non ad-hocness in the context

of one model applies to the context of two models, too. If we are (almost) sure that
A2 = ā2 and the model M2 has been manufactured to reproduce the stylized facts,
E2 = e2 irrespective of whether H2 is true or false (

P(e2|h2ā2)
P(e2|h̄2ā2) ≈ 1), then P(x |e1e2)

won’t be (noticeably) larger than P(x |e1). That is, RA is not useful for confirmation
of X = x if it relies on gathering evidence from novel but ad hoc models.

In a two-system model with one HET system and one HOM system (Fig. 3c),
Proposition 2 may be reinterpreted as follows:

Proposition 3 (One HET and one HOM model, Fig. 3c) The confirmation function,
�HK (x) = P(x |ee′′)− P(x), is positive, if and only if e is better evidence for X = x
than e′′ is evidence against X = x, P(e|x)

P(e|x̄) >
P(e′′|x̄)
P(e′′|x) or, equivalently, the body of

evidence has a Bayes factor greater than 1, P(ee′′|x)
P(ee′′|x̄) > 1.

That is, confirmation is positive, if and only if the evidence for X = x (provided by the
HET model) outweighs the evidence against X = x (provided by the HOM model);
which is equivalent to saying that the entire body of evidence supports X = x . This
proposition shows that conflicting evidence is straightforwardly accounted for in a
Bayesian framework. Of course, determining whether a given HET model confirms
X = x more than a given HOM model disconfirms X = x is an empirical matter. On
the one hand, HETmodels’ auxiliaries aremore plausible and they clearly recover styl-
ized facts, whereas HOM models make less plausible assumptions and/or less clearly
recover stylized facts. On the other hand, the existence of a single HOMmodel recov-
ering stylized facts may—in principle—rule out the necessity of heterogeneity, while
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Fig. 4 General n-HET and m-HOM model, under the assumption that A1, . . . , An , B1, . . . , Bm are mutu-
ally independent

any collection of HET models is only an indication of the necessity of heterogeneity.
Notice that, if one is almost sure that the HOM model is ad hoc, confirmation does
not depend much on the HOM model. Since the Bayes factor of the HOM model is
close to 1, the degree of confirmation reduces to that resulting from the HET model
alone, P(x |ee′′) − P(x) ≈ P(x |e) − P(x).

Let us now consider a general hypothetical case with an arbitrary number n of
HET systems and an arbitrary number m of HOM systems (Fig. 4). We assume that
different HET systemsmake different heterogeneity assumptions Hi and that different
Hi are independent given X . By contrast, we assume that all HOM systems implement
homogeneity in the same way, in line with REH, and we represent this fact by using
a unique variable K .

The confirmation function, �HnKm (x) = P(x |e1 . . . enen+1 . . . en+m) − P(x), has
the following features: it monotonically increases in the number of HETmodels recov-
ering stylized facts (n) and monotonically decreases in the number of HOM models
recovering stylized facts (m). Assuming that these models provide non-vanishing evi-
dence (the Bayes factors are bounded away from 1) and holding theHOMmodels fixed
(m fixed), an ever greater number of HET models (n approaching infinity) raises the
posterior probability of X = x to approximating 1. Vice versa, holding the HET mod-
els fixed (n fixed), an ever greater number of HOM models (m approaching infinity)
lowers the posterior probability of X = x to approximating 0.

Theorem 1 (General n-HET and m-HOM, Fig. 4) The confirmation function
�HnKm (x) = P(x |e1 . . . enen+1 . . . en+m) − P(x) is strictly

1. increasing in n, and if there exists an ε > 0 such that for all n and all 1 ≤ i ≤ n it
holds that P(ei |x)

P(ei |x̄) ≥ 1 + ε, then limn→∞ P(x |e1 . . . enen+1 . . . en+m) = 1;
2. decreasing in m, and if there exists an ε′ > 0 such that for all m and all 1 ≤ j ≤ m

it holds that
P(en+ j |k)
P(en+ j |k̄) ≥ 1 + ε′, then limm→∞ P(x |e1 . . . enen+1 . . . en+m) = 0.

Let us now turn to some interesting consequences of these results in the presence
of both HET and HOM systems (Fig. 5). For a large enough number of HET systems,
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Fig. 5 Posterior probability of X = x according to Theorem 1 for varying number of HET systems, n. Left:
the prior P(x) is set to 0.4 (black), 0.2 (blue), 0.1 (orange); fixed number of HOM systems, m = 2. Right:
numberm of HOM systems is set to 1 (black), 3 (blue), 5 (orange); fixed prior of x , P(x) = 0.2. To improve
readability, n is displayed as a continuous variable. HET systems are less confirmatory than a HOM system

throughout P(ei |x)
P(ei |x̄) := 1.2 	 4 =: P(en+ j |k)

P(en+ j |k̄) for all 1 ≤ i ≤ n and 1 ≤ j ≤ m and P(k|x̄) = 0.1

n, the posterior probability of X = x goes to 1, independently of the prior probability
of X = x (left) or the number of HOM systems (right). Ceteris paribus, the less
confirmatory every single HET system, the lower the posterior probability of X = x ;
and the greater the number of HOM systems, the greater the number of HET systems
required for the posterior probability of X = x to become (almost) 1. Let us recall that
a large posterior probability of X = x under the assumption that stylized facts obtain
in the real world is also a large probability that REH is false. Hence, if stylized facts do
obtain in reality, then if many non-ad-hoc HET models with independent auxiliaries
were to recover stylized facts and few non-ad-hoc HOM models with independent
auxiliaries were to recover stylized facts, the posterior probability of X = x would
get very close to 1, which would bring the degree of belief in the REH close to 0. By
contrast, an increasing number of HOMmodels recovering stylized facts would make
us virtually sure that K = k holds. Since K = k cannot be true if X = x is true,
P(k|x) = 0, the posterior probability of X = x would get very close to 0, making us
confident that X = x is false.

The above results require a monotonic increase in the number n of HET systems. In
practice, however, the number of systems studied by RA is always finite. As a result,
the posterior of X = x doesn’t reach extreme values, which would justify accepting
or rejecting REH. In any given case, whether X = x is confirmed, that is, whether
�HnKm (x) is positive, depends on how strongly the HET models confirm X = x and
how strongly the HOM models disconfirm X = x . More concretely, let us consider
what happens in a situation closer to our case study (Fig. 6), where one has evidence
from twoHET systems, namely the phase transitionmodel and the evolutionarymodel,
and one HOM system, say, one’s favourite DSGE model. If the evidence from HET
systems is strong enough, few (two, here) HET systems suffice to significantly raise
the posterior probability of X = x (left). Similarly, if the evidence from the HOM
systems is strong enough, few HOM systems suffice to lower the posterior probability
of X = x (right).
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Fig. 6 Posterior probability of X = x according to Theorem 1 for two HET systems and one HOM system,
fixed prior P(x) = 0.2, and P(k|x̄) = 0.9, against varying (dis)confirmatory strength. Confirmation

strength is equal to P(ei |x)
P(ei |x̄) for i ∈ {1, 2}. Disconfirmation strength is equal to P(e3|k̄)

P(e3|k) . Left: disconfirmation

strength is set to 4 (black), 10 (blue), and 15 (orange). Right: confirmation strength is set to
√
15 (black),√

5 (blue), and
√
3 (orange)

4.2 Dependent Assumptions

4.2.1 General Considerations

The last section showed that RA can confirm a hypothesis under the assumption
that the models’ auxiliaries are varied to the point that different sets of auxiliaries in
different models become fully independent of one another. It is now time to relax that
assumption, in order to address Odenbaugh and Alexandrova’s (2011) objections. To
this end, let us first re-examine the objections.

To recall, the first objection is that “only some, not all, of the idealizations ofmodels
are discharged by robustness analysis”. In that case, so Odenbaugh and Alexandrova
argue, confirmation by RA remains “empirically questionable and thus explanatorily
weak”. In our framework, the undischarged idealizations Odenbaugh andAlexandrova
talk about amount to non-varied auxiliaries (e.g., two-asset portfolios). For an illus-
tration in the case of two systems, see Fig. 7a. There, some auxiliaries, A1 and A2,
are fully independent, whereas the remaining auxiliaries, A′, are fully dependent (i.e.,
the two models have some but not all auxiliaries in common). For Odenbaugh and
Alexandrova, this is problematic because, if the A′ are not varied by RA, one may not
be able to tell whether the evidence depends on A′ rather than X .

A strengthened version of this first objection has been formulated by Lisciandra
(2016), who points out that assumptions introduced for tractability reasons may not be
relaxed, precisely because the problem at hand would not be tractable without them:

[…] in the case of complex models, whose components are in relation with each other partly to

satisfy analytical requirements, it becomes more difficult to break them down into single units that

can be exchanged with different ones. (83)

While we concede that this may be a problem in certain cases, we do not think it is
a problem in general. For instance, in a neoclassical framework, analytic solvability
requires one to impose that the system is at equilibrium. In the case of agent-based
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(a) (b)

Fig. 7 Two-system models with dependent auxiliaries: in (a), A1 and A2 denote fully independent sets
of auxiliaries and A′ denotes a set of fully dependent auxiliaries; in (b), the dotted line denotes residual
dependencies between sets of auxiliaries A1 and A2

models, by contrast, analytic solvability is not a concern, because the models can
only be studied by numerical simulations. So, the modeller can decide whether or
not to impose equilibrium, based on different motivations. The phase transition model
imposes an equilibrium condition in order to show that, even at equilibrium, themarket
can still be subject to volatility bursts. The evolutionarymodel, by contrast, imposes no
such constraint, as it aims to show how equilibrium itself depends on learning speed.
More generally, in the case of agent-based models, it is in principle possible to vary
their auxiliaries, due to their modular character and there being no need of analytic
solvability. In the words of the economists Fagiolo and Roventini:

[Agent-basedmodels], contrary to neoclassical [models], do not impose any strong theoretical consis-

tency requirements (e.g., equilibrium, representative individual assumptions, rational expectations).

This is because they are not required ex-ante to be analytically solvable. […] in absence of strong

consistency conditions, assumptions can be replaced in a modular way, without impairing the analy-

sis of the model. Indeed, in standard neoclassical models one cannot simply replace the optimization

assumption with another one just because the model does not behave well, as that would possibly

destroy its analytical solvability. This is not so in [agent-based models] (Fagiolo & Roventini, 2017,

5.30)

Of course, the problem remains that, even assuming that all auxiliaries are in principle
dischargeable, in practice it may be very hard to discharge all of them. But is that
necessarily bad for confirmation?

Stegenga andMenon (2017, p. 420) have already argued that variation of all assump-
tions is unnecessary to confirmation by RA. They claim that “robustness does not
require the independence of all theoretical assumptions. Rather, it only requires inde-
pendence of problematic or controversial auxiliary assumptions”. Stegenga andMenon
argue that distinct consequences E1, . . . , En of a hypothesis of interest, say X = x ,
warrant a large confirmation (an “epistemic oomph”) only if X d-separates (i.e., ren-
ders independent) E1,…, En .16 In turn, d-separation obtains, if and only if either there
are no shared assumptions (i.e., the auxiliaries are fully independent) or they are fully

16 Stegenga and Menon’s own goal is to qualify—in a Bayesian framework—the thesis that robustness
requires “various” evidence. They explicitly say (2017, fn. 2) that they are not concerned with derivational
RA. We, by contrast, discuss how the same kind of evidence, as obtained by models making different
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credible (i.e., their prior probability is 1). As an illustration, consider the case where
n = 2 (Fig. 7a). If the prior probability of A′ = a′ is not 1, X doesn’t d-separate E
and E ′. In practice, since the auxiliaries entering RA are always uncertain, such that
their prior is definitely below 1; and since there are, typically, shared auxiliaries, only
{X , A′} d-separates the Ei ; in which case, Stegenga and Menon claim, RA cannot
provide large confirmation.

We agree with Stegenga and Menon that confirmation is guaranteed when X d-
separates the evidence. This is in line with our argument: if A1 and A2 are independent,
such that X d-separates E and E ′, �Hn (x) is positive (Theorem 1). At the same time,
Stegenga and Menon clearly intend independence as necessary to a robustness argu-
ment (cf. the above quote). On this, we disagree. Confirmation by RA obtains as long
as E and E ′ together confirm X = x more than E or E ′ alone. Since, intuitively, con-
firmation inversely co-varies with the dependence among the auxiliaries, confirmation
may be substantial even if X fails to d-separate. To support this point, the question
that we now want to address is: When and how much if at all, does RA confirm in
the presence of dependencies? Answering this question will allow us to tackle at once
both of Odenbaugh and Alexandrova’s (2011) objections.

Let us represent non-independence by a residual dependence between different sets
of auxiliaries. Notice that the model in Fig. 7a is a special case of that in Fig. 7b, where
only full dependence and independence are allowed, but no partial dependence. By
contrast, the model in Fig. 7b is more general, as it captures not only full dependencies
(i.e., identity) between auxiliaries but also partial dependencies (i.e., similarity). The
latter suffices to leave different sets of auxiliaries correlated. To illustrate, not all of the
auxiliaries in our case study change fromonemodel to the other. Some assumptions are
varied, for instance, those about interactions, about learning, and about equilibrium.
Other assumptions stay the same, for instance, those about the agents’ portfolios. Oth-
ers still are only “partly” varied. For instance, aWalrasian auctioneer (phase transition
model) and an automatic market clearing (evolutionary model) are different ways to
implement a centralized price determination mechanism, yet they are more similar
to one another than to a decentralized price determination mechanism. Analogously,
the assumptions that fundamentals change at random (phase transition model) and
that dividends change at random (evolutionary model) are different ways to imple-
ment exogenous shocks, but are more similar to one another than assuming that these
shocks have a systematic component due to a common cause, say, a sunspot. Any of
these similarities entails a—more or less strong—partial dependence.

Recall that the second objection is that “[r]obustness analysis crucially depends on
showing that the assumptions of different models are independent of one another” but
this condition is typically not satisfied. The first objection, then, may be interpreted
as a special case of the second: undischarged idealizations entail the identity, and thus
the lack of variation, of some auxiliaries, entailing in turn a residual dependence.

Footnote 16 continued
background assumptions, is confirmatory, that is, we discuss derivational RA. In spite of the different
motivation, Stegenga and Menon’s argument to the point that d-separation is necessary to robustness
directly threatens our conclusion.
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We shall now present results supporting three conclusions, which show that the
above objections are invalid (1 and 2), but at the same time emphasize that the useful-
ness of RA for confirmation is sensitive to conditions, which require careful scrutiny
(3):

Conclusion 1: Discharging of auxiliaries is unnecessary to a confirmation increase
from further evidence.

Conclusion 2: Discharging of auxiliaries is unnecessary to maximal confirmation,
that is, to P(x |Evidence) = 1.

Conclusion 3: Sometimes replication is more confirmatory than variation with
respect to auxiliaries as well as heterogeneity assumptions.

4.2.2 Formal Analysis and Interpretation of Results

Conclusion 1.There aremanyways inwhich a number of auxiliaries can be dependent
on each other. The extreme case obtains, if all auxiliaries are fully dependent on each
other, i.e., there is only one single auxiliary assumption. Graphically speaking, there
is only one single auxiliary variable, A′, in Fig. 7, which is the parent of two or more
evidential variables. Assuming that every evidential variables E has a distinct variable
H as a parent, Osimani and Landes (forthcoming, Sect. 3.4, Scenario 2) show that
P(x |e1 . . . en+1)− P(x |e1 . . . en) increases in certain cases. Assuming that all models
make the same auxiliary assumptions, the more HET models recover stylized facts,
the greater the confirmation for X = x .

Following (Bovens & Hartmann, 2003, Eq. 4.13), Osimani and Landes (forth-
coming, Sect. 3.4) however also discover cases in which a further HET model does
decrease confirmation.17 In such cases, learning that a second model recovers stylized
facts means that we also learn about the truth value of A′. If the second HET model
strongly boosts our belief in a truth value A′ = a′ such that it is A′ = a′ which is
responsible for the recovering of stylized facts, i.e., it is not X = x which drives the
recovering of stylized facts, then the second model recovering stylized facts decreases
the confirmation of X = x – for suitable parameters, because A′ = a′ is the main
driver of the recovery of the stylized facts and not X = x .

Upshot 1: Independence of auxiliaries is not necessary for a confirmation increase.
Nor is it sufficient: there are cases in which confirmation decreases.

Conclusion 2. This leaves open the question of when confirmation can become max-
imal (a posterior probability of X = x equal to 1 obtains).

We investigate two cases: (2a) As above: only one auxiliary variable A′, many HET
models E1, . . . , En and every HET model has its own distinct heterogeneity variable
Hi . (2b) We add a distinct variables Ai representing auxiliary assumptions specific to
individual HET models.

17 It is well known that accumulating more propositions which are individually confirmatory need not
result in more confirmation when updating upon all the available evidence (Carnap, 1962, p. 382). So, the
mere accumulation of (dis)confirmatory evidence does not entail increased (dis)confirmationwhen updating
on growing bodies of evidence.

123



L. Casini, J. Landes

(2a) In order to make calculations tractable, we make the ceteris paribus
assumptions that the conditional probabilities P(ei |xa′), P(ei |x̄, a′), P(ei |x, ā′),
P(ei |x̄, ā′), P(hi |x), P(hi |x̄) do not depend on i . We hence unambiguously write
P(e|xa′), P(h|x), and so on.

Proposition 4 (Convergence Result) P(e|x, a′) > P(e|x̄, a′) and P(e|x, ā′) >

P(e|x̄, ā′) jointly entail for all P(x) ∈ (0, 1), P(a′) ∈ (0, 1) that

lim
n→∞ P(x |e1, . . . , en) = 1 .

In words: if HET models recovering stylized facts are evidence for X = x for all
fixed truth values of A′, then the posterior of X = x converges to 1 with an increasing
number of independent HET models (independent given X and A′).

Upshot 2a: Different auxiliaries are not necessary for maximal confirmation. Every
new HET model increases confirmation—under reasonable assumptions. There is no
need to vary auxiliaries to obtain a posterior of x to approximating 1, all one needs is
sufficiently many HET models which are evidence for X = x .

(2b) Different HET models now make different auxiliary assumptions, but some
auxiliary assumptions are also shared. We model this as follows: The shared assump-
tions are represented by a variable A′. The auxiliaries particular to every model are
represented by Ai .18

Again, in order to make calculations tractable, we make the ceteris paribus
assumptions that the conditional probabilities P(ei |xaa′), P(ei |xaā′), P(ei |x̄, aa′),
P(ei |x̄, aā′), P(ei |x, āa′),P(ei |x, āā′), P(ei |x̄, āa′), P(ei |x̄, āā′) do not depend on
i . We hence unambiguously write P(e|xaa′), P(e|xāa′), P(h|x), and so on.

Proposition 5 (Convergence Result—One shared auxiliary assumption A′ + model-
specific auxiliaries Ai , Fig. 7a for n = 2). P(e|x, a′, a) > P(e|x̄, a′, a),
P(e|x, ā′, a) > P(e|x̄, ā′, a), P(e|x, a′, ā) > P(e|x̄, a′, ā) and P(e|x, ā′, ā) >

P(e|x̄, ā′, ā) jointly entail for all P(x) ∈ (0, 1), P(a) ∈ (0, 1) that

lim
n→∞ P(x |e1, . . . , en) = 1 .

The condition says: The presence of X = x , rather than X = x̄ , makes the HET
models more likely to recover stylized facts – for all fixed possible values of the shared
and the model-specific auxiliary assumptions (fixed truth values of A′ and Ai ).

Upshot 2b: Multiple auxiliaries are not necessary for maximal confirmation even
for the more realistic assumption of some auxiliaries assumptions being shared. Every
new HET model increases confirmation—under reasonable assumptions. There is no
need to vary auxiliaries to obtain a posterior of X = x approximating 1; all one needs
is sufficiently many HET models which are evidence for X = x .

Conclusion 3. We have seen that RA via variation of auxiliary assumptions can
increase confirmation—even to the maximum. We have also seen that variation is

18 The degree to which the models make non-varied assumptions is the degree to which the content of A′
covers the content of A′ ∪ Ai .
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(a) (b)

Fig. 8 Variation vs replication of heterogeneity assumptions. In (a), H1 and H2 denote fully independent
implementations of heterogeneity; in (b) H ′ denotes the same implementation. Here, E1 and E2 are rein-
terpreted relative to the match between model behaviour and reality in, respectively, the first half and the
second half of a series of observations. In (a), the first half of the series is matched with data generated by
model M1 and the second half is matched with data generated by model M2; in (b), the whole series of
observations is used to validate the same model M ′

not always confirmatory. This raises the question of whether it is more confirmatory
to not vary assumptions in order to boost the posterior probability of X = x .

The literature on the Variety of Evidence Thesis (VET) has a direct bearing on the
issue. The thesis says that varied evidence for a hypothesis confirms it more strongly
than less varied evidence, ceteris paribus. This thesis has recently come under heavy
scrutiny (Au, 2021; Bovens & Hartmann, 2003, 2002; Cartwright, 2021; Claveau,
2011, 2013; Claveau & Grenier, 2019; Couch, forthcoming; Hartmann & Bovens,
2001; Landes, 2020a, 2020b, 2021; Osimani & Landes, forthcoming; Schupbach,
2015). A number of surprising results showed that there are cases in which less varied
evidence, ceteris paribus, confirms more strongly than more varied evidence. Typi-
cally, these results are due to the fact that repeatedly applying the same experimental
methodology not only tests the hypothesis of interest but also tests the methodol-
ogy employed. Repeated tests employing the same methodology may greatly enhance
the assessed quality of the methodology. In turn, this enhancement boosts our confi-
dence in the hypothesis of interest being true. In some cases, this boost of confidence
outweighs the confidence boost one would have obtained from testing with varied
methodologies, ceteris paribus. The VET hence fails in such cases.

In what follows, we bring to bear this discussion to that on the confirmatory role
of RA by construing the works on the VET as an approach to RA. To this end, we
interpret evidential variety as varied auxiliaries or varied heterogeneity assumptions
and the VET itself as a thesis about the confirmatory value of RA. First, we present
existing results from this discussion which are relevant to our response to Odenbaugh
and Alexandrova, where we show when employing the same auxiliaries grants more
confirmation than varying them (3a and 3b). Next, we build on existing literature by
providing a novel result concerning the variation of heterogeneity assumptions (see
Fig. 8), where we showwhen employing the same heterogeneity assumption can grant
more confirmation than varying it (3c). Here we anticipate the relevant upshots for our
purposes. (A more accurate discussion of Conclusion 3 requires introducing further
technical details, which we leave to the next, separate section. The interested reader
may find there a formal statement of these upshots and a precise explication of them.)

123



L. Casini, J. Landes

Fig. 9 Posterior probabilities of X = x of varied (solid) and not varied (dashed) heterogeneity assumptions
as in Proposition 8 for a prior of P(x) = 20% (orange) depending on the prior of A, P(a). Whenever
the solid line is above the dotted line variation outperforms replication, otherwise replication outperforms
variation. Since all posteriors are above theorange line, positive confirmation alwaysobtains.Left (parameter
values P(x) = 0.2, P(h|x) = 0.35, P(h|x̄) = 0.25, P(e|ha) = 0.63, P(e|h̄a) = 0.02, P(e|hā) =
0.51, P(e|h̄ā) = 0.01)): variation always confirms more than replication. Right (parameter values P(x) =
0.2, P(h|x) = 0.2, P(h|x̄) = 0.1, P(e|ha) = 0.39, P(e|h̄a) = 0.32, P(e|hā) = 0.34, P(e|h̄ā) =
0.01)): replication confirms more than variation only for small P(a)

Upshot 3a: Gradually increasing the independence of the auxiliaries Ai is not
required for a confirmation increase. Sometimes, gradually increasing the indepen-
dence decreases confirmation (See Proposition 6 for a precise statement.)

Upshot 3b: Independence of auxiliaries Ai is not required for a confirmation increase.
Sometimes, full dependence of auxiliaries ismore confirmatory than full independence
of auxiliaries. (See Proposition 7 for a precise statement.)

Upshot 3c: Full independence of heterogeneity assumptions Hi is not required for a
confirmation increase. Sometimes, full dependence of heterogeneity assumptions is
more confirmatory than full independence of heterogeneity assumptions (See Propo-
sition 8 for a precise statement.) Figure 9 serves as an illustration.

4.2.3 Conclusion 3 in More Detail

Two different types of models investigated in the recent literature on the VET are rele-
vant to our current purposes, namelymodelswhere the dependence between auxiliaries
is a gradual notion, and models where auxiliary variables are either fully dependent
(i.e., there is only one single auxiliary variable which is a parent of all evidential
variables) or fully independent.

As concerns the first kind, Landes (2021) shows that confirmation may increase or
decrease by gradually increasing independence of HETmodels, by an investigation of
sign( ∂

∂λ P(x |ee′)), where λ is a parameter representing the degree of (in)dependence
between auxiliaries. Consider the case depicted in Fig. 7b with two auxiliary variables
which are dependent to a degree. Landes (2021) puts forward an explication of a
degree of independence in terms of a real-valued single parameter λ ∈ [0, 1]. For
λ = 0 full dependence obtains and for λ = 1 there is full independence. Making
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the, by now usual, ceteris paribus assumptions that the index i can be ignored, and
letting ρ := P(a), 1 − ε+ = P(e|h, a), ε− := P(e|h̄, a), α := P(e|h, ā), γ :=
P(e|h̄, ā), p := P(h|x), q := P(h|x̄), the main result for our purposes is:

Proposition 6 (Proposition 9 of Landes 2021) For all P(a), α, γ, ε−, ε+, P(x) ∈
(0, 1) it holds that

sign
( ∂

∂λ
P(x |e1e2)

)
= sign

((
αε− − γ (1 − ε+)

)
·

(P(a) · [ε−[(1 − ε+) − α] + (1 − ε+)[ε− − γ ]] + (1 − P(a))

·[γ ((1 − ε+) − α) + α(ε− − γ )])
)

.

Upshot 3a: Gradually increasing the independence of the auxiliaries is not required for
a confirmation increase. Sometimes, gradually increasing the independence decreases
confirmation.19

The interpretation of this result will be discussed after presenting one more result,
which contrasts full dependence and full independence, and which uses a model of the
second kind. As an illustration of this contrast, consider Fig. 7a. The model obtained
by deleting the node A′ represents the variation case in which each evidential variable
has a distinct auxiliary variable as a parent. The model obtained by deleting nodes
A1 and A2 represents the replication case in which both evidential variables have the
same auxiliary variable as a parent. Making the standard ceteris paribus assumptions,
Osimani and Landes (forthcoming) identify the conditions under which replication is
more confirmatory than variation:

Proposition 7 (Theorem1 inOsimani andLandes, forthcoming)Forall p = P(h|x) ∈
(0, 1), q = P(h|x̄) ∈ (0, p),ρ = P(A = a) ∈ (0, 1), ε+, ε− ∈ (0, 1),α ∈ (1−ε+, 1)
and γ ∈ (ε−, 1) replication is more confirmatory than variation, if and only if

0 < γ2 ≤ γ ≤ ε−
1 − ε+

· α < 1 ,

where γ2 is the following parameter

γ2 := ε− · [2ρ(1 − ε+) + α(1 − 2ρ)]
(2ρ − 1)(1 − ε+) + 2α(1 − ρ)

.

This result can do with some explanation. Why is it that replication can be more
confirmatory than variation?

Recall that in ourmodel, A = a increases the probability of aHETmodel recovering
stylized facts: P(e|xa) > P(e|xā) and P(e|x̄a) > P(e|x̄ ā). This means that multiple
HET models recovering stylized facts increases our belief in A = a. Furthermore, in
order to apply the above result we need to identify P(e|ha) with α, P(e|h̄a) with γ ,
1 − ε+ with P(e|hā) and ε− with P(e|h̄ā).

19 Upshot 1 and Upshot 3a differ in that they relate to different problems. For Upshot 1 one considers the
addition further HET models and for Upshot 3a one sticks to two HET models but gradually increases the
independence of the auxiliaries.
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Next, note that replication trumps variation (in the parameter range specified in
Proposition 7), if and only if the following two (logically equivalent) inequalities hold

α

1 − ε+
= P(e|ha)

P(e|hā)
>

P(e|h̄a)

P(e|h̄ā)
= γ

ε−
α

γ
= P(e|ha)

P(e|h̄a)
>

P(e|hā)

P(e|h̄ā)
= 1 − ε+

ε−
.

Since theHi are probabilistic consequences of X , comparative confirmationofHi = hi
obtains, if and only if it obtains for X = x . We hence phrase our explanation below
in terms of confirmation of X = x .

The second inequality says that A = a is more confirmatory for X = x than
A = ā is. So, in order to strongly increase our belief in X = x we should strongly
increase our belief in A = a. Now, consider the case in which oneHETmodel recovers
stylized facts: the second instance of a HET model recovering stylized facts is judged
to be more likely to originate from A = a, if there is a single A variable rather than
two distinct A variables. So, adding an auxiliary variable leads to a smaller belief in
A = a than going for a replication approach. Hence, the replication strategy confirms
the auxiliary hypothesis more strongly than the variety strategy. Hence, replication
confirms X = x more strongly than variation.

Let us now illustrate the case at the opposite end of the spectrum, where there is
full dependence among auxiliaries (which is a special case of the two inequalities in
Proposition 7 not being both satisfied). Let us consider an instance in which A =
ā turns the HET model in a “randomizer”, which recovers stylized facts (or not)
independently from reality, P(e|xā) = P(e|x̄ ā). So, for A = a for which P(e|xa) >

P(e|x̄a), the recovery of stylized facts provides some evidence for X = x , we thus
test A over and over again to best confirm that A = a. In this case, replication trumps
variation.

Upshot 3b: Independence of auxiliaries is not required for a confirmation increase.
Sometimes, full dependence of auxiliaries ismore confirmatory than full independence
of auxiliaries.

When only two models are considered, full independence and full dependence
in Proposition 7 are special cases of gradual variations of (in)dependence of aux-
iliaries as described in Proposition 6. In fact, Proposition 6 studies intermediate
(in)dependencies, which are convex combinations of these two extremes.20 As one
moves from one extreme to the other, confirmation is either always positive or always
negative—which explains Upshot 3a.

So far, we have only considered variations in the auxiliary assumptions (3a and 3b).
However, the heterogeneity assumption can be varied, too (3c). The question arises
whether the latter kind of variation, too, boosts confirmation. Such a problem case
can be visualised by contrasting Fig. 8a, where the distinction between H1 and H2
represents variation, and Fig. 8b, where H1 and H2 are merged into a single variable
H ′ to represent replication. The question of whether variation is more confirmatory

20 Mathematically, this linear convex combination just amounts to a linear combination of the relevant
inequality (cf. Landes, 2021 for details).
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than replication with respect to testable consequences of the hypothesis of interested
has been investigated by Claveau and Grenier (2019) and Landes (2020b). However,
neither of these results fit our model specifications, some of the variables in Claveau
and Grenier (2019) are ternary and the conditional probabilities used differ from ours,
while Landes (2020b) does not consider auxiliary assumptions.

To investigate this new case, we hence compare confirmation from twoHETmodels
recovering stylized facts which make the same set of auxiliary assumptions. In the
replication case (R) both models make the same heterogeneity assumption, while
in the variation case (V ) the two models make different heterogeneity assumptions.
Making the usual ceteris paribus assumptions we find (proof in Appendix 2):

Proposition 8 (Variation vs. Replication of Heterogeneity Assumptions) For all p =
P(h|x) ∈ (0, 1), q = P(h|x̄) ∈ (0, p), ρ = P(a) ∈ (0, 1), ε+, ε−, α, γ ∈ (0, 1) it
holds that

sign(PR(x |e1, e2) − PV (x |e1, e2))

= − sign
(
ρ2 · ((1 − ε+) − ε−)2 ·

( (1 − ε+)2

ε2−
− p̄q̄

pq

)

+ ρ̄2 · (α − γ )2 ·
(α2

γ 2 − p̄q̄

pq

)

+ ρρ̄ ·
( (1 − ε+)2γ 2 + ε2−α2 + 2[−ε−α − (1 − ε+)γ + (1 − ε+)α] · (1 − ε+)α

(1 − ε+)2γ 2 + ε2−α2 + 2[−ε−α − (1 − ε+)γ + ε−γ ] · ε−γ

− p̄q̄

pq

))
.

In the borderline case of ρ = P(a) = 1, the intuitive result (variation trumps

replication) obtains, if and only if
(
P(e|ha)

P(e|h̄a)

)2
>

P(h̄|x̄)P(h̄|x)
P(h|x̄)P(h|x) , the same expression

as in Landes (2020b). P(a) = 1 means that A is not really a variable since we are
sure about its value. We can hence remove the variable from consideration and are
hence back in the exact situation as in (Landes, 2020b). Conversely, the borderline

case ρ̄ = 1 produces the intuitive result, if and only if
(
P(e|hā)

P(e|h̄ā)

)2
>

P(h̄|x̄)P(h̄|x)
P(h|x̄)P(h|x) . This

is the analogue of the first case with a and ā permuted.
In the more interesting case of 0 < ρ = P(a) < 1, there is no such simple

expression which tells us whether variation trumps replication or vice versa.
Upshot 3c: Full independence of heterogeneity assumptions is not required for a

confirmation increase. Sometimes, full dependence of heterogeneity assumptions is
more confirmatory than full independence of heterogeneity assumptions.

4.2.4 Summary

Our Bayesian model shows that not only are independence and d-separation unnec-
essary to confirmation, despite claims to the opposite by respectively Odenbaugh and
Alexandrova (2011) and Stegenga and Menon (2017); under some conditions, depen-
dence actually bestows more confirmation than independence. Clearly, under those
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conditions, trying to build models with as diverse as possible assumptions is not going
to boost confirmation of the hypothesis under investigation. In those cases, the use of
RA for confirmatory purposes is not vindicated, and replication strategies are more
confirmatory than variation strategies. At the same time, our model shows that, in
other cases, the opposite is true. Given suitable probability judgments, RA can boost
confirmation and the use of RA for confirmatory purposes is vindicated. RAmay raise
the posterior probability of that hypothesis, at times even to the maximum.

Clearly, our model is motivated by a specific case study. Some of our results only
concern pairs of models. Moreover, we do not mention alternative model relations
between evidence and hypothesis, as discussed for instance by Wheeler and Scheines
(2013). But already in this small set of circumstances we can see that there is no simple
one-to-one relation between confirmation increase and (in)dependencies. That is, there
is no obvious simple rule, which tells us whether RA is successful with increasing
independence, or whether variation trumps replication. The expressions characterizing
the cases discussed in this section are sensitive to many parameters and are not likely
to be intuited prior to formal analysis. If confirmation hinges on unjustified probability
assignments, we agree with Odenbaugh and Alexandrova that it remains “empirically
questionable and thus explanatorily weak”. However, theoreticians are sometimes in
the position to form plausible probability judgments given their knowledge of the
subject matter they investigate. Relative to such judgments, there will be a whole
spectrum of clear-cut cases, where RA can confirm hypotheses of interest.

It goes beyond the scope of this paper to discuss which proportion of the the-
oreticians’ probability judgments fall into the region in which our Bayesian model
vindicates the use of RA for confirmatory purposes, irrespective of the hypothesis to
be confirmed and the particularities of the case. In our case study from macroeco-
nomics, we speculate that the persistence of the conflicting views on REH could be
reconstructed as fundamental disagreement on the right probability assignments in the
communities favouring REH and opposing it. We leave to future (empirical) work the
survey and the comparison of such assignments.

5 Conclusion

One can find the following two widespread views in the literature. On the one hand,
there is the view that the production and exploration of “minimal”, highly ideal-
ized models cannot lead to the confirmation of empirical hypotheses. On the other
hand, there is the view that performing robustness analysis (RA) on models does not
allow them to confirm empirical hypotheses, for two reasons. Confirmation (allegedly)
depends on, first, discharging all of the idealizations, namely on varying all of the aux-
iliary assumptions used in the construction of themodels, and second, on rendering the
models’ assumptions independent, namely on eliminating the residual dependencies
between the auxiliaries being varied. In this paper, by reference to a case study from
agent-based computational macroeconomics, we argued against such views. Minimal
models can confirm—in a Bayesian sense—in virtue of RA.

To recall our main results, we showed that under the assumption of independence
of the auxiliaries there is Bayesian confirmation (Proposition 2), which increases with
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accumulating supporting evidence (Theorem 1). Moreover, even if the independence
assumption is relaxed and residual dependencies among the auxiliary and/or hetero-
geneity assumptions are allowed, RA can still confirm. Confirmation of hypotheses
can even achieve the maximal attainable value, such that their posterior probability
converges to 1 (Propositions 4 and 5). At the same time, we also drew on the literature
on the so-called Variety of Evidence Thesis, which is concerned with the confirmatory
role of replication vs variation, to identify the conditions under which (in)dependence
is conducive to confirmation (Propositions 6 to 8). We showed that there are cases
where, if the assumptions of different models are not independent from one another,
RA is less confirmatory than replication. This is not to say that RA is not confirmatory
tout court, however. In other cases, in fact, more independent assumptions make RA
more confirmatory than replication.

In sum, contrary to a popular opinion, we concluded that RA can be key to hypoth-
esis confirmation. This casts new light on the confirmatory power of minimal models.
Even when the collection of novel empirical evidence and the direct inspection of
real mechanisms is infeasible or impossible, the “mere” production and exploration
of the behaviour of models can lend support to an empirical hypothesis. A benefit
of our result is that it provides a formal framework, in which one can investigate the
justificatory conditions for the practice of those large communities of scientists (not
only economists but also, say, theoretical physicists or archaeologists), who for lack
of better alternatives are forced to explore surrogates of reality (models) rather than
reality itself in order to provide actual explanations of phenomena.
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Appendix 1: Independent Auxiliaries

Proposition 3 (OneHET and oneHOMmodel) The confirmation function,�HK (x) =
P(x |ee′′) − P(x), is positive, if and only if e is better evidence for X = x than e′′ is
evidence against X = x , P(e|x)

P(e|x̄) >
P(e′′|x̄)
P(e′′|x) or, equivalently, the body of evidence has a

Bayes factor greater than one, P(ee′′|x)
P(ee′′|x̄) > 1.

Proof Simply note that

P(x |ee′′) = P(xee′′)
P(ee′′)

= P(x)

P(x) + P(x̄) P(e|x̄)
P(e|x)

P(e′′|x̄)
P(e′|x)

> P(x)
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⇐⇒1 > P(x) + P(x̄)
P(e|x̄)
P(e|x)

P(e′′|x̄)
P(e′′|x)

⇐⇒1 >
P(e|x̄)
P(e|x)

P(e′′|x̄)
P(e′′|x) = P(ee′′|x̄)

P(ee′′|x) .

��
Theorem 1(General n-HET and m-HOMmodel; cf. Fig. 4) The confirmation func-

tion �HnKm (x) = P(x |e1 . . . enen+1 . . . en+m) − P(x) is strictly

1. increasing in n, and if there exists an ε > 0 such that for all n and all 1 ≤ i ≤ n it
holds that P(ei |x)

P(ei |x̄) ≥ 1 + ε, then limn→∞ P(x |e1 . . . enen+1 . . . en+m) = 1;
2. decreasing in m, and if there exists an ε′ > 0 such that for all m and all 1 ≤ j ≤ m

it holds that
P(en+ j |k)
P(en+ j |k̄) ≥ 1 + ε′, then limm→∞ P(x |e1 . . . enen+1 . . . en+m) = 0.

Proof Using that P(k̄|x) = 1 and P(k|x) = 0 we obtain

P(x |e1 . . . enen+1 . . . en+m) = P(xe1 . . . enen+1 . . . en+m)

P(xe1 . . . enen+1 . . . en+m) + P(x̄e1 . . . enen+1 . . . en+m)

= 1

1 + P(x̄)
P(x)

P(e1...en |x̄)P(en+1...en+m |x̄)
P(e1...en |x)P(en+1...en+m |x)

= 1

1 + P(x̄)
P(x) · ∏n

i=1
P(ei |x̄)
P(ei |x) · P(k|x̄) ∏m

j=1 P(en+ j |k)+P(k̄|x̄) ∏m
j=1 P(en+ j |k̄)

P(k|x) ∏m
j=1 P(en+ j |k)+P(k̄|x) ∏m

j=1 P(en+ j |k̄)

= 1

1 + P(x̄)
P(x) · ∏n

i=1
P(ei |x̄)
P(ei |x) · [P(k|x̄) ∏m

j=1
P(en+ j |k)
P(en+ j |k̄) + P(k̄|x̄)]

.

Inspecting the latter, we derive both claims concerning the increasing number of HET
systems, n.

Claim 2 follows once we see that P(en+ j |x̄) > P(en+ j |x)(1 + ε′) is logically
equivalent to P(en+ j |k) > P(en+ j |k̄)δ, where δ is greater than but arbitrarily close to

one and is some constant that does not depend on n, j,m (in our case δ = 1+ ε′
P(k|x̄) ).

Using that P(k|x̄) > 0 we now show this logical equivalence

P(en+ j |x̄) > P(en+ j |x)(1 + ε′)
⇐⇒ P(en+ j |k)P(k|x̄) + P(en+ j |k̄)P(k̄|x̄) > [P(en+ j |k)P(k|x)
+ P(en+ j |k̄)P(k̄|x)](1 + ε′)
⇐⇒ P(en+ j |k)P(k|x̄) + P(en+ j |k̄)(1 − P(k|x̄)) > P(en+ j |k̄)(1 + ε′)
⇐⇒ P(en+ j |k)P(k|x̄) > P(en+ j |k̄)(P(k|x̄) + ε′)

⇐⇒ P(en+ j |k) > P(en+ j |k̄)(1 + ε′

P(k|x̄) ) .

Claim 1 simply follows by letting ε′ = 0 in which case δ = 1. ��
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Appendix 2: Dependent Auxiliaries

Proposition 4 (Convergence Result) P(e|x, a′) > P(e|x̄, a′) and P(e|x, ā′) >

P(e|x̄, ā′) jointly entail for all P(x) ∈ (0, 1), P(a′) ∈ (0, 1) that

lim
n→∞ P(x |e1, . . . , en) = 1 .

Proof

P(x |e1, . . . , en) = P(x, e1, . . . , en)

P(e1, . . . , en)

= P(x, e1, . . . , en, a′) + P(x, e1, . . . , en, ā′)
P(x, e1, . . . , en, a′) + P(x, e1, . . . , en, ā′) + P(x̄, e1, . . . , en, a′) + P(x̄, e1, . . . , en, ā′)

= 1

1 + P(x̄,e1,...,en ,a′)+P(x̄,e1,...,en ,ā′)
P(x,e1,...,en ,a′)+P(x,e1,...,en ,ā′)

= 1

1 + P(x̄)P(a′)P(e1,...,en |x̄,a′)+P(x̄)P(ā′)P(e1,...,en |x̄,ā′)
P(x)P(a′)P(e1,...,en |x,a′)+P(x)P(ā′)P(e1,...,en |x,ā′)

= 1

1 + P(x̄)
P(x) · P(a′)

∏n
i=1 P(ei |x̄,a)+P(ā′)

∏n
i=1 P(ei |x̄,ā′)

P(a′)
∏n

i=1 P(ei |x,a′)+P(ā′)
∏n

i=1 P(ei |x,ā′)

= 1

1 + P(x̄)
P(x) · P(a′)P(e|x̄,a′)n+P(ā′)P(e|x̄,ā′)n

P(a′)P(e|x,a′)n+P(ā′)P(e|x,ā′)n
.

Let ε > 0 be fixed and given. Then the following two inequalities are logically
equivalent

P(a′)P(e|x̄,′ a)n + P(ā′)P(e|x̄, ā′)n

P(a)P(e|x, a′)n + P(ā′)P(e|x, ā′)n
< ε

P(a′)(P(e|x̄, a′)n − εP(e|xa′)n) + P(ā′)(P(e|x̄, ā′)n − εP(e|xā′)n) < 0 .

If P(e|x, a′) > P(e|x̄, a′) and P(e|x, ā′) > P(e|x̄, ā′), this holds for all large enough
n. In turn, the ratio following P(x̄)

P(x) converges to 0. The entire expression hence con-
verges to 1. ��

Proposition 5 (Convergence Result – One shared auxiliary assumption A′ +
model-specific auxiliaries Ai , Fig. 7a for n = 2). P(e|x, a′, a) > P(e|x̄, a′, a),
P(e|x, ā′, a) > P(e|x̄, ā′, a), P(e|x, a′, ā) > P(e|x̄, a′, ā) and P(e|x, ā′, ā) >

P(e|x̄, ā′, ā) jointly entail for all P(x) ∈ (0, 1), P(a) ∈ (0, 1) that

lim
n→∞ P(x |e1, . . . , en) = 1 .
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Proof To simplify notation we denote negation by 0 while 1 denotes identity. We
calculate and obtain:

P(x |e1, . . . , en) = P(x, e1, . . . , en)

P(e1, . . . , en)

=
∑1

u=0
∑1

i1=0 . . .
∑1

in=0 P(x, e1, . . . , en, a′u, ai11 . . . ainn )∑1
k=0

∑1
u=0

∑1
i1=0 . . .

∑1
in=0 P(xk , e1, . . . , en, a′u, ai11 . . . ainn )

= 1

1 +
∑1

u=0
∑1

i1=0...
∑1

in=0 P(x̄,e1,...,en ,a′u ,ai11 ...ainn )∑1
u=0

∑1
i1=0...

∑1
in=0 P(x,e1,...,en ,a′u ,ai11 ...ainn )

= 1

1 + P(x̄)P(a′)
∑1

i1=0...
∑1

in=0 P(e1,...,en ,a
i1
1 ...ainn |x̄a′)+P(x̄)P(ā′)

∑1
i1=0...

∑1
in=0 P(e1,...,en ,a

i1
1 ...ainn |x̄ ā′)

P(x)P(a′)
∑1

i1=0...
∑1

in=0 P(e1,...,en ,a
i1
1 ...ainn |xa′)+P(x)P(ā′)

∑1
i1=0...

∑1
in=0 P(e1,...,en ,a

i1
1 ...ainn |xā′)

= 1

1 + P(x̄)P(a′)
∑1

i1=0...
∑1

in=0
∏n

g=1 P(a
ig
g )P(eg |aigg x̄a′)+P(x̄)P(ā′)

∑1
i1=0...

∑1
in=0

∏n
g=1 P(a

ig
g )P(eg |aigg x̄ ā′)

P(x)P(a′)
∑1

i1=0...
∑1

in=0
∏n

g=1 P(a
ig
g )P(eg |aigg xa′)+P(x)P(ā′)

∑1
i1=0...

∑1
in=0

∏n
g=1 P(a

ig
g )P(eg |aigg xā′)

= 1

1 + P(x̄)
P(x)

P(a′)
∑1

i1=0...
∑1

in=0
∏n

g=1 P(a
ig
g )P(eg |aigg x̄a′)+P(ā′)

∑1
i1=0...

∑1
in=0

∏n
g=1 P(a

ig
g )P(eg |aigg x̄ ā′)

P(a′)
∑1

i1=0...
∑1

in=0
∏n

g=1 P(a
ig
g )P(eg |aigg xa′)+P(ā′)

∑1
i1=0...

∑1
in=0

∏n
g=1 P(a

ig
g )P(eg |aigg xā′)

= 1

1 + P(x̄)
P(x)

P(a′)
∑1

i1=0...
∑1

in=0
∏n

g=1 P(aig )P(e|aig x̄a′)+P(ā′)
∑1

i1=0...
∑1

in=0
∏n

g=1 P(aig )P(e|aig x̄ ā′)
P(a′)

∑1
i1=0...

∑1
in=0

∏n
g=1 P(aig )P(e|aig xa′)+P(ā′)

∑1
i1=0...

∑1
in=0

∏n
g=1 P(aig )P(e|aig xā′)

= 1

1 + P(x̄)
P(x)

P(a′)[P(a)P(e|ax̄a′)+P(ā)P(e|ā x̄a′)]n+P(ā′)[P(a)P(e|ax̄ā′)+P(ā)P(e|ā x̄ ā′)]n
P(a′)[P(a)P(e|axa′)+P(ā)P(e|āxa′)]n+P(ā′)[P(a)P(e|axā′)+P(ā)P(e|āxā′)]n

.

Let ε > 0 be fixed and given. Then the following inequalities are logically equivalent

P(a′)[P(a)P(e|ax̄a′) + P(ā)P(e|ā x̄a′)]n + P(ā′)[P(a)P(e|ax̄ā′) + P(ā)P(e|ā x̄ ā′)]n
P(a′)[P(a)P(e|axa′) + P(ā)P(e|āxa′)]n + P(ā′)[P(a)P(e|axā′) + P(ā)P(e|āxā′)]n < ε

P(a′) ·
(
[P(a)P(e|ax̄a′) + P(ā)P(e|ā x̄a′)]n

− ε[P(a)P(e|axa′) + P(ā)P(e|āxa′)]n
)

+ P(ā′) ·
(
[P(a)P(e|ax̄ā′) + P(ā)P(e|ā x̄ ā′)]n

− ε[P(a)P(e|axā′) + P(ā)P(e|āxā′)]n
)

< 0 .

Since P(e|x, a′, a) > P(e|x̄, a′, a), P(e|x, ā′, a) > P(e|x̄, ā′, a), P(e|x, a′, āi ) >

P(e|x̄, a′, ā) and P(e|x, ā′, ā) > P(e|x̄, ā′, ā), the last inequality is true for all large
enough n.

Hence, the ratio following P(x̄)
P(x) converges to 0. P(x |e1, . . . , en) hence converges

to 1. ��
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Proposition 8 (Variation vs. Replication of Heterogeneity Assumptions) For all
p = P(h|x) ∈ (0, 1), q = P(h|x̄) ∈ (0, p), ρ = P(a) ∈ (0, 1), ε+, ε−, α, γ ∈ (0, 1)
it holds that

sign(PR(x |e1, e2) − PV (x |e1, e2))

= − sign
(
ρ2 · ((1 − ε+) − ε−)2 ·

( (1 − ε+)2

ε2−
− p̄q̄

pq

)
+ ρ̄2 · (α − γ )2 ·

( α2

γ 2 − p̄q̄

pq

)

+ ρρ̄ ·
( (1 − ε+)2γ 2 + ε2−α2 + 2[−ε−α − (1 − ε+)γ + (1 − ε+)α] · (1 − ε+)α

(1 − ε+)2γ 2 + ε2−α2 + 2[−ε−α − (1 − ε+)γ + ε−γ ] · ε−γ
− p̄q̄

pq

))
.

Proof

PR(x |e1, e2) = P(x, e1, e2)

P(e1, e2)
=

∑
H

∑
A P(e1, e2, x, H , A)∑

X
∑

H
∑

A P(e1, e2, X , H , A)

= P(x)[pρP(e|h, a)2 + pρ̄P(e|h, ā)2 + p̄ρP(e|h̄, a)2 + p̄ρ̄P(e|h̄, ā)2]
P(x)[pρP(e|h, a)2 + pρ̄P(e|h, ā)2 + p̄ρP(e|h̄, a)2 + p̄ρ̄P(e|h̄, ā)2]+
P(x̄)[qρP(e|h, a)2 + qρ̄P(e|h, ā)2 + q̄ρP(e|h̄, a)2 + q̄ρ̄P(e|h̄, ā)2]

= P(x)[pρ(1 − ε+)2 + pρ̄α2 + p̄ρε2− + p̄ρ̄γ 2]
P(x)[pρ(1 − ε+)2 + pρ̄α2 + p̄ρε2− + p̄ρ̄γ 2]+

P(x̄)[qρ(1 − ε+)2 + qρ̄α2 + q̄ρε2− + q̄ρ̄γ 2]
= 1

1 + P(x̄)[qρ(1−ε+)2+qρ̄α2+q̄ρε2−+q̄ρ̄γ 2]
P(x)[pρ(1−ε+)2+pρ̄α2+ p̄ρε2−+ p̄ρ̄γ 2]

PV (x |e1, e2) = P(x, e1, e2)

P(e1, e2)
=

∑
H1

∑
H2

∑
A P(e1, e2, x, H1, H2, A)∑

X
∑

H1

∑
H2

∑
A P(e1, e2, X , H1, H2, A)

= 1

1 + P(x̄)
∑

H1

∑
H2

∑
A P(E,H1,H2,A|x̄)

P(x)
∑

H1

∑
H2

∑
A P(E,H1,H2,A|x)

= 1

1 + P(x̄)[ρ(q(1−ε+)+q̄ε−)2+ρ̄(qα+q̄γ )2]
P(x)[ρ(p(1−ε+)+ p̄ε−)2+ρ̄(pα+ p̄γ )2]

.

To see which posterior is greater, we consider sign(PR(x |E)− PV (x |E)). To simplify
notation we put r := 1−ε+

ε− and s := α
γ

[ρ(q(1 − ε+) + q̄ε−)2 + ρ̄(qα + q̄γ )2][pρ(1 − ε+)2 + pρ̄α2 + p̄ρε2− + p̄ρ̄γ 2]
−[ρ(p(1 − ε+) + p̄ε−)2 + ρ̄(pα + p̄γ )2][qρ(1 − ε+)2 + qρ̄α2 + q̄ρε2− + q̄ρ̄γ 2]
=ρ2[(q(1 − ε+) + q̄ε−)2(p(1 − ε+)2 + p̄ε2−) − (p(1 − ε+) + p̄ε−)2

(q(1 − ε+)2 + q̄ε2−)]
+ ρ̄2[(qα + q̄γ )2(pα2 + p̄γ 2) − (pα + p̄γ )2(qα2 + q̄γ 2)]
+ ρρ̄[(q(1 − ε+) + q̄ε−)2(pα2 + p̄γ 2) + (qα + q̄γ )2(p(1 − ε+)2 + p̄ε2−)
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− (p(1 − ε+) + p̄ε−)2(qα2 + q̄γ 2) − (pα + p̄γ )2(q(1 − ε+)2 + q̄ε2−)]
=ρ2[(1 − ε+)4 pq(q − p) + ε4− p̄q̄(q̄ − p̄)

+ (1 − ε+)2ε2−(q2 p̄ + q̄2 p − p2q̄ − p̄2q)

+ 2qq̄(1 − ε+)ε−(p(1 − ε+)2 + p̄ε2−) − 2p p̄(1 − ε+)ε−(q(1 − ε+)2 + q̄ε2−)]
+ ρ̄2[α4 pq(q − p) + γ 4 p̄q̄(q̄ − p̄) + α2γ 2(q2 p̄ + q̄2 p − p2q̄ − p̄2q̄)

+ 2qq̄αγ (pα2 + p̄γ 2) − 2p p̄αγ (qα2 + q̄γ 2)]
+ ρρ̄[2(1 − ε+)2α2(q2 p − p2q) + 2ε2−γ 2(q̄2 p̄ − p̄2q̄)

+ (1 − ε+)2γ 2(q2 p̄ + q̄2 p − p2q̄ − p̄2q) + ε2−α2(q̄2 p + q2 p̄ − p̄2q − p2q̄)

+ 2qq̄(1 − ε+)ε−(pα2 + p̄γ 2) + 2qq̄αγ (p(1 − ε+)2 + p̄ε2−)

− 2p p̄(1 − ε+)ε−(qα2 + q̄γ 2) + 2p p̄αγ (q(1 − ε+)2 + q̄ε2−)]
=ρ2[(1 − ε+)4 pq(q − p) + ε4− p̄q̄(p − q) + (1 − ε+)2ε2−(q p̄(q − p̄)

+ q̄ p(q̄ − p))

+ 2qp(1 − ε+)3ε−(q̄ − p̄) + 2 p̄q̄(1 − ε+)ε3−(q − p)]
+ ρ̄2[α4 pq(q − p) + γ 4 p̄q̄(p − q) + α2γ 2(q p̄(q − p̄) + q̄ p(q̄ − p))

+ 2qpα3γ (q̄ − p̄) + 2 p̄q̄αγ 3(q − p)]
+ ρρ̄[2(1 − ε+)2α2 pq(q − p) + 2ε2−γ 2 p̄q̄(q̄ − p̄)

+ (1 − ε+)2γ 2(q2 p̄ + q̄2 p − p2q̄ − p̄2q)

+ ε2−α2(q̄2 p + q2 p̄ − p̄2q − p2q̄)

+ 2pqα2(1 − ε+)ε−(q̄ − p̄) + 2 p̄q̄γ 2(1 − ε+)ε−(q − p)

+ 2pqαγ (1 − ε+)2(q̄ − p̄) + 2 p̄q̄αγ ε2−(q − p)]
=ρ2[(1 − ε+)4 pq(q − p) − ε4− p̄q̄(q − p) + (1 − ε+)2ε2−((q − pq)

(p + q − 1) + (p − pq)(1 − p − q))

+ 2qp(1 − ε+)3ε−(p − q) + 2 p̄q̄(1 − ε+)ε3−(q − p)]
+ ρ̄2[α4 pq(q − p) + γ 4 p̄q̄(p − q) + α2γ 2((q − pq)(p + q − 1)

+ (p − pq)(1 − p − q))

+ 2qpα3γ (p − q) + 2 p̄q̄αγ 3(q − p)]
+ ρρ̄[2(1 − ε+)2α2 pq(q − p) + 2γ 2ε2−(p − q) p̄q̄

+ γ 2(1 − ε+)2(q2 − pq2 + p − 2pq + pq2 − p2 + p2q − q

+ 2pq − p2q) + α2ε2−(q2 p − 2qp + p − pq2 + q2 − q + 2pq − p2q − p2 + p2q)

+ 2[q − p][−pqα2(1 − ε+)ε− + p̄q̄γ 2(1 − ε+)ε−
− pqαγ (1 − ε+)2 + p̄q̄αγ ε2−]]

=ρ2[(1 − ε+)4 pq(q − p) − ε4− p̄q̄(q − p) + (1 − ε+)2ε2−(1 − p − q)(p − q)

+ 2qp(1 − ε+)3ε−(p − q) + 2 p̄q̄(1 − ε+)ε3−(q − p)]
+ ρ̄2[α4 pq(q − p) + γ 4 p̄q̄(p − q) + α2γ 2(1 − p − q)(p − q)

+ 2qpα3γ (p − q) + 2 p̄q̄αγ 3(q − p)]
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+ ρρ̄[2(q − p)ε2−γ 2[s2r2 pq − p̄q̄]
+ [γ 2(1 − ε+)2 + α2ε2−][q2 − p2 + p − q]
+ 2[q − p]γ 2ε2−[−pqs2r + p̄q̄r − pqsr2 + s p̄q̄]]

=ρ2(q − p)ε4−[r4 pq − p̄q̄ + r2ε2−(p + q − 1) − 2qpr3 + 2 p̄q̄r ]
+ ρ̄2(q − p)γ 4[s4 pq − p̄q̄ + r2γ 2(p + q − 1) − 2qpr3 + 2 p̄q̄r ]
+ ρρ̄[(q − p)ε2−γ 2(2s2r2 pq − 2 p̄q̄ + [r2 + s2][q + p − 1])

+ 2[q − p]γ 2ε2−(r + s)[ p̄q̄ − pqrs]]
=ρ2(q − p)ε4−[r2 pq − p̄q̄][r − 1]2 + ρ̄2(q − p)γ 4[s2 pq − p̄q̄][s − 1]2

+ ρρ̄(q − p)ε2−γ 2[2(r2s2 pq − p̄q̄) + [r2 + s2][pq − p̄q̄] − 2[r + s](rspq − p̄q̄)]
=[q − p] · (ρ2 · [(1 − ε+)2 pq − ε2− p̄q̄][1 − ε+ − ε−]2 + ρ̄2 · [α2 pq − γ 2 p̄q̄][α − γ ]2

+ ρρ̄ · [2((1 − ε+)2α2 pq − ε2−γ 2 p̄q̄) + [(1 − ε+)2γ 2 + ε2−α2][pq − p̄q̄]
− 2(αε− + (1 − ε+)γ )((1 − ε+)α pq − ε−γ p̄q̄)])

=[q − p] · (ρ2 · [(1 − ε+)2 pq − ε2− p̄q̄][1 − ε+ − ε−]2 + ρ̄2 · [α2 pq − γ 2 p̄q̄][α − γ ]2
+ ρρ̄ · [pq · ((1 − ε+)2γ 2 + ε2−α2 + 2[−ε−α − (1 − ε+)γ + (1 − ε+)α](1 − ε+)α)

− p̄q̄ · ((1 − ε+)2γ 2 + ε2−α2 + 2[−ε−α − (1 − ε+)γ + ε−γ ]ε−γ )])

=[q − p] ·
(
ρ2 · ((1 − ε+) − ε−)2 ·

( (1 − ε+)2

ε2−
− p̄q̄

pq

)
+ ρ̄2

· (α − γ )2
(α2

γ 2 − p̄q̄

pq

)

+ ρρ̄ ·
( (1 − ε+)2γ 2 + ε2−α2 + 2[−ε−α − (1 − ε+)γ + (1 − ε+)α](1 − ε+)α

(1 − ε+)2γ 2 + ε2−α2 + 2[−ε−α − (1 − ε+)γ + ε−γ ]ε−γ

− p̄q̄

pq

))
.

��
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