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Abstract 

Restless legs syndrome (RLS) is a common sleep-related movement disorder in 

populations of European descent and disease risk is strongly influenced by genetic factors. 

Common variants have been assessed extensively in several genome-wide association 

studies, but the contribution of rarer genetic variation has not been investigated at this scale.  

We therefore genotyped a case-control set of 9,246 individuals for mainly rare and low 

frequency exonic variants using the Illumina ExomeChip. However, standard single variant 

and gene-level association tests were negative. This does not preclude a role of rare variants 

in RLS, but is likely due to the small sample size and the limited selection of rare genetic 

variation captured on the array. Therefore, exome or whole genome sequencing should be 

performed rather than increasing the sample size of ExomeChip studies in order to identify 

rare risk variants for RLS.  

 

Keywords: Restless legs syndrome, RLS, genome-wide association study, rare variant 

association study 
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Introduction 

Restless legs syndrome (RLS) is one of the most common sleep-related movement 

disorders in populations of European descent with a prevalence of up to 10%. Existing 

treatment options are limited due to their side effects and preventive measures are not 

available yet. Since RLS is a complex disease with a substantial genetic contribution to 

disease susceptibility, identification of the underlying genetic risk factors is important for 

progress in therapy and prevention.1  

In complex traits, variants across the entire allele frequency spectrum can contribute 

to disease risk, ranging from rare (minor allele frequency (MAF) < 1%) to low-frequency (1% 

≤ MAF < 5%) to common (MAF ≥ 5%).2 For RLS, common variants have been assayed 

comprehensively in several genome-wide association studies (GWAS), which have identified 

23 risk variants to date.3,4 In contrast, rare and low-frequency variants have not been studied 

extensively so far. Only a few individual families have been screened in linkage and in exome 

sequencing studies, but no causal variants were detected (reviewed in 5). We have performed 

a targeted resequencing of 84 genes in GWAS risk loci in a case-control sample and prioritized 

14 as candidates based on an enrichment of rare and low-frequency variants in them.6 Based 

on the observation of some similarities to monogenic diseases such as large families with 

Mendelian inheritance patterns, early-onset RLS, and pediatric RLS, rare variants with larger 

effects, especially coding variants, could contribute to RLS.  

Whole genome sequencing would provide the most comprehensive data, but it is still 

rather expensive for larger samples sizes. The ExomeChip was designed as a transitional 

solution to allow less costly genotyping of rare variants. Besides a backbone of common 

variants, this array includes a selection of rare and low-frequency coding variants across the 

genome identified in sequencing studies of other traits 

(https://genome.sph.umich.edu/wiki/Exome_Chip_Design). These included type 2 diabetes, 

cardiovascular traits, and depression, i.e. traits where RLS is a common comorbidity.1 We 

hypothesized that a substantial proportion of the variants would also be present in RLS cases 

and testable in an association study. Therefore, we performed an association study in 3,678 
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RLS cases and 5,407 population-based controls of European ancestry using the ExomeChip 

to identify rare and low-frequency risk variants for RLS. 

Materials and Methods 

Genotyping and quality control 

The 3,804 RLS cases were of Austrian/German descent. They have been diagnosed 

and recruited based on the IRLSSG criteria.3 Population-based controls were from a Bavarian 

region in the south (2,921, KORA7) and the Ruhr in the north of Germany (2,476, HNR8) 

(Supplementary Table 1). Study participants provided informed written consent and the study 

was approved by the institutional review board. Individuals were genotyped with the Illumina 

HumanExome BeadChip 12v1_A (“ExomeChip”) according to manufacturer’s protocol at two 

facilities in Bonn and Munich. We used Illumina software (GenomeStudio V2011.1V, 

“Genotyping” module 1.9.4, “Illumina Genome Viewer” module 1.9.0) and the CHARGE cluster 

file 1.0 for initial 238,876 markers 9. 

Quality control (QC) was done with PLINK v1.07 and R (Supplementary Table 2). Initial 

QC at the genotyping facilities was performed separately for HNR controls, KORA controls, 

and RLS cases. Markers/individuals were filtered on the call rate of at least 98%. A QC by 

sex-check was applied. The pre-cleaned datasets were then merged and again filtered for call 

rates of at least 98%. Only autosomal variants were used in further analyses. A heterozygosity 

check was applied for the individuals. To estimate family relatedness, we calculated pairwise 

proportion of alleles shared by IBD (identity-by-descent) with pruned markers 10 as present on 

array version 1.1. Then, we removed markers with HWE violations (p < 1E-07), individuals 

with many large IBD proportions (n(IBD > 0.09375) ≥ 10), two individuals with missing age 

data, and one of each pair of duplicated individuals by keeping the best genotyped one. In an 

update of marker QC, we removed duplicated and genotyping error-prone markers based on 

an internal black list (n = 717). We determined a set of pruned markers10 suitable for 

calculations of genetic similarities or principal components (PCs) in later analyses. 
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Single variant association tests 

Association testing was performed for all variants which passed the quality control and 

which were not monomorphic in our dataset. A genome-wide mixed model association scan 

was done using an additive model including age and sex as covariates in FaST-LMM v2.06 

(without genotype normalization, without proximal contamination within 2 Mb)11 and GMMAT 

12 0.7 (with a centered GRM from GEMMA 0.94.1 13). Results were annotated using CADD 

v1.3 https://cadd.gs.washington.edu/info), VEP (https://www.ensembl.org/info/docs/tools/vep/ 

index.html) and the CHARGE annotation file v5 9. 

Gene-level association tests 

For gene-level association tests, polygenic residuals were obtained using 

GRAMMAR14 in GenABEL v.1.8-0 (https://CRAN.R-project.org/package=GenABEL) with an 

IBS (identity-by-state) matrix and covariates (age, sex). Applying these residuals as the 

phenotype, we ran four different association test, i.e. SKAT v0.9315, BRV (“Burden of Rare 

Variant Test”)16, and combination tests (Fisher’s and minimum-p method17), on genes with at 

least two markers which both had to have a MAF of less than 5% in cases or in controls. Gene 

definitions for the ExomeChip were based on the Illumina annotation v1 files 

(ftp://ftp.ncbi.nlm.nih.gov/geo/platforms/GPL18nnn/GPL18544/suppl/). We accounted for 

missing genotypes as described in Wu et al. and Auer et al.15,16. Markers were weighted 

uniformly or based on the variants’ normalized raw CADD scores. In all four tests, the 

significance was determined empirically by at least 10,000 permutations. To enable a 

correction for multiple testing, the number of hypotheses was determined which could adjust 

the vector of the smallest random p values (one for each gene, from 10,000 phenotype 

permutations) to a uniform distribution by Sidak’s approach (= number of independent null 

hypotheses).  

Pathway analysis 

For pathway analysis, variants were annotated to genes based on the ExomeChip 

marker annotation for HUGO gene symbols as provided by Illumina. Pathways were defined 
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by Reactome v7.1 annotations which were accessed via the GSEA Molecular Signatures 

Database (https://www.gsea-msigdb.org/gsea/msigdb).18,19 We ran the pathway analysis in 

the spirit of gene-level testing using the optimal sequence kernel association test SKAT-O 

(v1.3.2.1, no variant weights, imputation by “best guess”) including a maximum sample of 

unrelated individuals (IBD ≤ 0.09375), variants in stringent HWE (p > 1 x 10-4) and with MAF 

≤ 0.05 in cases or controls, and covariates (age, sex, two PCs).15,20,21 

 

Results 

Single variant associations 

A total of 234 individuals and 7,010 variants were removed due to failing quality control. 

Exclusion of 94,855 monomorphic variants resulted in9,012 individuals and 137,011 

polymorphic autosomal variants available for association analysis (Supplementary Table 2). 

No novel variants were significantly associated with RLS after correction for multiple testing, 

but associations in known GWAS loci were confirmed by common and low-frequency/rare 

variants in LD with the published GWAS lead SNPs (table 1). One independent low-frequency 

missense variant reached candidate status (MAF = 0.02, rs34377632, RASGRP4, p ≤ 1 x 10-

4 in both FaST-LMM and GMMAT score test). P values were slightly inflated for rare variants 

(GMMAT 12 score test, MAF ≤ 0.01, λGC = 1.19, Supplementary Figures 1 and 2). 
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Table 1: Top SNPs in single variant association analysis with p values ≤ 1E-04 in both FaST-LMM and GMMAT score test. 

dbSNP ID Chr Pos Maj/min MAF P OR Consequence Gene CADD 
rs2300478§ 02 066,781,453 A/C 0.29 1.4E-35 1.60 [1.49; 1.73] i, nc, nmd MEIS1 5.067 
rs3923809§ 06 038,440,970 A/G 0.27 5.2E-28 1.55 [1.43; 1.67] i, nmd BTBD9 8.722 
rs1026732§ 15 068,095,085 G/A 0.29 2.1E-19 1.42 [1.32; 1.53] i, nc MAP2K5 0.871 
rs12593813 15 068,036,852 G/A 0.30 5.0E-19 1.41 [1.31; 1.52] i, nc, u MAP2K5 14.560 
rs4489954§ 15 068,072,075 C/A 0.28 3.3E-18 1.41 [1.31; 1.53] i, nc, r MAP2K5 5.544 
rs9357271§ 06 038,365,873 A/G 0.21 1.8E-16 1.43 [1.31; 1.56] i, nmd BTBD9 2.729 
rs9296249§ 06 038,365,841 A/G 0.20 2.6E-16 1.43 [1.31; 1.56] i, nmd BTBD9 0.266 
rs3104767§ 16 052,624,738 C/A 0.39 4.2E-16 1.34 [1.25; 1.44] i, nc CASC16 0.634 
rs3112612§ 16 052,635,164 G/A 0.39 7.6E-16 1.34 [1.25; 1.44] i, nc CASC16 2.951 
rs11897119§ 02 066,772,000 A/G 0.36 1.8E-15 1.34 [1.25; 1.44] i, nc, nmd MEIS1 0.983 
rs2241423§ 15 068,086,838 G/A 0.20 2.9E-13 1.38 [1.27; 1.50] i, nc MAP2K5 3.451 
rs2814899§ 06 038,389,301 A/G 0.50 1.1E-12 1.28 [1.20; 1.38] i, nmd BTBD9 2.695 
rs1975197§ 09 008,846,955 G/A 0.17 1.9E-09 1.31 [1.20; 1.44] i PTPRD 1.784 
rs6747972§ 02 068,070,225 G/A 0.47 2.4E-07 1.20 [1.12; 1.29] ig - 4.560 
rs7819412 08 011,045,161 A/G 0.48 3.4E-06 1.17 [1.10; 1.25] i, nmd, nc XKR6 2.013 
rs7173826§ 15 067,528,374 A/C 0.31 1.3E-05 1.18 [1.10; 1.27] m, d, ncx AAGAB, 

RPS24P16 

23.900 
rs7824557 08 011,104,111 A/G 0.39 3.4E-05 1.16 [1.08; 1.24] d LINC00529 3.101 
rs11215690 11 115,685,475 G/A 0.45 5.4E-05 1.15 [1.08; 1.24] i, nc LINC02698 5.775 
rs34377632 19 038,901,633 G/A 0.02 5.4E-05 1.58 [1.26; 1.98] d, m, ncx, nmd RASGRP4 

RASGRP4 

24.300 
rs4256842§ 01 107,163,979 A/G 0.30 5.9E-05 1.16 [1.08; 1.25] ig - 6.015 
rs2293583§ 07 088,423,881 A/G 0.09 6.0E-05 1.27 [1.13; 1.43] m, i C7orf62, ZNF804B 0.001 
rs4793601§ 17 046,791,801 A/C 0.46 6.4E-05 1.15 [1.08; 1.24] d COX6B1P2 1.480 
rs2031577 10 004,050,003 G/A 0.39 8.4E-05 1.15 [1.07; 1.24] ig - 2.866 

Chr, chromosome; Pos, hg19 position; Maj/min, major/minor allele (risk allele underscored); MAF, minor allele frequency in the dataset; P, p 
value from GMMAT score test; OR, odds ratio with 95% confidence interval from GMMAT Wald test effect sizes; Consequence, variant effect 
(d, downstream gene; i, intronic; ig, intergenic; m, missense; nc, non-coding transcript; ncx, non-coding transcript exon; nmd, NMD transcript; r, 
regulatory; u, upstream gene); CADD, CADD Phred score; §, locus significant in 3.  
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Gene-level associations 

14,147 genes were tested for gene-level association (109,593 rare markers, ≥ 2/gene). 

We applied four types of association tests (SKAT, BRV, Fisher’s method, and minimum-p 

method) and two variant weighting schemes in order to allow different underlying genetic 

models since the true model is unknown. Of all conducted BRVs, 11,833 were independent. 

No association p value remained significant after Bonferroni correction for four methods, two 

variant weighting schemes, and the number of independent tests (4 x 2 x 11,833 tests). There 

were 12 subthreshold candidate genes for RLS which had a p value ≤ 1/11,833 in any one of 

the applied tests (Table 2). 
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Table 2: Top association p values for gene level tests with different variant weighting and association test methods. 

 
Gene M No weights CADD weights 

BRV SKAT Min-p Fisher BRV SKAT Min-p Fisher 
DMPK 08 1.0E-3 2.6E-4 5.1E-4 1.2E-5* 4.9E-4 3.3E-4 6.6E-4 9.0E-6* 
EYA2 12 4.3E-4 4.7E-3 8.5E-4 4.0E-5* 3.8E-4 2.1E-3 7.5E-4 4.0E-5* 
NECAP1 02 9.0E-5 6.7E-4 1.7E-4 8.0E-5* 1.1E-4 9.4E-4 2.1E-4 7.0E-5* 
NENF 03 4.0E-4 2.4E-3 7.9E-4 5.0E-5* 4.1E-4 2.3E-3 8.1E-4 8.0E-5* 
OLFML2B 15 2.5E-3 8.1E-4 1.6E-3 1.1E-4 1.4E-3 7.4E-4 1.4E-3 8.0E-5* 
OSBP 03 4.7E-3 9.0E-5 1.7E-4 4.0E-5* 3.2E-3 1.5E-4 2.9E-4 7.1E-5* 
OSGIN1 15 1.5E-3 4.2E-4 8.3E-4 3.0E-5* 2.2E-3 4.2E-4 8.4E-4 3.2E-5* 
PCDHB5 04 5.5E-4 7.2E-4 1.1E-3 9.0E-5 5.0E-4 7.0E-4 9.9E-4 4.0E-5* 
PDE11A 20 8.7E-3 4.4E-4 8.7E-4 1.2E-4 3.1E-3 3.6E-4 7.1E-4 5.0E-5* 
RASGRP4 11 8.0E-3 7.8E-3 1.5E-2 7.0E-4 9.8E-4 2.3E-4 4.5E-4 1.5E-5* 
TREM1 04 4.6E-4 2.4E-3 9.1E-4 3.0E-5* 1.6E-4 1.6E-3 3.3E-4 2.0E-5* 
UBL4B 04 8.3E-4 1.2E-3 1.6E-3 6.0E-5* 6.4E-4 1.2E-3 1.3E-3 5.0E-5* 
M, number of loci of variants in gene level tests; BRV, burden of rare variants test; SKAT, sequence kernel association test; Min-p, minimum-p 

method; Fisher, Fisher’s method; *, p ≤ 8.45E-5 (= 1/11,833); No weights, results of association tests without weighting variants; CADD 

weights; results of association tests using CADD score for variant weighting. 
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Pathway enrichment 
We also performed pathway enrichment analysis in order to aggregate association 

signals of rare and low-frequency variants across sets of genes. We tested 1,532 biological 

pathways annotated in Reactome for an enrichment of low-frequency and rare variants using 

the SKAT-O test. In line with the results from single variant and gene-based testing, no 

significant associations remained after adjusting for multiple testing (p ≤ 0.05/1,532). The 

lowest p value observed was 4.5 x 10-5 for the pathway “cytokine signaling in immune system” 

(Supplementary Table 3). 

Discussion 

Here, we assessed the role of rare and low-frequency variants in RLS using the 

ExomeChip design, which allows a genome-wide analysis, albeit limited to the preselected set 

of variants present on the array. Nevertheless, we could test 137,011 variants, of which 76,700 

were rare with a MAF < 1% and had not been accessible in previous GWAS. However, only 

common variants representing the known GWAS loci reached genome-wide significance (p < 

5 x 10-8) in the single variant analysis. Testing the combined effect of rare and low-frequency 

variants on the gene level as well as on the pathway level did not return significant results.  

Our negative results do not exclude a role of rare and low-frequency variants in RLS. 

They rather indicate that the ExomeChip is not suitable to screen RLS cases for rare and low-

frequency variants neither in a scientific nor a clinical context. Only a fraction of all rare/low-

frequency variants are covered by this technology (e.g. only about 3% of the genetic variants 

reported in the Exome Aggregation Consortium data are represented 9), limiting the number 

of variants that can be tested. This coverage issue carries over to gene-level testing, where 

power is reduced when relevant variants are missing. Another limiting factor is the sample size 

of our study. ExomeChip studies of comparable size on other traits also had low yields.22 Only 

studies at least one order of magnitude larger than the present study were able to detect 

significant associations of rare or low-frequency variants.23 However, our study would have 

been sufficiently powered to detect rare variants with strong effects, e.g. odds ratios of 3 or 
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larger for a MAF of 0.5%. This suggests that such risk variants for RLS are not present on the 

ExomeChip and that further increasing the sample size would still most likely not result in the 

detection of strong effect variants for RLS with this array. 

Therefore, we do not recommend further use of the ExomeChip for genetic analyses 

in RLS. Ideally, future studies would create, use, and share high-coverage whole genome 

sequencing (WGS) data. However, the large sample sizes needed for association studies of 

rare and low-frequency variants are still difficult to obtain. Currently, the most efficient option 

seems to be genotyping with arrays optimized for GWAS such as the Illumina GSA or 

Affymetrix Axiom array and creating large datasets within a consortium such as the 

International EU-RLS-GENE consortium or by performing meta-analyses.3,4,24 This will enable 

discovery of additional common risk variants as well as the calculation of polygenic risk scores, 

two important pillars of therapeutic advances. In addition, imputation of low-frequency and 

even rare variants in such datasets is continuously improving due to the availability of larger 

and larger reference panels and better imputation tools.25-27 Especially imputation of rare 

variants may also benefit from low-coverage WGS data, which could be available more easily 

and therefore sooner than high-coverage genomes.28 We expect GWAS-focused array 

genotyping and potentially low-coverage WGS to be driving the discovery of genetic risk 

factors underlying the common, multifactorial form of RLS in the coming years. 
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Supporting information 

Supplementary Figure 1: QQ-plots from FaST-LMM single variant association analysis. 

(a) Variants with MAF ≤ 0.01. (b) Variants with MAF > 0.01, (c) All variants. X-axis, -log10 of 

expected p values; y-axis, -log10 of observed p values, winsorized at 5E-8 

Supplementary Figure 2. QQ-plots from GMMAT score test single variant association 

analysis. (a) Variants with MAF ≤ 0.01. (b) Variants with MAF > 0.01. (c) All variants. X-axis, 

-log10 of expected p values; y-axis, -log10 of observed p values, winsorized at 5E-8 

Supplementary Table 1: Demographic details of this study. 

Supplementary Table 2: Quality control steps (QC). 

Supplementary Table 3: Top pathway enrichment results 
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Supplementary Figure 1: QQ-plots from FaST-LMM single variant association analysis. 

(a) Variants with MAF ≤ 0.01. (b) Variants with MAF > 0.01, (c) All variants. X-axis, -log10 of 

expected p values; y-axis, -log10 of observed p values, winsorized at 5E-8 
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Supplementary Figure 2. QQ-plots from GMMAT score test single variant association 

analysis. (a) Variants with MAF ≤ 0.01. (b) Variants with MAF > 0.01. (c) All variants. X-axis, 

-log10 of expected p values; y-axis, -log10 of observed p values, winsorized at 5E-8 
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Supplementary Table 1: Demographic details of this study. 

 
Controls from 
north (HNR) 

Controls from 
south (KORA) 

Cases 

Ancestry German German German/ 
Austrian 

Sample size Init 2 486 2 921 3 839 
QC 2 451 2 909 3 652 
Unrel 2 417 2 794 3 599 

Median age 
(95% CI) 

QC 60 [47; 73] 49 [27; 72] 64 [33; 84] 
Unrel 60 [47; 73] 49 [27; 72] 64 [34; 84] 

Sex (% female) QC 50.3 51.5 69.2 
Unrel 50.5 51.8 69.1 

Init, pre QC stage; QC, post QC stage; Unrel, unrelated individuals of the post QC stage; CI: 

confidence interval 
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Supplementary Table 2: Quality control steps (QC). 

QC milestone Previous 
milestone 

QC sub step N(individuals) N(markers) 

1) Initial QC 
 

Initial dataset 3 839 RLS 
2 921 KORA 
2 486 HNR 

238 876 

Removed because call rate 
failed 

-15 RLS 
-0 KORA 
-15 HNR 

-259 RLS 
-9 KORA 
-27 HNR 

Remove sex check fails (call 
rate at 126 ChrY markers 
greater 50% is male) 

-20 RLS 
-0 KORA 
-10 HNR 

 

2) Merge data 1) Merge data 9 186 238 867 
Remove call rate fails 0 -1 228 

3a) 
Heterozygosity 
outliers 
detection part 
1 

2) Keep autosomal markers 9 186 232 618 
Keep MAF < 0.01 9 186 198 764 
Remove call rate fails 0 

 

Detected heterozygosity fails 24 
 

3b) 
Heterozygosity 
outliers 
detection part 
2 

2) Keep autosomal markers 9 186 232 618 
Keep MAF ≥ 0.01 9 186 33 854 
Remove call rate fails -13 

 

Detected heterozygosity fails 30 
 

4) Relatedness 
Calculation 

2) Remove heterozygosity fails -47 
 

Keep BeadChip v1.1 markers 
 

228 263 
Keep MAF >= 0.01 

 
40 244 

Remove HWE fails in controls 
 

-29 
Remove long-range LD 

 
-9 957 

Remove LD 
 

-10 643 
5) Merged 
data filtering, 
creation of 
analysis data 

2) Remove heterozygosity check 
and CR fails 

-60 
 

Remove HWE fails (controls) 
 

-35 
Remove duplicates, 
individuals with high IBD 
counts, individuals with 
missing age 

-114 
 

Remove markers from black 
list 

 
-717 

Final: keep polymorphic 
autosomal markers 

9 012 137 011 

6) Markers for 
similarity 
estimations 

5) Remove long-range LD 
 

-6 807 
Remove MAF < 0.01 

 
-76 700 

Remove LD 
 

-10 284 
Final 9 012 43 220 
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Supplementary Table 3: Top pathway enrichment results 

Reactome pathway Individuals with 
minor alleles 

Number of 
SNPs P value 

CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM 8810 4321 4.48E-05 
TRANSPORT_OF_NUCLEOSIDES_AND_FREE_PURINE_AND_PYRIMIDINE_BASES_ 
ACROSS_THE_PLASMA_MEMBRANE 1903 67 4.83E-05 

FCERI_MEDIATED_NF_KB_ACTIVATION 5137 231 0.00052 
SLC_TRANSPORTER_DISORDERS 8677 878 0.00096 
INNATE_IMMUNE_SYSTEM 8810 6167 0.00158 
PLATELET_ACTIVATION_SIGNALING_AND_AGGREGATION 8809 1909 0.00172 
TRANSPORT_OF_VITAMINS_NUCLEOSIDES_AND_RELATED_MOLECULES 6462 276 0.00173 
ION_HOMEOSTASIS 7339 395 0.00194 
REGULATION_OF_SIGNALING_BY_CBL 1590 77 0.00199 
MUSCLE_CONTRACTION 8810 2018 0.00210 
RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC_CA2 8788 1295 0.00276 
HEMOSTASIS 8810 4138 0.00304 
TAK1_ACTIVATES_NFKB_BY_PHOSPHORYLATION_AND_ACTIVATION_OF_ 
IKKS_COMPLEX 3599 133 0.00414 

CREB1_PHOSPHORYLATION_THROUGH_NMDA_RECEPTOR_ 
MEDIATED_ACTIVATION_OF_RAS_SIGNALING 4442 139 0.00463 

INTERFERON_SIGNALING 8749 1085 0.00481 
DEX_H_BOX_HELICASES_ACTIVATE_TYPE_I_IFN_AND_INFLAMMATORY_CYTOKINES
_PRODUCTION 688 25 0.00529 

NEGATIVE_REGULATION_OF_NMDA_RECEPTOR_MEDIATED_NEURONAL 
_TRANSMISSION 4839 154 0.00544 

STRIATED_MUSCLE_CONTRACTION 8485 785 0.00559 
UNBLOCKING_OF_NMDA_RECEPTORS_ 
GLUTAMATE_BINDING_AND_ACTIVATION 4436 139 0.00578 

PYRUVATE_METABOLISM 3046 129 0.00615 
Reactome pathway, name of biological pathway as provided in Reactome v7.1; individuals with minor alleles, number of individuals in study who 

carried minor alleles of the variants tested for the pathway; Number of SNPs, number of variants tested for pathway; P value, nominal p-value 

from SKAT-O analysis. 


