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Abstract

Salient but task-irrelevant distractors interfere less with visual search when they

appear in a display region where distractors have appeared more frequently in the past

(‘distractor-location probability cueing’). This effect could reflect the (re-)distribution of a

global, limited attentional ‘inhibition resource’. Accordingly, changing the frequency of

distractor appearance in one display region should also affect the magnitude of interference

generated by distractors in a different region. Alternatively, distractor-location learning may

reflect a local response (e.g., ‘habituation’) to distractors occurring at a particular location. In

this case, the local distractor frequency in one display region should not affect distractor

interference in a different region. To decide between these alternatives, we conducted three

experiments in which participants searched for an orientation-defined target while ignoring a

more salient orientation distractor that occurred more often in one vs. another display region.

Experiment 1 varied the ratio of distractors appearing in the frequent vs. rare regions

(60/40–90/10), with a fixed global distractor frequency. The results revealed the cueing effect

to increase with increasing probability ratio. In Experiments 2 and 3, one (‘test’) region was

assigned the same local distractor frequency as in one of the conditions of Experiment 1, but

a different frequency in the other region – dissociating local from global distractor frequency.

Together, the three experiments showed that distractor interference in the test region was

not significantly influenced by the frequency in the other region, consistent with purely local

learning. We discuss the implications for theories of statistical distractor-location learning.

Keywords: visual search, visual attention, search guidance, attentional priority, attentional

capture, statistical learning, habituation

Public Significance Statement: We are frequently distracted by salient visual stimuli which

are irrelevant to the task at hand. Previous studies have shown that ‘knowledge’ of the

location(s) where a distractor is most likely to occur helps the observer to mitigate

distraction. In this study we compared different theories of how the frequency and spatial

distribution of distractor occurrence in different locations could influence the ability to avoid

distraction. The results favored a local learning account: the ability to avoid distraction by

distractors occuring in a particular spatial region is primarily influenced by how often

distractors have occurred in that region.
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Introduction

In everyday life, we often need to ignore irrelevant information while focusing on what

is important for the task at hand. However, salient events can capture our attention even

when they are irrelevant. Interestingly, attentional capture by salient but irrelevant distractor

stimuli can be reduced as a consequence of increased exposure to such distractors. This

has been shown in ‘additional-singleton’ visual-search paradigms, in which participants

search for a singleton target (defined, e.g., by a unique orientation or color) in search

displays that, on some proportion of trials, also contain an additional, task-irrelevant,

singleton distractor (e.g., Goschy et al., 2014; Sauter et al., 2018; Wang & Theeuwes, 2018;

Zhang et al., 2019). Response times (RTs) to the target in such search tasks are generally

slower on trials on which a singleton distractor is present as compared to absent – an

interference effect taken as indicative of inadvertent ‘attentional capture’ by the distractor on

a proportion of trials. Importantly, distractor interference can be significantly down-modulated

by statistical learning. In particular, the interference is substantially reduced when distractors

occur frequently as compared to only rarely anywhere in the search display (Müller et al.,

2009; Won et al., 2019), where this learning effect may also exhibit a degree of position

specificity: if distractors occur more frequently in one region (encompassing multiple

locations) or at one specific location of the display, distractors at those locations cause less

interference compared to distractors at rare locations (Allenmark et al., 2019; Goschy et al.,

2014; Sauter et al., 2018; Wang & Theeuwes, 2018; Zhang et al., 2019). In analogy to the

‘target-location probability-cueing’ effect (see below), this reduction of interference for

frequent distractor locations is often referred to as ‘distractor-location probability cueing’.

However, while distractor-location probability cueing has been demonstrated in many

studies, the underlying mechanisms remain controversial (Gaspelin & Luck, 2018a; Geng et

al., 2019; van Moorselaar et al., 2021; van Moorselaar & Slagter, 2020).

Preceding the recent focus on distractor handling, RTs and response accuracy in

search tasks had been established to depend on the probability distribution of target

locations: RTs are faster and response accuracy is improved when the target on a given trial

appears at a location where it had been encountered more frequently in the past (e.g., Geng

& Behrmann, 2002; Shaw & Shaw, 1977). In classical demonstration of this target-location

probability-cueing effect (e.g., Geng & Behrmann, 2002; Shaw & Shaw, 1977), participants
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searched for a single, briefly presented, letter (shown alone, without any non-targets, in the

display for brief, 20–30-ms durations and terminated by a noise mask), which appeared

more often at some locations than others, and reported whether the letter was a ‘T’, ‘E’, or

‘V’. Shaw and Shaw (1977) showed that the accuracy in this target task could be well

explained by a model which assumed that a limited, attention-related resource was optimally

allocated (in terms of maximizing the overall target-detection probability) based on the

frequency distribution of the location of the target letter. By analogy, distractor-location

probability cueing might similarly reflect optimal distribution of a limited resource, such as

assigning less of a (target-)attention-related resource or more of a

distractor-inhibition-related resource to frequent versus rare distractor locations.

Critically, according to an optimal resource-distribution account, distractor-location

probability learning would be global, in the sense that changing the spatial distribution of

distractor occurrence would influence not only the amount of interference at any given

location, but also the interference at any other locations – because allocating a greater

portion of a limited resource to one location reduces the portion available for the other

locations. Alternatively, distractor-location probability learning might be a purely local effect,

such that the frequency with which a distractor occurs at one location influences only that

specific location (and perhaps some nearby locations). One possible local mechanism could

be ‘habituation’, which has been proposed to play a role in learning to filter out irrelevant

distractors (Duncan & Theeuwes, 2020; Turatto, Bonetti, & Pascucci, 2018; Turatto, Bonetti,

Pascucci, et al., 2018; Won & Geng, 2020). In the context of distraction paradigms,

habituation would mean that the attentional ‘orienting reflex’ to a distractor stimulus becomes

weaker with increased exposure to the stimulus (Sokolov, 1963). However, while habituation

could be local, it could conceivably also be global, or a combination of both (e.g., Valsecchi

& Turatto, 2021).

Habituation could be local if repeated exposure to distractors in a spatial region

results in a reduced ‘orienting reflex’ to, and consequently reduced interference by,

distractors in that region. It could also be global if observers learn to ignore objects with

certain features regardless of where they occur, that is: repeated exposure to a particular

type of distractor (e.g., a display item singled out from the non-distractor items by a particular

color, such as a red shape among green shapes) may lead to reduced interference from

such (red) distractors regardless of where they occur in the display (consistent with reports

that in search for a shape-defined target, the interference caused by singleton color
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distractors decreases with globally increasing distractor frequency; e.g., Bogaerts et al.,

2022; Geyer et al., 2008; Müller et al., 2009; Won et al., 2019). Such global habituation

would necessarily be (distractor-) feature- (or, more generally, dimension-) based, whereas

local habituation may be purely location-based, or local-feature based, or a combination of

both. Of note, only local habituation could explain (locally) reduced distractor interference for

a frequent, compared to a rare, distractor region or location. Also, global habituation makes

the opposite prediction to the limited-resource account in terms of global effects, namely:

globally reduced distractor interference even if distractor frequency is increased in a specific

region or location, versus reduced interference in that region or location along with increased

interference by distractors occurring at other locations. The aim of the present study was to

examine these differential predictions regarding global effects in order to distinguish between

the different local and global theories of distractor-location probability cueing.

In order to distinguish between the different local and global accounts of

distractor-location probability cueing outlined above, we performed three visual search

experiments. In all experiments, the task was to find an orientation-defined target, a bar tilted

13° from the vertical, while ignoring a distractor defined in the same dimension as the target

(orientation), a horizontally oriented bar, where this distractor appeared more often in the top

or the bottom region of the search display (see Figure 2 below). Compared to the more

widely used ‘different-dimension distractors’ (such as a color singleton in search for a

shape-defined target), distractors defined in the same dimension as the target give rise to

greatly increased interference effects not only in terms of RTs, but also oculomotor and

electrophysiological measures of true attentional capture (i.e., mis-guidance of the eye or

covert attention to the distractor location, prior to re-allocation of the eye or attention to the

target; e.g., Sauter et al., 2018, 2021; Liesefeld, Liesefeld, & Müller, 2017). Along with the

greater capture effects, same-dimension distractors also generate increased

distractor-location probability-cueing effects compared to different-dimension distractors

(Sauter et al., 2018, 2021; Liesefeld & Müller, 2021). We systematically varied the frequency

with which (same-dimension) distractors occurred in the frequent and rare distractor regions,

along with (in some cases) the global distractor frequency, between experiments or between

groups within an experiment.

The aim of Experiment 1 was to examine how the reduction of distractor interference

in a frequent compared to a rare region depends on the distractor probability ratio between

the two regions, while keeping the global distractor frequency (i.e., singleton distractor
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occurrence) fixed. To this end, we tested, in different groups of participants, four different

conditions, all with a distractor in half of the trials, but with different ratios of distractors in the

frequent and rare regions: 60/40, 70/30, 80/20, and 90/10, respectively. Both the

local-habituation and the limited-resource theory predict that distractor interference in the

frequent distractor region should be the lower and the interference in the rare region the

higher the more unequal the ratio. Thus, Experiment 1 was mainly intended to provide a

baseline against which to compare the results of the other two experiments.

Experiment 2 was designed to examine the global effects, if any, of changing the

distractor frequency in one region – specifically by reducing the distractor frequency in the

rare region by 75% compared to the 60/40 condition of Experiment 1 –, while keeping the

distractor frequency in the other – the frequent – region fixed (thereby also reducing the

overall distractor frequency; see Figure 1). In this case, the different theories make different

predictions of how, if at all, distractor interference in the frequent region (where the distractor

frequency was unchanged) would differ from the 60/40 condition Experiment 1: (i) ‘local

habituation’ predicts no difference in distractor interference since only the local frequency

matters; (ii) the ‘limited-resource’ account predicts reduced interference since the frequent

region should receive more of the limited resource by lowering the frequency of distractors in

the rare region; and (iii) ‘global habituation’ would predict increased interference since the

global distractor frequency is reduced.

Finally, Experiment 3 had two purposes, the first being to examine the effect of global

distractor frequency, while keeping the ratio between the two regions fixed: we used the ratio

of 80/20, which had been tested in one condition in Experiment 1, but with global distractor

prevalence reduced from 50% (in Experiment 1) to 12.5% (in Experiment 3). Additionally,

Experiment 3 allowed us to examine whether the amount of interference caused by

distractors in a region depends on whether this region is the frequent or the rare distractor

region, since the frequent region in Experiment 3 was designed to have the same local

distractor frequency as the rare region in the 80/20 condition of Experiment 1. (i) The

limited-resource theory would predict that, even though the local frequency is the same,

distractor interference should be higher in the rare region in the 80/20 condition of

Experiment 1 compared to the frequent region in Experiment 3; (ii) ‘global habituation’ would

make the opposite prediction (because distractors are less frequent overall in Experiment 3

compared to Experiment 1); and (iii) ‘local habituation’ would predict no difference in
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distractor interference between the rare region in the 80/20 condition of Experiment 1 and

the frequent region in Experiment 3 (because the local frequency is the same).

Group Distractor
ratio

Distractor
Prevalence

Distractor region frequency

Frequent Rare

E1 60/40 60 / 40 50% 30% 20%

E1 70/30 70 / 30 50% 35% 15%

E1 80/20 80 / 20 50% 40% 10%

E1 90/10 90 / 10 50% 45% 5%

E2 50% 60 / 40 50% 30% 20%

E2 35% 86 / 14 35% 30% 5%

E3 80 / 20 12.5% 10% 2.5%

Table 1: The different experimental conditions performed by the different groups in the three

experiments. The distractor region ratio column shows the ratio of the distractor presence in the frequent vs. rare

regions. The column of “Distractor prevalence” indicates the percentage of distractor-present trials in the total

trials, while the columns of distractor region frequency showed the regional frequencies (frequent vs. rare) of the

distractor-present trials.
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Figure 1: Visual illustration of the different experimental conditions performed by the different groups

in the three experiments (listed in Table 1). Each pair of dots connected by a line indicates the

frequent and rare distractor region in one experimental group. The x-coordinates represent the region

distractor frequency, while the y-coordinates represent the ratio between the frequent and rare region

distractor frequencies in a group. Critically, the vertical dashed lines indicate the same distractor

region frequency across experiments. The local habituation account would predict the same distractor

interference for the same region frequency.

The whole study was designed as a one coherent whole (to realize all necessary

comparisons to decide among the three accounts) to compare conditions within a given

experiment but also across experiments. However, due to the restrictions on laboratory

studies imposed by the CORONA pandemic, only one experiment could be conducted onsite

(Experiment 1), while two had to be run online (Experiments 2 and 3), as participants

earmarked for these experiments could no longer be invited to the laboratory. To ensure

comparability across experiments, we ran conditions with the same distractor-region ratio

(60/40) and a distractor prevalence of 50% both onsite (Experiment 1) and online

(Experiment 2). The two experiments yielded similar results, in terms of both the common,

distractor-absent (trial) baseline and the distractor-interference magnitude on trials with a

distractor in the frequent and, respectively, the rare region.

More generally, the planned cross-group comparisons may be compromised by

different groups by chance exhibiting different levels of baseline performance (RTs on

distractor-absent trials). For instance, one group may process the search displays generally

slower than another, magnifying their distractor-interference effects. Accordingly, a difference

in interference may be falsely attributed to the manipulation of the local/global distractor

probability, when in fact it just reflects a baseline shift. To guard against this, and following

previous studies (e.g., Brascamp et al., 2011; Kruijne et al., 2015), we also examined the

patterns of interference effects related (‘normalized’) to the distractor-absent baseline. Of

note, the essential results turned out just the same whether examined in terms of the

absolute or the normalized interference scores.

To preview the outcome of the study: overall, the data argue strongly in favor of ‘local’

learning of, and adaptation to, the frequencies with which distractors occur at particular

display locations (relatively independent of the global distractor frequency). In the

Discussion, we consider the relation of local learning to ‘habituation’ accounts of the

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489854doi: bioRxiv preprint 

https://paperpile.com/c/InS0yS/IUuS+4G38/?prefix=for%20examples%20of%20previous%20studies%20that%20have%20used%20normalized%20RTs%20to%20compensate%20for%20individual%20differences%20in%20baseline%20RT%20see%20e.g.,
https://doi.org/10.1101/2022.04.29.489854
http://creativecommons.org/licenses/by-nd/4.0/


9

interference reduction engendered by statistical distractor-location learning, as well as

where, in the functional architecture of search guidance, local learning may be implemented.

Experiment 1

Experiment 1 examined how the amount of interference caused by distractors

occurring in a frequent and, respectively, a rare distractor region changes as a function of

the bias in the distractor-location distribution, importantly with a fixed global distractor

frequency. For this purpose we compared four bias conditions, tested in four different1

groups of participants. In each condition, a distractor was present in half of the trials and was

more likely to occur in one versus the other region of the search display (either top or bottom

region, counterbalanced across participants), with the proportion of distractors that appeared

in the frequent region varying from 60% to 90% (see Figure 1).

Methods

Participants

A total of 88 participants (mean age: 26.7 years; 60 females) were recruited from the

student population at Ludwig-Maximilians-University (LMU) Munich, with 22 participants

randomly assigned to each of the four groups. The sample size was determined based on

previous studies, in particular, Sauter et al. (2018), who – with same-dimension distractors

and a probability ratio of 90/10 between the frequent and rare distractor region – had an

effect size of dz=1.3 for the distractor-location probability-cueing effect. Proceeding from this,

we chose the sample size to have 90% power with half this effect size (assuming a

one-tailed test since we expected distractor interference to be reduced, not increased, in the

frequent distractor region), in order have enough power to resolve the smaller distractor

1 In this regard, Experiment 1 is similar in design to Lin et al. (2020), who however used a
variation of Theeuwes’ (1992) standard ‘additional-singleton paradigm (i.e., search for a
shape-defined target singleton, in the potential presence of an ‘additional’ color-defined distractor
singleton), in which – critically – a single location (out of 8 possible locations) was most likely to
contain a distractor, whereas all other locations had the same, low distractor probability. However, as
we have pointed out elsewhere, there is a potential problem with the ‘single-likely-distractor-location’
paradigm, namely: co-variation of distractor-location probability with target-location probability, making
it difficult to determine the interference effects caused by distractors at the likely or, respectively, an
unlikely location unconfounded by target-location learning. For this reason, we prefer the
region-cueing paradigm, that avoids such confounding. For more details, as well as a reanalysis of Lin
et al.’s data, see Appendix 2.
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location effects that we expected to find in the conditions with smaller probability ratios. In

addition, we wanted to ensure sufficient power for resolving the differences in the size of the

probability-cueing effect among (at least the more extreme of) the four different

probability-ratio groups. A previous study by Lin et al. (2021), which used a very similar

between-group design to ours, achieved an effect size of = 0.24 for the critical interactionη
𝑝
2 

between the within-participant factor Distractor Location (frequent, rare location) and the

between-participant factor (frequent/rare-location) Probability Ratio. Assuming this effect

size, we calculated that we would have more than 99% power for our comparison of the

probability-cueing effect across groups (the actual effect size turned out to be somewhat

larger: = .38; see results section below).η
𝑝
2 

The study protocol was approved by the Ethics Committee of the LMU Faculty of

Psychology and Pedagogics. Informed consent was obtained from all participants prior to the

experiment. They were remunerated at a rate of 9 Euro per hour for their service.

Apparatus

The experiment was conducted in a moderately lit test room. Stimuli were presented on a

24" LCD monitor with a 1920 × 1080 pixels screen resolution. Stimuli were generated by

Psychophysics Toolbox Version 3 (PTB-3) (Brainard, 1997) based on MATLAB (The

MathWorks Inc.). Participants viewed the monitor from a distance of 60 cm (eye to screen)

and gave their responses by pressing the keys “y’ and ‘m’, with their left and right index

fingers respectively, on a QWERTZ keyboard.

Stimuli

The stimuli were essentially the same as those we had used in several previous

studies (e.g., Sauter et al., 2018, 2019, 2020; Zhang et al., 2021). The search displays

consisted of 37 gray bars, which, except for one central bar, were arranged around three

concentric circles (2°, 4°, and 6° of visual angle in radius), presented on a black background

(see Figure 2). We used dense displays, with multiple rings, in order to ensure that local

feature contrast was sufficiently high to result in pop-out of the singleton target and distractor

items (see Liesefeld et al., 2016). Each bar was 0.25° in width and 1.35° in length. Further,

each bar contained a gap, 0.25° in size, located 0.25° from either the top or the bottom of the

bar at random (forming an ‘i’- or inverted ‘i’-type stimulus). All bars were vertical except the
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tilted singleton target (13° clockwise or counter-clockwise from the vertical), which was

present on all trials, and a horizontally oriented singleton distractor, present in 50% of trials.

Targets and distractors occurred only on the middle (4°) ring and never in the left- and

right-most positions on that ring (because these lie on the horizontal midline and so do not

belong to either the ‘top’ or ‘bottom’ parts of the display). Participants’ task was to find the

target and respond to the position of the gap in this bar (top vs. bottom, i.e., “i” vs. inverted

“i”).

Figure 2: Example of a search display, with a singleton distractor (top right, outlined by the dashed

circle) and a target (at the bottom of the middle ring, outlined by the dashed circle). Participants

responded based on the location of the dot on the i-shaped target, which in this case is on the top.

The target and the distractor appeared only in the middle ring gray regions. The upper and lower

gray-shaded semicircle regions indicate the frequent and, respectively, rare distractor regions. Note

the dashed circles and gray area are for illustration purposes only; they were not shown in the

experiment.

Design

The four groups of participants performed the same search task, the only difference

being the frequency distribution of the distractor locations (Figure 1). All groups performed

1440 trials, divided into 12 blocks of 120 trials. The target appeared equally frequently in

both (the top and bottom) halves of the search display. By contrast, the distractor appeared

more often in one (either the top or bottom) half of the search display (the frequent distractor
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region), compared to the other half (the rare distractor region). We used a design with a

frequent distractor region, rather than a single frequent location, in order to avoid confounds

between distractor- and target-location probability (see Zhang et al. (2019) for a discussion

of why using a single frequent distractor location results in such confounds). The proportion

of distractors which occurred in the frequent region differed between the groups, ranging

from 60% to 90% (see Figure 1). Which half of the search display was the frequent and

which was the rare region was counterbalanced across participants within each group.

Procedure

Each trial started with a central fixation cross, presented for a random duration

between 700 and 1100 ms. This was followed by the search display, which remained on the

screen until the participant responded. Participants were instructed to search for the

13°-tilted target bar (“i”) and respond, as quickly and accurately as possible, based on

whether the gap in the “i” was on the top or the bottom. Responses were made by pressing

the “y” or, respectively, the “m” key, on a “QWERTZ” keyboard, with stimulus-response

mapping counterbalanced across participants. An error message (“Incorrect”) was displayed

for 500 ms when a participant made an incorrect response. Between trial blocks, participants

had the opportunity to take a break of a self-determined length. Of note, participants were

not informed about the global, 50% distractor frequency and the probability ratio with which

distractors appeared in the frequent and the rare region. At the end of the experiment,

participants completed a questionnaire, designed to determine whether they had become

aware of the frequent distractor region. They were first asked whether they thought the

distractor had appeared equally often in all parts of the search display or more frequently in

one region. Regardless of the response to the first question, they were then given a forced

choice question with the four alternatives that distractors occurred more often in the top,

bottom, left or right area of the search display.

Bayes-factor analysis.
Bayesian analyses of variance (ANOVAs) and associated post hoc tests were carried

out using JASP 0.15 (http://www.jasp-stats.org) with default settings. All Bayes factors for

ANOVA main effects and interactions are inclusion Bayes factors calculated across matched

models. Inclusion Bayes factors compare models with a particular predictor to models that
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exclude that predictor. That is, they indicate the amount of change from prior inclusion odds

(i.e., the ratio between the total prior probability for models including a predictor and the prior

probability for models that do not include it) to posterior inclusion odds. Using inclusion

Bayes factors calculated across matched models means that

models that contain higher-order interactions involving the predictor of interest were

excluded from the set of models on which the total prior and posterior odds were based.

Inclusion Bayes factors provide a measure of the extent to which the data support inclusion

of a factor in the model.Bayesian t tests were performed using the ttestBF function of the R

package BayesFactor with the default setting (i.e., rscale = medium).

Results

For all RT analyses, we excluded trials on which a participant made an incorrect

response. In addition, trials with RTs slower than 3 seconds or faster than 150 ms were

considered as outliers and also excluded (approximately 1% of trials). Finally, the first block

(120 trials) was excluded because in this block, the participant would not yet have fully

learned the distractor distribution.

Baseline RTs

As the distractor-absent trials were equally frequent (and exactly the same) in all

groups, this condition served as a common baseline against which distractor-interference

and distractor-location probability-cueing effects in and among the various groups can be

assessed. The average RTs (and the associated standard errors) on distractor-absent trials

were 769 ± 33, 748 ± 29, 840 ± 33, and 759 ± 34 ms for the four distractor-location

probability-ratio (60/40, 70/30, 80/20, 90/10) groups, respectively. A one-way ANOVA with

Group as between-subject factor revealed the distractor-absent RTs to be comparable

across the four groups (non-significant Group effect, F(3, 84) = 1.79, p = 0.16, = .06, BFinclη
𝑝
2 

= 0.42). Error rates were also comparably low, at around 2–3% for all groups.
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Distractor interference and Probability-cueing effect

Given the absence of significant differences in the baseline RTs among the groups,

we went on to examine the distractor-interference effects on response speed, that is, the

difference in RTs between trials with and without a distractor. Figure 3A depicts the

interference caused by distractors in the frequent and, respectively, the rare region as a

function of the probability ratio. As can be seen, interference in the frequent region tended to

decrease with increasing probability ratio (though this trend was not statistically significant:

F(3, 84) = 2.15, p = .10, BFincl = 0.61), whereas interference in the rare region tended to

increase (F(3, 84) = 3.41, p < .05, = 0.11, BFincl = 2.3); Bonferroni-corrected post-hocη
𝑝
2 

t-tests indicate the interference to be significantly larger in the 80/20 compared to the 60/40

group (t(42) = 3.11, pbonf < .05, BF10 = 12.6).

Figure 3: On the top left is the distractor-interference effect on RT (A, top row), calculated as the RT

difference between trials with a distractor compared to distractor-absent trials, when a distractor

occured in the frequent region (red) or in the rare region (cyan). On the top right is the

distractor-location probability-cueing effect on RT (B, top row), defined as the RT difference between

trials with a distractor in the rare vs. the frequent distractor region. The bottom row shows the

corresponding effects on the error rates. Error bars indicate the standard error of the mean.
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The difference in interference between the two regions (Figure 3A) is the

distractor-location probability-cueing effect, which is depicted in Figure 3B as a function of of

the different distractor-distribution groups. As can be seen, the probability-cueing effect

increased with increasing probability ratio of the distractor distribution (F(3, 84) = 17.2, p <

.001, = .38, BFincl > 1000). Bonferroni-corrected post-hoc tests showed that theη
𝑝
2 

probability-cueing effect was significantly larger in the 90/10 condition compared to both the

70/30 condition and the 60/40 condition , and significantly larger in the 80/20 condition

compared to both the 70/30 condition and the 60/40 condition (all ts(42) > 3.3, psbonf < .01,

BFs10 > 9.4). Numerically the probability cueing effect was also larger in the 90/10 compared

to 80/20 condition and in the 70/30 compared to 60/40 condition, but these differences were

not significant after correcting for multiple comparisons (psbonf > .15).

Target-location effect

Figure 4 presents the target-location effect, that is, the difference in mean RTs

between trials on which the target appeared in the frequent versus the rare distractor region.

As can be seen, the target-location effect was generally positive (i.e., RTs were slower to

targets in the frequent vs. the rare region) and increased with increasing probability ratio

between the two distractor regions, for each distractor condition (distractor absent, distractor

in rare region, and distractor in frequent region). A mixed-effects ANOVA yielded a significant

main effect of Group (i.e., Probability Ratio) (F(3, 84) = 4.2, p < .01, = .24, BFincl = 5.7);η
𝑝
2 

Bonferroni- corrected post-hoc tests revealed the target-location effect to be significantly

larger in the most biased, 90/10, versus the least biased, 60/40, condition (t(42) = 3.3, pbonf =

.009, BF10 > 1000). Of note, the interaction between Group and Distractor Condition was

non-significant (F(6, 168) = 0.69, p = .65, BFincl = 0.04), and the Bayes factor strongly favors

models without an interaction term – indicating that the effect of the probability ratio on target

processing was largely independent of whether or not, and in which region a distractor

appeared in the display. There was, however, a significant main effect of distractor condition

(F(2, 168) = 26.0, p < .001, = 0.24, BFincl > 1000): the target-location effect was overallη
𝑝
2 

largest on trials with a distractor in the frequent region (59 ms compared to 15 ms with a

distractor in the rare region and 25 ms on distractor-absent trials). This could reflect an effect

of proximity between the distractor and the target: with a distractor in the frequent region,
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targets in the frequent region would be closer to the distractor, potentially slowing RTs on

these trials compared to trials with a target in the rare region.

Figure 4: Target-location effect, i.e., difference in RT between trials with a target in the frequent vs. the

rare distractor region. The left, middle, and right panels show the target-location effect on trials without

a distractor, with a distractor in the rare region (Rare dist.), and with a distractor in the frequent region

(Freq. dist.), respectively. Error bars indicate the standard error of the mean.

Awareness effects

In order to examine to what extent participants had become aware of the spatial

distractor distribution, we analyzed how many of them had noticed a spatial bias in the

distractor distribution and how many indicated the frequent distractor region correctly in the

subsequent forced-choice recognition test (see Methods for details). In the groups with the

60/40, 70/30, 80/20, and 90/10 probability ratios, 41%, 55%, 46%, and, respectively, 50% of

participants believed the distractor distribution had been biased. And the proportion of

participants who answered the forced-choice question correctly was 41%, 36%, 46%, and

50% – which was larger than expected by chance (i.e., 25%). Binomial tests revealed this

difference to be significant in the two groups with the largest probability ratios (p = .044 for

the 80/20 group and p = .012 for the 90/10 group). But note that of those who believed the

distribution was biased, only 44%, 33%, 60%, and 46% indicated the frequent region

correctly.

To check whether the distractor-probability cueing effect differed between participants

who had vs. had not correctly indicated the regularities, we performed an ANOVA on the

cueing effect with Probability Ratio and Awareness (correct vs. incorrect recognition
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response) as factors. While the main effect of Awareness was non-significant and the Bayes

factor favors models without an awareness effect (F(3, 80) = 0.04, p = .85, BFincl = 0.23),

Awareness interacted significantly with the Probability Ratio (F(3, 80) = 3.63, p < .05, =η
𝑝
2 

0.12, BFincl = 3.5): this interaction was due to aware participants exhibiting a larger cueing

effect in the 60/40 and 80/20 probability-ratio conditions but a smaller effect in the 70/30 and

90/10 conditions. However, comparing the data collapsed across the two lower and,

respectively, the two higher probability ratios, there was no difference between the ‘aware’

(cueing effects of 24.5 vs. 71.5 ms) and the ‘unaware’ (cueing effects of 26.0 vs. 73.0 ms)

group – suggesting that the interaction reflects a chance finding.

Discussion

Overall, the results of Experiment 1 revealed a trade-off in distractor interference

between the frequent and rare regions: the larger the probability ratio was (i.e., the more/less

distractors appear in the frequent/rare region), the less the interference caused by a

distractor in the frequent region and the more the interference by a distractor in the rare

region, that is: the larger the statistical-learning or ‘distractor-location probability-cueing’

effect. This effect was mirrored in a target-location effect: RTs were generally slower to

targets in the frequent (vs. the rare) distractor region, with this difference growing with the

probability ratio of distractors appearing in the frequent/rare region. This pattern would be

consistent with some limited inhibitory resource being divided between (or distributed

across) the frequent and rare distractor regions according to the probability ratio. However, it

would also be consistent with ‘habituation’ accounts, which would predict habituation to

distractors to be the greater (and, thus, distractor interference to be the smaller) the more

frequently distractors occur in a given region. Experiments 2 and 3 were designed to

differentiate between these two types of account.

Experiment 2

Experiment 2 was designed to compare the global ‘limited-resource’ account and

‘local habituation’ account. The global ‘limited-resource’ would predict that the amount of

distractor interference in the frequent region would depend on the frequency in the rare

region, importantly, even when the frequency in the frequent region is fixed, while the ‘local
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habituation’ account predicts that the frequency of distractors in the rare region should make

no difference to interference in the frequent region. For this reason, we manipulated the

distractor prevalence (one group with 50% and the other 35%) such that the distractor region

frequency was the same in the frequent region, but differed in the rare region (see Table 1).

Due to restrictions related to the COVID-19 pandemic, we performed this experiment

as an online experiment. We programmed the experiment in PsychoPy and ran it on the

online platform Pavlovia (www.pavlovia.org). In order to ensure that any differences

compared to the 60/40 condition of Experiment 1 were not due to changes introduced to run

the experiment online, we also replicated the 60/40 condition of Experiment 1 as an online

experiment.

Methods

Participants

A total of 2 x 22 participants (Group 1, replication of 60/40 condition in Experiment 1:

mean age: 25.3 years; 9 females; Group 2, reduced-frequency group: mean age: 26.2 years;

12 females) were recruited for this experiment. Each participant was paid 15 Euro in

compensation. Informed consent was obtained from all participants prior to the experiment.

Apparatus and Stimuli

To equate the conditions as well as possible with the onsite (laboratory) setup in

Experiment 1, participants were told to perform the (online) experiment in a quiet, and

moderately lit, environment, on full screen (laptop or external monitor). The display monitor

was to be placed on a table surface, with the participant being seated on a chair, with their

hands comfortably resting on the (response) keyboard in front of them and viewing the

monitor at arm’s length (i.e., a distance of some 60 cm); and the display brightness was to

be set to a middle contrast.

Since Experiment 2 was conducted as an online experiment, each participant ran it

on their own computer, with potentially quite different monitor sizes. In order to ensure

comparable conditions across the different participants, participants were asked to enter

their monitor size into the participant information box at the beginning of the experiment. All

stimuli were then scaled according to the respective monitor size. In addition, we instructed

them to view the monitor from an arm’s length distance (approximately 60 cm), so as to also
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keep the stimulus size in degrees of visual angle comparable across participants (and to

Experiment 1). – In all other respects, the search displays were the same as those used in

Experiment 1.

Design and Procedure

Two groups performed different conditions, differing in terms of the proportion of trials

on which a singleton distractor was present and the frequency distribution of the distractor

position (see Figure 1). In each group, the distractor appeared more often in one half (either

the top or bottom half, counterbalanced across participants) of the search display (the

frequent distractor region), compared to the other half (the rare distractor region). One group

was a replication of the condition with the least biased (60/40) distribution of the distractor

across the frequent and rare regions in Experiment 1 (in which the distractor prevalence was

50%, with 30% and 20% of distractors appearing in the frequent and rare regions,

respectively). In the other group, the distractor prevalence was reduced to 35% and the

distractor ratio increased to 86/14 to keep the frequency with which distractors appeared in

the frequent region the same (30% of all trials had a distractor in the frequent region) as the

other group. However, the frequency with which distractors occurred in the rare region was

reduced by a factor of four (from 20% to 5% of trials) – In all other respects, the task and trial

procedure was the same as in Experiment 1.

Results and Discussion

As for Experiment 1, outlier trials with RTs slower than 3 seconds or faster than 150

ms (approximately 1% of trials), as well as trials on which an incorrect response was made,

were excluded from RT analysis. In addition, the first block (120 trials), during which

participants would gradually learn the distractor-probability distribution, was excluded.
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Figure 5: Summary of results for online Experiment 2 (35% and, respectively, 50% distractor

prevalence), and the corresponding 60/40 condition of onsite Experiment 1 (50% global distractor

frequency): (A) distractor-absent RTs, (B) distractor-location probability-cueing effect, (C) and

target-location effect. Error bars indicate the standard error of the mean.

Figure 5 presents the main results of Experiment 2, compared to the 60/40 condition

in Experiment 1. Since one condition in (onsite) Experiment 2 was a replication of the 60/40

condition in (onsite) Experiment 1 (both with a distractor prevalence of 50% and

distractor-location probability ratio of 60/40), we first compared this condition to the

corresponding condition of Experiment 1, which yielded no significant differences between

the online and onsite experiments in the average distractor-absent RTs: t(42) = 0.78, p = .44,

BF10 = 0.38 or in the distractor-location probability-cueing effect: t(42) = 0.79, p = .43, BF10 =
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0.38. We further performed a mixed-effect ANOVA for the target-location effect with the

factors Experiment (online and onsite) and Distractor Condition (distractor absent, distractor

in frequent region, distractor in rare region), which again revealed no significant effects

involving Experiment (main effect, F(1, 42) = 1.22, p = .27; Experiment x Distractor-Condition

interaction (F(2, 84) = 0.68, p = .51). However, the main effect of Distractor Condition was

significant (F(2, 84) = 14.5, p < .001): the target-location effect was largest on trials with a

distractor in the frequent region (as already observed in Experiment 1).

Having confirmed that the online 60/40 condition replicated the main results of the

60/40 condition of onsite Experiment 1, we next compared this condition to the novel

condition in Experiment 2 – which we refer to as the ‘reduced distractor-frequency condition’,

as the distractor frequency in the rare region was reduced by a factor of 4 compared to the

60/40 condition, resulting in a distractor prevalence of 35% and a distribution with 86% of

distractors appearing in the frequent region (see Figure 1). The average distractor-absent

RTs did not differ significantly between the 60/40 condition and the reduced

distractor-frequency condition (t(42) = 1.3, p = .19, BF10 = 0.61), ensuring comparable

baselines.

Importantly, concerning the question at issue: the distractor-location

probability-cueing effect turned out to be larger, by about 30 ms, in the reduced

distractor-frequency vs. the 60/40 condition (t(42) = 2.1, p < .05, BF10 = 1.7). This is

consistent with the finding in Experiment 1 that the probability-cueing effect increases with

more biased distractor distributions. Given the increased distractor-location

probability-cueing effect, one would have expected the target-location effect to be also larger

in the reduced distractor-frequency vs. the 60/40 group. However, although the

target-location effect was numerically somewhat greater in the reduced distractor-frequency

group (31 ms vs 18 ms), the modulation by Group was not significant: Group main effect,

F(1,42) = 0.23, p = .63; Group x Distractor-Condition interaction (F(2,84) = 0.61, p = .55).

However, as before, the target-location effect turned out again largest on trials with a

distractor in the frequent region: Distractor-Condition main effect, F(2,84) = 5.2, p < .01.

Additionally, we examined the distractor interference separately for trials on which

distractors appeared in the frequent and the rare region (see Figure 6). Because the rare

region in the reduced distractor-frequency condition of Experiment 2 had the same local

(region) distractor frequency (i.e., the frequency out of all, distractor-present and -absent,
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trials with which a distractor appeared in that region) as the rare region in the 90/10 condition

in Experiment 1, we also included the latter condition in the comparison.

Figure 6: Average distractor interference as a function of the local (region) distractor frequency.

Plotted are overlapping frequent and/or rare region conditions Experiment 2 (60/40 and 86/14

probability-ratio groups) and Experiment 1 (60/40 and 90/10 probability-ratio groups). Error bars

indicate the standard error of the mean.

The interference caused by distractors in the rare region was significantly greater, by

52 ms, in the reduced distractor-frequency condition compared to the 60/40 reference

condition of Experiment 2 (t(42) = 3.24, p < .01, BF10 = 16), as well as the equivalent, 60/40

condition of Experiment 1 (44 ms difference; t(42) = 2.63, p < .05, BF10 = 4.3). In the rare

region, the local frequency of distractors was lower in the reduced distractor-frequency

condition, so the increased interference is consistent with both global and local accounts of
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distractor-location probability cueing. Importantly, for the frequent region, distractor

interference in the reduced distractor-frequency condition was neither significantly different

compared to the 60/40 reference condition of Experiment 2 (23 ms difference; t(42) = 1.74, p

= .09, BF10 = 0.99), nor compared to the equivalent, 60/40 condition of Experiment 1 (8 ms

difference; t(42) = 0.53, p = .60, BF10 = 0.33). Since the local distractor frequency in the

frequent region was the same in the different conditions, this result is consistent with local

theories of distractor probability cueing, but not with global theories since the frequency in

the rare region differed. Moreover, the interference caused by distractors in the rare region

did not differ significantly between the reduced distractor-frequency condition of Experiment

2 and the 90/10 condition of Experiment 1 (12 ms difference, t(42) = 0.67, p = 0.50, BF10 =

0.36). Again, this is consistent with local theories of distractor probability cueing, because

the rare region had the same local frequency in both conditions; but it is inconsistent with

global theories, since the frequency in the other region was different. In Appendix 3, we

confirm that the above three comparisons are also non-significant, with two of the Bayes

factors favoring the null hypothesis and one inconclusive, when comparing normalized

distractor interference (normalized by the mean distractor-absent RT for each participant).

Distractor interference in the frequent region, on the other hand, was significantly larger in

the reduced distractor-frequency condition of Experiment 2 compared to the 90/10 condition

in Experiment 1 (36 ms difference, t(42) = 2.68, p < .05, BF10 = 4.7), as expected based on

both local and global accounts.

Finally, we analyzed the responses to the post-experiment questions, testing whether

participants had become aware of the biased distractor-location distribution (see Methods

section for Experiment 1). In the online replication of the 60/40 condition of Experiment 1,

18% (4 out of 22) of participants responded that they thought distractors had occurred more

often in one region. When forced to indicate which display half had contained a distractor

more frequently, 32% (7 out of 22) of participants selected the correct region – which, while

numerically somewhat larger than expected based on guessing (25%), did not differ

significantly from chance level (binomial test: p = .46). Of the 7 participants who thought

distractors had occurred more often in one region, only 2 chose the correct region in the

forced-choice question. While the probability-cueing effect was numerically smaller for

participants who responded correctly to the forced-choice question (5 ms vs. 29 ms), the

difference was non-significant (Welch’s t-test: t(10.7) = 1.79, p = .10, BF10 = 1.29).
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In the reduced-frequency group, 41% (9 out of 22) of participants responded that

they thought distractors had occurred more often in one region and 50% answered the

forced-choice question correctly, the latter being significantly above chance level (binomial

test: p = .012). This indicates that at least in the reduced frequency group, for which the

probability ratio between the two distractor regions was larger (86/14 compared to 60/40),

some participants may have become aware of the bias in the distractor distribution.

However, there were only four participants who both responded that they thought distractors

had occurred more often in one region and chose the correct region in the forced-choice

question. Further, while the probability-cueing effect was numerically larger for participants

who responded correctly to the forced-choice question (60 ms vs. 41 ms), the difference was

not significant (Welch’s t-test: t(19.7) = 0.79, p = .44, BF10 = 0.48).

Thus, there was little evidence in either group that ‘awareness’ of the spatial

distractor bias systematically influenced the cueing effect.

Experiment 3

The purpose of Experiment 3 was to investigate the effect of global distractor

prevalence while keeping the probability ratio between the frequent and rare distractor

region fixed, as well as whether the amount of interference caused by distractors in a region

depends on whether the region is the frequent or the rare distractor region. For this purpose

we tested a condition in which the distractor prevalence was reduced to 12.5% as compared

to 50% in Experiment 1, but the distractor-location probability-ratio remained 80/20 as in the

80/20 condition in Experiment 1. With such settings we were able to reduce the local

distractor probability in the frequent region in Experiment 3 to 10%, having the same local

distractor probability as in the rare region of the 80/20 condition in Experiment 1 (see

Figure 1). This would allow us to explicitly test the ‘global’ vs. ‘local’ habituation accounts.

Due to restrictions related to the covid-19 pandemic, we again performed this

experiment as an online experiment. Since we found no significant difference between the

results of the online replication of the 60/40 condition and the original onsite experiment, we

compared the results of the online condition in Experiment 3 directly to the “80/20” condition

of Experiment 1, rather than replicating the later as an online experiment.
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Methods

Participants

A total of 22 participants (mean age: 26.5 years; 12 females) were recruited for this

experiment. Each participant was paid 15 Euro as compensation. Informed consent was

obtained from all participants prior to the experiment.

Design, Stimuli, and Procedure

Experiment 3 introduced the same, 80/20 probability ratio as in the 80/20 condition of

Experiment 1, but the frequency of distractors was reduced by a factor of four in each region

– yielding a global distractor frequency of 12.5, as compared to the 50% frequency in

Experiment 1 (see Figure 1). The experiment consisted of a single session with 1440 trials,

divided into 12 blocks of 120 trials. – In all other respects, the search displays, task, and trial

procedure were the same as in Experiments 1 and 2.

Results

All reaction time (RT) analyses excluded outlier trials with RTs slower than 3 seconds

or faster than 150 ms (approximately 2% of trials) as well as trials on which a participant

made an incorrect response. In addition, the first block (120 trials) was excluded because in

this block the participant may not yet have learned the distractor distribution.

Because Experiment 3 was designed to have the same proportion of distractors in

the frequent versus the rare region, as well as the same frequency of distractors in one of

the regions, as the 80/20 group of Experiment 1, but with a different global distractor

prevalence (12.5% versus 50% in Experiment 1), the results from Experiment 3 are

compared to this group in the Figures 7 and 8 and analyses below.
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Figure 7: Summary of results for Experiment 3 (Distractor prevalence of 12.5%) and the

corresponding 80/20 condition of Experiment 1 (Distractor prevalence of 50%): (A) mean RTs of the

distractor-absent trials, (B) The probability-cueing effect and (C) the target-location effects, separated

for the conditions of the distractor absent, distractor at rare, and respectively at the frequent regions.

Error bars indicate the standard error of the mean.

Figure 7 shows some of the main results of Experiment 3 compared to the 80/20

group of Experiment 1, which both had the same proportions of distractors in the frequent

and rare regions (80% in frequent region), but differed in terms of the global distractor

prevalence (50% in Experiment 1, 12.5% in Experiment 3). The mean RT of the

distractor-absent trials was numerically, but not significantly faster with the lower global

distractor prevalence (780 vs. 840 ms; t(42) = 1.1, p = .28, BF10=0.48). Most importantly,

the distractor-location probability-cueing effect did not differ significantly between the low and

high distractor-prevalence groups, with the Bayes factor supporting the null hypothesis (t(42)
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= 0.05, p = .96, BF10 = 0.30). While the target-location effect was numerically somewhat

smaller in the group with the lower global distractor prevalence (38 ms compared to 52 ms),

the difference was not statistically significant (Group main effect, F(1,42) = 0.38, p = .54;

Group x Distractor-Condition interaction (F(2,84) = 0.80, p = .45). However, again it was the

largest on trials with a distractor in the frequent region (Main effect of distractor condition,

F(2,84) = 5.9, p < .01).

Figure 8: Average distractor interference on those trials where a distractor appeared in the frequent or

the rare region in Experiment 3 and the corresponding “80/20” condition in Experiment 1 as a function

of the frequency of distractors in the region as well as the global distractor frequency in the

experimental group. Error bars indicate the standard error of the mean.

Finally, we examined the distractor interference separately for trials on which

distractors appeared in the frequent and the rare region (see Figure 8). Distractor

interference was higher in the group with the lower global distractor prevalence, both for

distractors in the frequent region (t(42) = 5.1, p < .001, BF10 > 1000) and distractors in the

rare region (t(42) = 3.6, p < .001, BF10 = 38). Because the frequency with which distractors

occurred in the frequent region in Experiment 3 was (designed to be) the same as the
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frequency with which distractors occurred in the rare region in the 80/20 condition of

Experiment 1, we also compared distractor interference between these two conditions. This

comparison revealed no difference in distractor interference between the frequent

(Experiment 3) and the rare (Experiment 1) region with the same local distractor frequency

(t(42) = 0.69, p = .49, BF10 = 0.36). In Appendix 3, we confirm that this comparison is also

non-significant, with a Bayes factor favoring the null hypothesis, based on normalized

distractor interference. This is consistent with ‘local’, but inconsistent with ‘global’, theories of

distractor-location probability cueing.

In addition, we analyzed the responses to the awareness questionnaire for the

reduced distractor prevalence group. 55% (12 out of 22) of participants responded that they

believed distractors had occurred more often in one region, and 55% responded correctly to

the forced-choice question, which is significantly more than expected by chance (binomial

test: p = .005). However, of those who answered the forced-choice question correctly, only

8/12 had indicated that they believed distractors had occurred more often in one region. And

the distractor-location probability-cueing effect did not differ significantly between participants

who responded correctly vs. incorrectly to the forced-choice question (Welch’s t-test: t(17.5)

= 0.68, p = .50, BF10 = 0.46). Thus, again, there was no evidence that the cueing effect was

influenced by ‘awareness’ of the spatial distractor bias.

Within-region analysis

Across three experiments, we consistently found that interference from distractors

within a defined sub-region of the search display was smaller in those groups and conditions

in which the local distractor frequency in that region was higher. This was the case both

within each experiment (witness the distractor-location probability-cueing effects) as well as

between experiments (see, e.g., the comparison between the 80/20 probability-ratio

conditions in Experiment 1 and Experiment 3 in Figure 8). Critically, however, distractor

interference in a region was not significantly influenced by the distractor frequency outside of

that region (see Figure 6 and Figure 8). In fact, it was not even significantly influenced by

whether locations outside the region had a higher or lower distractor frequency compared to

locations inside the region – as can be seen from comparing distractor interference in the

rare region in the 80/20 condition of Experiment 1 and the frequent region in Experiment 3

(see Figure 8), both of which had the same local distractor frequency (a distractor appeared

in the region in 10% of trials), but in one case the other region had a four times higher
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frequency (Experiment 1) while in the other case it had a four times lower frequency

(Experiment 3). Given this, it appears justified to consider all conditions in all three

experiments together in order to look for a functional dependence of distractor interference

on the local distractor frequency within a given region.

However, while the interference effect did not differ significantly between those

different conditions (in different experiments) that had the same local distractor frequency,

numerically there was a consistent pattern of interference being (numerically) larger in the

condition with the lower global distractor frequency (see Figures 6 and 8), and the Bayes

factors were in some cases inconclusive. The limited-resource theory would have predicted

a difference in the opposite direction, since lower global distractor frequency means lower

frequency of distractors outside the region – thus, more of the limited resource should be

allocated to locations inside the region. Consequently, the results are clearly inconsistent

with the limited-resource account. In contrast, the global-habituation theory would predict

that a lower overall distractor frequency results in greater distractor interference for all

locations. Accordingly, the pattern of results would be in line with a small global habituation

effect (in addition to a local effect), which we may not have had enough power to resolve.

However, this pattern could also be explained by an effect which, albeit being ‘local’, is

somewhat fuzzy, ‘spreading’ to nearby (but not further-away) locations. This alternative

explanation would predict that there would be a larger dependence of the interference on the

distractor frequency outside the region for distractors on the border of a region, compared to

locations ‘internal’ to the region (the latter being surrounded on both sides by locations which

also belong to the region). In more detail, the argument is that if more frequent appearance

of the distractor at one location results in stronger suppression of distractors at that location,

but also somewhat stronger suppression of distractors at nearby locations (‘spreading’), then

the amount of suppression on the border of a region would depend on some weighted

average of the local frequencies in the two regions. Consequently, with the same local

frequency in two to-be-compared regions, locations on the border would be more

suppressed if the global frequency, and therefore also the local frequency in the other

region, is higher, because of a stronger contribution to the suppression from the ‘spreading’

from the other region.

Recall that, in our experiments, the items bordering a region were those that were

immediately above and below the leftmost and rightmost items (on the middle circle; see

Figure 2); distractors never appeared at the leftmost and rightmost locations and the regions
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above and below these locations had different distractor frequencies. Any difference

between border and internal locations would be expected to be particularly pronounced for

the comparison of distractor interference between the rare region in the 80/20 condition of

Experiment 1 and the frequent region in the 80/20 condition of Experiment 3 (which both had

the same, 10% local distractor frequency), with the distractor frequency in the respectively

other region (i.e., the frequent region with a local distractor frequency of 40% in Experiment

1 and the rare region with a local distractor frequency of 2.5% in Experiment 3) differing by a

factor of 16 between the conditions (see Figure 1). Thus, to test the alternative, ‘spreading’

hypothesis elaborated above, we performed a mixed-effect ANOVA on distractor interference

in the 10% distractor-frequency regions (80/20 condition in Experiment 3 vs. 80/20 condition

of Experiment 1) as between-participant factor and distractor location within the region (i.e.,

internal vs. on the border) as within-participant factor; see Figure 9 for a plot of the data. The

interaction turned out significant (F(1, 42) = 16.9, p < .001, = .29, BFincl = 143): asη
𝑝
2 

revealed by Bonferroni-corrected post-hoc t-tests, the interference was significantly smaller

in the group with the higher global distractor frequency (the 80/20 condition in Experiment 1)

for locations on the border (56 ms difference, t(42) = 2.80, pbonf < .05), but not for internal

locations (-17 ms difference, t(42) = -0.86, pbonf = 1), in a region. This supports the

hypothesis that distractor-location learning effects are relatively local, though with some

spreading to nearby locations.
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Figure 9: Distractor interference in two conditions in which a distractor appeared in a region with a

10% local distractor frequency, separated into trials on which a distractor appeared on the border of

the respective region or internally within the region. The 50% distractor prevalence condition is from

the rare region in the 80/20 group of Experiment 1 and the condition with 12.5% distractor prevalence

is from the frequent region in (80/20) Experiment 3. Error bars indicate the standard error of the mean.

Model

Since our results are consistent with the distractor interference depending only on the

local distractor frequency in a region, and not on how often the distractor appeared outside

that region (at least when considering locations that do not fall on the border of a region), we

went on to examine for the functional relationship between local distractor frequency and the

amount of distractor interference to account for the results across all experimental

conditions. To this end, we considered the amount of interference caused by distractors

appearing in each region, in each of our experiments, as a function of the local distractor

frequency in that region, and we fit several models to this combined dataset, representing

different ways in which the amount of distractor interference could depend on local distractor

frequency. Given that locations on the border of a region are influenced by carry-over effects

from the other region (see “Within-region analysis” above), we based the model fitting on

locations internal to each region. Figure 10 shows the combined data set from all our

experiments and the predictions of the best-fitting model (see Supplementary for the full
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model comparison). The best model – which explains the amount of distractor interference

quite well in all conditions (it somewhat underestimates interference for the lowest distractor

frequency) – assumes that the interference grows linearly with the ‘Shannon information’

associated with a distractor. In more detail, this model assumes that the amount of

interference depends on how much information is gained by observing a distractor at a

particular location (or region), as formalized by Claude Shannon (1948). In essence, the

Shannon information quantifies how much is learned from acquiring some new knowledge,

quantified in terms of the number of two-alternative (e.g., yes/no) questions that had to be

answered for gaining that knowledge. One might expect distractors which carry more

information, in Shannon’s sense, to capture more attention, whereas a distractor that is

expected based on stimulus history and thus relatively uninformative (or ‘unsurprising’)

would be less likely to summon attention. While there are various ways in which distractor2

interference (I) could depend on the Shannon information (which are elaborated and tested

in the Appendix), the winning model simply assumes that it is through a linear function:

,𝐼 = 𝑐
1
 + 𝑐

2
𝑙𝑜𝑔(1/𝑓)

where log(1/f) is the Shannon information associated with a distractor occurring in a region

with local distractor frequency , and two parameters and . The parameter ms,𝑓 𝑐
1

𝑐
2

𝑐
1

= 53

indicates the lower asymptotic level of distractor interference if the distractor occured in the

same region on every trial (i.e. 100% distractor prevalence and all distractors occur in the

same region). The parameter ms determines the rate of decrease of distractor𝑐
2

= 48

interference with increasing local frequency. Of note, this model (with different parameter

values) also provides a good fit to the distractor-interference effects when these are

normalized to the respective distractor-absent RTs, in order to compensate for any general

differences among the independent participant groups in response speed on the common

baseline trials (see Appendix 3 for details).

2 Mathematically, counting the yes/no questions corresponds to taking the base-two
logarithm of the number of (equally probable) alternatives. This is the same as taking the
logarithm of 1/p, where p is the probability of each alternative. This formula can also be used
when there are no equally probable alternatives. In our case, if we take the probability of the
distractor appearing in a region to equal the frequency with which it appears in the region in our
experiment, then the log(1/f) in our model is the Shannon information associated with observing
a distractor (in the region in which it occurs with frequency f).
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Figure 10: Distractor interference as a function of the local distractor frequency in a region, for

distractors appearing at an internal location in in (i.e., not on the border of) the region, for all

experimental conditions. Note that each experimental condition contributes two data points, one for

trials with a distractors in the frequent and one for one for trials with a distractors in the rare region in

that condition. The black line depicts the predictions of the best model: . Error𝐼 = 53 + 48 · 𝑙𝑜𝑔(1/𝑓)

bars indicate the standard error of the mean.

Discussion

In this study, we examined how the amount of response-time interference caused by

a salient singleton distractor in a visual search task depends on the local distractor

frequency in the region where the distractor appeared, as well as the frequency with which

distractors appeared elsewhere in the search display. In Experiment 1, we found that across

four conditions (tested in different groups of participants) with the same global distractor

frequency, but differing ratios between the frequency of distractors in the (statistically)

frequent and rare distractor region, the probability-cueing effect, that is, the difference in RTs

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.29.489854
http://creativecommons.org/licenses/by-nd/4.0/


34

between trials on which a distractor appeared in the rare compared to the frequent region,

grew larger with increasing probability ratio (see Figure 3). A closely related result was

recently reported by Lin, Li, Wang, and Theeuwes (2021), who used a similar paradigm,

although with a single frequent distractor location (rather than a frequent region

encompassing multiple locations) and a distractor defined in a different feature dimension to

the target (see Footnote 1 for details). Despite some differences in the precise result pattern

(see Footnotes 2 and 3 for details), taking Lin et al.’s effect of the probability-ratio (distractor

at likely:unlikely location) on distractor interference together with effect of our

distractor-region manipulation increases the confidence in the general result pattern

revealed in Experiment 1.

Separate analyses (in Experiment 1) of distractor interference in the frequent and

rare regions were somewhat inconclusive, but suggested that, if anything, the increased

probability cueing-effect with increasing bias arises more from increased distractor

interference with decreasing distractor frequency in the rare region, rather than decreasing

distractor interference with increasing distractor frequency in the frequent region. Such an3

asymmetric pattern would be expected as response speed for the frequent region

approaches the (distractor-absent RT) ceiling.

Interestingly, we also found a corresponding increase in the target-location effect

(target in the rare minus target in the frequent distractor region) with increasing probability

ratio, even though the target appeared equally frequently in both regions (see Figure 4), that

is: RTs were slowed more when the target appeared in the frequent compared to the rare

distractor region, the more the distractor frequency differed between these regions. This4

4 The equivalent effect was not significant in the study of Lin et al. (2021): while there was a
main effect of target-location (i.e., the target-location effect differed significantly from zero), it was not
significantly modulated by the (distractor at likely:unlikely location) probability ratio (F(6, 105) = 0.43, p
= .856, ηp

2 = 0.02, BF10 = 0.06). Such a modulation would have been expected if the mechanism
responsible for distractor-frequency-dependent spatial suppression operates in a manner independent

3 Of note, in Lin et al.’s (2021) experiment, the increase in the distractor-location
(probability-cueing) effect with increasing probability ratio between distractors at the likely vs. an
unlikely location appeared to be associated with a general increase in distractor interference with the
probability ratio, not only for unlikely locations (as in the present Experiment 1), but, if anything, also
for likely locations (which, in the present Experiment 1, showed a decrease). See Appendix 2 for our
re-analysis of distractor interference in the rare and frequent distractor locations in the experiment of
Lin et al. (2021), who provided only an analysis of the difference between the two conditions (the
cueing effect), but not of the underlying conditions themselves. This lack of a trade-off of distractor
interference between the likely and unlikely locations makes it difficult to interpret the change in the
cueing effect with increasing ratio theoretically, in terms of either a limited-inhibition-resource or a
local-habituation account.
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effect is consistent with the mechanism responsible for the distractor-frequency-dependent

suppression operating on some (level of) spatial representation, or map, common to both the

distractors and targets in our study. We further consider which representation this may be

below.

A combined analysis of distractor interference indicated that the interference

depended logarithmically on the local distractor frequency (see Figure 10), that is:

interference decreased more rapidly with increasing distractor frequency when the frequency

was low compared to when it was higher. This would explain further why we only found a

significant difference in interference among the different spatial bias groups in Experiment 1

for distractors that occurred in the rare region.

In Experiment 2, when the local distractor frequency in the frequent distractor region

was fixed, varying the distractor frequency in the rare region did not significantly influence

the amount of interference caused by distractors in the frequent region, which is opposite to

the prediction of the limited-resource theory (cf. Shaw & Shaw, 1977). In Experiment 3, when

the local distractor frequency in one region was the same across two groups, the amount of

distractor interference in that region did not significantly depend on whether this region had a

four times higher or four times lower distractor frequency compared to the other region (see

Figure 8). The limited-resource theory predicts that a lower distractor frequency in one

region should result in less distractor interference in the other region, since more of the

limited resource can be allocated to that region. Consequently, our results clearly contradict

the limited-resource theory. On the other hand, the results are consistent with local

habituation (Rankin et al., 2009; Sokolov, 1963; Turatto, Bonetti, & Pascucci, 2018), since

local habituation predicts that the amount of distractor interference in a region should only

depend on the local frequency of distractors in that region.

When further analyzing this effect separately for distractors on the border and

distractors in the central part of the region, we found that for distractors falling on the border,

but not in the central part, of a region, interference was significantly higher in the condition

with a higher distractor frequency in the respectively other region. This suggests that while

the effect is not global, it is also not so local as to be specific to an individual location in the

search display. Rather, it can spread to locations at least two steps apart on the virtual

display circle. (Recall that the frequent and rare distractor regions were, on each side,

of the particular (in Lin et al.’s study: color and shape) features that single out the distractor and
target, respectively.
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separated by a ‘neutral’ location where distractors never appeared and which therefore did

not belong to either region; so, the items on the border of different regions were two steps

apart.)

Combining the data from all experiments, we found the amount of distractor

interference with RT to exhibit a non-linear dependence on the local distractor frequency,

which could be explained by a model assuming that distractor interference has linear

dependence on the amount of Shannon information associated with the local distractor

probability. This is broadly consistent with the model of Itti and Baldi (2009), according to

which ‘Bayesian surprise’ is a major factor in determining how likely a stimulus is to attract

attention. Bayesian surprise quantifies how much an observer's probabilistic model of the

world is changed by a new observation. Focusing attention on stimuli with high Bayesian

surprise makes sense from the theoretical view of ‘predictive coding’ (e.g., Clark, 2013;

Friston & Kiebel, 2009; Rao & Ballard, 1999), since high surprise indicates that predictions

are in need of updating, while for a stimulus resulting in low surprise predictions are already

reliable. Unlike Shannon information, Bayesian surprise takes into account observers’ prior

beliefs. This would be important for modeling how the distractor probability distribution is

learned to begin with, as well as for explaining the results of studies in which the probabilities

change substantially during an experiment (e.g., Valsecchi & Turatto, 2021). But it is

arguably less important here, since we focused on performance after learning a distribution

(recall that we excluded the first trial block in the analysis) that remains constant throughout

the experiment.

Thus, while these results contradict the limited-resource theory, they are, in principle,

consistent with a habituation account (Poon & Young, 2006; e.g., Rankin et al., 2009;

Sokolov, 1963), with relatively location-specific habituation. That is, as participants are

repeatedly exposed to a distractor in a particular region, the attentional orienting response

triggered by distractors appearing in that region decreases, resulting in less attentional

capture by salient stimuli in that region. With regard to our findings and their interpretation in

terms of ‘local habituation’, two questions arise which we will discuss in turn: (i) Can our

findings be reconciled with a recent report by Valsecchi and Turatto (2021), according to

which distractor-location probability cueing involves a combination of both local and global

factors? And (ii), is our finding that distractor-location learning is essentially based on the

local distractor probability attributable to ‘habituation’ as “a non-associative or task-free

learning mechanism that reduces neural responses to stimuli based on passive exposure”,

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489854doi: bioRxiv preprint 

https://paperpile.com/c/InS0yS/hssn/?noauthor=1
https://paperpile.com/c/InS0yS/3xHt+DqZ5+lYKB/?prefix=e.g.%2C%20,,
https://paperpile.com/c/InS0yS/3xHt+DqZ5+lYKB/?prefix=e.g.%2C%20,,
https://paperpile.com/c/InS0yS/71MR/?prefix=e.g.%2C
https://paperpile.com/c/InS0yS/IZxu+TzHE+re5b/?prefix=e.g.%2C,,
https://paperpile.com/c/InS0yS/IZxu+TzHE+re5b/?prefix=e.g.%2C,,
https://paperpile.com/c/InS0yS/71MR/?noauthor=1
https://doi.org/10.1101/2022.04.29.489854
http://creativecommons.org/licenses/by-nd/4.0/


37

or is it top-down mediated in the sense that “[the observer] must know what features belong

to distractors before they can be suppressed” (Won & Geng, 2020, p. 1987)? Related to this,

at what level in the functional architecture of search guidance is acquired local

distractor-location suppression implemented?

Role of global distractor frequency in distractor-location probability cueing?

Our proposal that it is essentially the local distractor probability that drives the

distractor-location cueing effect appears to be challenged by an intriguing finding reported by

Valsecchi and Turatto (2021), which points to the cueing effect also involving a global

component. In Valsecchi and Turatto’s (2021) (online) Experiment 1, observers started with

three ‘training’ blocks, with one high (40%), one intermediate (20%), and one low-frequency

(6.6%) distractor location, which were equidistantly arranged around a ring consisting of a

total of 12 locations (33.3% distractor-absent trials). Targets, too, could only occur at the

three distractor locations, all other locations being occupied by non-target fillers. Distractors

were salient color singletons, targets shape singletons. The results revealed a graded

probability-cueing effect, that is, less interference by distractors at the high- vs. the

intermediate- vs. the low-probability location, and a mirror image target-location effect on

distractor-absent trials. The training blocks were followed by ‘extinction’ blocks without any

distractors. In the subsequent two ‘test’ blocks, distractors were reintroduced, but now they

appeared with equal probability at all three locations – importantly, with the same local

probability as for the previous low-probability location (6.6%); that is, compared to the

training blocks, the local probability was reduced for the previously high- and

intermediate-probability locations, and, associated with, the global distractor probability.

Valsecchi and Turatto found that the probability-cueing effect remained the same in the test

blocks (compared to the last two training blocks), but distractor interference was overall

increased, even at the location of previously low-probability distractor (at which the local

distractor probability had not changed). They concluded that the overall increased distractor

interference must result from the reduced global distractor probability (due to the reduction of

the local probability at the previous high- and intermediate-probability locations) .5

Even though Valsecchi and Turatto’s experimental design was very different to ours,

their results appear to be at odds with our failure to a significant influence of the global

5 A similar result pattern was obtained in their Experiment 2, which omitted the extinction
blocks between the training and test blocks.
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distractor probability on the probability-cueing effect. However, a few points about their study

are noteworthy. First of all, during the learning phase, the variation of distractor probability

(40%, 20%, 6.6%) would have resulted in a strong covariation of target probability: 20%,

35%, and 45% for the high-, intermediate-, and low-probability distractor location on

distractor-present trials , providing the potential for a confounding of statistical6

distractor-location with target-location learning. This may have overall inflated the

‘distractor-interference’ effects, which ranged from over 100 ms (high-probability location) to

over 200 ms (low-probability location). These effects greatly exceed those typically reported

in the additional-singleton paradigm (e.g., even in the online experiment of Lin et al., 2020,

the effects were only about half for the 6:1 probability-ratio condition, which corresponds to

the 40/6.6 ratio in Valsecchi & Turatto, 2021) – and they might have been responsible for the

lack of ‘extinction’ in their study (evidenced by an undiminished local probability-cueing effect

in the test blocks vs. the last two training blocks).

Nevertheless, it remains that the distraction effect was generally increased in the test

blocks. This may be attributable to the generally increased ‘surprise’ value of any distractor

appearing during the test blocks (especially after the extinction blocks without any

distractors) – which gave rise to a delay in dealing with distraction, independently of where it

arose (the previously high-, intermediate-, or low-probability location). Of note, the search

RTs in Valsecchi and Turatto (2021) study were generally quite slow, with search very likely

involving eye movements; and the size of their distraction effects (100–200 ms) would be

indicative of oculomotor capture by the distractors on a substantial proportion of trials. It

could therefore be that the generally increased distraction effect following the reduction of

the global distractor probability is not due to a modulation of (oculomotor) capture itself, but

to the time taken to disengage attention from a distractor that captured the eye – consistent

with Sauter et al. (2020), who found oculomotor disengagement, measured in terms of the

fixational dwell time on a distractor, to be faster from distractors at likely relative to unlikely

display locations. For instance, when distractors become globally infrequent, it might take

simply longer to decide that the item that captured attention is a distractor rather than the

target, because the starting point in the decision (e.g., a stochastic diffusion) process shifts

towards the ‘target’ and away from the ‘distractor’ boundary (Allenmark et al., 2018; for

oculomotor evidence of such adjustments of post-selective decision criteria, see Allenmark

6 This calculation assumes that with a distractor at one location, the target was equally likely
to appear at the two other locations.
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et al., 2021). Thus, while massive reductions in the global distractor probability (such as from

66.6% to 33.3% in Valsecchi & Turatto, 2021) may indeed give rise to ‘global’ RT

distractor-interference effects, these effects may be very different in nature (e.g., arising from

post-selective item identification) to what we have described above as ‘global habituation’

(which would impact attentional capture directly). – In any case, in our study, there was

never any change in the global (or local) distractor probability over the course of an

experiment, over which participants also sampled the biased distractor distributions over

1440 trials (which compares with just 315 ‘training’ trials in Valsecchi & Turatto, 2021). Under

these conditions, we found no compelling evidence of the global distractor probability (which

varied substantially among our conditions, from 50% to 12.5%) driving the interference

pattern.

Given that distractor-location learning is essentially ‘local’, two interrelated questions

arise, namely: (i) is it to be considered a ‘local habituation’ process, and (ii) where, in the

functional architecture of search guidance, does it occur? One defining property of

‘habituation’ is that it is “a non-associative or task-free learning mechanism that reduces

neural responses to stimuli based on passive exposure”. This contrasts with “A core

supposition of both [top-down accounts or statistical-learning accounts of distractor

suppression] … that distractor suppression occurs only after the observer has knowledge,

explicit or implicit, of what defines a distractor within the current context. These theories

imply that one must know what features belong to distractors before they can be

suppressed” (Won & Geng, 2020, p. 1987). Accordingly, while both types of theory might

converge on where, in the cognitive architecture, the learning is implemented, they differ

radically with regard to the cognitive dynamics assumed to underlie the learning. Based on

an fMRI study (Zhang et al., 2021; as well as drawing on ideas from the oculomotor-capture

study of Sauter et al., 2020), we have recently advocated an – in Won and Geng’s (2020)

terms – active, ‘top-down’ view of statistical distractor-location probability learning, where the

learning changes the responsivity of local feature-coding mechanisms in early visual cortex.

We go on to describe this view, and how it explains the present data, in greater detail, before

discussing possible challenges from passive ‘habituation’ accounts.
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Locus and dynamics of distractor-location learning (Zhang et al., 2021)

In Zhang et al.’s (2021) fMRI study, we used (in one condition) essentially the same

stimuli as in the present experiments and a fixed distractor-probability ratio of 4:1 between

the frequent and rare distractor regions. The results revealed distractor-generated signaling

(indexed by the beta values) to be reduced in early visual-cortex areas – from V1 to V4 – for

the frequent vs. the rare region, with the beta-values of distractors at (retinotopically

mapped) locations in the frequent and, respectively, rare regions predicting the magnitude of

distractor interference: the lower an individual’s beta value, the lower the interference.7

Consistent with standard notions of the functional architecture of visual search, we assumed

that salient distractors may capture attention (prior to selection of the less salient target), by

achieving a higher level of signaling on the search-guiding ‘attentional-priority’ map (e.g.,

Ferrante et al., 2018; Liesefeld & Müller, 2020; Müller et al., 2003; Wolfe, 2021). The

distractors then need to be retroactively rejected (i.e., their priority signal needs to be

suppressed) for attention to be disengaged from the distractor position and relocated to the

target position – whose priority signal is initially weaker than that associated with the

distractor, but stronger than that of the non-targets in the display (see also Sauter et al.,

2020). Distractor suppression (on the priority map) then acts a feedback signal down to early

visual areas, locally down-modulating the responsivity of the corresponding (entry-level)

feature-coding mechanisms to the incoming perceptual signals. Thus, given that the

stimulus-evoked activity is reduced as a result of ‘top-down tuning’ at early levels of signal

coding, only a weakened signal is passed upwards in the processing hierarchy – ensuring

that the signal strength (and thus the selection probability) of a spatially corresponding

stimulus is reduced at the level of the search-guiding priority map. This statistical-learning

dynamics would naturally explain not only why the representation of distractors becomes

overall weaker if the global distractor frequency (or ‘prevalence’) is increased (e.g., Bogaerts

et al., 2022; Geyer et al., 2008; Müller et al., 2009; Won et al., 2019), but also why it is

increased more for regions in which distractors occur frequently vs. regions in which they

occur only rarely. Further, it would explain why not only distractor signaling is reduced at the

early visual coding level, but also target signaling – namely, because the top-down inhibitory

7 With search for an orientation-defined target, this relationship was not obtained for
distractors defined in the color dimension, which we attributed to a later, color-based distractor-filtering
stage (involving the fusiform gyrus; see Zhang et al., 2021, for details).
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feedback signals that down-modulate the responsivity of the early visual areas are relatively

‘feature-blind’ (“feature blindness” being considered a defining characteristic of purely spatial

saliency and priority signals; see, e.g., Fecteau & Munoz, 2006). Critically, however, rejecting

a distractor, and thus inhibiting its location from the priority map downwards, requires a

(more or less explicit) process of identifying an attended distractor as an erroneously

selected, task-irrelevant ‘non-target’ item. In the words of Zhang et al. (2021),

“‘distractor’-location inhibition is top-down mediated” in that it is “tied to the status of

distractors as ‘distractors’” (p. 13) – and this would be at variance with a strict notion of ‘local

habituation’.

Passive versus active learning of local distractor probabilities

However, there appear to be a number of reports in the literature that are at odds

with this view of active, top-down-mediated distractor-location learning – Turatto, Bonetti,

Pascucci, and Chelazzi (2018), Won and Geng (2020), and Duncan and Theeuwes (2020) –,

which we discuss in turn.

Turatto et al. (2018) asked their observers (in their Experiment 2) to passively view a

series of displays (each consisting of four placeholder circles), 50% of which included a

salient, luminance-onset stimulus (superimposed on one of the circles). When the salient

stimulus later became a distractor during a target discrimination task (in which a precue,

presented prior to the briefly flashed distractor, indicated the circle in which the

to-be-discriminated target would later appear), attentional capture was attenuated by some

50% (already in the initial block of the active task) compared to when the displays were not

first passively viewed (in Experiment 1). The authors concluded that the passive exposure

habituated the visual system to the salient stimulus, effectively reducing its

attention-capturing power during a later active task. However, since Turatto et al. used

identical stimulus displays during passive exposure and the active task, it remains possible

that ‘surreptitious’ (but re-/active) suppression of the salient stimulus during passive viewing

led to the reduction of distractor interference already in the active task. This may be so

especially because the salient distractor was a high-luminance white annulus frame (52.5

cd/m2) briefly (for 100 ms) flashed against a dark-gray background (0.07 cd/m2) and

highlighting one of four previewed placeholder circles (7 cd/m2). Such highly salient

sudden-onset stimuli would have acted as strong attractors of eye movements, which were,

however, to be prevented by instruction: “In the passive blocks …, the cue was presented but
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the target was not, and participants were asked to maintain fixation on the central spot, while

passively viewing the display” (Turatto et al., 2018, p. 1832; our italics). In other words, the

distractors would have attracted attention and the eye at least initially, and participants

would have had to disengage attention from their locations, involving re-/active suppression,

to reorient to the central fixation marker. That is, the task demands are similar to when a

salient distractor is to be avoided in an active search task.

Won and Geng (2020) attempted to deal with this issue by introducing a novel

two-phase paradigm. During the first, ‘training’ phase, observers in the critical ‘habituation’

group were passively exposed to one set of (heterogeneous) colors on four task-irrelevant

‘circles’ in the display periphery (no-task trials), while they actively searched for a (gray)

target square (and reported a numeral inside it) presented among three heterogeneously

colored ‘distractor’ squares in the display center (search-task trials). Importantly, no-task

(circle-display) and search-task (square-display) trials were interleaved, and the sets of circle

(‘new set’) and square colors (‘trained set’) were non-overlapping. During the second,

‘testing’ phase, a subset of the ‘habituated’ colors from the outer circles were introduced as

‘new colors’ of the central search distractors, randomly interleaved with the ‘trained set’ of

colors. Search performance in this ‘habituation’ group was compared with a ‘control’ group

(in Experiment 1) that, both during training and test, was exposed to non-colored circle

displays (the circles were simple gray outline circles that were not color-filled-in); the search

displays were identical to those in the ‘habituation’ group (i.e., in the test phase, the colors of

the search distractors were ‘trained’ or ‘new’). The critical comparison concerned (what Won

and Geng referred to as) ‘distractor interference’ on search trials in the test phase,

calculated as the search RT to displays with the ‘new’ color distractors minus the RT to

displays with ‘trained’ color distractors. The results revealed search to be slower for the new

vs. the trained color distractors, that is, in Won ad Geng’s terms, there was ‘distractor

interference’; and, importantly, the interference was significantly reduced for the habituation

group compared to the control group. In other words, viewing irrelevant color items under

no-task conditions (in the training phase) later on helped observers find the (gray) target

faster when it was presented among distractors with these previously irrelevant colors,

compared to observers who had no pre-exposure to these colors.

This indeed shows that pre-exposure to colors even under no-task conditions

facilitates search when the same colors later on appear in the search distractors. Won and

Geng’s (2020) preferred interpretation of this is that the new distractor colors introduced in
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the test phase had a higher ‘novelty’ (or surprise) value for observers in the habituation

compared to the control group, as a result of which the (new-color) distractors may have

engaged more attention upon search display onset, thus delaying target selection. On the

other hand, though, what Won and Geng (2020) investigated was not interference caused by

a salient singleton distractor, but rather the effect of multiple, color-heterogenous non-targets

in a search scenario in which the target (even though it was defined by a unique color) may

not have popped out. In classical pop-out search tasks, the non-target context facilitates

target detection by increasing the target feature contrast while reducing the distractor feature

contrast (e.g., Bravo & Nakayama, 1992; Liesefeld et al., 2016). In contrast, with the

color-heterogenous distractors in Won and Geng’s scenario, all items would have had a

relatively high color contrast (each item differed from the other in color), so that search would

have been mainly template-based (Liesefeld & Müller, 2020), and the target template would

have been less optimally tuned to the (variable or broader) non-target color context in the

test phase when only a limited set of colors was encount  ered in the preceding training

phase. Though, what Won and Geng’s findings show under this interpretation is that even

search-irrelevant colors encountered in the training phase are integrated in the target

template. But, what Won and Geng interpret as (bottom-up) non-target interference might

also reflect the relative lack of (top-down) target facilitation.

Another point to note is that the statistical learning, or ‘habituation’, effects

demonstrated by Won and Geng (2020), as well as to some extent those of Turatto et al.

(2018) , are non-spatial in nature: they reflect the learning of, or adaptation to, the features8

of more or less salient distractors (or non-targets) in visual search, but not the learning of

their positions within the search displays. In Won and Geng (2020), the task-irrelevant

colored circles were (deliberately) presented at variable locations further in the periphery

compared to the central search displays (to make them appear unrelated to the search task);

and in Turatto et al. (2018), the luminance-onset distractors occurred equally likely at all

(four) possible display locations.

There is one recent study, however, that did examine passive learning of the spatial

distribution of salient singleton-color distractors: Duncan and Theeuwes (2020). The

experiment consisted of two phases, with different tasks. In the first, ‘learning’ phase,

participants had to judge, as fast and accurately as possible, whether the item arrangement

8 In their study, the distribution of distractors was spatially uniform and distractors only
occurred at a fixed set of locations at which, in the active task, targets would appear, too (on different
trials, as the distractor and target locations never coincided).
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(made up by eight colored shapes) formed a global diamond (made up of the local elements)

or a global circle. All items were of one color, except – on 67% of the trials – for one

singleton color item, which appeared more likely at one location (65% of trials), compared to

any of the seven other locations (35%/7 = 5% of trials). Likely locations were restricted to the

12, 3, 6, and 9 o’clock locations, which were identical in the two types of global (diamond,

circle) arrangement. Participants performed three blocks of this task. In the second, ‘test’

phase (blocks 4 and 5), the task was switched to the ‘usual’ search for a singleton shape

target in the possible presence of an additional color singleton; the response required

discrimination of the (horizontal, vertical) orientation of a line inside the shape target.

Importantly, the additional color singleton now appeared equally likely at all eight display

locations. The critical finding was that, despite the removal of the spatial distractor-location

bias in the test phase, in block 4 (but no longer in block 5) RTs were faster when the

distractor appeared at the previously high-, vs. a low-, probability location (significant effect

in one-tailed testing in online Experiment 4, with 80, out of initially 120, participants who had

not dropped out after the learning phase; non-significant in onsite Experiment 1 with 24

participants). This is consistent with participants having learned distractor-location probability

distribution in phase 1 (even though the task required a global item-configuration judgment,

rather than selection of any local item), which was then carried over to the search task where

distractors occurring at the (previously) likely location caused initially less interference than

distractors at one of the unlikely locations (and this cueing effect was then unlearned over

the course of the search task due to the unbiased distractor distribution).

It is important to note, though, that when the carry-over effect was significant (in their

Experiment 4), there was also slight, but highly significant distractor-location effect in the

initial learning phase: the global-configuration judgments, although generally quite fast

(compared to the compound-task response required in the search task), could be issued

faster when the singleton color item appeared at the likely location, compared to any of the

unlikely locations (and on both types of color-singleton-present trials, RTs were slower

compared to -absent trials). In other words, it appears likely that the salient color singleton

did interfere with performance of the global task (by summoning attention to the local level;

e.g., Navon, 1977) and so may have been actively suppressed to mitigate the intrusion of a

‘disturbing’ distractor. In fact, this possibility is expressly acknowledged by Duncan and

Theeuwes (2020), who state that “... while our results clearly show that SL [statistical
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learning] may occur in the absence of [goal-directed] top-down attention, we cannot rule out

that bottom-up capture may still play a role” (p. 63).

Thus, we contend that prior studies (Duncan & Theeuwes, 2020; Turatto et al., 2018;

Won & Geng, 2020) provide no compelling evidence against our view that distractor-location

probability learning is an ‘active’ (though not necessarily explicit) process, that is: a process

involving having to identify a distractor that captured attention as an erroneously selected

item and to reject it (i.e., suppress its priority signal) in order to disengage attention and

reorient it to the target item. In the learning phase of Duncan and Theeuwes’ (2020) study,

this would mean to disengage attention from the local item level and reorient it to the global

item configuration; in our task, to reorient it to the item with the second most high attentional

priority. This retroactive, local distractor rejection/suppression provides the top-down

feedback signal that down-modulates the responsivity of feature-coding neurons at the

corresponding locations in early visual cortex, thus naturally implementing local statistical

distractor-location learning. We contend that this process of distractor rejection is an ‘active’,

top-down process, which, however, does not mean that it is a ‘willed’, intentionally explicit

process (see also Gaspelin & Luck, 2018b). Rather, it is likely to operate implicitly as an,

over the course of an experiment, automatized routine. This is evidenced by the fact that,

although our participants collectively displayed some above-chance explicit knowledge of the

distractor-location probability distribution, the cueing effects did not differ between observers

who, in the explicit-recognition tests performed after the experiments, had correctly indicated

the bias in the distribution and those who hadn’t.

Conclusion and Outlook
In summary, distractor-location probability cueing is based largely (if not exclusively)

on the local distractor frequency, rather than involving the (re-) distribution of a global

inhibitory resource (in contrast to target-location probability cueing; cf. Shaw & Shaw, 1977).

While we found no evidence of the global distractor prevalence playing a significant role in

local learning, more work is required to understand the nature of modulatory ‘global’ effects

reported in the literature (cf. Valsecchi & Turatto, 2021; see also Bogaerts et al., 2022; Müller

et al., 2009; Won et al., 2019). Further, while we have firmly established distractor-location

learning as an essentially ‘local’ phenomenon, it remains to be seen whether it is to be

classed as ‘habituation’ in the strict sense of “attenuated processing of previously

encountered sensory information that did not elicit attentive processing or a behavioral
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response” (Won & Geng, 2020, p. 1994) – as has been argued by some; or, alternatively,

whether it is top-down mediated in that it results from observers identifying a distractor that

captured attention as a ‘distractor’, as a precursor to (actively) suppressing its location and

so releasing attention to be reoriented elsewhere in the service of search – as we have

argued (e.g, Zhang et al., 2021).
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Appendix 1: Model comparison

Our results show that the amount of RT interference caused by a distractor does not

significantly depend on the global frequency distribution of distractor locations, but only on

the local frequency with which distractors occur within a given region. Accordingly, we

combined the data from all our experimental conditions in order to examine the functional

dependence of distractor interference on the local distractor frequency. Here, we compare a

number of different models of how the interference could depend on the frequency. As a

baseline against which to assess the various models, we included a simple linear model

which assumes that distractor interference decreases linearly with increasing local distractor

frequency:

, (1)𝐼 = 𝑐
1
𝑓 + 𝑐

2

where I is the amount of distractor interference, f is the local distractor frequency, and c1 and

c2 are free parameters of the model determining the slope and intercept of the linear fit.

Table S1 shows the difference between the Akaike Information Criterion (AIC; Akaike,

1974; Vrieze, 2012) of each model and the AIC of the linear model (more negative values

indicate that the model performed better). We also include an exponentially decreasing

function, based on the assumption that the amount of reduction of distractor interference

resulting from an increase in distractor frequency might be proportional to the amount of

interference before the increase:

(2)𝐼 = 𝑐
1
𝑒

−𝑐
2
𝑓

Next, it could be that the attentional priority, or ‘selection salience’ (Zehetleitner et al.,

2013), of the distractor decays exponentially with the local distractor frequency, the

probability of attentional capture is determined by the distractor salience normalized by the

total salience (because the probabilities of selecting the different items in the search display

should sum to one), and the RT distractor interference is proportional to the probability of

attentional capture:
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, (3)𝐼 = 𝑐
1
(𝑐

2
𝑒

−𝑐
3
𝑓
)/(𝑐

4
+ 𝑐

2
𝑒−𝑐

3
𝑓)

where c1 represents the RT interference produced by the distractor and c4 represents the

total salience of the other items in the search display (other than the distractor).

For the remaining models, we considered the possibility that the amount of

interference depends on how much information is gained by observing a distractor in a

particular location/region, as formalized by Claude Shannon (1948). One might expect

distractors which carry more information, in Shannon’s sense, to capture more attention,

whereas a distractor that is expected based on stimulus history and therefore uninformative

(or ‘unsurprising’) would be less likely to capture attention. We assume that the Shannon

information associated with a distractor depends on the local frequency as log(1/f) . The9

simplest way in which distractor interference could depend on the Shannon information is

through a simple linear function:

(4)𝐼 = 𝑐
1
 + 𝑐

2
𝑙𝑜𝑔(1/𝑓)

Alternatively, the distractor interference may increase exponentially with increasing

Shannon information, this would predict a power-law dependence on the frequency:

(5)𝐼 = 𝑐
1
𝑒𝑥𝑝(𝑐

2
𝑙𝑜𝑔(1/𝑓)) = 𝑐

1
𝑒𝑥𝑝(𝑙𝑜𝑔(𝑓

−𝑐
2)) = 𝑐

1
𝑓

−𝑐
2

Finally, we considered the possibility that the salience of the distractor is proportional

to the Shannon information and the distractor interference is determined by the normalized

salience (similar to equation 3 above):

(6)𝐼 = 𝑐
1
(𝑐

2
𝑙𝑜𝑔(1/𝑓))/(𝑐

3
 +  𝑐

2
𝑙𝑜𝑔(1/𝑓))

9 That is, for simplicity, we assume that the probability of observing a distractor (in a
particular location) in the definition of Shannon information is simply the local distractor
frequency. This cannot be exactly right, since it predicts that the information associated with
a distractor goes to infinity as the frequency approaches zero, but it may be a good
approximation across our range of distractor frequencies.
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Table S1: The difference between the Akaike Information Criterion (AIC) of each

model and the AIC of the linear model. More negative values indicate better model

performance.

Model ΔAIC

Linear (eq. 1) 0

Exponential (eq. 2) -2.7

Normalized exponential (eq. 3) 1.5

Linear information (eq. 4) -6.5

Exponential information (eq. 5) -6.0

Normalized information (eq. 6) -3.0

The best model in terms of the AIC was the model which assumes that the distractor

interference depends linearly on the Shannon information. The optimal parameters for this

model were , indicating the predicted amount of distractor interference (53 ms) if the𝑐
1
 =  53

distractor occured in the same region on all trials, and , determining the rate of the𝑐
2
 =  48

non-linear decrease of distractor interference with increasing local frequency.
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Appendix 2: Re-analysis Lin, Li, Wang, & Theeuwes (2021)

Experiment 1 was similar in design to Lin et al. (2020), who however used a variation

of Theeuwes’ (1992) standard ‘additional-singleton paradigm’. Their task required search for

a shape-defined target singleton, in the potential presence of an ‘additional’ color-defined

distractor singleton. Critically, a single location (out of 8 possible locations) was most likely to

contain a distractor, whereas all other locations had the same, low distractor probability. The

overall distractor probability averaged some 67% across the various ‘bias’ conditions (i.e.,

there were, on average, 33% distractor-absent trials), and the location-probability biases

(ratio of single likely location to any of the unlikely locations) varied from 2:1 to 8:1. The

effect pattern reported by Lin et al. (2020) was that distractor interference was generally

reduced for the frequent vs. the rare distractor locations (i.e., there was a distractor-location

probability-cueing effect), the more so the more likely the distractor appeared at the likely

location (and the less likely it appeared at any of the unlikely locations). In principle, this

pattern is consistent with two of the accounts considered in the Introduction: distribution of a

limited inhibition resource and, respectively, local habituation.10

However, although Lin et al. (2021) implemented a similar probability-ratio

manipulation to our Experiment 1, they did not analyze their data in quite the same way as

we did. In particular, they did not report RT distractor interference separately for the single

frequent distractor location and the rare locations, but only the difference between the two

conditions (i.e., the distractor-location probability-cueing effect). Given this, here present our

own analysis of their (freely available) data.

10Of note, though, there is a potential problem with the ‘single-likely-distractor-location’
paradigm: given that the distractor never occurs at the target location, the likely distractor location
would necessarily be less likely to be the target location – the more so, the more likely the distractor
occurs at the ‘likely’ location (i.e., more so in the 8:1 than in the 2:1 ratio condition). This imbalance
would be exacerbated if the probability of distractor-absent trials (on which the target appears equally
likely at all locations) is low (only some 33% in Lin et al’s study, compared to more typical 50%). That
is, it becomes difficult to rule out the confounding of a distractor-location probability-cueing effect by a
target-location probability-cueing effect. There is a way to correct for the reduced target probability at
the likely distractor location, namely (as proposed, e.g., by Zhang et al., 2019): by compensatorily
increasing the probability of the target appearing at the likely distractor location on trials on which the
distractor appears at an unlikely location. In fact, a reanalysis of Lin et al.’s (2020) data shows that
they did apply this correction. However, this again is problematic in that, especially with increasing
ratios (e.g., from 2:1 to 8:1) of distractors occurring at the likely vs. an unlikely location, the actual
occurrence of a distractor at an unlikely location would become increasingly predictive of the target
appearing at the likely location. These contingencies make it difficult to determine the interference
effects caused by distractors at the likely or, respectively, an unlikely location unconfounded by
target-location learning.
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Figure S1: Distractor absent RTs (A); Probability-cueing effect (B); Interference by distractors at the

single frequent location (C) and at the (average) rare location (D), in the data of Lin, Li, Wang, &

Theeuwes (2021). Error bars indicate the standard error of the mean.

Figure S1 plots the distractor-absent RTs, the distractor-location probability-cueing

effect, and distractor interference by distractors at the single frequent and, respectively, the

(average) rare locations in the data of Lin et al. (2021). Similar to our Experiment 1, the

increasing probability-cueing effect with increasing probability ratio results mainly from

increasing interference by distractors occurring at one of the rare locations (where increasing

probability ratio was accompanied by decreasing local distractor frequency). A mixed

ANOVA revealed a significant effect of probability ratio on distractor interference caused by
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rare-location distractors (F(6,105) = 4.98, p < .001, = 0.22). However, frequent-locationη
𝑝
2 

distractors did not produce a decrease in interference with increasing probability ratio; if

anything, there was a slight increasing trend (see Figure S1 panel C), though this was not

statistically significant (F(6,105) = 0.68, p = .66).
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Appendix 3: Model fit and re-analysis with normalized data

Since we observed numerical differences in the distractor-absent RTs among the various

conditions (i.e., independent-participants groups) which, while statistically non-significant,

were not completely negligible in magnitude, we examined whether we would obtain similar

results if we compensated for these differences in general response speed by normalizing

the distractor interference with reference to the distractor-absent RTs. That is, for each

participant, we divided the distractor interference by their distractor-absent RT, and we

repeated the analysis described in Appendix 1 (and the Model section) with the resulting

normalized distractor-interference score. As can be seen from Figure S2, we obtained very

similar results, and the same model (though with different parameter values) still provided a

good fit to the data.

Figure S2: Normalized distractor interference as a function of the local distractor frequency in a

region, for distractors appearing at an internal location in (i.e., not on the border of) the region, for all

experimental conditions. Note that each experimental condition contributes two data points, one for

trials with a distractor in the frequent and one for one for trials with a distractor in the rare region in

that condition. The black line depicts the predictions of the best model. Error bars indicate the

standard error of the mean.
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In addition, below, we also repeat critical comparisons between conditions with the

same local frequency in a region, but a different global distribution (for which the local and

global theories make different predictions), based on normalized distractor interference from

trials with a distractor at a region-internal location.

Based on Experiment 2, there are three such comparisons (see Figure 1), two

comparisons to the 60/40 condition (onsite experiment and online replication) and one

comparison to the 90/10 condition. The normalized distractor interference (for internal

distractor locations) did not differ significantly between distractors in the frequent region in

the reduced distractor-frequency condition of Exp. 2 and the frequent region in the 60/40

condition of Exp. 1, with the Bayes factor favoring the null hypothesis (–1-ms difference,

t(39.2) = -0.042, p = .97, BF10 = 0.30). There was also no significant difference compared to

the online replication of the 60/40 condition (19-ms difference, t(36.3) = 1.1, p = .25, BF10 =

0.50). Finally, the normalized distractor interference did not differ significantly between

distractors in the rare region in the reduced distractor frequency condition of Exp. 2 and the

rare region in the 90/10 condition of Exp. 1, with the Bayes factor favoring the null

hypothesis (–12-ms difference, t(41.7) = - 0.44, p = .66, BF10 = 0.32).

We also considered the comparison between normalized distractor interference by

distractors in the frequent region of Exp. 3 and in the rare region in the 80/20 condition of

Exp. 1, which also did not differ significantly, with the Bayes factor favoring the null

hypothesis (9-ms difference, t(38.3) = 0.36, p = .72, BF10 = 0.32).

Overall, the re-analysis of the critical (equal local distractor frequency but different

global distribution) comparisons, based on normalized distractor interference and distractors

appearing at region-internal locations, clearly favors the local learning hypothesis.
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