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Abstract
The problem of adaptive learning from evolving and possibly non-stationary data
streams has attracted a lot of interest in machine learning in the recent past, and also
stimulated research in related fields, such as computational intelligence and fuzzy
systems. In particular, several rule-based methods for the incremental induction of
regression models have been proposed. In this paper, we develop a method that com-
bines the strengths of two existing approaches rooted in different learning paradigms.
More concretely, our method adopts basic principles of the state-of-the-art learning
algorithm AMRules and enriches them by the representational advantages of fuzzy
rules. In a comprehensive experimental study, TSK-Streams is shown to be highly
competitive in terms of performance.

Keywords Fuzzy rules · TSK systems · Evolving fuzzy systems · Machine learning ·
Data streams

1 Introduction

In many practical applications of machine learning and predictive modeling, data is
produced incrementally in the course of time and observed in the form of a continu-
ous, potentially unbounded stream of observations. Correspondingly, the problem of
learning from data streams (Gama 2012) has received increasing attention in recent
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years. Algorithms for learning on streams must be able to process the data in a single
pass, which implies an incremental mode of learning, to detect and handle different
types of drift in the data distribution, and, correspondingly, adapt to changes of the
underlying data-generating process (Gama et al. 2014; Lu et al. 2019).

A popular approach for learning on data streams, both for classification and regres-
sion, is rule induction, in the fuzzy logic and computational intelligence community
also known as “evolving fuzzy systems” (Lughofer 2011). Shaker et al. (2017) pro-
posed a method for regression that builds on a very efficient and effective technique
for rule induction, which is inspired by the state-of-the-art machine learning algorithm
AMRules (Almeida et al. 2013), and combines it with the strengths of fuzzy model-
ing. Thus, the method induces a set of fuzzy rules, which, compared to conventional
rules with Boolean antecedents, has the advantage of producing smooth regression
functions.

The method presented in this paper, called TSK-Streams, is a substantially revised
and improved variant of (Shaker et al. 2017). The main modifications and novel con-
tributions are as follows:

– We give a concise overview of regression learning on data streams as well as
a systematic comparison of existing methods with regard to properties such as
discretization of features, splitting criteria for rules, etc. This overview helps to
better understand the specificities and characteristics of approaches originating
from different research fields, as well as to position our own approach.

– We introduce a new strategy for the induction of TSK fuzzy rules and realize it in
the form of two concrete variants: variance reduction and error reduction. While
the former is still close to Shaker et al. (2017), the variance reduction approach has
not been considered for online learning of fuzzy systems so far. Compared with
error reduction and other state-of-the-art methods, it leads to models with superior
predictive performance.

– In Shaker et al. (2017), rule antecedents may contain disjunctions and negations,
which makes them difficult to understand and interpret. The representation of TSK
rules used in this paper is simpler and more concise. This is achieved by means
of an improved technique for splitting fuzzy sets (and extending corresponding
rules).

– We propose the induction of candidate fuzzy rules using a discretization technique
that is based on an extended Binary Search Tree (E-BST) structure. Compared to
the three-layered discretization architecture used by Shaker et al. (2017), the use
of E-BST for constructing candidate fuzzy sets has a number of advantages in the
context of online learning. Most notably, it comes with a reduction of complexity
from linear to logarithmic (in the number of candidate extensions).

– Our empirical evaluation is more extensive and comprises a couple of additional
large-scale data sets with up to 100k instances. The evaluation is also extended by
including an additional method that has been introduced recently (Gomes et al.
2018).

The rest of the paper is organized as follows. Following a brief discussion of related
work and systematic exposition of methods for regression on data streams in Sect. 2,
we introduce our method TSK-Streams in Sect. 3. Section 4 presents a comprehensive
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experimental study, in which TSK-Streams is compared to several competitors, prior
to concluding the paper in Sect. 5.

2 Learning regressionmodels on data streams

Recall that, in the standard setting of supervised learning, a learner is given access to a
set of training data D = {

(x1, y1), . . . , (xN , yN )
} ⊂ X × Y , where X is an instance

space and Y the set of outcomes that can be associated with an instance. In the case
of regression, Y = R, i.e., outcomes are real numbers. Most commonly, instances
are represented in terms of feature vectors xi = (xi,1, . . . , xi,d)� ∈ R

d . Given a
hypothesis space H (consisting of hypotheses h : X −→ Y mapping instances x to
outcomes y) and a loss function � : Y ×Y −→ R, the goal of the learner is to induce
a hypothesis h∗ ∈ H with low risk (expected loss)

R(h) ..=
∫

X×Y
�(h(x), y) d P(x, y), (1)

where P is a joint probability measure on X × Y characterizing the data-generating
process. Thus, given the training data D, the learner needs to “guess” a good hypoth-
esis h. Assuming the training examples (xi , yi ) to be independent and identically
distributed (according to P), this choice is commonly guided by the empirical risk
Remp(h) ..= 1

N

∑N
i=1 �(h(xi ), yi ), i.e., the performance of a hypothesis on the training

data. However, since Remp(h) is only an estimation of the true risk R(h), the hypoth-
esis (empirical risk minimizer) ĥ ..= argminh∈H Remp(h) favored by the learner will
normally not coincide with the true risk minimizer h∗ ..= argminh∈H R(h). Moreover,
since empirical risk minimization is prone to overfitting the training data, which in
turn compromises generalization performance, the learning process is typically regu-
larized.

When learning from data streams, as opposed to learning in “batch mode”, the
training data is not given in the form of a static data set D. Instead, the data is
produced in an online manner, and training examples are provided one by one. In
other words, the data forms a potentially unbounded, continuously evolving sequence
(x1, y1), . . . , (xi , yi ), . . . of data points. Also, the data generating process is not
necessarily stationary, i.e., the (xi , yi ) are not necessarily generated from the same
distribution P. Instead, this distribution may change in the course of time, giving rise
to what is called concept drift or concept shift in the literature (Gama et al. 2014; Lu
et al. 2019).

2.1 An overview of existingmethods

In themachine learning community, research on supervised learning from data streams
has mainly focused on classification problems so far. As one of the first methods,
Hoeffding trees (Domingos and Hulten 2000) have been proposed for learning clas-
sifiers on high-speed data streams. Since then, the tree-based approach has been
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developed further, and various modifications and variants can be found in the cur-
rent literature (Bifet and Gavaldà 2009). Closely related to tree-based approaches is
the induction of decision rules. For example, the Adaptive Very Fast Decision Rules
(AVFDR) method (Kosina and Gama 2012) is an extension of the Very Fast Decision
Rules (VFDR) classifier (Gama and Kosina 2011), which learns a compact set of rules
in an incrementally manner. Most recently, Bifet et al. (2017) developed an extremely
fast version of Hoeffding trees with an implementation that is ready to be used in
industrial environments.

Less research has been done on regression for data streams. Notable exceptions
include AMRules (Almeida et al. 2013), which is an extension of AVFDR for handling
numeric target values, and FIMTDD (Ikonomovska et al. 2011), which induces model
trees. In contrast to the machine learning community, the fuzzy systems community
has put more emphasis on regression than on classification (Angelov 2002; Angelov
et al. 2010; Lughofer 2011). In particular, FLEXFIS (Lughofer 2008) is a method
for inducing Takagi–Sugeno–Kang (TSK) rules (Takagi and Sugeno 1985) from data
streams.

In the following, we elaborate a bit more on those approaches that are especially
relevant for our own method and the experimental study presented later on namely.

In the Adaptive Model Rules (AMRules) approach, the rule premises are repre-
sented in the form of conjunctive combinations of literals on the input variables.
Moreover, the rule consequents are specified as linear functions of the variables, which
are fitted to the data using least squares regression. Each rule maintains various statis-
tics characterising the part of the instance space covered by that rule. Starting with a
single literal, each rule is expanded by new literals step by step, using the Hoeffding
bound as a selection criterion. A distinction between unordered rule sets and decision
lists is made by Almeida et al. (2013). In this paper, the authors propose two pre-
diction and update schemes. In the first approach, the rules are sorted in the order in
which they have been learned. For prediction, only the first rule that is activated by
an example is used. In the second approach, the rules are treated as a set, and their
predictions are aggregated after an inversely proportional weighting to the loss of their
corresponding rules. Moreover, all rules activated by an example are updated. Since a
better performance was achieved for the second approach, the authors used that one
in their study.

Fast Incremental Model Trees with Drift Detection (FIMTDD) is a method for
learning model trees for regression. To determine splits of the model tree, candidate
attributes are assessed according to how much they they help to reduce the variance
of the target variable. Moreover, a linear function on a corresponding subspace is
specified for each leaf of the induced tree, and learning these functions is accomplished
using stochastic gradient descent. An ensemble of FIMTDD trees was introduced by
Ikonomovska et al. (2015) after equipping each treewith the optionmechanism, i.e., the
standard single split approach is replaced by a multi-split ability to avoid long waiting
times before the tie-breaking takes place. Another ensemble version of FIMTDD
(adaptive random forest, ARF-Reg) was proposed by Gomes et al. (2018), using an
online version of bagging for creating the ensemble members (Oza and Russell 2001).

The Flexible Fuzzy Inference Systems (FLEXFIS) approach by Lughofer (2008) is
a method for learning fuzzy rules, or, more specifically, Takagi–Sugeno–Kang (TSK)
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rules, on data streams. This type of rule will be formally introduced in Sect. 4.1. In
contrast to Boolean rules, fuzzy rules are of a gradual nature and can cover an instance
to a certain degree, which in turn allows for modulating the influence of a rule on a
prediction in a more fine-granular way. In FLEXFIS, the fuzzy support of a rule, i.e.,
the region it covers in the input space, is determined by (incrementally) clustering the
training data and associating each rule with a cluster. Rule consequents are specified
in terms of linear functions of the input variables, and the estimation of these func-
tions is successively adapted through recursive weighted least squares (RWLS) (Ljung
1999). While both fuzzy (FLEXFIS) and no-fuzzy (AMRules) methods are capable of
performing a weighted aggregation, in the latter case weighting is oblivious to which
degree a rule covers a data sample.

The main motivation of our approach is to take advantage of the effectivity and
efficiency and algorithmic techniques for rule learning as implemented by methods
such as AMRules, and to combine them with the expressiveness of fuzzy rules as used
in approaches like FLEXFIS and eTS+ (Angelov 2010) as well as related formalisms
such as fuzzy pattern trees (Shaker et al. 2013).

In the following, we provide a more systematic exposition and categorize the learn-
ing algorithms discussed above according to several properties. Along the way, we
highlight potential advantages of combining different algorithms and their features.

2.2 Trees versus rules

Most tree and rule induction methods are based on refining rules in a general-to-
specific manner, i.e., they share the property of moving from general to more specific
hypotheses. In FIMTDD, for example, leaf nodes are split intomore specific leaf nodes.
Likewise, in AMRules and TSK-Streams, rules are specialized by adding terms to the
premise part.

Trees can be seen as rule sets with a specific structure. Thus, while a direct transfor-
mation from a tree to a set of rules can usually be done in a straight-forward manner,
the other direction is not always possible. In AMRules, for example, some of the rules
are removed upon detection of a concept change, which makes it impossible to map
the current rules to an equivalent tree-model.

FLEXFIS and eTS+ do not follow the aforementioned general-to-specific induction
scheme. Instead, they learn and maintain rules in the form of clusters directly in the
instance space. In general, these rules cannot be represented in terms of an equivalent
tree structure.

2.3 Binary versus gradual membership

The application of fuzzy logic in decision tree and rule learning leads to two important
distinctions from conventional learning. First, hard conditions (in rule antecedents)
are replaced by soft conditions, so that an example can satisfy a condition to a certain
degree. Therefore, in a tree structure, an instance can be propagated to different sibling
nodes/leaves simultaneously, perhaps with different weights. Likewise, in a system of
rules, it can be covered by multiple rules with different membership degrees.
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The second difference is the ability to aggregate the decisions made by different
rules in a weighted manner, as done by TSK-Streams, FLEXFIS, and eTS+, instead
of merely computing an unweighted average of the outputs of all rules covering an
instance. Thus, more weight can be given to the more relevant and less to the less
relevant rules.

Likewise, gradualmembership allows formore general inference in the case of tree-
structures.While decision andmodel trees restrict tree traversal to a single branch from
the root to a leave node, an equivalent fuzzy model tree1 would follow several such
paths simultaneously, branching an instance at an inner node in a weighted manner
depending on how much it agrees with the conditions associated with each branch.

2.4 Discretization

Discretization is usually needed to create a finite number of candidate values for
splitting points (thresholds) in the case of continuous features; these splitting points are
then validated using a splitting criterion to decide how a tree/rule should be extended.

Both AMRules and FIMTDD apply a supervised discretization technique that is
tailored to each rule and leaf node; this is achieved by considering the target values of
all instances that reached a given leaf node or are covered by a rule.

TSK-Streams, as wewill explain later, applies a supervised discretization technique
for the creation of fuzzy sets that are evaluated for future extensions.

2.5 Splitting criteria

As already said, refining a model normally means extending a rule with additional
conditions, thereby splitting it into two more specific rules or shrinking the region
covered by that rule. A splitting criterion is used to find the presumably best among the
(typically large) set of candidate splits. To quantify the usefulness of a split, different
measures are conceivable.

A splitting criterion employed by many method, including AMRules, is variance
reduction: For the rule R, the instances N covered by that rule are split into two groups
N1 and N2 based on an attribute x j and a threshold v, i.e.,

N1 = {(x, y) ∈ N | x j ≤ v} ,

N2 = {(x, y) ∈ N | x j > v} .

The sets N1 and N2 then specify new rules R1 and R2, respectively. Both x j and v are
chosen so as to achieve a maximal reduction of variance

Var(N ) −
( |N1|

|N | Var(N1) + |N2|
|N | Var(N2)

)
, (2)

where Var(N ) is the variance of the target attribute (the y-values) of the instances in
N .

1 The authors are not aware of any fuzzy model tree induction method for regression on data streams.
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Variance reduction has its roots in the earliest decision tree induction methods, in
which splits are chosen that decrease the impurity of leaf nodes. For categorical target
attributes, this is usually put in practice by reducing the information entropy. In the
case of classification, the majority class is then used for prediction at a leaf node.
In regression, where the target attribute is numerical, averaging is a more reasonable
aggregation strategy; it was already adopted by the first regression tree learner CART
(Breiman et al. 1984). With the aim of minimizing the sum of squared errors, variance
reduction becomes the right splitting criterion, since the sum of weighted variances
[the second part of (2)] can be written as the sum of squared errors:

|N1|
|N | Var(N1) + |N2|

|N | Var(N2) = 1

|N |
∑

(xi ,yi )∈N1

(
yi − ȳ(N1)

)2

+ 1

|N |
∑

(xi ,yi )∈N2

(
yi − ȳ(N2)

)2
, (3)

where ȳ(Nl) = 1
|Nl |

∑
(xi ,yi )∈Nl

yi is the (constant) prediction produced by the rule
Rl .

M5 (Quinlan 1992), one of the most popular regression approaches, is a tree that
is similar to regression trees with the exception of learning a linear function in the
leaf nodes, instead of predicting a constant (the average in CART), while employing
variance reduction as a splitting criterion. FIMTDD extends M5 for learning model
trees from data streams; it also applies variance reduction as a splitting criterion.

Despite the popularity of variance reduction, it has been criticized byKaralič (1992)
as “not an appropriate measure for impurity of an example set since example sets with
large variance and very low impurity can arise”. Similarly, a set of data points might
be perfectly located on a hyperplane, non-orthogonal to the target axis, and still have
a high variance.

FLEXFIS and eTS+ do not apply a splitting criterion directly, but utilize an exten-
sionmechanism that decideswhen to add rules to the current rule set.More specifically,
FLEXFIS applies an incremental clustering method, namely an incremental version
of vector quantization (Gray 1984), such that a new example forms a new cluster if its
distance to the nearest cluster is larger than the “vigilance” parameter. This parameter
controls the tradeoff between major structural changes (creating a new cluster) and
minor adaptations of the current structure. Likewise, eTS+ utilizes a density-based
incremental clustering, eClusteting+ (Angelov 2004). In both approaches, the clusters
found are eventually transformed into rules.

Finally, we mention that most of the presented approaches consider only a single
attribute for splitting, which leads to axis-parallel splits, not only in the standard
case (FIMTDD and AMRules) but also in the case of fuzzy methods. FLEXFIS and
eTS+ constitute an exception, since they find multivariate Gaussian clusters with
non-diagonal covariance matrices.
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2.6 Statistical tests versus engineered parameters

Learning on data streams, including the choice of the next split, must be done in an
online manner. To answer the question whether or not an additional split is required,
i.e., whether or not a significant improvement can be achieved through a split, statistical
tests can be applied. A statistical test based on the Hoeffding bound has been exten-
sively used by recent machine learning approaches for classification and regression,
including Hoeffding trees, FIMTDD, AMRules, and TSK-Streams.

Instead of applying statistical tests, FLEXFIS and eTS+ make use of more engi-
neered solutions, such as creating a new rule whenever an example is distant from
all existing rules, as in FLEXFIS, or when adding an example reduces the density of
existing ones, as in eTS+.

3 The learning algorithm TSK-Streams

TSK-Streams is an incremental, adaptive algorithm for learning rule-based regression
models in a streaming mode. More specifically, TSK-Streams produces a widely used
type of fuzzy rule system called Takagi–Sugeno–Kang (TSK) (Takagi and Sugeno
1985).

3.1 Basic concepts from fuzzy logic

Let us recall that the notion of a fuzzy set generalizes the conventional concept of
a set in the sense of allowing for partial membership, which means that an element
can belong to a set to a certain degree (Zadeh 1965). More formally, a fuzzy subset
A of a reference set X is characterized in terms of a so-called membership function
μA : X −→ M, where M is a totally or partially ordered set of membership degrees,
typically the unit interval [0, 1]. This function can be considered as a generalization
of the characteristic function of a set, which is restricted to the membership degrees 0
(no membership) and 1 (full membership). In general, the membership degree μA(x)
can be interpreted as the truth degree of the proposition that x is an element of A.

Indeed, like in the classical case, there is a close relationship between set theory and
logic. For example, generalized logical operators are used to define generalizations of
set-theoretical operations such as intersection and union. A triangular norm (t-norm)
is a binary operator � : [0, 1]2 −→ [0, 1], which is commutative, associative, non-
decreasing in both arguments, and with neutral element 1 and absorbing element 0
(Klement et al. 2000). Commonly used examples include the minimum, the product,
and the Lukasiewicz t-norm �(u, v) = max{u + v − 1, 0}. A t-norm serves as a
generalized logical conjunction, and as such, is also used to define the intersection of
fuzzy sets: If A and B are fuzzy subsets of X with membership functions μA and μB ,
respectively, then the intersection C = A ∩ B is characterized by the membership
function μC (x) = �(μA(x), μB(x)) for all x ∈ X . Note that, due to its associativity
and commutativity, a t-norm can be generalized from a binary operation to a conjunc-
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tion of any number of elements in a canonical way; we shall write �(u1, . . . , un) for
the combination of membership degrees u1, . . . , un .

With every t-norm �, one can associate a t-conorm ⊥ given by ⊥(u, v) = 1 −
�(1 − u, 1 − v). The latter plays the role of a generalized disjunction and can be
used, for example, to define the union of fuzzy sets. The t-conorms obtained for the
minimum, the product, and the Lukasiewicz t-norm are given by the maximum, the
algebraic sum ⊥(u, v) = u + v − uv and the t-conorm ⊥(u, v) = min{u + v, 1},
respectively.

3.2 TSK fuzzy systems

A TSK rule Ri has the following structure:

IF (x1 IS Ai,1) AND . . . AND (xd IS Ai,d)

THEN li (x) = wi,0 + wi,1x1 + . . . + wi,d xd , (4)

where (x1, . . . , xd)� is the feature representation of an instance x ∈ R
d and Ai, j

defines the j th antecedent of Ri in terms of a soft constraint (modeled by a fuzzy set).
The consequent part of the rule is specified by the vector ω = (wi,0, . . . , wi,d)

� ∈
R
d+1, which defines an affine function of the input features. Inwhat follows,we denote

a rule by Ri = (Mi ,ωi ), with Mi the fuzzy sets defining the rule antecedents, and ωi

the coefficients specifying the linear function.
The soft constraint Ai, j ismodeled in terms of a fuzzy setwithmembership function

μ
(i)
j : R −→ [0, 1]. Thus, the predicate (x j IS Ai, j ) has truth degree μ

(i)
j (x j ), which

corresponds to the membership degree of x j in μ
(i)
j . The overall degree to which an

instance x satisfies the rule premise Ri is

μi (x) = �
(
μ

(i)
1 (x1), . . . , μ

(i)
d (xd)

)
, (5)

where the triangular norm � models the logical conjunction. We will adopt the Gödel
t-norm, which is given by �(u, v) = min(u, v). Notice that Ai, j might be a void

constraint, which corresponds to setting μ
(i)
j = μvoid ≡ 1;

in that case, the feature x j is effectively removed from the premise of the rule (4).
Now, given an instance x as an input to a TSK system with C rules RS =

{R1, . . . , RC }, each of these rules will be “activated” with the degree (5). There-
fore, the system’s output is specified by the weighted average of the outputs suggested
by the individual rules (see Fig. 1 for an illustration):

ŷ =
C∑

i=1

Ψi (x) · li (x) , (6)
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with

Ψi (x) = μi (x)
∑C

j=1 μ j (x)
. (7)

Fuzzy sets can have membership functions with different shapes and properties
(Pedrycz and Gomide 1998). In our approach, we employ the family of the “S-shaped”
parametrized functions: a fuzzy set μ has a support and core [a, d] and [b, c], respec-
tively, such that [a, d] ⊃ [b, c], the degree of membership is 1 inside [b, c] and 0
outside [a, b]. The left boundary of the fuzzy set μ is modeled in terms of an “S-
shaped” transition between zero and full membership:

μS(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < a

2
(
x−a
b−a

)2
if a ≤ x < a+b

2

1 − 2
(
x−b
b−a

)2
if a+b

2 ≤ x < b

1 if b ≤ x ≤ c

1 − 2
(
c−x
d−c

)2
if c < x ≤ c+d

2

2
(
d−x
d−c

)2
if c+d

2 < x ≤ d

0 if x > d

. (8)

An S-shaped membership function can also be left- or right-unbounded:

μleft-ub(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if x < a

1 − 2
(
a−x
b−a

)2
if a < x ≤ a+b

2

2
(
b−x
b−a

)2
if a+b

2 < x ≤ b

0 if x > b

, (9)

μright-ub(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if x < a

2
(
x−a
b−a

)2
if a ≤ x < a+b

2

1 − 2
(
x−b
b−a

)2
if a+b

2 ≤ x < b

1 if b ≤ x

. (10)

3.3 Online rule induction

The TSK-Streams algorithm (cf. Algorithm 1 for the basic structure) begins with a
single default rule and then learns rules in an incremental manner. The default rule has
an empty premise for each feature (that is, the membership function μvoid) and covers
the complete input space. Then, the algorithm continuously checks whether, for any
of the rules Ri , one of its extensions could possibly improve the performance of the
current fuzzy system.
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Fig. 1 Illustration of a TSK fuzzy system with three rules (in blue, green, and black, respectively) for the
case of a one-dimensional instance space: Each rule is specified in terms of an S-shaped fuzzy set (rule
antecedent) and an affine function (rule consequent, dashed line). The function (6) modeled by the TSK
system is plotted in red color (Color figure online)

Fig. 2 Illustration of rule expansion: On the left side, the domain is covered by a single fuzzy set (μvoid ,
blue flat line), so that the TSK system produces an affine function. On the right side, the fuzzy set is split
into two fuzzy sets (in blue and green, respectively), each of them giving rise to an individual rule with
different consequent. The TSK system is now able to fit the data (black points) more accurately (Color
figure online)

An expansion of a rule Ri with a predicate (x j IS Ai, j ) on the j th attribute means
that the rule is split into two new rules R′

i and R′′
i with predicates (x j IS A′

i, j ) and

(x j IS A′′
i, j ), respectively, where Ai, j = A′

i, j ∪ A′′
i, j with membership functions μ

′(i)
j

and μ
′′(i)
j satisfying μ

(i)
j (x) = ⊥(μ

′(i)
j (x), μ′′(i)

j (x)).
These membership functions are chosen after a fuzzy partitioning of the domain of

feature x j . To this end, we apply a supervised discretization technique that divides a
fuzzy set into two new fuzzy sets so as to improve the overall performance (see Fig.
2 for an illustration). Here, we focus on two criteria (cf. the discussion in Sect. 2), to
be detailed in the following.

These membership functions are chosen after a fuzzy partitioning of the domain of
feature x j . To this end, we apply a supervised discretization technique that divides a
fuzzy set into two new fuzzy sets so as to improve the overall performance. Here, we
focus on two criteria (cf. the discussion in Sect. 2), to be detailed in the following.
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Algorithm 1: TSK-Streams Algorithm
Input: RS = {(Rdef ault , Sde f ault = �)}, Mode, δ, τ
Mode ∈ {V R, ER}
δ: confidence level
τ : tie-breaking constant

1 n = 0
2 for (xt , yt ) ∈ Stream do
3 for (Ri , Si ) ∈ RS do
4 if Mode == V R then
5 Update candidates using E-BST according to (11)–(17)

6 else
7 GenUpdateERCandidates(Ri , Si , (xt , yt ))}
8 UpdateConsequent(RS, Ri , Si , (xt , yt ))

9 if Mode == V R then
10 ExpandSystemVR(RS, δ, τ, n)

11 else
12 ExpandSystemER(RS, δ, τ, n)

13 n = n + 1

3.3.1 Variance reduction

Similar to the AMRule principle of reducing the variance, based on the fuzzy set
Ai, j , two fuzzy sets A′

i, j and A′′
i, j are created such that a maximum reduction in the

target attribute’s variance is achieved. For example, let Ai, j be a fuzzy set (for the

j th attribute in the rule Ri ) characterized by the S-shaped membership function μ
(i)
j ,

which is parametrized by the quadruple (a, b, c, d). Let NRi be the set of examples
(x, y) covered by the rule Ri , i.e., the examples for which μi (x) > 0. We then seek
to find the value q ∈ [a, d] such that the reduction in variance

Var(S) − (
w′Var(S′) + w′′Var(S′′)

)

is maximal, where

S = {y · Ψi (x) | (x, y) ∈ NRi }, (11)

S′ = {y · Ψi (x) | (x, y) ∈ N ′
Ri }, (12)

S′′ = {y · Ψi (x) | (x, y) ∈ N ′′
Ri }, (13)

w′ =
∑

(x,y)∈N ′
Ri

Ψi (x)
∑

(x,y)∈NRi
Ψi (x)

, (14)

w′′ =
∑

(x,y)∈N ′′
Ri

Ψi (x)
∑

(x,y)∈NRi
Ψi (x)

, (15)
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with

N ′
Ri = {(x, y) | (x, y) ∈ NRi , x j ∈ [a, q]}, (16)

N ′′
Ri = {(x, y) | (x, y) ∈ NRi , x j ∈ [q, d]}, (17)

and Var(S) the variance of the set S.
Similar to AMRules and FIMTDD, we achieve the variance reduction by storing

candidate values in an extended binary search tree (E-BST). This data structure allows
for computing the variance reduction for each candidate value in time that is linear
in the size of the tree; moreover, it can be updated in logarithmic time (Ikonomovska
2012). E-BST is an extended binary search tree that stores sufficient statistics to eval-
uate the variance reduction resulting from the split at that node. Each node in E-BST
contains (i) the test value at that node, (ii) the number of samples |{(xi , yi )}| reaching
that node, the sum of their target attributes (

∑
yi ), and the sum of the squared target

attributes (
∑

y2i ), and (iii) the same statistics for the samples reaching the right child
node of the current node.

3.3.2 Error reduction

Extending the current model with new rules so as to improve the system’s overall per-
formance requires, for each existing rule, the creation and evaluation of all possible
extensions—evaluating an extension here means determining the empirical perfor-
mance of the (modified) system as a whole. As before, by a possible rule extension
we mean replacing a fuzzy set Ai, j in a rule antecedent by new fuzzy sets A′

i, j and
A′′
i, j , which are produced by bisecting the support of Ai, j at some suitable splitting

point. Even if these splitting points were organized in a binary search tree structure,
the number of updates required after observing a new example would no longer be
logarithmic but linear. Indeed, every possible extension means fitting a step-wise lin-
ear function, at each splitting value, on the entire training data (or updating the linear
function on the new data instance).

To counter the aforementioned problem, we suggest a heuristic that simultaneously
chooses a promising splitting value and fits a stepwise linear function for each candi-
date extension rule. The splitting value is chosen by adaptively shifting (increasing or
decreasing) it based on the performance of new candidate rules.More formally, let Ai, j

be a fuzzy set characterized by the S-shaped membership function μ
(i)
j , parametrized

by (a, b, c, d), and let NRi be the set of instances (x, y) covered by the rule Ri . Let
q ∈ [a, d] be the initial splitting value from which A′

i, j and A′′
i, j are constructed via

suitable parametrizations (a, b, q + ρ1, q + ρ2) and (q − ρ2, q − ρ1, c, d) of their
membership functionsμ

′(i)
j andμ

′′(i)
j , respectively.We initialize q by the current mean

of the observed values x j . The values ρ1 and ρ2 control the steepness of the S-shaped
function and are chosen in proportion to the observed variance. From the membership
functions μ

′(i)
j and μ

′′(i)
j and the parent rule Ri , the new candidate rules R′

i and R′′
i are

created (see lines 1–9 of Algorithm 2).
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Upon observing a new example (x, y), both the membership degrees μ
′(i)
j (x),

μ
′′(i)
j (x) and the errors committed by each candidate rule, err1 = (ω′(i) · x − y)2,

err2 = (ω′′(i) · x − y)2, are computed. If the “winner rule”, i.e., the candidate rule by
which the example is covered the most, commits an error that is larger than the error
committed by the other candidate rule (covering the example to a lesser degree), we
consider this as an inconsistency. The latter can be mitigated by shifting the splitting
value q right or left, in proportion to the error committed by each candidate extension
(see lines 11–21 of Algorithm 2).

Algorithm 2: GenUpdateERCandidates – ErrorReduction
Input: Ri , Si , (xt , yt ):
Ri = (Mi , ωi ): the rule whose extensions should be created/updated
Mi : the set of fuzzy sets conjugated in the premise.
ωi : the vector of coefficients of the linear function.
Si = {(R′

i , R
′′
i )}: Set of candidate extensions of rule Ri .

(xt , yt ): a new training example.
1 if Si is Empty then
2 for j ∈ {1, . . . , d} do
3 Update Mean(xt j ), Var(xt j )

4 M ′
i = {μ′(i)

j = (a, b, q + ρ1, q + ρ2)} ∪ Mi \ {μ(i)
j }

5 M ′′
i = {μ′′(i)

j = (q − ρ2, q − ρ1, c, d)} ∪ Mi \ {μ(i)
j }

6 ω′
i = ωi , ω′′

i = ωi
7 R′

i = (M ′
i , ω

′
i ), R′′

i = (M ′′
i , ω′′

i )

8 Si = Si ∪ {s j = (R′
i , R

′′
i )}

9 else
10 for j ∈ {1, . . . , d} do
11 Find s j = (R′

i , R
′′
i ) ∈ Si s.t.

R′
i = (M ′

i , ω
′
i ), R

′′
i = (M ′′

i , ω′′
i ) ∧ Mi \ {M ′

i } = Mi \ {M ′′
i } = {μ(i)

j }
12 m1 = μ

′(i)
j (xt j ), error1 = (ω′

i · xt − yt )2

13 m2 = μ
′′(i)
j (xt j ), error2 = (ω′′

i · xt − yt )2

14 if m1 > m2 ∧ error1 > error2 then
/* shift q to the left */

15 q = q − ηΨi (xt )(error1 − error2)

16 else if m1 < m2 ∧ error1 < error2 then
/* shift q to the right */

17 q = q − ηΨi (xt )(error1 − error2)

18 Update μ
′(i)
j = (a, b, q + ρ1, q + ρ2)}

19 Update μ
′′(i)
j = (q − ρ2, q − ρ1, c, d)}

/* Update ω′
i , ω

′′
i , Algorithm 3 */

20 UpdateConsequent(Ri , Si )

In the explanations above, we outlined two ways of splitting an S-shaped function
into two such functions of similar shape. In the beginning, however, the default rule
contains only unbounded fuzzy sets characterized by μvoid. A split of an unbounded
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fuzzy set produces two sets with membership functions μleft-ub(x) and μright-ub(x),
respectively, which cover the resulting half spaces (with some degree of overlap).
Similarly, a split of a right- or left-unbounded membership function leads to a right-
or left-unbounded and an S-shaped function.

Recall that AMRules adopts only a single rule from the two candidates emerging
from a rule expansion (cf. Sect. 2.2). More specifically, AMRules keeps the rule with
minimum weighted variance and discards the other candidate as well as the parent
rule from the original rule set. Since the resulting rule set does not form a partition
of the instance space, this strategy requires a default rule covering the space that is
not covered by any other rule. Motivated by this strategy, we also study the effect
of adopting only a single instead of both rule extensions. Thus, we distinguish the
following two strategies.

1. Single Extension: Only the best extension is added to the rule set, while the other
one is discarded. The parent rule is also discarded unless it is the default rule.
The choice of the best rule depends on the criterion used for splitting: either the
weighted variance reduction or the weighted SSE.

2. All Extensions: Both extensions are added to the rule set, and the parent rule is
removed. This approach makes the whole system of rules equivalent to a tree
structure.

The two adaptation strategies will be revisited in the context of change detection in
Sect. 3.6. Amore detailed exposition of the adaptation strategies is given inAlgorithms
5 and 4.

3.4 Rule consequents

FLEXFIS makes use of recursive weighted least squares estimation (RWLS) (Ljung
1999) to fit linear functions as rule consequents. This approach is computationally
expensive, as it requires multiple matrix inversions. In our approach, and similar to
AMRules, we learn consequents more efficiently using gradient methods.

When a new training instance (xt , yt ) arrives, TSK-Streams produces a prediction
ŷt , the squared error of which can be obtained as follows:

Et = (yt − ŷt )
2 (18)

=
⎛

⎝yt −
⎛

⎝
∑

Ri∈RS

Ψi (xt )∑
Rk∈RS Ψk(xt )

d∑

j=0

ωi, j xt, j

⎞

⎠

⎞

⎠

2

, (19)

where RS is the current set of rules. According to the technique of stochastic gradient
descent, the coefficientsωi, j are thenmoved into the negative direction of the gradient,
with the length of the shift being controlled by the learning rate η:

ω ← ω − η∇Et . (20)
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Thus, the following (component-wise) update rule is obtained:

ωi, j ← ωi, j − 2 η(yt − ŷt )

⎛

⎝
∑

Ri∈RS

Ψi (xt )∑
Rk∈RS Ψk(xt )

xt, j

⎞

⎠

The process of updating the rule consequents is summarized in Algorithm 3, which
also updates the consequents of the rule’s extension (when the error reduction strategy
is used).

Algorithm 3: UpdateConsequent
Input: RS = {(R, S)}, Ri , Si , (xt , yt )
RS = {(R, S)}: the set of all rules and their extensions
Ri = (Mi , ωi ): the rule whose consequent and the consequents of its extensions should be updated
Mi : the set of fuzzy sets μ′

1, . . . , μ
′
d defining the rule premise

ωi : the vector of coefficients of the linear function
Si = {(R′

i , R
′′
i )}: Set of candidate extensions of rule Ri

(xt , yt ): a new training example
1 m1 = ∑

R j∈RS μ j (xt )

2 m2 = ∑
R j∈RS μ j (xt )l j (xt )

3 μi (xt ) = �(μ
(i)
1 (xt,1), . . . , μ

(i)
d (xt,d ))

4 if μi (xt ) > 0 then
5 for (R′

i , R
′′
i ) ∈ Si do

6 μ′
i (xt ) = �(μ

′(i)
1 (xt,1), . . . , μ

′(i)
d (xt,d ))

7 μ′′
i (xt ) = �(μ

′′(i)
1 (xt,1), . . . , μ

′′(i)
d (xt,d ))

8 m1′ = m1 − μi (xt ) + μ′
i (xt ) + μ′′

i (xt )
9 m2′ = m2 − μi (xt )li (xt ) + μ′

i (xt )l
′
i (xt ) + μ′′

i (xt )l ′′i (xt )

10 ω′
i = ω′

i + η(yt − m2′
m1′ )

(
μ′
i (xt )
m1′ xt

)

11 ω′′
i = ω′′

i + η(yt − m2′
m1′ )

(
μ′′
i (xt )
m1′ xt

)

12 ωi = ωi + η(yt − m2
m1

)
(

μi (xt )
m1

xt
)

3.5 Model structure

TSK-Streams adapts the TSK rule system (that is, the fuzzy sets in the rule antecedents
and the linear function in the consequents) in a continuous manner. While the adapta-
tions discussed so far essentially concern the parameters of the system, the replacement
of a rule by one of its expansions corresponds to a (more substantial) structural change.

For obvious reasons, such changes should be handled with caution, especially when
they lead to an increased complexity of the model. Learning methods therefore tend
to maintain the current model unless being sufficiently convinced that an expansion
will yield an improvement. To decide whether or not a possible expansion should be

123



TSK-Streams: learning TSK fuzzy systems… 1957

adopted, the estimated performance difference is typically taken as a criterion: this
difference should be significant in a statistical sense.

In our algorithm, we make use of Hoeffding’s inequality to support these decisions.
The latter bounds the difference between the empirical mean X̄ of the n i.i.d. random
variables X1, . . . , Xn (having support [a, b] ⊂ R) and the expectation E(X) in terms
of

P
(
|X̄ − E(X)| > ε

)
≤ exp

(
− 2nε2

(b − a)2

)
. (21)

More specifically, when using the error reduction criterion, we replace a rule Ri by
two rules R′

i and R′′
i , considering the reduction in the sum of squared errors (SSE).

That is, the SSE of the current rule set RS is compared with the SSE of all alternative
systems (RS \ Ri ) ∪ {R′

i , R
′′
i }. With SSEbest and SSE2ndbest denoting the expansion

with the lowest and the second lowest error, respectively, the best expansion is adopted
if

SSEbest

SSE2ndbest
< 1 − ε , (22)

or when ε falls below a tie-breaking constant τ . The constant ε is obtained from (21)
by setting the probability to a desired degree of confidence 1−δ, i.e., setting the right-
hand side to 1 − δ and solving for ε; noting that the ratio (22) is bounded in ]0, 1],
b − a is set to 1. Algorithm 4 depicts the system expansion procedure when the error
reduction criterion is applied. The same technique can be used for the single extension
variant, except that the rule Ri is replaced with the extension that achieves the lowest
weighted SSE (provided Ri is not the default rule, otherwise Ri is also kept).

As an alternative to the global error reduction criterion, the variance reduction
approach checks for the decrease in variance for each rule locally. The Hoeffding
inequality is then applied to the ratio of the variance reductions of the best two can-
didate extensions of the same rule Ri . The procedure that performs the expansion is
depicted in Algorithm 5. This strategy can be seen as a model adaptation through local
improvements.

Overfitting is a potential problem when a tree- or rule-based system is extended
merely based on themeasured improvement in the training loss. To circumvent overfit-
ting, pruning is often applied. In our approach, we propose a penalization mechanism
to avoid the danger of overfitting due to an excessive increase in the number of rules.
This mechanism consists of adding a complexity term C to ε. For both extensions
(variance reduction and error reduction), C is set to d−2√|RS|, with d the number of
features and RS the current rule set. Again, we refer to Algorithm 1 for an overview
of the TSK-Streams algorithm (for both alternatives, variance and error reduction).

3.6 Change detection

A concept drift may cause a drop in the performance of a rule. To detect such cases,
we make use of the adaptive windowing (ADWIN) (Bifet and Gavaldà 2007) drift
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Algorithm 4: ExpandSystemER – ErrorReduction
Input: RS = {(R, S)}, δ, τ, n
RS = {(R, S)} = ⋃

Ri

{(Ri , Si )}: rules and extensions

= ⋃

Ri

{(Ri ,
d⋃

j=1
{s j = (R′

i , R
′′
i , SSEi j )}))}

SSEi j : the sum of squared errors committed by the extension j of rule Ri
δ: confidence level
τ : tie-breaking constant
n: number of examples seen by the current system
(xt , yt ): a new training example.

1 let SSEcurrent be the SSE of the current system
2 let spq be the extension with smallest SSE
3 let spq be the extension with second smallest SSE
4 Update SSEcurrent , spq and spq on (xt , yt )

5 ε =
√

ln
(
1
δ

)
(R)2

2n + complexity

6 X = 1
n (SSEpq/SSEuv)

7 Y = 1
n (SSEpq/SSEcurrent )

8 if ((Y + ε) < 1) AND ((X + ε) < 1 OR ε < τ) then
9 if Single Extension then

10 let Rbest ∈ {R′
p, R

′′
p} has the smallest weighted SSE

11 RS = RS ∪ {(Rbest ,GenUpdateE RCandidates(Rbest , ∅, (xt , yt ))}
12 if Rp is not Rde f ault then
13 RS = RS \ {(Rp, Sp)}
14 else
15 RS = RS ∪ {(R′

p,GenUpdateE RCandidates(R′
p, ∅, (xt , yt )),

16 (R′′
p,GenUpdateE RCandidates(R′′

p,∅, (xt , yt ))}
17 RS = RS \ {(Rp, Sp)}

detector. Compared to the Page–Hinkely test (PH) (Page 1954), which is used by
AMRules, ADWIN has the advantage of being non-parametric, which means that it
makes no assumptions about the observed random variable. Besides, only a single
parameter needs to be chosen, namely the tolerance towards false alarms (δadwin). In
our approach, ADWIN is locally applied in each rule. More specifically, given that an
example is covered by a rule, it is applied on the absolute error committed by that rule
on this example.

For the single extension strategy, the rule that suffers from a drop of performance
can be simply discarded. But in the all extensions strategy and upon detecting a drift in
the rule Rp = (Mp,ωp), we find its sibling rule Rq = (Mq ,ωq), fromwhich it differs

by only one single literal (i.e., there is a fuzzy set μ(p)
j ∈ Mp on the j th attribute that

satisfies the following criterion: for all i ∈ {1, . . . , d}\{ j} : μ
(p)
i ∈ Mq ∧μ

(q)
i ∈ Mp).

To remove the rule Rp, it is retracted from the rule set, and its sibling rule Rq is updated

by replacingμ
(q)
j withμ

(p)
j ∪μ

(q)
j . In case the sibling rule Rq has already been extended

before the drift is detected, the same procedure is applied recursively to the children
of this rule.
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Algorithm 5: ExpandSystemVR – VarianceReduction
Input: RS = {(R, S)}, δ, τ, n
RS = {(R, S)} = ⋃

Ri

{(Ri , Si )}: rules and extensions

= ⋃

Ri

{(Ri ,
d⋃

j=1
{s j = (R′

i , R
′′
i , Var Redi j )}))}

Var Redi j : variance reduction caused by the extension j of rule Ri
δ: confidence level
τ : tie-breaking constant
n: number of examples seen by the current system
(xt , yt ): a new training example.

1 for (Ri , Si ) ∈ RS do
2 let sbest = (R′

i , R
′′
i , Var Redbest ) ∈ Si has the largest VarRed

3 let s2ndbest = (R′
i , R

′′
i , Red2ndbest ) ∈ S has the 2nd largest VarRed

4 ε =
√

ln
(
1
δ

)
(R)2

2n + complexity

5 X = Var Red2ndbest
V ar Redbest

6 if ((X + ε) < 1 OR ε < τ) then
7 if Single Extension then
8 let Rbest ∈ {R′

i , R
′′
i } has the largest weighted VarRed

9 RS = RS ∪ {(Rbest ,GenerateExtendedRules(Rbest )}
10 if Ri is not Rde f ault then
11 RS = RS \ {(Ri , Si )}
12 else
13 RS = RS ∪ {(R′

i ,GenerateExtendedRules(R′
i ),

14 (R′′
i ,GenerateExtendedRules(R′′

i )}
15 RS = RS \ {(Ri , Si )}

4 Empirical evaluation

To compare our method TSK-streams with existing algorithms, we conducted a series
of experiments, in which we investigated the algorithms’ predictive accuracy, their
runtime, and the size of the models they produce.

4.1 Methods, data, and experimental setup

TSK-Streams is implemented in MOA2 (Massive Online Analysis), which is an open
source software framework for mining and analyzing large data sets in a stream-
ing mode (Bifet et al. 2010). In our experiments, TSK-Streams is compared with
AMRules, FIMTDD, ARF-Reg, and FLEXFIS. Both AMRules and FIMTDD are
implemented in MOA’s distribution. We implement ARF-Reg as described in the
original paper (Gomes et al. 2018). FLEXFIS is implemented in Matlab. For the
(hyper-)parametrization of all methods, we perform grid search as described in Sect. 1.

2 http://moa.cms.waikato.ac.nz.
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Table 1 Data sets

# Name Synthetic Instances Attributes

1 2dplanes Yes 40,768 11

2 ailerons No 13,750 41

3 bank8FM Yes 8192 9

4 calHousing No 20,640 8

5 elevators No 8752 19

6 fried Yes 40,769 11

7 house16H No 22,784 16

8 house8L No 22,784 8

9 kin8nm – 8192 9

10 mvnumeric Yes 40,768 10

11 pol No 15,000 49

12 puma32H Yes 8192 32

13 puma8NH Yes 8192 9

14 ratingssweetrs – 17,903 2

15 BNG-stock Semi 59,049 10

16 BNG-cholesterol Semi 100,000 14

17 BNG-echoMonths Semi 17,496 10

18 BNG-wine-quality Semi 100,000 14

The test-then-train protocol was used for all experiments. According to this proto-
col, each instance is used for both testing and training: The model is evaluated on the
instance first, and a learning step is carried out afterward. Experiments are performed
on benchmark data sets3 collected from the UCI repository4 (Dua and Graff 2019) and
other repositories5; a summary of the type, the number of attributes, and the number
of instances of each data set is given in Table 1.

The data sets starting with prefix BNG- are obtained from the online machine
learning platform OpenML (Bischl et al. 2017); these large data streams are drawn
from Bayesian networks as generative models, after constructing each network from
a relatively small data set (we refer to van Rijn et al. (2014) for more details).

4.2 Results

In the first part of the evaluation, we compare the four variants of our own method:
variance reduction versus error reduction, and the extension using a single candidate
versus the extension for both candidates. Let us note that the combination of error
reductionwith the extension for both candidates essentially corresponds to the previous
version by Shaker et al. (2017).

3 The first 14 data sets are the same as those used in (Almeida et al. 2013).
4 http://archive.ics.uci.edu/ml/.
5 https://github.com/renatopp/arff-datasets/tree/master/regression, http://tunedit.org/repo/UCI/numeric.
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Table 2 shows the average RMSE (root mean squared error) and the corresponding
standard error on ten rounds for each data set. In this table, the last row shows the
number of statistically significantwins/losses of the first three against the fourth variant
(with variance reduction and consideration of both candidates); these tests apply the
Wilcoxon signed-rank test over the paired performances of the 10 iterations with
confidence level α = 0.05. From the results, the fourth variant appears to be superior
to the other variants. Therefore, we adopt this variant (simply referred to as TSK-
Streams in the following) and consider it for further comparison with state-of-the-art
methods. One way to understand this result is to realize that keeping both candidate
extensions for the variance reduction case is better than a single candidate, since the
variance reduction does not only reduce the variance in comparison to the original rule,
but also leads to decreasing the variance in each of the two candidate rules. The same
cannot be said about the error reduction, as it is ameasure of theweighted errors in each
candidate. Hence, the weighted error of well and poorly performing candidate rules
might still lead to reducing the error. In such a case, it would be more reasonable to
consider only the best performing candidate, which explains why the single candidate
is better when considering the error reduction as criteria. One evidence supporting this
claim is that on average, the two candidates strategy produces a smaller number of rules
(and shorter runtime) than the single candidate strategy, which means that the latter
becomes sometimes slowed down (or gets stuck) with rules that are performing poorly.
Tables 3 and 4 show the comparison between the different TSK-Streams variants in
terms of model size and runtime, respectively.

Table 5 presents the performance comparison between TSK-Streams and the other
approaches, AMRules, FIMTDD, ARF-Reg, and FLEXFIS. Overall, TSK-Streams
compares quite favourably and performs best in terms of the average rank statistic.
Moreover, at least on 9 of the 18 data sets, its performance is statistically better (also
according to the Wilcoxon signed-rank test at significance level α = 0.05) than that
of any other approach. In spite of the limited number of data sets, the advantage over
AMRules and ARF-Reg is even statistically significant; this is not the case, however,
for FIMTDD and FLEXFIS (cf. Fig. 3).

Other criteria important for the applicability of an approach in the setting of data
streams include model complexity and efficiency. Obviously, these properties are not
independent of each other, because more time is needed to maintain and adapt larger
models. We measure the two criteria, respectively, in terms of the number of rules/leaf
nodes in the model eventually produced by a learning algorithm and the average time
(in milliseconds) the algorithms need to process a single instance. We consider the
latter more informative than the total runtime on an entire data set (stream), because
the processing time per instance is more relevant for the possible application of an
algorithm under real-time conditions. Table 6 shows that TSK-Streams tends to pro-
duces smaller models than FIMTDD and ARF-Reg, which are still slightly larger than
those of FLEXFIS and AMRules. Table 7 shows that TSK-Streams is also slower on
average.Wewould argue, however, that this is not important, as it is still extremely fast
in terms of absolute runtime: Being able to predict and learn from each new instance
in just a few milliseconds, it certainly meets the requirements for learning on data
streams in common practical applications.
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Fig. 3 Comparison of all learners using the Nemenyi test (Demsar 2006). For a confidence level of 0.05,
the critical difference (CD) for average ranks is 1.43, which indicates that the advantage of TSK-Rules is
statistically significant in the cases of FIMTDD and ARF-Reg but neither for AMRules nor for FLEXFIS

5 Conclusion

In this paper, we introduced a new fuzzy rule learner for adaptive regression on data
streams, called TSK-Streams. This method combines the effectivity of concepts for
rule induction as implemented in AMRules with the expressivity of TSK fuzzy rules.
TSK-Streams as presented in this paper is an improved variant of an earlier version
(Shaker et al. 2017); modifications essentially concern all parts of the learning algo-
rithm, including the discretization, the rule extension, and the drift detection.

In an experimental study with real and synthetic data, we compared TSK-Streams
with state-of-the-art regression algorithms for learning from data streams: AMRules,
FIMTDD,ARF-Reg and FLEXFIS. The results are very promising, especially because
our learner achieves the best performance in terms of predictive accuracy. This is
remarkable, given that AMRules and FLEXFIS are truly strong (and indeed still
competitive) learners—these methods have been developed over many years, and are
therefore difficult to beat.

Our current implementation of TSK-Streams can be obtained from our Github
repository.6

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
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material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Hyperparameter optimization

We perform a hyperparameter optimization for all methods based on Hoeffding’s
inequality (i.e., TSK-Streams, AMRules, FIMTDD, and ARF-Reg). Three parameters
were tuned, (i) the confidence level δ ∈ {10−7, 10−5, 10−3, 10−2, 10−1}, (ii) the tie
breaking threshold t ∈ {0.05, 0.1, 0.2}, and (iii) the learning rate for stochastic gradient

6 https://github.com/shaker82/TSK-Streams.
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descent update l ∈ {0.02, 0.05, 0.1}. On each data set, we perform three rounds of grid
search using 5000 instances selected at random. The parameters found are as follows:

– TSK-Streams

– δ:[10−7, 10−5 (house16h), 10−3 (elevators), 10−2 (pol, fried), 10−1 (2dplanes,
ailerons, bank8FM, calhousing, house8, kin8nm, mvnumeric, pol, puma32H,
puma8NH, ratingssw., BNG-stock, BNG-chol., BNG-echo, BNG-wine.)]

– t :[0.05 (2dplanes, ailerons, bank8FM, calhousing, elevators, house8, mvnu-
meric, pol, puma32H, puma8NH, ratingssw., BNG-stock, BNG-chol., BNG-
echo, BNG-wine.), 0.1, 0.2 (fried, house16h, kin8nm)]

– l:[0.02, 0.05 (house8), 0.1 (2dplanes, ailerons, bank8FM, calhousing, ele-
vators, fried, house16h, kin8nm, mvnumeric, pol, puma32H, puma8NH,
ratingssw., BNG-stock, BNG-chol., BNG-echo, BNG-wine.)]

– AMRules

– δ:[10−7 (BNG-echo, BNG-wine., ailerons), 10−5 (puma32H, puma8NH),
10−3 (2dplanes, BNG-chol., BNG-stock, bank8FM, elevators, house16h,
house8, kin8nm, mvnumeric, ratingssw.), 10−2 (fried, pol), 10−1 (calhous-
ing)]

– t :[0.05 (BNG-chol., BNG-wine., ailerons, calhousing, elevators, puma32H,
puma8NH, ratingssw.), 0.1 (bank8FM, house8, pol), 0.2 (2dplanes, BNG-
echo, BNG-stock, fried, house16h, kin8nm, mvnumeric)]

– l:[0.02 (BNG-chol., BNG-wine., ratingssw.), 0.05 (2dplanes, BNG-echo,
bank8FM, house16h, house8, kin8nm, pol, puma32H, puma8NH), 0.1 (BNG-
stock, ailerons, calhousing, elevators, fried, mvnumeric)]

– FIMTDD

– δ:[10−7 (BNG-echo, BNG-wine., ailerons), 10−5 (puma32H, puma8NH),
10−3 (2dplanes,BNG-chol., BNG-stock, bank8FM, elevators, fried, house16h,
house8, kin8nm, mvnumeric, ratingssw.), 10−2 (pol), 10−1 (calhousing)]

– t :[0.05 (BNG-chol., BNG-wine., ailerons, calhousing, elevators, puma32H,
puma8NH, ratingssw.), 0.1 (bank8FM, house8,pol), 0.2 (2dplanes, BNG-echo,
BNG-stock, fried, house16h, kin8nm, mvnumeric)]

– l:[0.02 (BNG-chol., ratingssw.), 0.05 (2dplanes, BNG-echo, BNG-wine.,
bank8FM, house16h, house8, kin8nm, pol, puma32H, puma8NH), 0.1 (BNG-
stock, ailerons, calhousing, elevators, fried, mvnumeric)]

SinceARF-Reg is a randomforest of FIMTDD, thebest parameters forFIMTDDare
also used for ARF-Reg. For the other parameters, we adopt the suggested parametriza-
tion (Gomes et al. 2018) by setting λ = 6, the ensemble size L = 10, and the number
of featuresm = √

d+1, with d being the total number of features. FLEXFIS is imple-
mented in Matlab. Its parameters were tuned with the help of a function specifically
offered for that purpose. The only exception is the “forgetting parameter”, for which
the value 0.999 was (manually) found to provide the best performance.
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