
Master Thesis

Self-supervised Representation Learning
for Genome Sequence Data

Xiao-Yin Janet To

Supervisors: Dr. Mina Rezaei, Martin Binder
Date: December 23rd, 2021

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been made
to the work of others.

Munich, December 23rd, 2021

. .
Xiao-Yin Janet To

Abstract

One major challenge for machine learning in genomics is the scarcity of labeled
data. In order to obtain high quality labels, it is often necessary to perform ex-
pensive experiments. However, in the age of high throughput sequencing, there is
a large quantity of unlabeled data that can be used to aid classification through
semi-supervised learning. Out of the multiple possible avenues to semi-supervised
learning, we tackle the problem through representation learning, which has shown
promising results in previous studies. We investigate this issue using representations
for semi-supervised-learning by applying a Contrastive Predictive Coding architec-
ture and a language model predicting the next following nucleotide from a given
genome sequence. The representations are evaluated by three downstream tasks
from genomics: (1) The differentiation between Gram-positive and Gram-negative
bacteria, (2) the differentiation between bacteria, phage-viruses, and other viruses,
and (3) the recognition of different chromatin effects of sequence alterations in the
human genome. The performance is compared with fully supervised approaches.
We find that the language model predicting the next nucleotide from a sequence
performs better than the CPC model. However, the gain in performance compared
to the fully supervised approaches is rather small and further research is needed to
draw more definitive conclusions.

Contents

1 Introduction and Motivation 3
1.1 Genome Sequences . 3
1.2 Self-Supervised Representation Learning 4
1.3 Purpose and Research Question . 4

2 Background and Related Work 6
2.1 Deep Learning . 6

2.1.1 Convolutional Neural Networks 6
2.1.2 Residual neural network . 7
2.1.3 Recurrent neural networks . 8
2.1.4 Hybrid models . 9
2.1.5 Optimization and learning rate 10

2.2 Deep Representation Learning Techniques 12
2.2.1 Self-supervised learning Semi-supervised learning 12
2.2.2 Contrastive predictive coding 14

3 Method and Experimental Setup 17
3.1 Technical Aspects . 18
3.2 Data . 19

3.2.1 Pretraining . 19
3.2.2 Gram staining classification task 20
3.2.3 Bacteria-Virus Classification task 21
3.2.4 Chromatin features classification task 22

3.3 Experiments . 22
3.4 Self-supervised Model Architecture 24

3.4.1 Contrastive Predictive Coding for Self-supervised Genomics
Data . 24

3.4.2 Language Model: Next nucleotide prediction 27
3.5 Downstream Task Evaluation . 28

3.5.1 Measures . 29

1

CONTENTS

4 Results 32
4.1 Experiments . 32

4.1.1 Learning rate . 32
4.1.2 Embedding scale . 33
4.1.3 Encoder architectures and maximum number of samples per

FASTA-file . 34
4.2 Evaluation Benchmark . 36

4.2.1 Gram staining classification task 37
4.2.2 Bacteria-Virus classification task 40
4.2.3 Chromatin features classification task 44

4.3 Interpretability of the Representations 47

5 Discussion and Conclusion 50
5.1 Future Aspects . 50
5.2 Conclusion . 51

List of Figures 53

List of Tables 55

Bibliography 56

A Model Architecture 63

B Results 66

2

Chapter 1

Introduction and Motivation

1.1 Genome Sequences

Just as human beings use languages to communicate, nature created its own lan-
guage: genomes. Using structures invisible to the human eye, inter- and intra-
cellular exchanged of information enables the existence life as we know it. In order to
understand this “language of life”, Natural Language Processing methods have been
used with the aim of understanding these invisible structures [Asgari and Mofrad,
2015].

A genome is the entirety of all genetic information of a cell, stored as sequences
of nucleotides on double-stranded DNA molecules. A distinction is made between
coding and non-coding strands, with coding sections on the DNA being responsible
for the production of RNA and proteins. The latter are the main contributors to the
complex function and structure of a cell, wherefore the identification and compre-
hension of protein-coding genes is essential and valuable for decoding genomes and
predicting their functions [Harrow et al., 2009, Szalai et al., 2020, Alberts, 1998].
Thanks to scientific progress, genomes are nowadays being sequenced at tremendous
speed and multiple databases are offering a considerable collection of sequences [Say-
ers et al., 2020]. Simultaneously it should be noted that these sequences are to a
large extent not annotated. While sequencing itself can be realized in an automated
manner using scientific instruments, the identification of a single protein’s functions
needs to be performed manually by expensive experiments that require human an-
notators with high biological expertise to be performed. Additionally, they can only
be carried out in clinical microbiological laboratories, using specialized software, and
each experiment only allows a limited number of samples. Further, not all labeling
strategies can be applied to all sequences, which makes it difficult to speed up the
process by labeling all of the sequences at once [Joensen et al., 2014, Neilson et al.,
2011].

Given the amount of available data, the annotation of all genomes using these

3

CHAPTER 1. INTRODUCTION AND MOTIVATION

procedures might require decades of experimenting. As the utilization of compu-
tational methods have sped up the process of sequencing, we aim to speed up the
process of annotation correspondingly.

1.2 Self-Supervised Representation Learning

For classification tasks, the majority of current research uses supervised learning
methods using only labeled data for the training of a model. As there are many
domains where labeled data is expensive to acquire and therefore not available in a
large amount, a large part of current research effort is focusing on methods that do
not require a large amount of expensive supervision [Kolesnikov et al., 2019]. We
apply semi-supervised learning, an approach that allows the usage of both unlabeled
and labeled samples by exploiting the quantity of available unlabeled genome data
in comparison to the amount of data that is labeled. Semi-supervised learning has
proven powerful for instances where large amounts of unlabeled data is available, as
these are used for learning in addition to the supervised data [Chapelle et al., 2006].
The basic procedure we focus on in this work is self-supervised semi-supervised
learning (S4L) and can be divided into two parts: At first, only unlabeled data
is used to train a model on a task that can be computed without supervision,
creating representations of the data. These representations are then used as a base
for training a supervised model on the labeled data by feeding them to the model as
input features. In order to realize the first step, the pretraining step, a self-supervised
model is trained by defining a so-called pre-text task, which is a task formed by the
method, that does not require labeled data, but high-level semantic understanding in
order to be solved [Zhai et al., 2019]. This model creates so-called “representations”,
which are activations of hidden neurons representing relevant features of the data
and are expected to contain the data’s essential information in a compressed and
interpretable manner, making an increase of the learning algorithms’ performance
possible. The advantage of the representations learned by representation learning is
their capability to capture the underlying factors of the data, which can be relevant
for the task that is later evaluated in the supervised step [Asgari and Mofrad, 2015,
Bengio et al., 2014]. For instance, recent work has shown that in the text domain
useful representations could be learned by training a model that predicts a word
given its context, which complies with the surrounding words in this case [Doersch
et al., 2016, Mikolov et al., 2013].

1.3 Purpose and Research Question

The objective of this thesis is to find out whether S4L approaches lead to a better
performance in genome sequence annotation than fully supervised methods. For the

4

CHAPTER 1. INTRODUCTION AND MOTIVATION

self-supervised step, Contrastive Predictive Coding as presented by van den Oord
et al. [2019] and Hénaff et al. [2020] is compared to a language model predicting
the next nucleotide given a sequence. This is evaluated by comparing the results
for three downstream classification tasks: The first one being the differentiation
between Gram-positive and Gram-negative bacteria, the second between bacteria,
viruses that attack bacteria (“bacteriophages”), and other viruses (in the following
just “viruses”), and the third one the recognition of different chromatin effects of
sequence alterations in the human genome. The tasks, including the underlying
data will be further explained in Chapter 3.2. Additionally, within this framework
we want to evaluate if, and to what degree, performance is influenced by specific
settings such as model depth or learning rate and if the representations resulting
from the self-supervised pretraining are themselves interpretable.

5

Chapter 2

Background and Related Work

2.1 Deep Learning

Deep learning based methods have recently achieved breakthroughs in bioinformat-
ics by exceeding the performance of previous state-of-the-art approaches [Zhang
et al., 2021], for example in disease detection such as the prediction of cancer recur-
rence through gene expressions [Tang et al., 2019], or in drug discovery by predicting
the drug-target interaction [Chen et al., 2018, Rifaioglu et al., 2018]. To develop a
model capable of learning useful representations from genome sequence data, Tra-
belsi et al. [2019] explored several natural language processing approaches, and in
the course of this the use of hybrid models combining recurrent and convolutional
neural networks proved most promising. In the following, we will therefore exam-
ine the “DanQ” architecture [Quang and Xie, 2016], serving as a well established
hybrid architecture for genome sequence data. Furthermore, since residual convolu-
tional neural networks were appointed to be high-quality learners for representations
[Kolesnikov et al., 2019], we investigate their application to the dataset.

2.1.1 Convolutional Neural Networks

Early versions of convolutional neural networks (CNNs) were introduced by LeCun
et al. [1995], who used them for creating a method for recognizing handwritten
digits. The intuition behind CNNs is to capture local patterns in data using shared
weights, where filters extract features within their receptive field along the input and
pass the result to a non-linear activation function σ. In the one-dimensional case,
the main parameters of a convolutional layer are the input length il, the number
of input channels ic, the size of the receptive field of the filters W k = M × ic with
window size M , and the output with length ol and channels oc. The procedure of a

6

CHAPTER 2. BACKGROUND AND RELATED WORK

convolutional layer can be described as follows:

convolution(X)j,k = σ(
M−1∑
m=0

ic−1∑
n=0

W k
micXj+m,ic), (2.1)

where the index of the filter is denoted by k, j denotes the index of the output
position [Trabelsi et al., 2019], and the size of convolution(X) is a ol × oc matrix.

Since our input of interest, genome sequence data, is one-dimensional, one-
dimensional convolutional layers are used. Within this context, the first convo-
lutional layer takes a one-hot-encoded input sequence of length il as its input, repre-
sented by a il× 4 matrix, as there are four possible letters for nucleotides (A, C, G,
T). Subsequent layers follow the same procedure and take the outputs of previous
layers as an input, having a different channel size respectively. In case of multiple
successive convolutional layers the first layers detect low-level features and deeper
layers can identify high-dimensional global information as their receptive field is
larger. This allows for the detection of interactions between positions at greater
distances from each other within the genome within these deeper layers.

2.1.2 Residual neural network

Kolesnikov et al. [2019] have proposed that deep networks of many CNN layers
trained to solve pre-text tasks encode high-level semantic representations useful for
solving downstream tasks of interest. This makes models with deep architectures
such as residual convolutional neural networks (ResNets) the architecture of choice.
The idea suggested by He et al. [2015] was to create a method that simplifies the
training of deeper neural networks by reformulating the layers as learning residual
functions, while preventing the vanishing gradient problem [Glorot and Bengio, 2010]
that often occurs when training deep networks. Residual functions use “identity
shortcut connections” that skip one or more layers, as shown in Figure 2.1, instead
of training a model to fit a desired underlying mapping every few layers. The
mapping is formulated by F(X) + X and adds the outputs of the identity X to
the outputs of the stacked layers F(X) without adding any additional parameters
or extra computational complexity. A building block with input X, output y, and
weights W is defined as

y = F(X, {Wi}) +X (2.2)

with i being the number of layers within the block. Each block consists of a repeating
pattern of a convolutional layer, a subsequent batch normalization, rectified linear
(ReLU) activation, and a shortcut connection. The typical ResNet architecture
starts with a plain convolutional layer followed by a pooling layer, then four residual
stacks are deployed in which multiple block architectures are assembled. The number
of repetitions within each block differs between architectures. Ultimately, a global

7

CHAPTER 2. BACKGROUND AND RELATED WORK

weight layer

weight layer

+

X

relu

relu

X identityF(X)

F(X) +X

Figure 2.1: Residual learning: a building block. Reproduced from He et al. [2015].
X denotes the input to a building block. Through a shortcut connection by identity
mapping (X identity) fits a residual mapping, producing F(X) + X at the end of
each building block.

average pooling layer reduces the number of parameters to be trained, and a fully
connected layer with softmax activation produces the final prediction.

2.1.3 Recurrent neural networks

Early versions of recurrent neural networks (RNNs) were based on the concepts
acquired by Hopfield [1982], who introduced the “Hopfield network” that was de-
signed to simulate human memory, and Rumelhart et al. [1986], who addressed
sequential data by networks with loops, allowing information to persist through
back-propagation of the error. This approach is mainly used for sequential data
x1, . . . , xn, as it is able to memorize previous inputs and take them into considera-
tion when determining the output. To reach this objective, units are connected in
the form of a directed cycle, and the model includes additional state variables that
store past information in order to feed them to the next time frame in the network
along with the present information, each connection having its own trainable pa-
rameters. However, when attempting to learn long-term dependencies, the simple
implementation suffers from vanishing or exploding gradients.

8

CHAPTER 2. BACKGROUND AND RELATED WORK

ct−1

Cell state

ht−1

Hidden state

xt Input

x

+ + + +

+

x

ct

Next cell state

ht

Next hidden state

ht Output

σ σ tanh σ x

tanh

b b b b

Inputs:

xt Current Input

ct−1
Memory from

last LSTM unit

ht−1
Input from last

LSTM unit

Outputs:

ct
New updated

memory

ht
Current

output

Nonlinearities:

σ Sigmoid layer

tanh Tanh layer

b Bias

Vector operations:

x
Scaling of

information

+
Adding

information

Figure 2.2: The structure of the Long Short-Term Memory (LSTM) neural network.
Reproduced from Le et al. [2019].

While there are a variety of different types of RNNs, in this work we focus on
Long Short-Term Memory (LSTM) networks [Hochreiter and Schmidhuber, 1997],
which are designed to tackle the obstacle of learning long-term dependent corre-
lations within data and the vanishing and exploding gradients issue by exhibiting
dynamic temporal or spatial behavior. The most commonly used architecture is
based on the concept introduced by Hochreiter and Schmidhuber [1997] and was
further developed by Gers et al. [1999]. Compared to simple RNN architectures,
the LSTM architecture is extended by memory cells and three types of gate units:
The input gate, which adds new information to the memory cell while preventing
irrelevant information from entering, the forget gate, which is able to reset mem-
ory blocks and remove irrelevant and obsolete low-level information, and the output
gate, which decides what information on previous inputs is passed to the next hid-
den state and the next cell state. A detailed overview of the functionalities of this
architecture is displayed in Figure 2.2.

2.1.4 Hybrid models

Hybrid models based on CNNs and RNNs have become the current state-of-the-art
architectures for genome sequence modeling [Alipanahi et al., 2015, Hassanzadeh and
Wang, 2016]. Assembling both network types, the model is able to identify sequential
and structural motifs. While CNN layers can learn features within the sequence,

9

CHAPTER 2. BACKGROUND AND RELATED WORK

RNN layers improve performance by learning long-term dependencies [Trabelsi et al.,
2019].

An example of a well established hybrid architecture combining RNN and CNN
layers is the “DanQ” architecture introduced by Quang and Xie [2016], which was
originally applied for DNA sequence function prediction using the dataset from
the DeepSEA framework [Zhou and Troyanskaya, 2015]. The input layer takes the
one-hot-encoded vector of a sequence and passes it to a convolutional layer with
ReLU activation. Following this, a max pooling layer reduces the sequence length,
which is then relayed to a bidirectional LSTM layer. The output from this layer is
flattened and input to a fully connected hidden layer, followed by a fully connected
output layer, which returns the predictions as a vector of length 919 after a sigmoid
transformation, as their objective is a multi-task prediction with 919 target labels.

2.1.5 Optimization and learning rate

Stochastic gradient-based optimization is at the core of many high-dimensional opti-
mization processes in numerous areas of science as well as industry and engineering.
Within this scope, methods based on first-order derivatives such as the stochas-
tic gradient descent are advantageous compared to methods based on higher-order
derivatives, which would incur high efficiency combined with low computational
complexity, since higher-order derivatives are associated with a higher usage of com-
putational memory.

Adam

One method that demonstrated notable improvements in optimizing stochastic ob-
jectives with high-dimensional parameter spaces is the Adaptive Moment Estimation
(Adam) method [Kingma et al., 2014], which requires only first-order gradients of
the objective function and thus relatively little memory, while it even performs well
for sparse gradients or on-line and non-stationary settings and is invariant to rescal-
ing of the gradient. Here, the trainable parameters θt are updated in each epoch by
adapting to the exponentially decaying average of past gradients and past squared
gradients, which correspond to the first moment m0 and second moment v0. The pa-
rameters β1, β2 ∈ [0, 1) denote the exponential decay rates of the moment estimates,
α denotes the step size, which is equal to the learning rate and remains constant over
the course of the training, and a small constant ε is included to prevent a division
by zero in the update step. The application of the exponentially weighted average of
gradients at different moments accelerate the convergence of the algorithm. The full
algorithm as presented by Kingma et al. [2014] is shown in the following pseudocode
in Algorithm 1, giving a clear overview of the process.

10

CHAPTER 2. BACKGROUND AND RELATED WORK

Algorithm 1 The Adam Algorithm [Kingma et al., 2014]

Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: ε: Small constant
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0 (Initialize first moment vector)
v0 ← 0 (Initialize second moment vector)
t← 0 (Initialize timestep)
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2t (Update biased second raw moment estimate)
m̂t ← mt

1−βt
1

(Compute bias-corrected first moment estimate)

v̂t ← vt
1−βt

2
(Compute bias-corrected second raw moment estimate)

θt ← θt−1 − α·m̂t√
v̂t+ε

(Update parameters)
end while
return θt (Resulting parameters)

Learning rate schedule: Cosine Annealing

To accelerate the rate of convergence, researchers tested different approaches to
adjust the learning rate during training [Smith, 2015, Zagoruyko and Komodakis,
2016], and that process, the so-called “Stochastic Gradient Descent with Warm
Restarts” (SGDR) introduced by Loshchilov and Hutter [2017], was demonstrated
as a new state-of-the-art technique. Instead of the constant learning rate described
for the Adam algorithm, the learning rate is here adapted for each epoch.

In this method, the learning rate is defined as a value in [ηmin, ηmax]. Along
the training, the learning rate decreases with cosine annealing for each epoch and
is reset to the initial value after a defined instance of time until a restart Ti, with
i defined as the time interval between two restarts. The time until a restart Ti can
change over the training by increasing it by a factor Tmult. Loshchilov and Hutter
[2017] suggest setting Ti to a small value at the beginning of training and increasing
after each restart to improve anytime performance. Finally, the learning rate ηt for
epoch t and iteration i is computed as follows:

ηt = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
Tcur(t)

Ti(t)
π

))
. (2.3)

The process of this learning rate schedule is visualized by five example settings in
Figure 2.3.

11

CHAPTER 2. BACKGROUND AND RELATED WORK

10−6

10−5

10−4

10−3

10−2

0 50 100 150 200
Epochs

Le
ar

ni
ng

 R
at

e

Schedule

T0 =50, Tmult =1

T0 =100, Tmult =1

T0 =200, Tmult =1

T0 =5, Tmult =2

T0 =10, Tmult =2

Figure 2.3: Cosine Annealing schedule scheme of learning rate ηt over batch index
t. Warm restarts simulated every T0 = 50 (dark blue line), T0 = 100 (blue line) and
T0 = 200 (pink line) epochs with ηt decaying during i-th run from ηimax = 0.01 to
ηimin = 10−6 according to Eq. (2.3); warm restarts starting from epoch T0 = 5 (dark
green line) and T0 = 10 (yellow line) with doubling (Tmult = 2) periods Ti at every
new warm restart.

2.2 Deep Representation Learning Techniques

2.2.1 Self-supervised learning Semi-supervised learning

The term semi-supervised learning refers to all approaches that tackle the the prob-
lem of learning a machine learning model when only a small number of labeled
samples and large number unlabeled samples samples are available by using both
labeled and unlabeled samples for learning, in most instances applied to classifi-
cation tasks. Within the framework of this thesis, the focus is on semi-supervised
methods based on deep neural networks [Zhai et al., 2019, Chapelle et al., 2006].
The challenge here is to make use of the unlabeled samples and learn properties
of the data that can be used by a classification model, with the goal of improving
accuracy compared to a model trained solely on supervised data. For this purpose,
the aim is to learn not only features that are useful for a specific supervised task,
but features that transfer well to related domains.

Many of the early implementations used generative models as a foundation [Ras-
mus et al., 2015, Odena, 2016, Adiwardana et al., 2016] because generative ap-
proaches require a high-level understanding of the structure of the data in order
to model it. Many experiments have been reported where the quantity of labeled
components could be significantly reduced using generative techniques [Zhu, 2005].

12

CHAPTER 2. BACKGROUND AND RELATED WORK

Due to the empirical success acquired in both academia and industry, another
foundation called representation learning has gained attention in recent years [Ben-
gio et al., 2014, Szummer and Jaakkola, 2002, Chapelle, 2003]. The given unlabeled
samples are used for the creation of data representations, which are activations of
hidden neurons representing relevant features of the data and are expected to contain
the data’s underlying factors in a compressed manner, and to be interpretable them-
selves, or at least by a trained supervised downstream model. These are fed into a
supervised classifier with the goal of capturing only the relevant data structures and
characteristics rather than the full raw data, which may contain information that
does not aid to solve the task. Notable success in representation learning have been
reported in signal processing [Boulanger-Lewandowski et al., 2012], object recogni-
tion [Doersch et al., 2016], and natural language processing [Kawakami et al., 2020],
among others. Because representations can enclose information useful for multiple
tasks with common factors, they have also been found to be advantageous in the
context of transfer learning and multi-task learning [Krizhevsky et al., 2012].

One promising approach for creating representations is self-supervised learning,
a subclass of unsupervised learning. While in generative models the data needs to
be understood sufficiently to permit reconstruction, here the data is used directly
to formulate a so-called pre-text task [Zhai et al., 2019, Hénaff et al., 2020]. In this
process, pseudo-labels are generated from the unlabeled data to enable the execution
of supervised methods. Common pre-text tasks are the prediction of future, missing,
or contextual information. For instance, in image processing, a possible pre-text task
is to predict the angle of rotation transformation used to modify an input image as
shown by Gidaris et al. [2018]. An example from the field of reinforcement learning
teaches a robot to learn motions seen in an image by mimicking them and comparing
them to its own mirror reflection [Sermanet et al., 2017].

Outperforming previous state-of-the-art methods, influential models that apply
self-supervision include BERT, introduced by Devlin et al. [2018] in the natural
language domain, and SimCLR introduced by Chen et al. [2020] as well as the unsu-
pervised learning of visual representations by context prediction approach proposed
by Doersch et al. [2016] in the image domain. The latter proposed using patch-based
techniques, such as predicting a patch given its context as a pre-text task, which
inspired many scientists to use patch-based techniques in numerous other domains
as well. Notable success has been achieved in PASCAL VOC 2007 classification, an
object recognition task with a set of visual object classes in realistic scenes, where
patch-based self-supervised representation learning has become the new state-of-
the-art method [Doersch et al., 2016, Hénaff et al., 2020], and moreover in the field
of bioinformatics, where Lu et al. [2020] have successfully trained representations of
protein sequences and evaluated them on several downstream tasks such as protein
structure classification or protein stability prediction.

13

CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.2 Contrastive predictive coding

Another patch-based self-supervised technique that has attracted considerable at-
tention was Representation Learning with Contrastive Predictive Coding (CPC) in-
troduced by van den Oord et al. [2019] and further developed by Hénaff et al.
[2020]. The idea of predictive coding was inspired by early signal processing tech-
niques for data compression as proposed by Atal and Schroeder [1978], which in
turn was inspired by the abstraction of observations employed by the brain, that
can be inspected in neuroscience research [Friston, 2005]. Just as the brain does
not store all perceived details and instead retains only the general framework, also
for representations, the abstraction should be accomplished through selecting only
the underlying shared information between different parts of the high-dimensional
signal and global structures for the encoding, while discarding local noise and less
relevant information. This type of high-dimensional global information are called
“slow features”. For instance, in order to solve a classification task, the ability to
recognize a cat in an image is more relevant than memorizing the exact color and
position of its whiskers. Although this can be effortlessly realized by human beings,
this global structure is far more difficult for a computer to recognize, since pixels
must be analyzed in light of their context. Van den Oord et al. [2019] state that it
is context based approaches that are able to learn useful representations, because a
large number of possible targets are conditionally dependent on the same high-level
latent information that can be found in the data. Consequently, a method that
can detect slow features is required and this challenge is addressed by modeling the
target x in consideration of the context c by mapping both into distributed vec-
tor representations with a much more compact embedding space, and by preserving
the mutual information through maximization. This maximized mutual information
contains the extracted underlying latent variables the inputs have in common, and
is defined as

I(x; c) =
∑
x,c

p(x, c) log
p(x|c)
p(x)

(2.4)

with x as the future observation of interest and c as the present context obser-
vations. This proposed method can be applied on data with, for example, spatially
or temporally ordered observation and proceeds in three steps: At first, the in-
put data xt is compressed by a non-linear “encoder network” genc into a compact
latent embedding space that forms the latent representations zt = genc(xt). Summa-
rized information of the context of a patch is given from autoregressive layers gar of
the “context network” modeled on top, producing the latent context representation
ct = gar(z≤t). Both representations zt and ct are suitable as representations for
downstream tasks, with ct being especially recommended for targets that rely on
past information [van den Oord et al., 2019].

14

CHAPTER 2. BACKGROUND AND RELATED WORK

Hénaff et al. [2020] have implemented a modified version of the CPC architecture
that focuses on image classification and was found to improve the performance
achieved by the initial CPC architecture. This modified version is named CPC v2,
the initial architecture is thus named CPC v1. In this construction, an image is
first divided into overlapping patches xi,j where i and j indicate the position of the
patch. All patches are independently encoded by genc, resulting in representations
zi,j = genc(xi,j), which are transformed into context vector representations ci,j =
gar({zu,v}u≤i,v). The pre-text task formulated here is to predict future feature vectors
zi+k,j given k > 0 and present context vectors ci,j. The trainable prediction matrix
Wk is multiplied by the current context vector, yielding the prediction of the future
feature vector

ẑi+k,j = Wkci,j (2.5)

Wk includes the patch to be predicted as the positive sample zi+k,j, as well as negative
samples zl from other patches from the same image and patches from other images
from the same batch, that form the negative samples. Since the representations are
the output of neural networks, the objective is to train a model that obtains the
highest value at the position of zi+k,j after matrix multiplication between Wk and
ci,j while producing values close to zero at all other positions zl. The result depicts
the probability to be assigned to a target by applying the softmax function and is
assessed using cross-entropy loss. In conclusion, the CPC objective is defined as

LCPC = −
∑
i,j,k

log p (zi+k,j | ẑi+k,j, {zl})

= −
∑
i,j,k

log
exp(ẑTi+k,jzi+k,j)

exp(ẑTi+k,j zi+k,j) +
∑

l exp(ẑ
T
i+k,j zl)

(2.6)

The loss is called InfoNCE, inspired by Noise-Contrastive Estimation [Gutmann and
Hyvärinen, 2010, van den Oord et al., 2019].

The architecture proposed by Hénaff et al. [2020] takes images with a resolu-
tion of 260 × 260 pixels as input, extracts patches of the size 80 × 80 pixels with
a stride of 36 × 36 pixels, amounting to a grid of 6 × 6 image patches. These are
passed to the encoder genc, for which a modified ResNet-101 was chosen. This ver-
sion includes only the first three stacks, whereas the third residual stack is extended
to 4,096-dimensional feature maps and 512-dimensional bottleneck layers, instead
of the 1,024-dimensional feature maps and 256-dimensional bottleneck layers intro-
duced for the original ResNet-101 architecture by He et al. [2015]. This ResNet
architecture used by Hénaff et al. [2020] is named ”ResNet-161”. The output of the
encoder network are [6, 6, 4,096] tensor representations for each image, designated
as “latents”. These are aggregated through the context network into a 6 × 6 grid
of context vectors for which a PixelCNN decoder [van den Oord et al., 2016] was
chosen. In order to collect information about the context of a patch, the network

15

CHAPTER 2. BACKGROUND AND RELATED WORK

fθ gφx z c
InfoNCE

[256, 256, 3] [7, 7, 4096] [7, 7, 4096]
Masked
ConvNet

Patched
ResNet-161

fθ hψx z y
Cross

Ent

[256, 256, 3] [7, 7, 4096] [1000, 1]Linear

Self-supervised
pre-training

100% images; 0% labels

Linear classification
100% images and labels

fθ hψx z y
Cross

Ent

[224, 224, 3] [14, 14, 4096] ResNet-33
Efficient classification
1% to 100% images and labels

fθ hψx z y
Multi
Task

[H, W, 3] [H/16, W/16, 4096]
Transfer learning
100% images and labels

hψx y
Cross

Ent

[224, 224, 3] [1000, 1]ResNet-152
Supervised training

1% to 100% images and labels

Baseline
Pre-training

Evaluation

Pre-trained
Fixed / Tuned

ResNet-161

Image x

Feature Extractor fθ
Patched ResNet-161

z

c

Context Network gφ
Masked ConvNet

Faster-RCNN [20, 1]

[1000, 1]

Pre-trained
Fixed / Tuned

ResNet-161

Pre-trained Fixed
 Patched ResNet-161

Figure 2.4: Overview of the framework for semi-supervised learning with Contrastive
Predictive Coding for Image Data. Left: unsupervised pretraining with the spatial
prediction task. First, an image is divided into a grid of overlapping patches. Each
patch is encoded independently from the rest with a feature extractor (blue) which
terminates with a mean-pooling operation, yielding a single feature vector for that
patch. Doing so for all patches yields a field of such feature vectors (wireframe
vectors). Feature vectors above a certain level (in this case, the center of the image)
are then aggregated with a context network (red), yielding a row of context vectors
which are used to linearly predict features vectors below. Right: using the CPC
representation for a classification task. Having trained the encoder network, the
context network (red) is discarded and replaced by a classifier network (green) which
can be trained in a supervised manner. Figure taken from Hénaff et al. [2020] with
permission.

contains a convolutional layer with a kernel size of [1, 3] to gather information from
the horizontal context, and another convolutional layer with a kernel size of [2, 1]
to gather information from the vertical context. This is repeated five times to itera-
tively collect information of each surrounding patch for each patch using a residual
connection between the initial latents and the respective tensor yielded from each
iteration, with higher importance given to closer patches. The final result is shrunk
by the factor of an “embedding scale” to prevent local overfitting. The 6 × 6 grid
of context vectors is then assessed along with the 6× 6 grid of latents through the
InfoNCE loss function (2.6). The process is visualized in Figure 2.4. An Adam op-
timizer [Kingma et al., 2014] with a learning rate of 0.0004, β1 = 0.8, β2 = 0.999, ε
= 10−8, and Polyak averaging with a decay of 0.9999 was applied for optimization.

16

Chapter 3

Method and Experimental Setup

The S4L architecture for genome sequence classification applied in this thesis con-
sists of two central components. First, self-supervised training takes place where
representations are generated. For this purpose, we compare two pre-text tasks: A
model that predicts the patch of a sequence analogous to the CPC model and an-
other language model that predicts the next nucleotide given a sequence. Language
models are statistical models applied on language processing and can be based on
words or characters. Their goal is the understanding of structures in language data
and the typical task for training is the prediction of the next word or the next char-
acter given a text. Common language models are BERT introduced by Devlin et al.
[2019] and GPT-3 introduced by Brown et al. [2020], among others.

The second component is supervised training, where these created represen-
tations are input for downstream task evaluation employing a supervised model
trained on the labeled data. We verify the quality of the representations by eval-
uating the performance through linear classification via regularization using lasso
regression [Tibshirani, 1996], where the lambda value for prediction is chosen by
cross-validation with grid search over possible values, choosing the largest value
with a cross-validation error at most one standard error larger than the smallest
cross-validation error. Another approach for downstream task evaluation we used
is linear classification by adding a single linear layer to the network. In the latter
case, the weights of the self-supervised network creating the representations are ei-
ther frozen to construct a purely linear classification model, creating the “neural
network linear classification” evaluation method, or the weights remain trainable
but are trained at a lower learning rate to construct a fine-tuning model, creating
the “neural network fine-tuning” evaluation method. As two approaches for lin-
ear classification are examined, we refer to neural network linear classification as
“NN linear classification” and to linear classification via regularization using lasso
regression simply as “lasso regression”. In supervised training, data are sampled
balanced by target; in evaluation, all test data are used, resulting in an unbalanced

17

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

Table 3.1: Number of Samples included in one Epoch. Instead of using
the entire training data in one Epoch, one Epoch was defined to include
Batch Size × Steps per Epoch samples of size Sequence Length.

Model Batch Size Steps per Epoch Sequence Length Samples per Epoch

Self-Supervised Language Model 512 3000 500 1,536,000

Self-Supervised CPC 32 3000 6700 96,000

Supervised, Gram Staining 32 3000 6700 96,000

Supervised, Bacteria-Virus 32 3000 6700 96,000

Supervised, Chromatin Features 32 3000 1000 96,000

distribution of the target variable.
All models are trained until convergence, which is defined as the point of time,

where the slope of the learning curve does not change after a restart of the cosine
annealing. A time limit of two weeks is set, after which the training is terminated
even if no convergence was observed yet.

3.1 Technical Aspects

Since the available data consists of about 4.5 million samples when an input se-
quence of length 6,700 is chosen, the duration of a single epoch would be too long
to dynamically observe the training progression. Therefore, we have redefined the
term “epoch” within this thesis, and in contrast to classical procedures in training
a deep learning model, not all training data are considered in the course of one
“epoch”. Instead, the length of one input sequence, the batch size, and the number
of steps per epoch are predefined in compliance with computational limits or data
availability. An epoch as it was used here does consequently not contain the entire
training data, but only determines after how many steps the evaluation on the vali-
dation data is triggered instead. The number of samples included in one “epoch” is
summarized in Table 3.1.

Since the total size of the data amounting to 52 gigabytes exceeds the working
storage of the available machines, a data generator from the deepG library [Mreches
et al., 2021] that was created precisely for the preparation of genome sequence data
is used. We used genome data stored in FASTA-format. FASTA-format files are
files enclosing human readable text, where the first line contains the primary infor-
mation of the genome and the following rows contain the sequence in ASCII-based
format, represented by the four different symbols A for adenine, C for cytosine, T
for thymine, and G for guanine [Wang et al., 2019]. The length of the sequence
varies between different organisms from which the sequence is derived. The data is
organized in folders, where a folder d contains sequence files {f} of length lf and

18

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

Table 3.2: Summary of the used Datasets. The exact percentages listed in the
“Outcomes” column are rounded to two decimal places and refers to the exact
percentage within the test dataset used for downstream task evaluation.

Dataset Outcomes Number of Nucleotides

Bacterial sequences (Pre-Training Only) 39,834,931,884

Bacterial, human, and viral
sequences

(Pre-Training Only) 350,829,190,515

BacDive: Bacterial sequences
with Gram Staining Annotation

Gram-Positive (42.79%),
Gram-Negative (57.21%)

8,138,600,419,728

Bacterial and viral sequences
Bacteria (74.47%),
Phage-Virus (23.86%),
Non-Phage-Virus (1.65%)

347,683,101,359

DeepSEA: Human Sequences 919 labels 4,863,024,000

only files with lf ≥ L are considered, with L as the pre-specified length of a sequence
input to the model. The data needed to train one batch of size nb is sampled by a
generator. In the beginning, the generator samples one f from d and takes at most
nmax sub-sequences of length L from f . If L×nb ≥ lf , the generator samples another
f ′ from d and extracts L×nb− lf ′ sequences. This continues until nb sub-sequences
are found. The remaining sub-sequences from this file are then used for the next
batch and the described procedure is repeated. To ensure comparable validation
measures across epochs, a validation generator with nmax = 8 is prepared and saved
for each task, providing a prediction for the same sequences in the same order at
each epoch. For training the models, NVIDIA Tesla V100 GPU machines with 32
gigabytes memory capacity were used.

3.2 Data

An overview of all datasets used within the scope of this work is depicted in Table 3.2.

3.2.1 Pretraining

The data used to pretrain the self-supervised model was downloaded from GenBank
[Sayers et al., 2020], a public database containing 9.9 trillion base pairs from over
2.1 billion nucleotide sequences for 478,000 formally described species. One interim
finding we hope to achieve is whether higher diversity within the training data leads
to the extraction of higher-level slow-features. As the primary downstream task is
the classification of bacterial properties, the model was trained based on bacterial

19

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

genome sequences only on one hand, and based on a combined dataset comprising
of bacterial, human, and viral sequences on the other hand. The genome database
of the Helmholtz Center for Infection Research (HZI) in Braunschweig, which was
extracted from GenBank, served as the data basis. The bacterial data comprises
13,264 sequences, the human data comprises 2,136 sequences, and the viral data
comprises 39,109 sequences, with 25,846 being phages, viruses that infect bacteria,
and 13,263 being non-phage virus.

3.2.2 Gram staining classification task

BacDive Database

82,892 Bacterial Strains,
279,014 Sequences

GenBank Assembly Accession Number Available
→ Downloadable

9,192 Bacterial Strains,
110,877 Sequences

73,700 Bacterial Strains,
168,137 Sequences

Morphology Related Information Available
→ Downloaded

3,570 Bacterial Strains,
17,005 Sequences

5,622 Bacterial Strains,
93,872 Sequences

Gram Staining Information Available
→ Used for Training

3,419 Bacterial Strains,
13,539 Sequences

151 Bacterial Strains,
3,466 Sequences

FINAL DATASET

yesno

yesno

yesno

Figure 3.1: Overview of the origin of the data used for Gram staining classification

For this project, a collaboration with the Leibniz Institute DSMZ German Collec-
tion of Microorganisms and Cell Cultures collection provided us with the worldwide
largest database for standardized bacterial information (BacDive) of 82,892 bac-
terial strains and a total of 279,014 analyzed genomes and genome parts of these

20

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

strains. The data contains a wide range of relevant information about bacteria com-
bined from various databases maintained by biological resource centers, unpublished
collections from researchers, and extracted species descriptions from the primary lit-
erature. Out of the 82,892 strains, 9,192 strains corresponding to 110,877 genomes
sequences for a so-called GenBank assembly accession number is available, which
makes it possible to download the corresponding genome sequence as a FASTA-
file from GenBank [Söhngen et al., 2015, Reimer et al., 2018]. For the analyses
within this thesis, a subset of the data comprising of 17,005 genome sequences with
morphology-related data points corresponding to 3,570 strains was downloaded. The
origin of the used data is visualized in Figure 3.1.

As a primary target, we chose the prediction of Gram staining properties. Gram
staining is a common procedure for the classification of bacteria into two main groups
that are distinguished by the chemical and physical properties of their cell wall. In
laboratory for Gram staining, a bacterium is first stained with a special dye called
crystal violet and then decolorized with ethanol. Gram-positive bacteria adhere the
stain in their cell wall and are considerably harder to decolorize than Gram-negative
bacteria. The bacterium is then counterstained by adding a red dye to gain certainty.
Hereafter, Gram-positive cells remain purple, while Gram-negative cells are stained
red [Hucker and Conn, 1923]. The information whether bacteria is Gram-positive or
Gram-negative, among others, aids the treatment of bacterial infections, as Gram-
positive infections are medicated using other antibiotics as Gram-negative infections.

The data from GenBank used for analyses include 13,539 bacterial genomes,
matched to 3,419 strains with Gram-staining information. Out of these, 28% are
labeled as Gram-positive and 72% are labeled as Gram-negative, a distribution that
roughly corresponds to the distribution of naturally occurring bacteria [Akhtar et al.,
2014, Jan et al., 2014, Sizar and Unakal, 2020].

3.2.3 Bacteria-Virus Classification task

As described in Chapter 3.2, the data we have used for pretraining contains either
bacteria sequences only or sequences from bacteria, humans, and viruses with the
viruses being divided into the group of phages and non-phages. For medical di-
agnoses, information on whether a disease is viral or bacterial is crucial to ensure
appropriate treatment. Since the choice of laboratory experiments depends on this
information and more specific knowledge about the respective bacteria or viruses
are required for more accurate diagnoses, the distinction between these two groups
is of great interest, and especially the distinction between phages and bacteria is
particularly challenging. Because phages are viruses that infect bacteria, bacteria
infected by phages mutate and in this process their genome sequences are adapted
to these viruses, assimilating these two groups, and additionally phages can affect
the virulence of bacteria, making their detection especially important for infection

21

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

research [Miao and Miller, 1999]. For this reason, another task we chose is the classi-
fication between bacteria and viruses with distinction between phage and non-phage
viruses.

3.2.4 Chromatin features classification task

Zhou and Troyanskaya [2015] have created a diverse compendium of genome-wide
chromatin profiles, including human genome sequences with annotations on 919
different chromatin features as part of their “DeepSEA” framework. Chromatin
is the ensemble of all units of basic genetic material within the cell nucleus. The
function of the chromatin is based on the DNA it contains and the challenge we
address here is multitask-prediction, on one hand, and transfer learning on the
other hand, since multiple annotations are available for each sequence and for some
models, pretraining is conducted on bacteria genomes only, whereas the domain
of interest here is humans, which are a species within the taxonomic kingdom of
animalia.

3.3 Experiments

At the beginning, different learning rates are evaluated in one experiment. Based
on the learning rate with the best performance, the second experiment evaluates the
best value for the embedding scale, i.e., the factor by which the result of the con-
text network is shrunk before the residual connection, as described in Chapter 2.2.2.
For these two experiments, the result is evaluated by comparing the value returned
by the InfoNCE loss function (2.6) and the values resulting in the lowest InfoNCE
loss are kept for further analyses. The consequential learning rate is hereby the
initial learning rate for training using Adam optimization [Kingma et al., 2014] with
Cosine Annealing learning rate schedule Loshchilov and Hutter [2017], as in prelim-
inary experiments the addition of this schedule has shown to accelerate convergence
comparing to the plain Adam optimization. After determining the learning rate and
embedding scale, we want to disclose whether the number of samples taken from a
sequence affects the performance by creating the representations using a maximum
of 16 or 80 samples per file for all architectures and comparing the performance on
the Gram staining classification downstream task. The architecture with the best
performance associated with the maximum number of samples per file is retained for
further analyses, while the other settings are discarded. An overview of the applied
architectures is depicted in Table 3.3.

For implementation, the R interface to Keras was used [Chollet et al., 2017].
We built the models using the functional API and trained them using a custom
function instead of the pre-implemented keras::fit() function, since this one does
not support training self-supervised models.

22

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

Table 3.3: Overview of applied architectures: Pretraining and baseline

Name Architecture
Trainable

Parameters

Dimension of
Resulting

Representations

Modified 1D-CPC:

S4L-CPC-RN50 1D-ResNet-50 encoder, 18,489,536 2048

LSTM context network

Modified 1D-CPC:

S4L-CPC-RN18 1D-ResNet-18 encoder, 4,690,560 512

LSTM context network

Modified 1D-CPC:

S4L-CPC-DanQ modified DanQ encoder, 12,797,085 320

LSTM context network

DanQ architecture

S4L-NextNuc modified for next 1,510,724 320

nucleotide prediction

Same as best S4L-CPC approx. same

no representationBL-CPC resulting from experiment 3, as best

but no pretraining S4L-CPC

BL-NextNuc
Same as S4L-NextNuc, 1,182,402

no representation
but no pretraining

23

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

3.4 Self-supervised Model Architecture

3.4.1 Contrastive Predictive Coding for Self-supervised Ge-
nomics Data

genc genc genc genc genc genc genc genc

yar yar yar ya

zt zt+1 zt+2 zt+3 zt+4

ct
Predictions

xt−3 xt−2 xt−1 xt xt+1 xt+2 xt+3 xt+4

ACAGCTACGTAACGATTGCATCGATCGATCGATCGATCGATCGACTAGCATCGATCGACTAGCATCGATCGATCGATCGAGATCCGATCGAC

Figure 3.2: Overview of Contrastive Predictive Coding: The setup used for Genome
Sequences, derived from van den Oord et al. [2019]. One patch in our architecture
includes 500 nucleotides, the patches are extracted from a sequence for length 6700
with an overlap of 200 nucleotides. For a patch at position t the later patch at
position t + 2 should be predicted. The encoder genc is a 1D ResNet-18, a 1D
ResNet-50, or a modified DanQ, depending on the experimental condition.

Having achieved particularly high performance in the image domain, the encoder
applied in the CPC v2 architecture combined with the initial CPC v1 architecture by
van den Oord et al. [2016] is implemented in the given genome sequence domain to
determine whether similarly good results can be achieved here. To match the patch-
based method here, 32 patches of length 500 are extracted with stride 200 from a
sequence of length 6,700, which are passed to the encoder. The batch size is set to
32. A visualization of this architecture can be found in Figure 3.2. We compare the
performance of three different encoders to determine possible impact of model depth
on performance. Hénaff et al. [2020] used a ResNet-161 as the encoder. Since images
have a higher resolution than genome sequences, in our experiments we try three
versions of encoders, using ResNet-50, ResNet-18, or an architecture close DanQ.

24

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

Table 3.4: Adapted one-dimensional ResNet architecture as CPC encoder network.
The values in the brackets denote the kernel size and the channels, the value behind
denotes the number of blocks in one residual stack.

Name Output Size 18-Layer 50-Layer

Conv1D 248 [5, 64]× 1

Max Pooling 124 pool size 5, stride 2

Stack 1 62

[
3, 64

3, 64

]
×2

 1, 64

3, 64

1, 256

 ×3

Stack 2 31

[
3, 128

3, 128

]
×2

1, 128

3, 128

1, 512

 ×4

Stack 3 16

[
3, 256

3, 256

]
×2

 1, 256

3, 256

1, 1024

 ×6

Stack 4 8

[
3, 512

3, 512

]
×2

 1, 512

3, 512

1, 2048

 ×3

Average Pooling 1 global

The original ResNet architecture [He et al., 2015] has been adapted by changing
the dimensions and replacing two-dimensional convolutional layers by one-dimensional
convolutional layers. The concept of the one-dimensional ResNet-based encoders is
displayed on Figure 3.3, and the detailed specifications are summarized in Table 3.4.
Full visualizations of the ResNet-18 encoder architecture and the ResNet-50 encoder
architecture are included in the Appendix A in Figures A.1 and A.2. The input of
the encoder is the patch of a sequence of size 4× 500, the output of the encoder is a
sequence representation of size 4× output channels, which is 512 for the ResNet-18
encoder architecture, 2,048 for the ResNet-50 encoder architecture, and 320 for the
DanQ encoder architecture.

25

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

Input: sequence patch 500x4

conv1d [5, 64]

max pooling: size 2, stride 2

conv1d [kernel size111, channels111]

...

conv1d [kernel size11n, channels11n]

...

conv1d [kernel size1m11, channels1m11]

...

conv1d [kernel size1m1n, channels1m1n]

......

conv1d [kernel size41n, channels41n]

...

conv1d [kernel size41n, channels41n]

...

conv1d [kernel size4m41, channels4m41]

...

conv1d [kernel size4m4n, channels4m4n]

global average pooling

Output: encoded sequence patch 1×channels4m4n

Block 1 1

Block 1 m1

Block 4 1

Block 4 m4

Figure 3.3: Adapted one-dimensional ResNet architecture structure as CPC encoder
network. For all ResNet types, the first layer is a one dimensional convolutional layer
with kernel size five and 64 channels, followed by a max pooling layer with pooling
size two and stride two. The successive layers of the architecture are a construction
of residual stacks, each composed of a repeating pattern of building blocks, where
the number of blocks in a residual stack can vary for each stack. The number of
blocks is denoted as mi with i as the number of the stack. Within one block, the set
of a one-dimensional convolutional layer, batch normalization, and ReLU activation
is repeated n times, and the resulting tensor is added to the input of the block by
a residual connection. ResNet types differ by the number of blocks m in one stack
and the number of layers n before a shortcut connection. The output is a sequence
representation.

26

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

To create a model able to perform well on the given task, we also implemented a
modified version of the original DanQ architecture. Quang and Xie [2016] take the
one-hot-encoded vector of a sequence as an input, pass it to a convolutional layer
with ReLU activation, and reduce the size of the tensor using max pooling. While
they then insert a bidirectional LSTM layer, we apply a unidirectional LSTM layer
for the prediction of only subsequent patches, since the model would not profit from
bidirectionality. In addition, to create the encoded patch, the final prediction layer
from the original architecture is removed, so the output layer in our architecture
is a dense layer with 925 channels and ReLU activation. The final architecture is
displayed in Figure 3.4.

Input: sequence patch

conv1d [26, 320]

max pooling: size 13, stride 13

LSTM [320]

dense [925]

Output: Encoded sequence patch

Figure 3.4: Adapted one-dimensional DanQ as CPC encoder network. The input
is a sequence patch to which one dimensional convolution with kernel size 26 and
320 channels, max pooling, a LSTM layer with 320 channels returning the hidden
state output for each input time-step, and finally a dense layer with 925 channels
are applied. The representation of the sequence is the output of the LSTM layer.

Furthermore, Hénaff et al. [2020] have divided the image to six patches, which
are then encoded and given to the iterative “PixelCNN” context network. Since
there are 32 patches in our case and applying the same method would result in a
large number of convolutional layers, and thus a large number of trainable param-
eters. As this is not feasible and we want to investigate the performance of hybrid
architectures, here we employ a RNN as used by [van den Oord et al., 2019] instead
and therefore use a context network consisting of one single LSTM layer with 256
channels to all of the three encoder architectures.

3.4.2 Language Model: Next nucleotide prediction

In order to predict the next nucleotide given a sequence, we adapted the DanQ
architecture. Therefore, the final layer was replaced by a dense layer with softmax

27

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

activation and four channels, so that a probability for each of the four possible
nucleotides is output, and the bidirectional LSTM is replaced by a unidirectional
LSTM. To align the previously defined modified CPC architecture, the input se-
quence has a length of 500 like the patches within the CPC framework.

Input: sequence 500x4

conv1d [26,320]

max pooling size 13, stride 13

LSTM [320]

dense [4]

Output: Probabilities for next nucleotide

Figure 3.5: Adapted one-dimensional DanQ architecture for next nucleotide predic-
tion. The input is one sequence, on which a one dimensional convolutional layer
with kernel size 26 and 320 channels, max pooling, a LSTM layer with 320 channels
returning the hidden state output for each input time-step, and finally a dense layer
with 4 channels and softmax activation are applied. The output is the prediction of
the next nucleotide.

3.5 Downstream Task Evaluation

To determine the quality of the representations, we apply three downstream evalua-
tion methods: (1) Linear classification via regularization using lasso regression, (2)
linear classification by adding a single linear layer to the self-supervised network,
setting all layers except the added one as untrainable for pure linear evaluation, or
(3) linear classification by adding a single linear layer to the self-supervised network
keeping the weights trainable and setting a small learning rate for fine-tuning. While
the S4L models are trained in two steps, first on purely unsupervised data and then
on supervised data, (4) baseline models are added for comparison. Here, the same
architectures as those of the S4L models are used, but in contrast, these models are
trained in one stage on each of the the evaluation tasks, using only labeled data
from the beginning and subsequently skipping training on the pre-text task. Since
the first two methods are fully linear models, the information obtained by the rep-
resentation that is relevant for the evaluation task must be linearly separable in the

28

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

representation space in order to perform well. The lasso regression is constructed
using the glmnet [Friedman et al., 2010] with mlr3 as the general framework [Lang
et al., 2019] for evaluation of the Gram staining and the Bacteria-Virus classification
tasks. Lasso regression could not be conducted for the chromatin features classifica-
tion task because there are 919 targets and the model would have to be computed
separately and independently for each task, which would require a large amount of
computational resources.

Since S4L models were able to surpass the performance of fully supervised models
in other domains even when the amount of labeled data was reduced [Hénaff et al.,
2020], we compare training using 0.1%, 1%, 10%, and 100% of the available labeled
data for the downstream task evaluation. To assess the quality of the learned rep-
resentations, they are classified in a supervised manner. As mentioned beforehand,
the primary downstream task for evaluation is the classification of bacterial proper-
ties, more precisely the classification of Gram-positive and Gram-negative bacteria.
Additional downstream tasks include taxonomic Bacteria-Virus classification of bac-
terial, human, and viral data, as well as classification of chromatin effects in human
sequence alterations. The meanings of the targets as well as the origin of the labeled
data used are explained in more detail in the following.

3.5.1 Measures

The measures that were evaluated are the log-loss score and balanced accuracy for
all tasks, the area under the ROC Curve (AUC) for binary tasks, the F1 score for
the chromatin features task, and the macro-averaged-F1 score for the Gram staining
and Bacteria-Virus tasks. For the Gram staining task, the macro-averaged-F1 score
was applied instead of the F1 score because the latter requires one class to be the one
of interest, whereas for this task both classes are equally meaningful. An overview
of the measures used per task is shown in Table 3.5.

Table 3.5: Measures that were evaluated for the respective tasks

Task Measures Applied

Log-Loss
Balanced
Accuracy

AUC F1
Macro-

Averaged-
F1

Gram Staining Classification X X X X

Bacteria-Virus Classification X X X

Chromatin Features Classification X X X X

For the true value yi, the number of observations N and the predicted probability

29

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

p, the log-loss score is defined as follows

log-loss = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] . (3.1)

A high log-loss value indicates a less accurate prediction, a low value indicates a more
accurate prediction. This value is interpreted dependent on the data distribution by
comparing it to the “naive” log-loss that results from making random predictions
with the distribution of the classes as probabilities [Vovk, 2015, Dembla, 2021].

The AUC is a measure for binary tasks and compares the probability of the
prediction of each class with respect to the true value. A predictor giving an AUC
score of 0.5 predictions statistically independent from the outcome, while an AUC
score of 1 denotes that all predictions were correct.

Another measure for binary tasks is the F1 score, which compares the probability
of predicting each class with respect to the true value as well by computing the
harmonic mean of Precision and Recall. Given a confusion matrix

Predicted 0 Predicted 1
True 0 # True Negatives # False Positives
True 1 # False Negatives # True Positives

and

Precision =
#True Positives

#True Positives + #False Positives
(3.2)

Recall = Sensitivity =
#True Positives

#True Positives + #False Negatives
(3.3)

Specificity =
#True Negatives

#True Negatives + #False Positives
(3.4)

F1 is calculated by the following equation:

F1 = 2× Precision × Recall

Precision + Recall
(3.5)

A high F1 score results from correct identification of the class of interest, a low F1
score from a high ratio of incorrect predictions. For non-binary classification tasks,
the macro-averaged-F1 score is used, a weighted sum of F1 scores computed for each
pair of classes. The last measure used is balanced accuracy, which is the proportion
of correctly classified data points for multiple groups by averaging the accuracy of
each class respectively. The balanced accuracy is calculated by

Balanced Accuracy =
Sensitivity + Specificity

2
(3.6)

30

CHAPTER 3. METHOD AND EXPERIMENTAL SETUP

If there are more than two classes, the balanced accuracy is calculated for each
class separately and the sum of the balanced accuracy of all classes is divided by
the number of classes. A naive prediction, e.g., a majority prediction, results in a
value of 1

number of classes
, a perfect prediction results in a balanced accuracy of one

[Grandini et al., 2020].

31

Chapter 4

Results

4.1 Experiments

To achieve the highest possible performance, numerous hyperparameters must be
set in the beginning of the training of a model. The four most prominent hyperpa-
rameters for our models are the learning rate, the embedding scale, the maximum
number of samples nmax per FASTA-file, and the model depth. At the beginning of
the project, we found that the set learning rate and the embedding scale affect the
performance of the model in the first epoch, which again affects the performance
in the later course of training. Therefore, we evaluate the achieved validation per-
formance under certain learning rates or embedding scales by a benchmark with
all other values fixed. The model architecture used here is the CPC-network with
ResNet-50 as the encoder and the training data are genome sequences of bacteria.

We performed three experiments, whereof the first one is the evaluation of dif-
ferent learning rates for choosing a learning rate for the first epoch. In the later
epochs, Cosine Annealing is applied with settings based on the previous result. The
second experiment is the evaluation of different embedding scales given the best
learning rate from the first experiment. The embedding scale remains constant over
the training. The third experiment evaluates the different architectures we chose for
the encoder within the one-dimensional CPC framework, with respect to different
settings for nmax, for which the values 16 and 80 are compared, respectively.

4.1.1 Learning rate

In the first experiment, different learning rates were evaluated based on the resulting
InfoNCE-loss. We ran the model three times each for the learning rates 4 × 10−5,
4 × 10−4, 4 × 10−3, and 1 × 10−2. The results are shown in Figure 4.1. The loss
resulting from training at learning rate 1 × 10−2 is larger by a factor of up to 106

compared to the loss resulting from training with learning rate 4×10−4 and 4×10−5,

32

CHAPTER 4. RESULTS

1e+02

1e+04

1e+06

1 2
Epoch

L C
P

C

7.0

7.1

7.2

7.3

1 2
Epoch

L C
P

C

Training Validation Learning Rate 4 × 10−5 4 × 10−4 4 × 10−3 10−2

Figure 4.1: Experiment 1: Loss by learning rate, trained for two epochs. Smaller
values indicate better performance. The figure on the left shows the results for all
learning rates evaluated with a log-scaled y-axis, the figure on the right shows the
same data, but zoomed in to the lower part to display a detailed view for the learning
rates 4× 10−5 and 4× 10−4. The higher learning rates (4× 10−3 and ×10−2) cause
an initial loss larger by a factor between 10 and 104 than the smaller learning rates
(4× 10−5, 4× 10−4).

and the loss resulting from learning rate 4× 10−3 is larger by a factor of about 104

than the loss resulting from training with learning rate 4 × 10−3 and 1 × 10−2.
Therefore, the values ×10−2 and 4× 10−3 are not chosen as the initial learning rate
for the final models. While the two smaller learning rates produce similar results, it
is clear from a direct comparison that the learning rate of 4× 10−5 results in a more
stable performance as the difference in losses for the training and validation steps
is smaller and for each of the replicates the achieved loss is within a small range
of [6.946; 7.012], while the range for the learning rate 4× 10−4 is slightly larger at
[6.933; 7.332]. Consequently, the result of this experiment is to choose the value
4× 10−5 as the initial learning rate for training the self-supervised models.

4.1.2 Embedding scale

The second experiment compares the resulting InfoNCE-loss during training with
different embedding scales. Analogous to the first experiment, we ran the model
three times each for the embedding scales 0.001, 0.01, 0.1, 0.5, and 1 with a learning
rate of 4 × 10−5. The results are shown in Figure 4.2. The losses resulting from
training with an embedding scale of 1, 0.5, or 0.1 are larger by a factor of up to
1.33 than the losses resulting from training with embedding scale 0.01 and 0.001.

33

CHAPTER 4. RESULTS

7

8

9

1 2
Epoch

L C
P

C

6.926

6.928

6.930

6.932

1 2
Epoch

L C
P

C

Embedding Scale 0.001 0.01 0.1 0.5 1 Training Validation

Figure 4.2: Experiment 2: Loss by embedding scale, trained for two epochs. Smaller
values indicate better performance. The figure on the left shows the results for all
evaluated embedding scales with a log-scaled y-axis, the figure on the right shows
the same data, but zoomed into the lower part for displaying a detailed view for the
embedding scales 0.001 and 0.01. The higher embedding scales (0.1, 0.5, 1) cause
an initial loss larger by the factor of up to 1.33 compared to the smaller embedding
scales (0.001, 0.01).

Therefore, the values 1, 0.5, and 4 × 10−3 are not chosen as the initial embedding
scale for the final models. While the two smaller embedding scales produce similar
results, in direct comparison it is clearly visible that the embedding scale of 0.001
results in a more stable performance. Even though the median test loss is 6.931 for
both the embedding scales of 0.01 and 0.001, as visible in Figure 4.2, the training
loss differs more from the test loss for the value 0.01. On these grounds, resulting
from this experiment, we choose the value of 0.001 as the initial embedding scale
for training the self-supervised models.

4.1.3 Encoder architectures and maximum number of sam-
ples per FASTA-file

The goal of the third experiment is to find out how certain model architectures,
especially with respect to model depth, influence performance. Another aspect is
the number of samples nmax taken from a FASTA-file for training a batch. Since
some of the sequences, especially those from bacteria, are very long, without setting
this argument, it is possible that only one file is considered during one epoch. At the
same time, the set nmax affects the resulting InfoNCE loss. For the prediction of a

34

CHAPTER 4. RESULTS

0.62

0.64

0.66

0.68

0.70

0.1 1 10
Percentage of Labeled Data

M
ac

ro
 A

ve
ra

ge
d

F
1

0.5

0.6

0.7

0.1 1 10
Percentage of Labeled Data

A
U

C

Max. Samples per File 16 80 Encoder Architecture DanQ ResNet−18 ResNet−50

Figure 4.3: Experiment 3: F1 and AUC for Gram staining classification comparing
different nmax and encoder architectures. Higher values indicate better performance.
Solidly dashed lines display models with nmax = 16, dotted lines display models
with nmax = 80. A High macro-averaged-F1 value (left) as well as high AUC values
(right) express better performance. Models with nmax = 16 all lead to a higher
macro-averaged-F1 compared to the corresponding models with nmax = 80, and also
to a higher AUC value, except for the model with DanQ encoder.

patch of a sequence at a particular position, the negative samples are other patches
from the same sequence, but also other patches from the same batch. Consequently,
for batches including only one file, the task is more difficult to solve than for batches
including many different files, since distinguishing between different sequences is
expected to be more difficult than distinguishing patches within a sequence. The
comparison of the InfoNCE losses is therefore not possible between models with
different nmax. For this experiment, all architectures of the self-supervised model
are trained until convergence with nmax = 16 and nmax = 80 respectively.

The learning rate here is set to 4 × 10−5 and the embedding scale is set to
0.001, as these were the best values resulting from the first two experiments. The
self-supervised models are then used to generate representations, and these represen-
tations are then put into a lasso regression model that predicts the Gram staining
properties. The macro-averaged F1 score as well as the AUC for Gram staining
prediction for all models are displayed in Figure 4.3. We observe that in general,
models with nmax = 16 achieved a higher performance than models with nmax = 80,
except for the model with the DanQ encoder. Although the performance in terms of
AUC is not substantially different for different settings, the model with ResNet-18
encoder and nmax = 16 clearly achieves the highest performance regarding macro-
averaged F1. Hence, this setting is chosen for the final benchmark to evaluate the

35

CHAPTER 4. RESULTS

downstream tasks and as a baseline for comparison the BL-CPC-RR18 architecture
is chosen and will in the following be refered to as the BL-CPC.

4.2 Evaluation Benchmark

For all S4L models and the baseline model for comparison, the performance on
the Gram staining classification task is displayed in Figures 4.4, 4.5, and 4.6, the
performance on the Bacteria-Virus classification task is displayed in Figures 4.7,
4.8, and 4.9, and the performance on the chromatin features classification task is
displayed in Figures 4.10, 4.11, and 4.12. The dotted lines show the baseline models,
the solid lines the S4L models pretrained with the combined pretraining dataset, the
dashed lines the S4L models pretrained with bacteria data only, and the different
methods applied for evaluation of the respective task are represented by different
colors. For simplicity, in the following chapter, the S4L model with CPC architecture
with ResNet-18 encoder is referred to as “S4L-CPC”, the S4L language model with
DanQ architecture applying next nucleotide prediction as a pre-text task is referred
to as “S4L-NextNuc”, the fully supervised baseline model corresponding to the S4L
model with CPC architecture with ResNet-18 encoder is referred to as “BL-CPC”,
and the fully supervised baseline model corresponding to the language model with
DanQ architecture is referred to as “BL-NextNuc”. Performance by architecture
is compared first, then the respective best models are compared second. Figures
including all architectures are included in Appendix B in Figures B.1, B.2, and B.3.

The implementation of the L1 model requires the entire training dataset to be
read into working memory at once to compute the representations, and is also not
very memory efficient, which when using 100% of the available labeled data results
in a working memory usage of at least one terabyte per model. Meanwhile, per-
forming this computation sequentially by splitting requires high temporal resources.
Therefore, lasso regression could not be computed for the fully labeled training data,
which is why the 100% values for this method are missing.

Due to limitations in computational resources, replicates were only created on
a sample basis. The median difference observed is 0.0280 for AUC, 0.0584 for log-
loss, 0.0068 for balanced accuracy, and 0.0156 for F1 and macro-averaged-F1. The
exact results as well as the models for which replicates are created are depicted in
Appendix B, Table B.9

36

CHAPTER 4. RESULTS

4.2.1 Gram staining classification task

0.4

0.5

0.6

0.1 1.0 10.0 100.0
Percentage of Labeled Data

B
al

an
ce

d
A

cc
ur

ac
y

1e+02

1e+06

1e+10

1e+14

0.1 1.0 10.0 100.0
Percentage of Labeled Data

Lo
g−

Lo
ss

0.2

0.3

0.4

0.5

0.6

0.7

0.1 1.0 10.0 100.0
Percentage of Labeled Data

M
ac

ro
−

A
ve

ra
ge

d−
F

1

0.3

0.4

0.5

0.6

0.7

0.1 1.0 10.0 100.0
Percentage of Labeled Data

A
U

C

Data used for Pretraining All Data Only Bacteria Data Baseline Model: No Pretraining

Evaluation Method Baseline NN Linear Classification Fine Tuning Lasso Regression

Figure 4.4: Performance on Gram staining classification using CPC architecture
with ResNet-18 encoder. For log-loss, smaller values indicate better performance,
for Balanced Accuracy, Macro-Averaged-F1, and AUC higher values indicate better
performance. The y-axis of the log-loss plot (top right) is log-scaled.

Since the dataset used for training to predict Gram staining properties of a bacterium
contains 28% positive and 72% negative samples, a naive prediction in terms of log-
loss would lead to a log-loss of

−0.4279 · log(0.4279)− 0.5721 · log(0.5721) = 0.6827,

and a naive prediction in terms of balanced accuracy would lead to a balanced
accuracy of

1

number of classes
=

1

2
= 0.5.

Because the imbalance within this dataset is factored in by log-loss and AUC to a
higher degree compared with the balanced accuracy and F1, although the imbalance
is not severe, log-loss and AUC can be considered slightly more informative for this

37

CHAPTER 4. RESULTS

0.4

0.5

0.6

0.7

0.8

0.1 1.0 10.0 100.0
Percentage of Labeled Data

B
al

an
ce

d
A

cc
ur

ac
y

0.5

1.0

3.0

5.0

0.1 1.0 10.0 100.0
Percentage of Labeled Data

Lo
g−

Lo
ss

0.4

0.5

0.6

0.7

0.8

0.1 1.0 10.0 100.0
Percentage of Labeled Data

M
ac

ro
−

A
ve

ra
ge

d−
F

1

0.5

0.6

0.7

0.8

0.9

0.1 1.0 10.0 100.0
Percentage of Labeled Data

A
U

C

Data used for Pretraining All Data Only Bacteria Data Baseline Model: No Pretraining

Evaluation Method Baseline NN Linear Classification Fine Tuning Lasso Regression

Figure 4.5: Performance on Gram Staining Classification using the language model
with DanQ architecture. For log-loss, smaller values indicate better performance,
for Balanced Accuracy, Macro-Averaged-F1, and AUC higher values indicate better
performance. The y-axis of the log-loss plot (top right) is log-scaled.

task. The detailed values for AUC are listed in Table 4.1, the detailed values for the
other measures are listed in Appendix B, Tables B.1, B.2, and B.3.

In Figure 4.4, the performances of S4L-CPC-RN18 and BL-CPC models in the
Gram staining classification task are presented. A log-loss better than naive predic-
tion is only achieved by S4L-CPC-RN18 with evaluation by lasso regression trained
on 1% and 10% of the available labeled data for both pretraining on the combined
pretraining dataset and on bacteria data only, which is subsequently the model that
obtains the best performance. BL-CPC and S4L-CPC-RN18 with evaluation by
fine-tuning achieved the lowest performance.

Figure 4.5 shows the performance of S4L-NextNuc and BL-NextNuc models on
the Gram staining classification task. In contrast to the CPC architecture mod-
els, the S4L-NextNuc models that resulted in a log-loss lower than 0.6827 are only
achieved by S4L-NextNuc with evaluation by lasso regression trained on 10% of the
available labeled data trained on the combined pretraining dataset, by S4L-NextNuc
with evaluation by NN linear classification trained on 1%, 10%, and 100% of the
available labeled data trained on the combined pretraining dataset, as well as trained

38

CHAPTER 4. RESULTS

0.5

0.6

0.7

0.8

0.1 1.0 10.0 100.0
Percentage of Labeled Data

B
al

an
ce

d
A

cc
ur

ac
y

0.5

1.0

3.0

5.0

0.1 1.0 10.0 100.0
Percentage of Labeled Data

Lo
g−

Lo
ss

0.4

0.5

0.6

0.7

0.8

0.1 1.0 10.0 100.0
Percentage of Labeled Data

M
ac

ro
−

A
ve

ra
ge

d−
F

1

0.5

0.6

0.7

0.8

0.9

0.1 1.0 10.0 100.0
Percentage of Labeled Data

A
U

C

Data used for Pretraining All Data Only Bacteria Data Baseline Model: No Pretraining

Model BL−NextNuc S4 L − CPC − RN18 + Lasso

Figure 4.6: Best performances on Gram staining classification. For log-loss, smaller
values indicate better performance, for Balanced Accuracy, Macro-Averaged-F1,
and AUC higher values indicate better performance. The y-axis of the log-loss plot
(top right) is log-scaled.

on 10% and 100% of the available labeled data trained on the bacterial pretraining
dataset. Further, BL-NextNuc, trained on 10% and 100% of the available labeled
data has resulted in a log-loss lower than 0.6827, and obtains the best performance
in total, except when training on 0.1% of the available labeled data, where S4L-
NextNuc with evaluation by lasso regression achieves the higher performance. data
used for pretraining hardly generates a noticeable impact on performance. S4L-
NextNuc with evaluation by fine-tuning achieves the lowest performance.

Finally, the models from both architectures that performed best, S4L-CPC-RN18
with pretraining on only bacteria data with evaluation by lasso regression, S4L-CPC-
RN18 with pretraining on the combined pretraining dataset with evaluation by lasso
regression, and BL-NextNuc are compared in Figure 4.6. Given the imbalance of the
data, we expect the log-loss and AUC values to be more indicative of performance.
While the loss for S4L-CPC-RN18 is lower when training on 0.1% or 1% of the data,
BL-NextNuc outperforms S4L-CPC-RN18 in terms of log-loss when training on 10%
or 100% of the data. The AUC is considerably higher for BL-NextNuc, except for
the models trained on 0.1% of the data. The final conclusion for Gram staining

39

CHAPTER 4. RESULTS

classification is that S4L methods perform better when only a minuscule amount of
labeled data is available. Using 0.1% of the labeled dataset measures up to using
only two FASTA-files per class, making this observation particularly noteworthy.
Simultaneously, in contrast to the results found in recent work as mentioned in
section 2.2.1, for this task no definite improvement of performance in comparison
with the baseline is confirmed when using more than 0.1% of the data.

Table 4.1: Detailed overview: AUC for Bacteria-Virus classification

S4L-CPC-RN18 S4L-NextNuc

% Pretrained on Pretrained on
Base-

Pretrained on Pretrained on
Base-

Data Bacteria Dataset Combined Dataset
line

Bacteria Dataset Combined Dataset
line

L1 FT LC L1 FT LC L1 FT LC L1 FT LC

0.1 0.509 0.439 0.399 0.627 0.457 0.434 0.500 0.655 0.452 0.428 0.668 0.452 0.479 0.441

1 0.727 0.482 0.672 0.723 0.417 0.615 0.500 0.649 0.453 0.810 0.598 0.451 0.805 0.855

10 0.764 0.559 0.641 0.758 0.314 0.552 0.500 0.697 0.560 0.877 0.696 0.554 0.851 0.903

100 0.527 0.682 0.567 0.522 0.471 0.556 0.880 0.558 0.770 0.884

4.2.2 Bacteria-Virus classification task

For the Bacteria-Virus classification model, a naive prediction in terms of log-loss
would result in a log-loss of

−0.7447 · log(0.7447)− 0.2386 · log(0.2386)− 0.0165 · log(0.0165) = 0.6291

and a naive prediction in terms of balanced accuracy would result in a balanced
accuracy of

1

number of classes
=

1

3
≈ 0.3333.

The detailed values for balanced accuracy are listed in Table 4.2, the detailed values
for the other measures are listed in Appendix B, Tables B.4 and B.5.

Performances obtained by S4L-CPC-RN18 and BL-CPC are displayed in Fig-
ure 4.7. A log-loss better than naive prediction is only achieved by S4L-CPC-RN18
with evaluation by lasso regression trained on 1%, 10% and 100% of the available la-
beled data for both pretraining on the combined pretraining dataset and on bacteria
data only, and BL-CPC-RN18 trained on 1% and 100% of the available labeled data.
The setting that leads to the best performance here is S4L-CPC-RN18 with lasso
regression, achieving the lowest log-loss and the highest macro-averaged-F1 as well
as balanced accuracy. Since lasso regression could not be computed for the training
with 100% of the data, the best performance here was achieved by BL-CPC.

Figure 4.8 depicts the performance attained by S4L-NextNuc and BL-NextNuc
on the Bacteria-Virus classification task. In contrast to the CPC architecture mod-
els, half of the S4L-NextNuc models resulted in a log-loss lower than 0.6291, while

40

CHAPTER 4. RESULTS

0.35

0.40

0.45

0.50

0.55

0.1 1.0 10.0 100.0
Percentage of Labeled Data

B
al

an
ce

d
A

cc
ur

ac
y

0.3

1.0

3.0

10.0

0.1 1.0 10.0 100.0
Percentage of Labeled Data

Lo
g−

Lo
ss

0.00

0.25

0.50

0.75

0.1 1.0 10.0 100.0
Percentage of Labeled Data

M
ac

ro
−

A
ve

ra
ge

d−
F

1

Data used for Pretraining All Data Only Bacteria Data Baseline Model: No Pretraining

Evaluation Method Baseline NN Linear Classification Fine Tuning Lasso Regression

Figure 4.7: Performance on Bacteria-Virus classification CPC architecture with
ResNet-18 encoder. For log-loss, smaller values indicate better performance, for
Balanced Accuracy and Macro-Averaged-F1 higher values indicate better perfor-
mance. The y-axis of the log-loss plot (top right) is log-scaled.

we observe that these resulting in a log-loss higher than 0.6291 are the models with
evaluation by fine-tuning. While S4L-NextNuc pretrained on the combined pretrain-
ing dataset with evaluation by NN linear classification shows unstable performance,
as it achieves good results on all points except training using 10% of the labeled
data, evaluation by fine-tuning again shows consistently poor performance. Good
performances are obtained by S4L-NextNuc with lasso regression in terms of macro-
averaged-F1, and S4L-NextNuc with NN linear classification in terms of log-loss and
balanced accuracy, while the baseline model achieved a slightly higher value for the
latter when training on 100% of labeled data. Since the result with the best trade-off
between stability and good performance measure results is obtained by S4L-NextNuc
with evaluation by NN linear classification, this model is further compared with the
best model with CPC architecture, the S4L-CPC-RN18 with evaluation by lasso
regression.

Finally, the models of both architectures that achieved the best performances are
compared: S4L-CPC-RN18 with evaluation by lasso regression with pretraining on
only bacteria data and S4L-NextNuc with pretraining both data sets with evaluation

41

CHAPTER 4. RESULTS

0.30

0.35

0.40

0.45

0.50

0.1 1.0 10.0 100.0
Percentage of Labeled Data

B
al

an
ce

d
A

cc
ur

ac
y

0.3

0.5

1.0

0.1 1.0 10.0 100.0
Percentage of Labeled Data

Lo
g−

Lo
ss

0.4

0.6

0.8

1.0

0.1 1.0 10.0 100.0
Percentage of Labeled Data

M
ac

ro
−

A
ve

ra
ge

d−
F

1

Data used for Pretraining All Data Only Bacteria Data Baseline Model: No Pretraining

Evaluation Method Baseline NN Linear Classification Fine Tuning Lasso Regression

Figure 4.8: Performance on Bacteria-Virus classification using the language model
with DanQ architecture. For enhanced visibility of individual performances, the
plots were scaled to exclude outliers; full plots are included in Appendix B, Fig-
ure B.2. For log-loss, smaller values indicate better performance, for Balanced Ac-
curacy and Macro-Averaged-F1 higher values indicate better performance. The
y-axis of the log-loss plot (top right) is log-scaled.

by NN linear classification. The resulting values are shown in Figure 4.9. While the
loss is lower and the macro-averaged-F1 is higher for S4L-NextNuc, S4L-CPC-RN18
outperforms S4L-NextNuc in terms of balanced accuracy when 0.1% or 1% of the
labeled data is used for training. Contrary to the Gram staining classification task,
S4L methods clearly outperform fully supervised methods in this task.

42

CHAPTER 4. RESULTS

0.36

0.38

0.40

0.42

0.1 1.0 10.0 100.0
Percentage of Labeled Data

B
al

an
ce

d
A

cc
ur

ac
y

0.2

0.3

0.4

0.1 1.0 10.0 100.0
Percentage of Labeled Data

Lo
g−

Lo
ss

0.90

0.92

0.94

0.1 1.0 10.0 100.0
Percentage of Labeled Data

M
ac

ro
−

A
ve

ra
ge

d−
F

1

Data used for Pretraining All Data Only Bacteria Data

Model S4 L − CPC − RN18 + Lasso S4 L − NextNuc + NN Linear Classification

Figure 4.9: Best performances on Bacteria-Virus classification. For log-loss, smaller
values indicate better performance, for Balanced Accuracy and Macro-Averaged-F1
higher values indicate better performance. The y-axis of the log-loss plot (top right)
is log-scaled.

Table 4.2: Detailed overview: Balanced accuracy for Bacteria-Virus classification

S4L-CPC-RN18 S4L-NextNuc

% Pretrained on Pretrained on
Base-

Pretrained on Pretrained on
Base-

Data Bacteria Dataset Combined Dataset
line

Bacteria Dataset Combined Dataset
line

L1 FT LC L1 FT LC L1 FT LC L1 FT LC

0.1 0.357 0.351 0.335 0.385 0.330 0.336 0.322 0.323 0.317 0.387 0.324 0.317 0.376 0.353

1.0 0.363 0.332 0.338 0.386 0.335 0.337 0.351 0.330 0.315 0.373 0.331 0.315 0.417 0.322

10.0 0.369 0.338 0.338 0.385 0.334 0.337 0.383 0.333 0.315 0.430 0.333 0.315 0.005 0.412

100.0 0.334 0.337 0.333 0.338 0.555 0.315 0.430 0.315 0.400 0.437

43

CHAPTER 4. RESULTS

4.2.3 Chromatin features classification task

0.4975

0.5000

0.5025

0.5050

0.1 1.0 10.0 100.0
Percentage of Labeled Data

B
al

an
ce

d
A

cc
ur

ac
y

0.1

0.3

0.5

0.1 1.0 10.0 100.0
Percentage of Labeled Data

Lo
g−

Lo
ss

0.00

0.01

0.02

0.1 1.0 10.0 100.0
Percentage of Labeled Data

F
1

0.50

0.55

0.60

0.65

0.70

0.1 1.0 10.0 100.0
Percentage of Labeled Data

A
U

C

Data used for Pretraining All Data Only Bacteria Data Baseline Model: No Pretraining

Evaluation Method Baseline NN Linear Classification Fine Tuning

Figure 4.10: Performance on chromatin features classification using the CPC ar-
chitecture with ResNet-18 encoder. For log-loss, smaller values indicate better
performance, for Balanced Accuracy, F1, and AUC higher values indicate better
performance. The y-axis of the log-loss plot (top right) is log-scaled.

The distribution of the data used for training to classify different chromatin
features is highly unbalanced for all targets, with on average only 2% of the obser-
vations being positive. Because this imbalance is factored in by log-loss and AUC to
a greater extent compared with the balanced accuracy and F1, these measures can
be regarded more meaningful for this task. The detailed values for AUC are listed
in Table 4.3, the detailed values for the other measures are listed in Appendix B,
Tables B.6, B.7, and B.8. An example for the interpretability issues caused by the
imbalance is illustrated in Figure 4.10, which visualizes the performance of S4L-
CPC-RN18 and BL-CPC. S4L-CPC-RN18 with fine-tuning evaluation achieved the
best performance regarding balanced accuracy and F1, while achieving the worst
performance in terms of log-loss and AUC, since majority prediction does not in-
duce a reduction in absolute values for F1 and balanced accuracy. Thus, the best
performance here is achieved by BL-CPC, yielding a constant performance, as the
values for all AUC, balanced accuracy, and F1 are high and for log-loss, they are

44

CHAPTER 4. RESULTS

low. If di is the percentage of positive observations in target i, naive prediction
results in a log-loss of

1

919

919∑
i=1

−di log di − (1− di) log (1− di) = 0.0956.

A log-loss better than naive prediction is only achieved by S4L-CPC-RN18 with
evaluation by NN linear classification trained on 1%, 10% and 100% of the available
labeled data for both pretraining on the combined pretraining dataset and on bac-
teria data only and BL-CPC-RN18 trained on 1%, 10% and 100% of the available
labeled data.

0.5000

0.5005

0.5010

0.5015

0.5020

0.5025

0.1 1.0 10.0 100.0
Percentage of Labeled Data

B
al

an
ce

d
A

cc
ur

ac
y

0.1

0.3

0.5

0.1 1.0 10.0 100.0
Percentage of Labeled Data

Lo
g−

Lo
ss

0.0000

0.0025

0.0050

0.0075

0.1 1.0 10.0 100.0
Percentage of Labeled Data

F
1

0.66

0.68

0.70

0.1 1.0 10.0 100.0
Percentage of Labeled Data

A
U

C

Data used for Pretraining All Data Only Bacteria Data Baseline Model: No Pretraining

Evaluation Method Baseline NN Linear Classification Fine Tuning

Figure 4.11: Performance on chromatin features classification using the language
model with DanQ architecture. For log-loss, smaller values indicate better perfor-
mance, for Balanced Accuracy, F1, and AUC higher values indicate better perfor-
mance. The y-axis of the log-loss plot (top right) is log-scaled.

Furthermore, for S4L-NextNuc and BL-NextNuc, whose performances are shown
in Figure 4.11, S4L-NextNuc with evaluation by fine-tuning achieved the worst,
and BL-NextNuc the best results, whereas S4L-NextNuc with evaluation by NN-
classification is able to achieve a performance with similarly high results. A log-loss

45

CHAPTER 4. RESULTS

better than naive prediction is again achieved by S4L-NextNuc with evaluation by
NN linear classification with all pretraining settings and BL-CPC-RN18 also with
all pretraining settings. Overall, no model was able to obtain high performance

0.5015

0.5020

0.5025

0.5030

0.5035

0.1 1.0 10.0 100.0
Percentage of Labeled Data

B
al

an
ce

d
A

cc
ur

ac
y

0.088

0.092

0.096

0.100

0.1 1.0 10.0 100.0
Percentage of Labeled Data

Lo
g−

Lo
ss

0.006

0.008

0.010

0.1 1.0 10.0 100.0
Percentage of Labeled Data

F
1

0.64

0.66

0.68

0.70

0.1 1.0 10.0 100.0
Percentage of Labeled Data

A
U

C

Data used for Pretraining All Data Only Bacteria Data Baseline Model: No Pretraining

Model BL−CPC−RN18 BL−NextNuc S4 L − NextNuc + NN Linear Classification

Figure 4.12: Best performances on chromatin features classification. For log-loss,
smaller values indicate better performance, for Balanced Accuracy, F1, and AUC
higher values indicate better performance. The y-axis of the log-loss plot (top right)
is log-scaled.

in comparison with methods examined in recent work. While the original DanQ
architecture by Quang and Xie [2016] and the DeepSEA architecture by Zhou and
Troyanskaya [2015] achieved an AUC of > 0.85, and the S4L “Self-GenomeNet”
architecture introduced by Anonymous [2022] achieved an AUC of > 0.75, all of the
evaluated methods in this thesis have only achieved an AUC of up to 0.715, which
is comparable to the fully supervised baseline methods presented by Anonymous
[2022]. Because no log-loss, F1, or balanced accuracy was published in the previously
mentioned studies, we cannot compare these measures with the values that resulted
from our models. Consequently, the S4L models we evaluated for this task were not
able to outperform fully supervised methods or the Self-GenomeNet architecture
including self-supervision.

46

CHAPTER 4. RESULTS

Table 4.3: Detailed overview: AUC for Chromatin features classification

S4L-CPC-RN18 S4L-NextNuc

% Pretrained on Pretrained on
Base-

Pretrained on Pretrained on
Base-

Data Bacteria Dataset Combined Dataset
line

Bacteria Dataset Combined Dataset
line

FT LC FT LC FT LC FT LC

0.1 0.509 0.578 0.485 0.512 0.636 0.676 0.704 0.660 0.705 0.707

1 0.509 0.600 0.493 0.520 0.680 0.676 0.712 0.668 0.715 0.712

10 0.516 0.597 0.474 0.530 0.699 0.675 0.711 0.670 0.711 0.715

100 0.527 0.606 0.490 0.549 0.702 0.675 0.715 0.647 0.714 0.711

4.3 Interpretability of the Representations

To investigate the information contained in the fitted representations, we created
T-distributed stochastic neighbor embedding (TSNE) plots. This method reduces
the information of a representation to a two-dimensional vector based on stochastic
neighbor embedding [Hinton and Roweis, 2002], which can be visualized by inter-
preting this vector as a location in a two-dimensional space. The TSNE plots created
are depicted in Figure 4.13 and 4.14. As the targets are based on different datasets,
the values in these two figures are not comparable.

47

CHAPTER 4. RESULTS

S4 L − NextNuc −Trained on the combined dataset S4 L − CPC − RN18 −Trained on the combined dataset

S4 L − NextNuc −Trained on the bacterial dataset S4 L − CPC − RN18 −Trained on the bacterial dataset

Bacteria Non−Phage Virus

Figure 4.13: T-distributed stochastic neighbor embedding for Gram staining target.

Generally, clustering of Gram-staining properties based on the representations
is somewhat present as depicted in Figure 4.13, visualizing the representations pro-
duced by the respective S4L models simplified by positions on a graph and different
classes represented by color marking. In contrast to the CPC model with ResNet-18
encoder, the language model possesses an enhanced ability to sort the Gram-positive
bacteria into a clearly recognizable non-exhaustive cluster. Partial clustering of the
Gram-positive bacteria is present in all models, but a full separation of the Gram-
staining property cannot be produced by the trained models.

48

CHAPTER 4. RESULTS

S4 L − NextNuc S4 L − CPC − RN18 −Trained on the combined dataset

S4 L − NextNuc −Trained on the bacterial dataset S4 L − CPC − RN18 −Trained on the bacterial dataset

species−Negative species−Positive NA

Figure 4.14: T-distributed stochastic neighbor embedding for Bacteria-Virus target.

As further observed in the visualization of the representation with respect to the
Gram staining labels, the model is also capable of distinguishing bacteria, phage-
viruses, and non-phage-viruses, which the TSNE-plot in Figure 4.14 depicts. Again,
it is clearly visible that the language model recognizes boundaries more distinctly
than the CPC model. Especially the group of bacteria is strongly distinguished
from phage viruses and non-phage viruses, which can be explained by a higher
genetic similarity between different virus types compared to the similarity between
viruses and bacteria. The CPC model also appears to capture clusters, but here the
boundaries are more ambiguously separated. However, a clear clustering of bacteria
can be seen here as well.

49

Chapter 5

Discussion and Conclusion

5.1 Future Aspects

One substantial issue we faced while doing experiments for this work was the enor-
mous computational overhead involved in the analyses. For the pretraining of a
self-supervised model, the training took between one and three weeks to converge,
even when using large GPU machines. The semi-supervised step, using the trained
self-supervised model as a baseline, required up to two more weeks to converge. As
described in Chapter 3, we had to constrain some parameters to specific values due
to computational and temporal limitations. For some of the methods, such as the
lasso models, the execution was not feasible at all. The analyses performed took
multiple GPU years already.

On top of this, we did not have the opportunity to create statistical replicates
for all models. Instead, replicates were created on a sample basis, and the replicates
created also showed a slight instability of the models in terms of the resulting loss.
This raises the question of whether interpretation of the results presented is possible
at this point, or whether multiple replications are necessary before an interpretation
can be more reasonable, which is the expectation in this case.

While many more experiments were already implemented and prepared, the re-
sources were not sufficient to run all of these. The implemented experiments include
additional settings for downstream task evaluation, such as using not only one linear
layer on top of the pretrained network, but also different layer types and additional
subsequent layers, as described as “efficient classification” by Hénaff et al. [2020],
the application of a “PixelCNN” [van den Oord et al., 2016] or a higher-dimensional
LSTM as context network. The latter was not performed due to an emerging high
number of trainable parameter causing memory errors.

As mentioned beforehand, the lasso regression is missing for the chromatin fea-
tures classification task. For this purpose, instead of the mlr3 framework, an addi-
tional framework using the biglasso package [Zeng and Breheny, 2017] was already

50

CHAPTER 5. DISCUSSION AND CONCLUSION

prepared, which provides a built-in option for paralellization of the training, advan-
tageous for training all of the 919 targets. Thus, another possible avenue is the
computation of the lasso regression to assess its performance in comparison to the
already computed evaluation methods. Additionally, the missing lasso regression
models for Gram staining and Bacteria-Virus classification using 100% of the avail-
able training data can be computed with more computational resources. Other
interesting experiments for future work include pretraining on only human genome
sequence data for the chromatin features classification task, as the labeled data con-
tains only human genome sequences, and evaluating supplementary targets such as
the CRISPR locus within a sequence and protein binding affinity.

5.2 Conclusion

In general, it can be concluded that the language model S4L-NextNuc is better
suited as a self-supervised baseline and performs better on the downstream eval-
uation tasks than the self-supervised CPC model, which is also confirmed by the
TSNE-plots. Due to the complexity of the S4L-CPC-architectures, the higher per-
formance by S4L-NextNuc is against the expectations. While the S4L models were
able to outperform the fully-supervised baseline models on the Bacteria-Virus clas-
sification task and on the Gram staining classification task when using only 0.1%
of the labeled data for training, the results are otherwise worse in comparison with
the fully supervised models. The respresentations created by self-supervised pre-
training are useful for aiding the distinction of different classes while being in need
of improvements. Another discovery was the low performance of almost all models
applying fine tuning for evaluation, which we are unable to explain at this point
without further experiments.

In addition, we found that the data used for pretraining, i.e., whether only
bacterial data or the combined human, viral, and bacterial data were used, did not
have a striking effect on the performance in the downstream tasks and therefore
higher diversity within the training data was not proven to lead to the extraction of
higher-level slow-features. However, the resemblance of the performances of the same
model trained on only bacterial data or the combined data indicate stability of the
performances. As no promising results were obtained for the prediction of chromatin
features, no conclusion on the suitability of the representations for transfer learning
tasks can be drawn.

While the findings in recent work demonstrated an acceleration of performance by
using a semi-supervised model in combination with self-supervision by befitting from
the quantity of unlabeled genome sequences, we are unable to find any significant
improvements by S4L models. Albeit Anonymous [2022] showed a boost in perfor-
mance from S4L models. In the preliminary experiment described in Chapter 4.1.3,

51

CHAPTER 5. DISCUSSION AND CONCLUSION

we have compared different architectures, of which one, the S4L-CPC-DanQ resem-
bles the architecture applied by Anonymous [2022]. The main difference between
our and their technique is the design of the pre-text task and the length of the input
sequence, as their input sequence consists of 150 nucleotides, while ours consists of
6700 nucleotides. A benchmark which directly compares the methods by evaluating
the influence of each different setting could provide a better insight into the reasons
for the difference in performance.

Although the decision was made in favor of the deep architectures using ResNets
because of the promising results from Hénaff et al. [2020], it is possible that what
they found in the image domain does not apply to genome sequences. Possible
advantages using shallower networks are also evidenced by the better performance
of the language model in comparison to the CPC model. The final conclusion we
draw with reservations is that the deep networks applied for self-supervision are not
highly beneficial for downstream task evaluation for Gram staining classification
and chromatin features classification, while slightly outperforming the fully super-
vised baseline models for Bacteria-Virus classification. Though, to enable reliable
judgments, further analyses given high computational and temporal resources are
needed.

52

List of Figures

2.1 Residual learning: a building block. 8
2.2 The structure of the LSTM neural network. 9
2.3 Cosine Annealing schedule scheme of learning rate ηt over epochs t. . 12
2.4 Overview of the framework for semi-supervised learning with Con-

trastive Predictive Coding . 16

3.1 Overview of the origin of the data used for Gram staining classification 20
3.2 Overview of Contrastive Predictive Coding for Genome Sequences . . 24
3.3 Adapted one-dimensional ResNet architecture structure as CPC en-

coder network. 26
3.4 Adapted one-dimensional DanQ as CPC encoder network. 27
3.5 Adapted one-dimensional DanQ architecture for next nucleotide pre-

diction. 28

4.1 Experiment 1: Loss by learning rate. 33
4.2 Experiment 2: Loss by embedding scale. 34
4.3 Experiment 3: F1 and AUC for Gram staining classification compar-

ing different nmax and encoder architectures. 35
4.4 Performance on Gram staining classification with CPC. 37
4.5 Performance on Gram Staining Classification with Language Model. . 38
4.6 Best performances on Gram staining classification. 39
4.7 Performance on Bacteria-Virus classification with CPC. 41
4.8 Performance on Bacteria-Virus classification with language model. . . 42
4.9 Best performances on Bacteria-Virus classification. 43
4.10 Performance on chromatin features classification with CPC. 44
4.11 Performance on chromatin features classification with language model. 45
4.12 Best performances on chromatin features classification. 46
4.13 TSNE for Gram Staining Target. 48
4.14 TSNE for Bacteria-Virus target. 49

A.1 Full adapted one-dimensional ResNet-18 CPC encoder architectures . 64
A.2 Full adapted one-dimensional ResNet-50 CPC encoder architectures . 65

53

LIST OF FIGURES

B.1 Performance for Gram staining classification. 66
B.2 Performance for Bacteria-Virus classification. 67
B.3 Performance for chromatin features classification. 68

54

List of Tables

3.1 Number of Samples included in one Epoch 18
3.2 Summary of the used Datasets. 19
3.3 Overview of applied architectures: Pretraining and baseline 23
3.4 Adapted one-dimensional ResNet architecture as CPC encoder network 25
3.5 Measures that were evaluated for the respective tasks 29

4.1 Detailed overview: AUC for Bacteria-Virus classification 40
4.2 Detailed overview: Balanced accuracy for Bacteria-Virus classification 43
4.3 Detailed overview: AUC for Chromatin features classification 47

B.2 Detailed overview: Balanced Accuracy for Gram-Staining classification 69
B.3 Detailed overview: Macro-averaged-F1 for Gram-Staining classification 69
B.1 Detailed overview: Log-Loss for Gram-Staining classification 69
B.4 Detailed overview: Log-Loss for Bacteria-Virus classification 69
B.5 Detailed overview: Macro-averaged-F1 for Bacteria-Virus classification 70
B.6 Detailed overview: Log-Loss for Chromatin features classification . . 70
B.7 Detailed overview: Balanced Accuracy for Chromatin features classi-

fication . 70
B.8 Detailed overview: F1 for Chromatin features classification 70
B.9 Performance results for models with replication runs. 71

55

Bibliography

D. D. F. Adiwardana, A. Matsukawa, and J. Whang. Using generative models for semi-
supervised learning. In Medical image computing and computer-assisted intervention–
MICCAI, volume 2016, pages 106–14, 2016.

M. Akhtar, N. Mohsin, A. Zahak, M. R. Ain, P. Pillai, P. Kapur, and M. Z. Ah-
mad. Antimicrobial sensitivity pattern of bacterial pathogens in urinary tract in-
fections in south delhi, india. Reviews on recent clinical trials, 9, 11 2014. doi:
10.2174/1574887109666141127104220.

B. Alberts. The cell as a collection of protein machines: Preparing the next generation of
molecular biologists. Cell, 92(3):291–294, 1998. doi: 10.1016/s0092-8674(00)80922-8.

B. Alipanahi, A. Delong, M. Weirauch, and B. Frey. Predicting the sequence specificities
of dna- and rna-binding proteins by deep learning. Nature biotechnology, 33, 07 2015.
doi: 10.1038/nbt.3300.

Anonymous. Self-genomenet: Self-supervised learning with reverse-complement context
prediction for nucleotide-level genomics data. In Submitted to The Tenth Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/

forum?id=92awwjGxIZI. under review.

E. Asgari and M. R. K. Mofrad. Continuous distributed representation of biologi-
cal sequences for deep proteomics and genomics. Plos One, 10(11), 2015. doi:
10.1371/journal.pone.0141287.

B. Atal and M. Schroeder. Predictive coding of speech signals and subjective error criteria.
In International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
volume 3, pages 573 – 576, 05 1978. doi: 10.1109/ICASSP.1978.1170564.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new
perspectives, 2014.

N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependen-
cies in high-dimensional sequences: Application to polyphonic music generation and
transcription, 2012.

56

https://openreview.net/forum?id=92awwjGxIZI
https://openreview.net/forum?id=92awwjGxIZI

BIBLIOGRAPHY

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei. Language models are few-shot learners, 2020.

C. A. Chapelle. English language learning and technology. Language Learning & Language
Teaching, 2003. doi: 10.1075/lllt.7.

O. Chapelle, S. Bernhard, and A. Zien. Semi-supervised learning. The MIT Press, 2006.

H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke. The rise of deep
learning in drug discovery. Drug Discovery Today, 23(6):1241–1250, 2018. ISSN
1359-6446. doi: https://doi.org/10.1016/j.drudis.2018.01.039. URL https://www.

sciencedirect.com/science/article/pii/S1359644617303598.

T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple framework for contrastive
learning of visual representations. CoRR, abs/2002.05709, 2020. URL https://arxiv.

org/abs/2002.05709.

F. Chollet, J. Allaire, et al. R interface to keras. https://github.com/rstudio/keras,
2017.

G. Dembla. Intuition behind log-loss score, Dec 2021. URL https://

towardsdatascience.com/intuition-behind-log-loss-score-4e0c9979680a.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR, abs/1810.04805, 2018. URL http:

//arxiv.org/abs/1810.04805.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding, 2019.

C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by
context prediction, 2016.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. URL
https://www.jstatsoft.org/v33/i01/.

K. Friston. A theory of cortical responses. Philosophical transactions of the Royal Society of
London. Series B, Biological sciences, 360:815–36, 05 2005. doi: 10.1098/rstb.2005.1622.

F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction
with lstm. Neural Computation, 12:2451–2471, 1999.

S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by predict-
ing image rotations, 2018.

57

https://www.sciencedirect.com/science/article/pii/S1359644617303598
https://www.sciencedirect.com/science/article/pii/S1359644617303598
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://github.com/rstudio/keras
https://towardsdatascience.com/intuition-behind-log-loss-score-4e0c9979680a
https://towardsdatascience.com/intuition-behind-log-loss-score-4e0c9979680a
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.jstatsoft.org/v33/i01/

BIBLIOGRAPHY

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. Journal of Machine Learning Research - Proceedings Track, 9:249–256, 01
2010.

M. Grandini, E. Bagli, and G. Visani. Metrics for multi-class classification: an overview,
2020.

M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation prin-
ciple for unnormalized statistical models. In Y. W. Teh and M. Titterington, edi-
tors, Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine Learning Research, pages 297–
304, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL https:

//proceedings.mlr.press/v9/gutmann10a.html.

J. Harrow, A. Nagy, A. Reymond, T. Alioto, L. Patthy, S. E. Antonarakis, and R. Guigó.
Identifying protein-coding genes in genomic sequences. Genome Biology, 10(1):201, Jan
2009. doi: 10.1186/gb-2009-10-1-201.

H. R. Hassanzadeh and M. D. Wang. Deeperbind: Enhancing prediction of sequence
specificities of DNA binding proteins. CoRR, abs/1611.05777, 2016. URL http://

arxiv.org/abs/1611.05777.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition, 2015.

G. Hinton and S. T. Roweis. Stochastic neighbor embedding. In NIPS, volume 15, pages
833–840. Citeseer, 2002.

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
https://doi.org/10.1162/neco.1997.9.8.1735.

J. J. Hopfield. Neural networks and physical systems with emergent collective compu-
tational abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558,
1982. ISSN 0027-8424. doi: 10.1073/pnas.79.8.2554. URL https://www.pnas.org/

content/79/8/2554.

G. J. Hucker and H. J. Conn. Methods of gram staining. Technical Bulletin No.93, 1923.

O. J. Hénaff, A. Srinivas, J. D. Fauw, A. Razavi, C. Doersch, S. M. A. Eslami, and
A. van den Oord. Data-efficient image recognition with contrastive predictive coding,
2020.

A. Jan, Z. Hasan, H. Shah, R. Ullah, I. Ahmad, and M. Younas. An investigation of
the bacterial flora causing spoilage of fishes at board fish market, peshawar, pakistan.
Pakistan journal of zoology, 46:1371–1375, 10 2014.

58

https://proceedings.mlr.press/v9/gutmann10a.html
https://proceedings.mlr.press/v9/gutmann10a.html
http://arxiv.org/abs/1611.05777
http://arxiv.org/abs/1611.05777
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.pnas.org/content/79/8/2554
https://www.pnas.org/content/79/8/2554

BIBLIOGRAPHY

K. G. Joensen, F. Scheutz, O. Lund, H. Hasman, R. S. Kaas, E. M. Nielsen, and F. M.
Aarestrup. Real-time whole-genome sequencing for routine typing, surveillance, and
outbreak detection of verotoxigenic escherichia coli. Journal of Clinical Microbiology,
52(5):1501–1510, Feb 2014. doi: 10.1128/jcm.03617-13.

K. Kawakami, L. Wang, C. Dyer, P. Blunsom, and A. van den Oord. Unsupervised learning
of efficient and robust speech representations, 2020. URL https://openreview.net/

forum?id=HJe-blSYvH.

D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling. Semi-supervised learning
with deep generative models. CoRR, abs/1406.5298, 2014. URL http://arxiv.org/

abs/1406.5298.

A. Kolesnikov, X. Zhai, and L. Beyer. Revisiting self-supervised visual representation
learning, 2019.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 25, pages 1097–
1105. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/

2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

M. Lang, M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au, G. Casalicchio,
L. Kotthoff, and B. Bischl. mlr3: A modern object-oriented machine learning framework
in R. Journal of Open Source Software, dec 2019. doi: 10.21105/joss.01903. URL
https://joss.theoj.org/papers/10.21105/joss.01903.

X. H. Le, H. Ho, G. Lee, and S. Jung. Application of long short-term memory (lstm)
neural network for flood forecasting. Water, 11:1387, 07 2019. doi: 10.3390/w11071387.

Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker, I. Guyon,
U. Muller, E. Sackinger, et al. Comparison of learning algorithms for handwritten digit
recognition. In International conference on artificial neural networks, volume 60, pages
53–60. Perth, Australia, 1995.

I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.

A. X. Lu, H. Zhang, M. Ghassemi, and A. Moses. Self-supervised contrastive learning
of protein representations by mutual information maximization. bioRxiv, 2020. doi:
10.1101/2020.09.04.283929. URL https://www.biorxiv.org/content/early/2020/

11/10/2020.09.04.283929.

E. A. Miao and S. I. Miller. Bacteriophages in the evolution of pathogen-host interactions.
Proceedings of the National Academy of Sciences, 96(17):9452–9454, 1999. doi: 10.1073/
pnas.96.17.9452.

59

https://openreview.net/forum?id=HJe-blSYvH
https://openreview.net/forum?id=HJe-blSYvH
http://arxiv.org/abs/1406.5298
http://arxiv.org/abs/1406.5298
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://joss.theoj.org/papers/10.21105/joss.01903
https://www.biorxiv.org/content/early/2020/11/10/2020.09.04.283929
https://www.biorxiv.org/content/early/2020/11/10/2020.09.04.283929

BIBLIOGRAPHY

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations
of words and phrases and their compositionality. CoRR, abs/1310.4546, 2013. URL
http://arxiv.org/abs/1310.4546.

R. Mreches, A. C. McHardy, B. Bischl, J. Moosbauer, H. A. Gündüz, S. Klawitter, Z.-L.
Deng, E. Franzosa, C. Huttenhower, G. Robertson, E. Asgari, X.-Y. To, M. Binder,
and P. C. Münch. Genomenet/deepg: Deepg pre-release version, Oct. 2021. URL
https://doi.org/10.5281/zenodo.5561229.

K. A. Neilson, N. A. Ali, S. Muralidharan, M. Mirzaei, M. Mariani, G. Assadourian,
A. Lee, S. C. V. Sluyter, and P. A. Haynes. Less label, more free: Approaches in label-
free quantitative mass spectrometry. Proteomics, 11(4):535–553, 2011. doi: 10.1002/
pmic.201000553.

A. Odena. Semi-supervised learning with generative adversarial networks, 2016.

D. Quang and X. Xie. DanQ: a hybrid convolutional and recurrent deep neural network for
quantifying the function of DNA sequences. Nucleic Acids Research, 44(11):e107–e107,
04 2016. ISSN 0305-1048. doi: 10.1093/nar/gkw226. URL https://doi.org/10.1093/

nar/gkw226.

A. Rasmus, H. Valpola, M. Honkala, M. Berglund, and T. Raiko. Semi-supervised learning
with ladder network. CoRR, abs/1507.02672, 2015. URL http://arxiv.org/abs/

1507.02672.

L. C. Reimer, A. Vetcininova, J. S. Carbasse, C. Söhngen, D. Gleim, C. Ebeling, and
J. Overmann. BacDive in 2019: bacterial phenotypic data for High-throughput biodi-
versity analysis. Nucleic Acids Research, 47(D1):D631–D636, 09 2018. ISSN 0305-1048.
doi: 10.1093/nar/gky879. URL https://doi.org/10.1093/nar/gky879.

A. S. Rifaioglu, H. Atas, M. J. Martin, R. Cetin-Atalay, V. Atalay, and T. Doğan. Recent
applications of deep learning and machine intelligence on in silico drug discovery: meth-
ods, tools and databases. Briefings in Bioinformatics, 20(5):1878–1912, 07 2018. ISSN
1477-4054. doi: 10.1093/bib/bby061. URL https://doi.org/10.1093/bib/bby061.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986.

E. W. Sayers, M. Cavanaugh, K. Clark, K. D. Pruitt, C. L. Schoch, S. T. Sherry, and
I. Karsch-Mizrachi. GenBank. Nucleic Acids Research, 49(D1):D92–D96, 11 2020.
ISSN 0305-1048. doi: 10.1093/nar/gkaa1023. URL https://doi.org/10.1093/nar/

gkaa1023.

P. Sermanet, C. Lynch, J. Hsu, and S. Levine. Time-contrastive networks: Self-supervised
learning from multi-view observation. CoRR, abs/1704.06888, 2017. URL http://

arxiv.org/abs/1704.06888.

60

http://arxiv.org/abs/1310.4546
https://doi.org/10.5281/zenodo.5561229
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1093/nar/gkw226
http://arxiv.org/abs/1507.02672
http://arxiv.org/abs/1507.02672
https://doi.org/10.1093/nar/gky879
https://doi.org/10.1093/bib/bby061
https://doi.org/10.1093/nar/gkaa1023
https://doi.org/10.1093/nar/gkaa1023
http://arxiv.org/abs/1704.06888
http://arxiv.org/abs/1704.06888

BIBLIOGRAPHY

O. Sizar and C. G. Unakal. Gram positive bacteria. StatPearls [Internet], 2020.

L. N. Smith. No more pesky learning rate guessing games. CoRR, abs/1506.01186, 2015.
URL http://arxiv.org/abs/1506.01186.

C. Szalai, F. Oberfrank, E. Pap, K. Szabó-Taylor, A. Falus, S. Tóth, and V. László.
Medizinische Genetik und Genomik. Typotex, 06 2020. ISBN 978 963 279 188 3.

M. Szummer and T. Jaakkola. Partially labeled classification with markov random walks.
In Advances in Neural Information Processing Systems, pages 945–952. MIT Press,
2002.

C. Söhngen, A. Podstawka, B. Bunk, D. Gleim, A. Vetcininova, L. C. Reimer, C. Ebeling,
C. Pendarovski, and J. Overmann. BacDive – The Bacterial Diversity Metadatabase
in 2016. Nucleic Acids Research, 44(D1):D581–D585, 09 2015. ISSN 0305-1048. doi:
10.1093/nar/gkv983. URL https://doi.org/10.1093/nar/gkv983.

B. Tang, Z. Pan, K. Yin, and A. Khateeb. Recent advances of deep learning in bioin-
formatics and computational biology. Frontiers in Genetics, 10:214, 03 2019. doi:
10.3389/fgene.2019.00214.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the royal
statistical society series b-methodological, 58:267–288, 1996.

A. Trabelsi, M. Chaabane, and A. Ben-Hur. Comprehensive evaluation of deep learning
architectures for prediction of DNA/RNA sequence binding specificities. Bioinformatics,
35(14):i269–i277, 07 2019. doi: 10.1093/bioinformatics/btz339. URL https://doi.

org/10.1093/bioinformatics/btz339.

A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and
K. Kavukcuoglu. Conditional image generation with pixelcnn decoders. CoRR,
abs/1606.05328, 2016. URL http://arxiv.org/abs/1606.05328.

A. van den Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predic-
tive coding, 2019.

V. Vovk. The Fundamental Nature of the Log Loss Function, pages 307–318. Springer
International Publishing, Cham, 2015. ISBN 978-3-319-23534-9. doi: 10.1007/
978-3-319-23534-9 20. URL https://doi.org/10.1007/978-3-319-23534-9_20.

R. Wang, T. Zang, and Y. Wang. Human mitochondrial genome compression us-
ing machine learning techniques. Human Genomics, 13:49, 10 2019. doi: 10.1186/
s40246-019-0225-3.

S. Zagoruyko and N. Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

61

http://arxiv.org/abs/1506.01186
https://doi.org/10.1093/nar/gkv983
https://doi.org/10.1093/bioinformatics/btz339
https://doi.org/10.1093/bioinformatics/btz339
http://arxiv.org/abs/1606.05328
https://doi.org/10.1007/978-3-319-23534-9_20
http://arxiv.org/abs/1605.07146

BIBLIOGRAPHY

Y. Zeng and P. Breheny. The biglasso package: A memory- and computation-efficient
solver for lasso model fitting with big data in r. ArXiv e-prints, 2017. URL https:

//arxiv.org/abs/1701.05936.

X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer. S4l: Self-supervised semi-supervised
learning. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
doi: 10.1109/iccv.2019.00156.

Y. Zhang, J. Yan, S. Chen, M. Gong, D. Gao, M. Zhu, and W. Gan. Review of the
applications of deep learning in bioinformatics. Current Bioinformatics, 15(8):898–911,
2021. doi: 10.2174/1574893615999200711165743.

J. Zhou and O. Troyanskaya. Predicting effects of noncoding variants with deep learning-
based sequence model. Nature methods, 12, 08 2015. doi: 10.1038/nmeth.3547.

X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Computer
Sciences, University of Wisconsin-Madison, 2005.

62

https://arxiv.org/abs/1701.05936
https://arxiv.org/abs/1701.05936

63

APPENDIX A. MODEL ARCHITECTURE

Appendix A

Model Architecture

Input: sequence patch 500x4

conv1d [5, 64]

max pooling size 2, stride = 2

conv1d [3, 64]

conv1d [3, 64]

conv1d [3, 64]

conv1d [3, 64]

conv1d [3, 128]

conv1d [3, 128]

conv1d [3, 128]

conv1d [3, 128]

conv1d [3, 256]

conv1d [3, 256]

conv1d [3, 256]

conv1d [3, 256]

conv1d [3, 512]

conv1d [3, 512]

conv1d [3, 512]

conv1d [3, 512]

global average pooling

Output: encoded sequence patch 1x512

Block 1

Block 2

Block 3

Block 4

Figure A.1: Adapted one-dimensional ResNet-18 CPC encoder network architecture.
The values in the brackets denote the kernel size and the channels.

64

Input: sequence patch 500x4

conv1d [5, 64]

max pooling size 2, stride = 2

conv1d [1, 64]

conv1d [3, 64]

conv1d [1, 256]

conv1d [1, 64]

conv1d [3, 64]

conv1d [1, 256]

conv1d [1, 64]

conv1d [3, 64]

conv1d [1, 256]

conv1d [1, 128]

conv1d [3, 128]

conv1d [1, 512]

conv1d [1, 128]

conv1d [3, 128]

conv1d [1, 512]

conv1d [1, 128]

conv1d [3, 128]

conv1d [1, 512]

conv1d [1, 128]

conv1d [3, 128]

conv1d [1, 512]

conv1d [1, 256]

conv1d [3, 256]

conv1d [1, 1024]

conv1d [1, 256]

conv1d [3, 256]

conv1d [1, 1024]

conv1d [1, 256]

conv1d [3, 256]

conv1d [1, 1024]

conv1d [1, 256]

conv1d [3, 256]

conv1d [1, 1024]

conv1d [1, 256]

conv1d [3, 256]

conv1d [1, 1024]

conv1d [1, 256]

conv1d [3, 256]

conv1d [1, 1024]

conv1d [3, 512]

conv1d [3, 512]

conv1d [3, 2048]

conv1d [3, 512]

conv1d [3, 512]

conv1d [3, 2048]

conv1d [3, 512]

conv1d [3, 512]

conv1d [3, 2048]

global average pooling

Output: encoded sequence patch 1x2048

Block 1

Block 2

Block 3

Block 4

Figure A.2: Adapted one-dimensional ResNet-50 CPC encoder network architecture.
The values in the brackets denote the kernel size and the channels.

65

APPENDIX B. RESULTS

Appendix B

Results

0.3

0.5

0.7

0.1 1.0 10.0 100.0
Percentage of Labeled Data

A
U

C

0.4

0.5

0.7

0.1 1.0 10.0 100.0
Percentage of Labeled Data

B
al

an
ce

d
A

cc
ur

ac
y

0.2

0.3

0.5

0.1 1.0 10.0 100.0
Percentage of Labeled Data

M
ac

ro
−

A
ve

ra
ge

d−
F

1

1e+02

1e+06

1e+10

1e+14

0.1 1.0 10.0 100.0
Percentage of Labeled Data

Lo
g−

Lo
ss

Architecture S4 L − CPC − RN18 S4 L − NextNuc

Method

Baseline

NN Linear Classification
Pretrained on All Data
NN Linear Classification
Pretrained on Only Bacteria Data

Fine Tuning
Pretrained on All Data
Fine Tuning
Pretrained on Only Bacteria Data
Lasso Regression
Pretrained on All Data

Lasso Regression
Pretrained on Only Bacteria Data

Figure B.1: Performance for Gram staining classification.

66

APPENDIX B. RESULTS

0.01

0.03

0.10

0.30

0.1 1.0 10.0 100.0
Percentage of Labeled Data

B
al

an
ce

d
A

cc
ur

ac
y

0.001

0.010

0.100

1.000

0.1 1.0 10.0 100.0
Percentage of Labeled Data

M
ac

ro
−

A
ve

ra
ge

d−
F

1

1

10

100

0.1 1.0 10.0 100.0
Percentage of Labeled Data

Lo
g−

Lo
ss

Architecture S4 L − CPC − RN18 S4 L − NextNuc

Method

Baseline

NN Linear Classification
Pretrained on All Data
NN Linear Classification
Pretrained on Only Bacteria Data

Fine Tuning
Pretrained on All Data
Fine Tuning
Pretrained on Only Bacteria Data
Lasso Regression
Pretrained on All Data

Lasso Regression
Pretrained on Only Bacteria Data

Figure B.2: Performance for Bacteria-Virus classification.

67

APPENDIX B. RESULTS

0.5

0.6

0.7

0.1 1.0 10.0 100.0
Percentage of Labeled Data

A
U

C

0.4975

0.5000

0.5025

0.5050

0.1 1.0 10.0 100.0
Percentage of Labeled Data

B
al

an
ce

d
A

cc
ur

ac
y

0.001

0.003

0.010

0.030

0.1 1.0 10.0 100.0
Percentage of Labeled Data

F
1

0.1

0.3

0.5

0.1 1.0 10.0 100.0
Percentage of Labeled Data

Lo
g−

Lo
ss

Architecture S4 L − CPC − RN18 S4 L − NextNuc

Method

Baseline

NN Linear Classification
Pretrained on All Data
NN Linear Classification
Pretrained on Only Bacteria Data

Fine Tuning
Pretrained on All Data
Fine Tuning
Pretrained on Only Bacteria Data

Figure B.3: Performance for chromatin features classification.

68

APPENDIX B. RESULTS

Table B.2: Detailed overview: Balanced Accuracy for Gram-Staining classification

S4L-CPC-RN18 S4L-NextNuc

% Pretrained on Pretrained on
Base-

Pretrained on Pretrained on
Base-

Data Bacteria Dataset Combined Dataset
line

Bacteria Dataset Combined Dataset
line

L1 FT LC L1 FT LC L1 FT LC L1 FT LC

0.1 0.587 0.453 0.419 0.587 0.476 0.448 0.500 0.634 0.401 0.445 0.627 0.391 0.481 0.443

1.0 0.631 0.462 0.626 0.599 0.419 0.584 0.500 0.609 0.433 0.743 0.600 0.421 0.740 0.779

10.0 0.681 0.541 0.606 0.674 0.343 0.553 0.500 0.677 0.566 0.799 0.671 0.587 0.762 0.827

100.0 0.525 0.637 0.562 0.534 0.483 0.578 0.803 0.600 0.723 0.802

Table B.3: Detailed overview: Macro-averaged-F1 for Gram-Staining classification

S4L-CPC-RN18 S4L-NextNuc

% Pretrained on Pretrained on
Base-

Pretrained on Pretrained on
Base-

Data Bacteria Dataset Combined Dataset
line

Bacteria Dataset Combined Dataset
line

L1 FT LC L1 FT LC L1 FT LC L1 FT LC

0.1 0.626 0.408 0.364 0.627 0.339 0.393 0.492 0.677 0.373 0.354 0.670 0.348 0.518 0.385

1.0 0.674 0.487 0.633 0.638 0.440 0.576 0.196 0.651 0.456 0.739 0.642 0.438 0.738 0.773

10.0 0.712 0.539 0.611 0.707 0.380 0.558 0.196 0.721 0.564 0.796 0.714 0.605 0.765 0.819

100.0 0.561 0.647 0.590 0.549 0.520 0.587 0.805 0.628 0.729 0.803

Table B.1: Detailed overview: Log-Loss for Gram-Staining classification

S4L-CPC-RN18 S4L-NextNuc

% Pretrained on Pretrained on
Base-

Pretrained on Pretrained on
Base-

Data Bacteria Dataset Combined Dataset
line

Bacteria Dataset Combined Dataset
line

L1 FT LC L1 FT LC L1 FT LC L1 FT LC

0.1 1.607 3.281 5.399 1.928 7.337 15.361 5.893 1.896 0.725 5.306 2.742 0.781 3.297 5.793

1.0 0.591 2.242 1.388 0.599 3.876 1.377 1013 0.807 0.697 0.699 0.814 0.701 0.625 0.739

10.0 0.551 1.307 1.187 0.557 8.582 2.787 1014 0.817 0.692 0.509 0.481 0.690 0.486 0.523

100.0 1.287 0.892 5.379 2.077 0.692 0.691 0.476 0.689 0.590 0.449

Table B.4: Detailed overview: Log-Loss for Bacteria-Virus classification

S4L-CPC-RN18 S4L-NextNuc

% Pretrained on Pretrained on
Base-

Pretrained on Pretrained on
Base-

Data Bacteria Dataset Combined Dataset
line

Bacteria Dataset Combined Dataset
line

L1 FT LC L1 FT LC L1 FT LC L1 FT LC

0.1 0.229 2.254 1.471 0.243 2.812 2.734 0.549 0.799 0.901 0.458 0.557 0.899 0.341 0.834

1.0 0.170 1.736 1.302 0.169 9.664 1.950 3.282 0.493 0.988 0.414 0.487 0.970 0.787 47.849

10.0 0.165 1.467 1.397 0.163 1.709 2.030 0.966 0.207 0.989 0.445 0.207 0.967 183.2200.542

100.0 1.485 1.823 1.866 2.054 0.358 0.983 0.450 0.960 0.478 0.546

69

APPENDIX B. RESULTS

Table B.5: Detailed overview: Macro-averaged-F1 for Bacteria-Virus classification

S4L-CPC-RN18 S4L-NextNuc

% Pretrained on Pretrained on
Base-

Pretrained on Pretrained on
Base-

Data Bacteria Dataset Combined Dataset
line

Bacteria Dataset Combined Dataset
line

L1 FT LC L1 FT LC L1 FT LC L1 FT LC

0.1 0.942 0.813 0.610 0.939 0.581 0.595 0.949 0.920 0.602 0.906 0.924 0.584 0.928 0.844

1.0 0.948 0.536 0.640 0.950 0.017 0.643 0.733 0.940 0.458 0.890 0.942 0.484 0.635 0.949

10.0 0.949 0.726 0.628 0.950 0.667 0.630 0.586 0.944 0.448 0.890 0.944 0.481 0.000 0.881

100.0 0.545 0.593 0.778 0.623 0.916 0.424 0.887 0.484 0.877 0.866

Table B.6: Detailed overview: Log-Loss for Chromatin features classification

S4L-CPC-RN18 S4L-NextNuc

% Pretrained on Pretrained on
Base-

Pretrained on Pretrained on
Base-

Data Bacteria Dataset Combined Dataset
line

Bacteria Dataset Combined Dataset
line

FT LC FT LC FT LC FT LC

0.1 0.630 0.097 0.629 0.096 0.101 0.468 0.089 0.461 0.089 0.089

1.0 0.622 0.095 0.624 0.096 0.090 0.454 0.089 0.458 0.089 0.089

10.0 0.597 0.095 0.620 0.095 0.089 0.462 0.089 0.458 0.089 0.089

100.0 0.723 0.095 0.620 0.094 0.088 0.454 0.089 0.457 0.089 0.089

Table B.7: Detailed overview: Balanced Accuracy for Chromatin features classifica-
tion

S4L-CPC-RN18 S4L-NextNuc

% Pretrained on Pretrained on
Base-

Pretrained on Pretrained on
Base-

Data Bacteria Dataset Combined Dataset
line

Bacteria Dataset Combined Dataset
line

FT LC FT LC FT LC FT LC

0.1 0.503 0.5 0.502 0.501 0.502 0.5 0.502 0.5 0.502 0.502

1.0 0.501 0.5 0.499 0.501 0.502 0.5 0.502 0.5 0.502 0.502

10.0 0.504 0.5 0.497 0.501 0.503 0.5 0.501 0.5 0.502 0.502

100.0 0.507 0.5 0.503 0.501 0.504 0.5 0.502 0.5 0.502 0.502

Table B.8: Detailed overview: F1 for Chromatin features classification

S4L-CPC-RN18 S4L-NextNuc

% Pretrained on Pretrained on
Base-

Pretrained on Pretrained on
Base-

Data Bacteria Dataset Combined Dataset
line

Bacteria Dataset Combined Dataset
line

FT LC FT LC FT LC FT LC

0.1 0.028 0.001 0.025 0.003 0.008 0 0.008 0 0.009 0.009

1.0 0.026 0.001 0.027 0.003 0.006 0 0.006 0 0.006 0.006

10.0 0.024 0.001 0.025 0.003 0.009 0 0.006 0 0.006 0.007

100.0 0.027 0.001 0.026 0.004 0.012 0 0.007 0 0.008 0.008

70

APPENDIX B. RESULTS

Table B.9: Performance results for models with replication runs.

data Model AUC Log-Loss
Balanced-
Accuracy

F1/macro-
averaged F1

Gram-staining

b S4L-CPC-RN18 0.682 0.614 0.892 1.131 0.637 0.583 0.647 0.592

a NextNuc ft 10 0.554 0.549 0.690 0.684 0.587 0.590 0.605 0.600

a NextNuc fr 100 0.763 0.852 0.599 0.492 0.717 0.755 0.724 0.751

Bacteria Virus
a S4L-CPC-RN18 9.664 6.789 0.335 0.324 0.017 0.401

b NextNuc fr 1 0.414 0.607 0.373 0.414 0.890 0.822

Chromatin features

BL-NextNuc 1 0.712 0.715 0.089 0.089 0.502 0.502 0.006 0.006

BL-CPC-RN18 0.680 0.681 0.090 0.090 0.502 0.502 0.006 0.007

a S4L-CPC-RN18 0.474 0.477 0.620 0.630 0.497 0.500 0.025 0.029

71

	Introduction and Motivation
	Genome Sequences
	Self-Supervised Representation Learning
	Purpose and Research Question

	Background and Related Work
	Deep Learning
	Convolutional Neural Networks
	Residual neural network
	Recurrent neural networks
	Hybrid models
	Optimization and learning rate

	Deep Representation Learning Techniques
	Self-supervised learning Semi-supervised learning
	Contrastive predictive coding

	Method and Experimental Setup
	Technical Aspects
	Data
	Pretraining
	Gram staining classification task
	Bacteria-Virus Classification task
	Chromatin features classification task

	Experiments
	Self-supervised Model Architecture
	Contrastive Predictive Coding for Self-supervised Genomics Data
	Language Model: Next nucleotide prediction

	Downstream Task Evaluation
	Measures

	Results
	Experiments
	Learning rate
	Embedding scale
	Encoder architectures and maximum number of samples per FASTA-file

	Evaluation Benchmark
	Gram staining classification task
	Bacteria-Virus classification task
	Chromatin features classification task

	Interpretability of the Representations

	Discussion and Conclusion
	Future Aspects
	Conclusion

	List of Figures
	List of Tables
	Bibliography
	Model Architecture
	Results

