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Abstract

Having ordinal variables as both response and predictor in a regression analysis is a frequent

phenomenon in social sciences. Still, proper treatment via ordinal regression is rarely

realised. A common method used instead is linear regression. This thesis evaluates whether

familiarising oneself with the lesser known method is worth the effort or whether the

usual approaches suffice. As is shown the performance of the penalized proportional odds

model is better than that of the linear regression. The selected ordinal regression, a

penalized proportional odds model, is motivated by an applied sociological question of

whether authoritarian attitudes in young people are linked to experienced deprivation.

Findings prove that this is not the case. A recently developed extension of the ordPens

package allows for the implementation of the proportional odds model with first- and

second-order difference generalised ridge penalties in mgcv::gam(). An evaluation based

on simulated data concludes that the new implementation is recommended for first-order

difference penalties and that the confidence intervals are reliable.
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Chapter 1

Introduction

The proper treatment of ordered categorical data is a continuous issue in statistical model

building (Atkinson, 1988; Jöreskog and Moustaki, 2001; Wang et al., 2014) while at the

same time this type of data is one of the most common in social sciences (Jöreskog and

Moustaki, 2001). However, in one of the most well-known handbooks on social research

in Germany, methods for metric and categorical variables are presented, but ordinal data

methods are not even mentioned (Blasius and Baur, 2019). In the same way, a rough

overview over the articles concerning regression in the renowned german Kölner Zeitschrift

für Soziologie und Sozialpsychologie showed several multinomial logistic regressions and not

one on ordinal regression in the last five years1. One reason for this lack of attention might

be the rather restricted number of available implementations, as an overview over those

in the statistical open-source software R (R Core Team, 2021) will show. Another reason

might be the extra effort for scientists to approach a new method with less examples in

the sociological literature, or even the lack of knowledge about more adequate procedures.

No matter what the reason may be, it often leads to inadequate modelling, for example

ordinal variables are being treated as metric (Blasius and Baur, 2019; Tutz and Gertheiss,

2014). A very common method is regression analysis, where linear regression is conducted

instead of ordinal regression.

This thesis contributes to closing this gap in the social sciences. In order to do so, the

sociological question is pursued whether young people’s attitudes towards authoritarian

statements can be explained by the discrimination they experienced. Survey data is pro-

vided for answering it (chapter 2). The correct regression models for ordinal responses are

1Method: Social Sciences Citation Index (SSCI), search term: ((SO=(kolner zeitschrift fur soziologie
und sozialpsychologie)) AND ALL=(regression) plus individual check for the method description in the
abstract.
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discussed (chapter 3) and supplemented with the adequate penalization terms for ordinal

covariates (chapter 4). The penalized ordinal regression is carried out in the statistical

open-source software R (R Core Team, 2021). As will be outlined, the required model has

only recently been implemented via the combination of two R packages and has not been

applied to the exact same regression family yet (chapter 4). Therefore, a simulation study

is conducted to investigate the properties of the model (chapter 5). Now, the initially posed

sociological question is answered, exemplifying how the model can be applied in practice

(chapter 6). Also, it is examined whether the results of the new model are a substantial

improvement compared to the common alternative (chapter 7). Findings are wrapped up

in the last chapter (chapter 8).



Chapter 2

Methodological Motivation

2.1 Sociological Motivation

Studies on authoritarianism regularly demonstrate the correlation between authoritarian-

ism and derogatory attitudes towards other groups (e.g. Group-Focused Enmity, GFE)

(Brähler and Decker, 2018; Heitmeyer, 2012; Cribbs and Austin, 2011; Asbrock et al.,

2010; Heitmeyer, 2002; Rippl et al., 2000b; Adorno et al., 1950). There exist several terms

and closely related definitions for authoritarian attitudes, one being the authoritarian per-

sonality (Adorno et al., 1950). During their socialisation, authoritarian personalities did

not develop mechanisms to deal with new and unknown situations independently (”cri-

sis situations”, Oesterreich (2005), p. 284). They can be defined by four characteristics

(Oesterreich (2005) following Adorno et al. (1950)). First, they avoid new and unfamiliar

situations. Second, they are characterised by rigid behavioural patterns in which tried

and tested strategies can be applied. Thus, they try to avoid the risk of change. A third

characteristic is their submission to authority and conformity to established values and the

fourth is hostility towards others. By which influences and at what age an authoritarian

personality is formed, and whether it is a fundamental trait or rather an orientation, is a

continued debate (for an overview see Rippl et al. (2000a)).

Jürgen Mansel and Viktoria Spaiser for example observe that young people’s own expe-

riences of discrimination play a significant role in the devaluation of other groups (Mansel

and Spaiser, 2013, p. 254). This raises the question of whether there is also a connection

between their personal experiences of discrimination and authoritarian attitudes. One pos-

sibility to investigate this subject is fitting a regression model on authoritarian attitudes

and own experiences of discrimination. This path will be followed here. In doing so, those
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socio-demographic characteristics are included into the analysis that have proven to be

relevant in connection with GFE and authoritarianism in previous studies. These are the

level of education (Brähler and Decker (2018), p. 89, Rippl and Seipel (2018), p. 251,

Zick et al. (2016), Mansel and Spaiser (2013), p. 254), regional affiliation to East or West

Germany (Brähler and Decker (2018), p. 122, Baier et al. (2010), p. 323), gender (Brähler

and Decker, 2018) and migration background (Mansel and Spaiser, 2013).

The survey AID:A 2019 (Aufwachsen in Deutschland: Alltagswelten) (Kuger et al.,

2020) comprises questions which can be employed for this undertaking and will be delin-

eated in the following. The survey investigates the everyday life of young people. Children

and young people up to 33 years of age (”target persons”) are interviewed as well as their

household and/or parents.

2.2 Data Description

The original dataset as provided by the data repository of the Deutsches Jugendinstitut

(Deutsches Jugendinstitut, 2022) contains more than 1400 variables. Those relevant for the

analysis are now presented1. The socio-demographic variables are age (in years), gender

(”female”, ”male”, ”none of the above”), residency (the federal state the person lives

in) and migration background, which is operationalised by several questions about the

migration background in first (own), second (parents) and third (grandparents) generation.

The educational background is operationalised by the years spent on education (variable

name bija). The survey comprises a scale on authoritarianism which consists of six items:

To what extent do you agree with the following statements? Please answer with

values between 1 ”strongly agree” and 6 ”strongly disagree”.

1. I admire people who have the ability to dominate others. (aut beherrschen)

2. I always try to please my parents. (aut eltern)

3. I try to always be on the side of the strongest. (aut staerkere)

4. New and unusual situations make me uncomfortable. (aut neues)

5. I try to always do things in the usual way. (aut gewohnt)

6. I avoid people who are different from me. (aut andere)

1The survey is in German. Translations into English were made by the author.
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It maps the sub-dimensions ”authoritarian subordination” (items 1-3) and ”conventional-

ism” (items 4-6)(Weigelt, 2020). Each item is taken as an individual response variable. To

operationalise the measurement of experienced discrimination, the survey offers a question

block on experienced deprivation, illuminating six aspects:

It can happen that one is disadvantaged in life. There can be different rea-

sons for this. For each reason I give you, please tell me how often you have

been disadvantaged in your life (always or almost always - very often - often -

sometimes - rarely - never - denied - don’t know)

1. Because of your gender (ben gender)

2. Because of the social and financial situation in your family (ben sozfin)

3. Because you or your family are not from Germany (ben migration)

4. Because of your weight (ben gew)

5. Because of a disability or physical impairment (ben beh)

6. Because of your religion (ben rel)

The question asks solely about perceived disadvantage. The differentiation between per-

ceived disadvantage and real discrimination is not made at this point, since at the moment

when those affected define the situation as a real experience of disadvantage, the conse-

quences are real (Thomas theorem, see Thomas and Thomas (1928)) Feelings of disad-

vantage could therefore have the same effects on members of the society’s majority as on

members of marginalised groups (cf. Mansel and Spaiser (2013), p. 21). The questions do

not cover all aspects of discrimination but as the focus of this analysis is on the statisti-

cal matter, these questions will suffice for a first exploration of the field. The mentioned

variables are extracted and prepared for later analysis.

2.3 Data Preparation

First, the survey is filtered by target person to exclude parents and siblings. The original

data comprises target persons until the age of 33. The survey was generally conducted with

targets until 32 years of age and some bivariate inspections show outlier-like behaviour for

33-years-old people. Therefore people aged 33 are excluded. Also people younger than

16 are excluded, because younger targets were not asked the question on authoritarian
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attitudes. Gender is a variable taking the three values ”female”, ”male” and ”none of

the above”. As the latter got selected by only three surveyed, it is excluded. The third

deprivation-item (”Because you or your family is not from Germany”) is a filtered question

only asked to people identified as immigrants who make up an only small part of the

survey population. Later modelling is based on complete rows, so this question would have

strongly reduced the data set. The item is therefore excluded. In order to measure the

influence of residency as described above, a new dummy variable ostd ohne b is created

based on the federal state. It takes the value ”1” for eastern federal states and the value ”0”

for western federal states and Berlin. As there are several variables measuring the migration

background in first (own), second (parents) and third (grandparents) generation, a new

dummy variable migration is created taking the value ”1” if any migration background

exists and ”0” if none is present. As a last step, the response categories of the question on

experienced deprivation are ordered reversely to how they are in the original data. They

are recoded in increasing frequency (”Never”, ”Rarely”, ”Sometimes”, ”Often”, ”Very

often”, ”Always or almost always”) for easier interpretation. The readily prepared dataset

is depicted in table 2.1 and stored for the penalized ordinal regression in chapter 6. The

opinion on several items concerning authoritarian statements (6 ordered levels respectively)

are considered as response variables and the socio-demographic variables named above and

the five aspects of experienced deprivation answered on an ordinal scale (6 levels) are

predictors. In the next chapter, ordinal regression models are presented.
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Scale Name Expression
interval-scale age years

bija years of education
binary gender female/male

ostd ohne b 0 (Western Germany and Berlin)/ 1 (Eastern Ger-
many)

migration 0 (no migration background) / 1 (oneself or
(grand)parents immigrated)

ordinal aut andere* 1 (strongly agree) / 2 / 3 / 4 / 5 / 6 (strongly dis-
agree)

aut gewohnt* 1 (strongly agree) / 2 / 3 / 4 / 5 / 6 (strongly dis-
agree)

aut beherrschen* 1 (strongly agree) / 2 / 3 / 4 / 5 / 6 (strongly dis-
agree)

aut staerkere* 1 (strongly agree) / 2 / 3 / 4 / 5 / 6 (strongly dis-
agree)

aut neues* 1 (strongly agree) / 2 / 3 / 4 / 5 / 6 (strongly dis-
agree)

aut eltern* 1 (strongly agree) / 2 / 3 / 4 / 5 / 6 (strongly dis-
agree)

ben gender 1 (Never) / 2 (Rarely) / 3 (Sometimes) / 4 (Often) /
5 (Very often) / 6 (Always or almost always)

ben sozfin 1 (Never) / 2 (Rarely) / 3 (Sometimes) / 4 (Often) /
5 (Very often) / 6 (Always or almost always)

ben gew 1 (Never) / 2 (Rarely) / 3 (Sometimes) / 4 (Often) /
5 (Very often) / 6 (Always or almost always)

ben beh 1 (Never) / 2 (Rarely) / 3 (Sometimes) / 4 (Often) /
5 (Very often) / 6 (Always or almost always)

ben rel 1 (Never) / 2 (Rarely) / 3 (Sometimes) / 4 (Often) /
5 (Very often) / 6 (Always or almost always)

Table 2.1: Variables in the final data set. Response variables are marked with *.



Chapter 3

Ordinal Response Models

3.1 Basic Idea

Given a categorical response variable Y ∈ {1, ..., k} with k ordered categories, ordinal

response models are the adequate choice for regression analysis. The two main model

types are the cumulative and the sequential regression model. Both will be described in

this chapter, starting with the sequential model. The following explanations are based on

Tutz (2012) and Tutz and Gertheiss (2016).

3.2 The Sequential Model

Sequential models assume a baseline and in order to reach a new category, all previous

categories have to be gone through in ascending order. This regression type models the

transition from one category to the next. A typical example is pain which is measured in

ordered categories from ”no pain” over ”medium pain” to ”strong pain”. The assumption

of the successive transition poses a theoretical constraint on the data eligible. For the

survey questions under consideration such a constraint is hardly applicable: It would be

difficult to define a basic characteristic for authoritarian attitudes. Would it start at birth

or build on a philosophical assumption about the universal basic nature of human beings,

which would have to be found in one of the extremes in order to meet the requirements of

an ascending traversal? Discussing these issues is outside of the scope of this thesis and

as a more appropriate model is available, the sequential regression will only roughly be
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described. In the general model

P (Y = r|Y ≥ r,X) = F (β0r +X⊤βr), r = 1, ..., k.

effects are category-specific. A global effect β poses a sub form of the above described

version and would only imply varying intercepts β01, ..., β0k for the categories. The other

main type of ordinal regression model is the cumulative model.

3.3 The Cumulative Model

Cumulative models are based on the assumption that the realisations of Y are based on an

underlying latent variable Ỹ . This is a valid assumption for questions about attitudes, as it

can be assumed that people’s opinions have more subtle gradations than in a questionnaire

can be listed. Also, no baseline has to be assumed. The cumulative model was popularised

by McCullagh (1980) after earlier versions were proposed by other authors (cf. Snell (1964);

Walker and Duncan (1967); Williams and Grizzle (1972)). Let

Ỹ = −X⊤β + ϵ

with ϵ following a continuous distribution F . The response variable Y is assigned to

category r iff the latent variable’s value lays between two thresholds on the latent scale:

Y = r ⇐⇒ β0r−1 < Ỹ ≤ β0r.

The thresholds −∞ = β00 < β01 < ... < β0k = ∞ also serve as the category-specific

intercept. This can easily be seen when looking at the probability of Y to fall at least into

category r:

P (Y ≤ r|X) = P (−X⊤β + ϵ ≤ β0r)

= P (ϵ ≤ β0r +X⊤β)

= Fϵ(β0r +X⊤β).

The approach splits the model into binary parts 1, ..., r − 1 and r, ..., k for each category,

which enables collapsing other categories below or above r. The probability for Y falling
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into category r is derived via

P (Y = r|X) = P (Y ≤ r|X)− P (Y ≤ r − 1|X)

= Fϵ(β0r +X⊤β)− Fϵ(β0r−1 +X⊤β).

The final model is thus dependent on X,β, β00, ..., β0k and the choice of F , but no longer

on the latent Ỹ . F is also called the link function.

One of the most common link functions chosen due to its easy interpretation is the

logistic distribution

F (·) = exp(·)
1 + exp(·)

yielding

P (Y ≤ r|X) =
exp(β0r +X⊤β)

1 + exp(β0r +X⊤β)
≡ log

[
P (Y ≤ r|X)

P (Y > r|X

]
= β0r +X⊤β.

The parameters can be interpreted as the (logistic) odds to fall at most into category r

over the odds to fall into category r + 1 or higher. For each category, the probabilities

are dichotomized into those below or equal the threshold β0r and above it. This model

is also called the proportional odds model. The name can be deduced from the following

characteristic: Given the ratio of the probability of Y ≤ r to the probability of Y > r

(odds) of two different populations X and X̃, the relation between those two odds stays

the same (proportional) over all categories:

P (Y ≤ r|X)/P (Y > r|X)

P (Y ≤ r|X̃)/P (Y > r|X̃)
=

exp(β0r +X⊤β)

exp(β0r + X̃⊤β)
= exp((X − X̃)⊤β). (3.1)

In other words, if the cumulative odds (P (Y ≤ r|X)/P (Y > r|X) in population X are for

example twice the cumulative odds in population X̃, this cumulative odds ratio holds for

all categories. In the same way the relation between two categories r and s is independent

of the population’s covariates:

log

[
P (Y ≤ r|X)/P (Y > r|X)

P (Y ≤ s|X)/P (Y > s|X)

]
= log

[
exp(β0r +X⊤β)

exp(β0s +X⊤β)

]
= β0r − β0s. (3.2)

In order to use this model, the implied assumptions (3.1) and (3.2) must hold. This means,
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that

β = β1 = ... = βk

must hold. For two populations, the cumulative odds ratio should not depend on the

category, and this must hold for all p predictors involved. The corresponding linear null

hypothesis

H0 : β1j = ... = βkj, j = 1, ..., p

can be tested with the likelihood ratio test, the Wald test or the score test.

3.4 Comparison

The two most prominent types of ordinal regression models have been presented. The

sequential model is not applicable to the given response variables, as the assumption that

categories are traversed in ascending order does not hold. Cumulative models on the other

hand follow the approach of an underlying continuous variable Ỹ . This is a valid assumption

that can be made for questions about opinions, as it can be assumed that people’s attitudes

are more gradual than in a questionnaire can be realised. The proportional odds model

has a very intuitive interpretation. As long as its assumptions hold, it is thus the most

attractive option for regression analysis of survey data on opinions and is selected for this

analysis. Now that the correct model choice for ordered categorical responses has been

outlined, proper treatment of ordinal dependent variables is described.



Chapter 4

Penalization Terms

4.1 Basic Idea

Employing ordinal covariates requires other methods than those for linear or binary co-

variates. Be it dummy or split coding, the ordered categories of a predictor are included

in the model with several parameters, usually one dummy parameter per category. They

then constitute a group of parameters belonging to the same predictor and are therefore

called grouped parameters or grouped variables. The usual way to estimate the parame-

ters’ values is via maximum-likelihood optimisation yielding β̂ML. However this method

does not take into account the grouping of the variables, so it may select some categories

and exclude others or estimate very different values for adjacent categories. For ordinal

data though, a smooth transition between adjacent categories can be assumed (Tutz and

Gertheiss, 2016). In order to account for the relationship between dummies of ordered

categorical data and to consider the grouping, a penalization term can be added to the

regression model (Tutz and Gertheiss, 2016).

The general form of a penalized log-likelihood for a parameter vector β

lp(β) = l(β) + Jλ(β)

adds a penalization term Jλ(β) to the usual log-likelihood before solving. λ is a tuning

parameter and fixed via iterative computation (Tutz, 2012, p. 145-146).

One general penalization term called bridge estimator

Jλ(β) = λ

p∑
j=1

|βj |γ
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with βj = (βj1...βjkj)
T was derived by Frank and Friedman (1993) and comprises for γ = 1

the LASSO penalization and for γ = 2 the ridge penalization. They are both smoothing

penalties with no grouping property in the first place. Both classes will be discussed in the

following sections and then further developed in order to account for grouping from ordinal

variables. Subsequently, other penalization terms for grouped variables are presented that

can not be derived from the bridge estimator. The most appropriate penalty terms are

intended to be compared, but they are not available for implementation yet. Therefore,

only one penalty is employed, as is discussed in the final section.

4.2 Ridge Penalization

The ridge penalization term (Hoerl and Kennard, 1970) has the form

Jλ(β) = λ

p∑
j=1

βj
2

and transforms the usual maximization problem of ordinal least squares (OLS) into

β̂R = argmin
β

[(Y −Xβ)⊤(Y −Xβ) + λβ⊤β]

= (X⊤X + λI)−1X⊤Y.

The shrinkage parameter λ ≥ 0 is a meta parameter. For λ > 0 it adds a small amount on

the diagonal of X⊤X which makes the matrix always invertible. The variance is smaller

than the standard OLS Variance, as

σ2(X⊤X + λI)−1 < σ2(X⊤X)−1, λ > 0

shows. For λ = 0 the ridge regression yields the standard OLS-estimator and both variances

are the same. It can be shown that β̂R is a biased estimator (Fahrmeir et al., 2009, p.

172).

A generalization of the ridge penalty as a first-order difference penalty is given by

Gertheiss et al. (2021) as

Jj(βj) = λj

kj∑
l=2

(βjl − βj,l−1)
2.

and a second-order difference penalty that can be used to penalize derivations from linearity



4.3 LASSO Penalization 14

as

Jj(βj) = λj

kj∑
l=2

(βj,l+1 − 2βjl + βj,l−1)
2.

Note that here λj is indexed to vary for each variable xj, thus the maximization problem

turns into

lp(β) = l(β)−
p∑

j=1

Jj(βj).

For smooth effects of a categorical predictor, Gertheiss and Tutz (2009) showed that the

ridge type penalties for differences decreases the mean squared error of estimates strongly.

Ridge penalization in general reduces the influence of variables, but can not shrink them

to exactly zero. This is a property the LASSO penalization has (Tutz, 2012, p. 149).

4.3 LASSO Penalization

The first one to propose the LASSO, an acronym for Least Absolute Shrinkage and Selection

Operator, was Tibshirani (1996). As above mentioned, for γ = 1 the LASSO-penalized

OLS-estimator is

β̂L = argmin
β

[(Y −Xβ)⊤(Y −Xβ) + λ

p∑
j=1

|βj| ].

Due to |βj| it cannot be computed via an explicit formula but there exist several algorithms

for its numerical optimisation (Yuan and Lin, 2006). It yields a biased estimator (Hoyer,

2018). The LASSO can estimate parameters to be exactly zero (Tutz and Gertheiss,

ming, p. 9) and therefore exclude the respective variables from the model. Categorical

and ordinal predictors are usually transformed into dummy variables, so that in order to

exclude the predictor behind the corresponding dummies, they all have to be set to zero

simultaneously. This is implemented in the group LASSO.

4.4 Group LASSO Penalty

The selection or exclusion of grouped variables, in this case groups of dummy variables

belonging to one predictor j, can be obtained via employment of the penalization term

Jjβj =
√
kj||βj||2.
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||βj||2 = (β2
j1 + ...+ β2

jkj
)1/2 represents the l2-norm of the parameters of the jth predictor

(Tutz and Gertheiss, ming, p. 9). The group LASSO is a sparsity-inducing penalty,

referring to the property to exclude variables and thus create sparser models. This is

especially helpful in contexts with many possible predictors, for example genetics. Two

penalty terms that have been studied especially in the latter context, are the minimax

convex penalty and smoothly clipped absolute deviation penalty which will be discussed

in the following.

4.5 MCP and SCAD Penalty

The minimax convex penalty (MCP) (Zhang, 2010) is another sparsity-inducing penalty

defined on [0, ∞):

J(β) =

 λβ − β2

2a
, if β ≤ aλ

aλ2

2
, if β > aλ

with λ ≥ 0 and a > 1. A one-dimensional β is assumed here. First, the penalization rate

is the same as the LASSO but it then relaxes it more and more until β > aλ, where the

penalization rate turns zero. This can be illustrated by the first derivative (Breheny and

Huang, 2011):

J ′(β) =

 λ− β
a
, if β ≤ aλ

0, if β > aλ

The smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001) is similar

to the MCP and can be presented by the first derivation

J ′(β) =

p∑
j=1

λ

{
I(β ≤ λ) +

(aλ− β)+
(a− 1)λ

I(β > λ)

}

for some a > 2 and a one-dimensional β > 0. This penalty function corresponds to a

quadratic spline function with knots at λ and aλ. Both MCP and SCAD can be adapted

to grouped parameters as well (Breheny and Huang, 2011; Huang et al., 2012; Ogutu and

Piepho, 2014) by applying it to the sub-vectors βj (Tutz and Gertheiss, ming, p. 9).

A comparison of group LASSO, group MCP and group SCAD among others in an

application to genomic prediction found that all methods had a relatively high predictive

accuracy and may be employed for selection decisions (Ogutu and Piepho, 2014). The

difference is that in genomic prediction n ≪ p whereas in the sociological question at hand
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n > p.

The overview over different penalty terms for penalized ordinal regression which allows

for smoothing and selection of ordinal grouped variables identified group LASSO, group

MCP and group SCAD as promising. Therefore, the performances of proportional odds

models with these three penalization terms are to be compared. The software for this

undertaking is reviewed in the next section.

4.6 Software Implementation

An overview over available software packages for the implementation in R (R Core Team,

2021) revealed several options for ordinal Regression (ordinal (Christensen, nd),

ordinalgmifs (Archer et al., 2014), VGAM (Yee, 2010), mvord (Hirk et al., 2020), ordinalNet

(Wurm et al., 2021), mgcv (Wood, 2017)) as well as the mentioned penalty terms (grpreg

(Breheny and Huang, 2015), ncvreg (Breheny and Huang, 2011), grplasso (Meier, 2020),

penalized (Goeman et al., 2018), ordPens (Hoshiyar and Gertheiss, 2021)). The combi-

nation of cumulative logit models with penalization terms narrows the available packages

down fundamentally: only one package offers a penalized cumulative logit model with ordi-

nal predictors, namely a recent extension of ordPens (Hoshiyar and Gertheiss, 2021) which

allows for a new constructor function for smooth terms in mgcv’s gam() (Wood, 2011) via

s(..., bs = "ordinal") (Gertheiss et al., 2021). This extension allows for first- and

second-order generalized ridge penalties. In the documentation of the gam() function is

stated that, although gam stands for generalized additive models, the term is ”taken to

include any quadratically penalized GLM” (Wood, nd). This applies to the ridge-type

penalties.

As until now no other options are available, the ordinal smoothing penalty via ordPens

and mgcv::gam() is implemented, although the more preferable option would be group

LASSO, group MCP and group SCAD due to their additional selection property, as de-

scribed above.

The named combination of packages has been implemented only once by Gertheiss

et al. (2021) for family = gaussian and family = binomial. For computation of a

proportional odds model in gam() family = ocat can be used, but this has not been done

before. Therefore, previous to running the model on real data, its properties are examined.

This is realised with a scenario analysis based on simulated survey data.



Chapter 5

Method Analysis

5.1 Guiding Questions

The data is simulated using the R package GenOrd (Barbiero and Ferrari, 2015) which

builds upon gaussian copulas to generate multivariate discrete random variables with a

pre-specified correlation matrix. The package allows for independent definition of the

marginal distributions of each variable and the correlation matrix. Correlation ρ in this

thesis always refers to Spearman’s rank correlation coefficient due to the ordinal nature of

the data. Since the creation of larger correlation matrices is more complex, the focus here

is on cases with three ordinal predictors. For a first insight into the model’s behaviour, four

different combinations of marginal distributions and correlations are tested. The simula-

tions are conducted with the specifications depicted in table 5.1. Unless otherwise stated,

Combination 1 Combination 2 Combination 3 Combination 4
y uniform uniform uniform aut andere (AID:A)
x1 bellshape bellshape exponential exponential
x2 uniform (7 categories) uniform (7 categories) uniform uniform
x3 uniform (7 categories) uniform (7 categories) uniform bellshape
ρy,x1 0.8 0.8 0.6 0.6
ρy,x2 0.6 0.6 0.6 0.6
ρy,x3 0.1 0 0 0
ρx1,x2 0.12 0.12 0.12 0.12
ρx1,x3 0.08 0 0 0
ρx2,x3 0.06 0 0 0

Table 5.1: First combinations of simulated data.

predictors and response are ordinal variables with 6 levels. The marginal distributions are
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mostly adaptations of the exponential or normal distribution (see table 5.2). Once the

Shape of distribution Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Exponentially-shaped 1/63 2/63 4/63 8/63 16/63 32/63
Bell-shaped 1/12 2/12 3/12 3/12 2/12 1/12

Table 5.2: Given probabilities of exponentially- and bell-shaped frequency distributions
for ordinal variables with six levels.

distribution of the variable aut andere was used, which can be found in figure 5.4 on page

22. Given the data, the models are run for the first-order difference penalty specified by

m=1. Their summaries are examined for significance and confidence intervals. Predictions

are then generated and summed up in barplots showing the average estimated probability

of each category given the known true category of the observation. As these simulations

only pose a first orientation, they are not described in greater detail, but only the mayor

aspects are named. The complete output is found in appendix B. Combination 1 shows

very easily interpretable predictions always emphasising the true category with highest

probabilities (figure 5.2). The least important predictor x3 is still marked as highly signif-

icant. Confidence intervals are very small for x1 and x2 and estimates differ clearly from

zero (figure 5.1). Estimates of x3 are very close to zero and for most levels the confidence

interval covers the zero. For combination 2, predictions are equally easy to interpret. x1

and x2 are highly significant, whereas x3 is not. This is also mirrored in the plots of the

smooth terms. Predictions for combination 3 look different. The predicted probabilities

for the true category is still the highest, but the probabilities are more distributed over the

other categories. Smooth terms are estimated to be similar to those in combination 2. In

combination 4, predictions for two given true categories, namely 2 and 5, do not put the

highest probability on the true category but on adjacent ones. The distribution of the the

probabilities is less dispersed given the true category 6 than for the others. Significance of

predictors is correctly marked and confidence intervals support this. Overall, the probabili-

ties assigned to the different categories differ and although in most cases the true category is

emphasised strongest, this does not always hold. Also, the predictors are always identified

correctly, but a more thorough investigation would make these findings more generalisable,

if confirmed for different scenarios. As the setup of the simulation allows for correlation

specification but not for specification of regression parameters, the correct estimation of

the parameters for the irrelevant predictor can also be checked. Questions that arise are:
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 Figure 5.1: Estimated smooth terms for three covariates of combination 1.

I: Do predictions differ depending on the distribution of the response?

II: Do predictions differ depending on the distribution of the correlated predictors?

III: Are relevant and irrelevant predictors correctly identified?

IV: If predictors are not correctly identified: Is it due to their own marginal distribution,

their own correlation strength or that of other variables?

As mentioned before, ordPens (Hoshiyar and Gertheiss, 2021) allows for first- and

second-order penalties (set via m=1 or m=2). In Gertheiss et al. (2021), m=1 and m=2 are

compared for a gam() with continuous response and differences in the width of confidence

intervals (better for m=1) and correctness of p-values (better for m=2) are found. To inves-

tigate how the choice of m=1 and m=2 influences the proportional odds model implemented

in this thesis, the following question is additionally posed:

V: Do models with m=1 and m=2 differ in terms of accuracy of predictions and p-values?
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1.3 Estimated Probabilities Given the Real Category

prediction.barplots()
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Figure 5.2: Mean estimated predictions given the true category of combination 1.
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4.3 Estimated Probabilities Given the Real Category

prediction.barplots()
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Figure 5.3: Mean estimated predictions given the true category of combination 4.
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5.2 Derivation of Scenarios

In a next step, a systematic analysis of different scenarios is conducted in order to answer

the questions posed. In the following, it is deduced which simulation variations are consid-

ered for each question and which tools are employed to answer them. In general, x1 and

x2 are defined as relevant predictors with ρy,x1 > 0 and ρy,x2 > 0. x3 is set as an irrelevant

predictor (ρy,x3 = 0).

In order to elucidate question I different distributions of the response are compared. Six

possible response variables were identified in the AID:A survey. An analysis of their distri-

butions reveals roughly three categories (figure 5.4). Variables aut gewohnt and aut eltern

            

            

             

Figure 5.4: Marginal distriubtions of items on authoritarianism.

resemble a shifted normal distribution and aut andere resembles an exponential distribu-

tion. The other three variables are better described by polynomials. To get the highest



5.2 Derivation of Scenarios 23

diversity and at the same time to reference most common distributions, aut gewohnt (bell-

shaped, approximately normal distribution) and aut andere (resembling an exponential

distribution) are selected. Two types of boxplots are created to present the predictions.

First, the prediction probability for each response category is visualised with boxplots

differentiated by the true response category of the observation. Second, the estimated

probabilities for each of the true categories given the estimated category are gathered in a

plot.

In order to answer question II different distributions of the predictors have to be com-

pared. The focus lays on x1 which varies, whereas x2 remains constant. The ordinal

predictors at hand all display very similar exponential characteristics (see figure 5.5). The

extreme skewness and thus poor variance can compromise results, so the least skewed are

chosen, namely ben migration (although not part of the regression model) and ben gender.

ben migration is less skewed and taken as the distribution of x2. x1 in contrast should

vary between different distributions. As the identified predictors do not comprise sufficient

variety and an exponentially-like distribution would be desirable to stick to the idea of

theoretically-founded choices, the distribution of response aut eltern is chosen as second

distribution of x1. The same boxplots used for investigating question I are employed here.

In order to answer question III the p-values of the estimates of all three predictors are

examined in the different scenarios. As for x1 and x2 no true regression parameters are

known, confidence interval coverage is additionally analysed only for x3. The Correlation

ρy,x3 is constantly set to zero. Thus, p-values should not be significant, which would result

in a low rejection rate, and the confidence interval should cover zero. To check this, the

rates of significant p-values (α = 0.1 and α = 0.05) of the repeated simulations are plotted.

For x3 this value should keep the α level and for x1 and x2 it should be close to 1. The

coverage rate of zero of the confidence interval of x3 is depicted in a barplot.

In order to answer question IV, different distributions are compared. For x1 they are

already given above. x2 is set constant over all combinations to reduce the number of

scenarios to be conducted. For this step, only different distributions of x3 are added. Its

default distribution is a uniform distribution in order to keep any potential influence as

uniform as possible. Divergent distributions are taken from the response or predictor x1

to check whether the penalized proportional odds model is able to distinguish between

the relevant and irrelevant predictors even if they share the same distribution. To reduce

the number of scenarios, it is realised only for the bell-shaped distributions. Furthermore,
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Figure 5.5: Marginal distriubtions of items on experienced deprivation.

the strength of the correlation between predictor x1 and response will be varied. In order

to determine sound values, the correlation matrix of the AID:A data is investigated (see

appendix A). The highest overall correlation (ρ = 0.5) is between age and years of education

(bija). The correlation within the possible response variables and the ordinal predictors

respectively both round up to 0.2. The correlation between the response and the predictors

is on average around zero. Therefore, ρy,x1 takes the values 0.5 and 0.2, whereas ρy,x2 stays

at constant 0.2 and ρy,x3 = 0. All correlations between predictors are multiples of their

respective correlation with y (e.g. ρx1,x2 = ρy,x1 ∗ ρy,x2 , procedure taken from Joubert

and Langdell (2013)). In order to detect differences due to differing correlations and

distributions, the boxplots described for question I are investigated.

In order to answer question V, all models will be run for m=1 and m=2 and the analysis
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of p-values and confidence intervals (see question III) will be executed for both options

and compared.

The different scenarios are depicted in table 5.6.

Figure 5.6: Overview over 12 scenarios analysed. Empty cells are filled with the value
found in the left column. For scenarios 9-12 all parameters not mentioned are set as in the
respective scenario above.

5.3 Method

The general workflow is the same for all scenarios and will be briefly presented. The

comprehensive code can be found in appendix C. It consists of two parts; one for a single

simulation in order to answer questions I and II concerning predictions and one for repeated

simulations aiming at answering questions III to V involving p-values and confidence
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intervals.

In the first part, the parameters for the simulation in GenOrd (Barbiero and Ferrari,

2015) are set and one simulated data set is created. For some seeds categories with very

low marginal frequency are not occupied. Therefore, the seed is chosen in such a way

that all categories are filled. Next, the distributions of the simulated variables are checked

via Pearson’s Chi-squared test (as described in Agresti (2007), p. 35) to fit the prede-

fined marginals . Afterwards, models are computed in gam() with the ordPens’ extension

(Hoshiyar and Gertheiss, 2021) respectively for m=1 and m=2. Following the procedure in

Gertheiss et al. (2021), the restricted maximum likelihood estimator (method = "REML")

is employed.

m1_sim <- gam(V1 ~

s(V2, bs = "ordinal", m = 1)

+ s(V3, bs = "ordinal", m = 1)

+ s(V4, bs = "ordinal", m = 1),

family=ocat(link="identity",R=6),

method="REML",

data=train)

Subsequently, the assumptions of the proportional odds model are checked with a likelihood

ratio test. The proportional odds model (restricted model) is compared to a multinomial

logistic model (unrestricted model) computed via nnet::multinom (Venables and Ripley,

2002) (proceeding as in Ford (2015)). Finally, predictions are made and two types of

boxplots are created depicting predictions per category given the true or the estimated

category respectively.

In the second part, data is simulated as above inside of a loop 100 times. Each time,

the results of Pearson’s Chi-squared test as well as the difference between the predefined

correlation matrix and the correlation matrix of the simulated data are stored for later

inspection. Models are computed, but this time estimates and their standard error as well

as their p-values are stored for later analysis. In the documentation for plot.gam() it is

stated that ”[t]he function can not deal with smooths of more than 2 variables!” (Wood,

2021). For the present application, the values are confirmed to be correctly displayed in the

plot (as confidence interval: ±2 ∗ se), although standard error values stored in the plot()

object are partly not explicable. Therefore, a separate prediction with the specification

type = "terms" is run to obtain correct standard errors. The loop ends hereafter. Now,
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rejection rates and confidence interval coverage rate are gathered in plots to answer the

questions III to V.

5.4 Evaluation of Simulation and Modelling

Before going into detail on the findings, the simulation itself is evaluated and the modelling

is assessed. The complete output for all scenarios can be found in appendix C.

The first characteristic inspected is the deviance of the simulated correlation matrix

from the predefined correlation matrix. Overall, there are some deviations which are

not centred around zero. Most of them reveal lower correlations in the simulation than

specified beforehand. Furthermore, differences are found strongest and most often for ρy,x1 .

Especially for given correlations of 0.5, simulation correlations are lower. It is possible that

the high correlation in conjunction with the other specifications was not feasible for the

algorithm. The highest contrast is of median 0.1 (scenario 4, figure 5.7), followed by 0.04

(scenario 8 and 12, figure 5.8) and -0.03 (scenario 10, figure 5.9). This means that for

example for scenario 4 in most simulations ρy,x1 is around 0.4 and not 0.5. Remaining

scenarios have lower median deviance from zero. For ρy,x2 , for those cases where there

are deviations they are mostly of 0.01 (exception: scenario 6 with 0.02) with whiskers

stretching ± 0.015, meaning that those ρy,x2 lie between 0.175 and 0.205 instead of being

centred around 0.2. Deviation from specification for ρy,x3 is always centred around zero,

as well as for correlations between predictors. Usually the dispersion of the differences

does not exceed 0.03 or 0.02, while the upper and lower quartile cover a range of 0.005

to 0.01 around the median. In summary, most simulations show an acceptable behaviour

concerning the correlation matrices. Exceptions with lower correlation than predefined are

found for scenarios with specification ρy,x1 = 0.5. Still, correlations of minimum around

0.4 are sufficiently high to differ clearly from the specification ρy,x1 = 0.2 and thus allow

for the intended comparison in correlation strength.

Pearson’s Chi-squared test was conducted for each simulation, comparing predefined

and simulated marginal distributions. The Results for y, x1 and x2 are overall satisfying,

the distributions resemble each other well. Additionally, the boxplots reveal that values

do not vary, neither over the simulations or over the scenarios. For x3, two types of

distributions are distinguished: uniform and bell-shaped. For the uniform distribution,

the majority of simulations turns out well, but there are some few runs where the p-value

is below 0.1 or 0.05 (see figure 5.10). Both bell-shaped marginals on the other hand show
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Figure 5.7: Differences between predefined and simulated correlation matrices for nsim =
100 for scenario 4.

the same results as y, x1 and x2 (see figure 5.11). GenOrd (Barbiero and Ferrari, 2015) has

issues sampling an independent and uniformly distributed variable as part of a correlated

data set.

Overall, it can be said that the simulations approximate the data fairly well, although

the specification ρy,x1 = 0.5 is in some cases only realised as correlation around 0.4. The

distributions are in the large majority satisfying.

In a next step, the model is assessed in two ways, though not via usual tools as

summary.gam() or gam.check(). This is due to the novelty of the method. As the function

in ordPens (Hoshiyar and Gertheiss, 2021) to use an ordinal smoothing penalty in gam()

is very new, it is not certain that these tools work properly.

However, first the assumption of the proportional odds model is tested with a likelihood

ratio test. It results that it is fulfilled for scenarios with ρy,x1 = 0.2 but not for those with

ρy,x1 = 0.5 (see appendix C of respective scenario). Nevertheless, all scenarios will be

analysed as described in section 5.2 in order to observe whether this has direct influence

on estimates or predictions.

Now, the predictions are inspected visually. A good prediction would be expected to

put emphasis on the category which corresponds to the true category. Clearest would be

to compute the highest probability for the correct category as in combination 1 (see figure

5.2 on page 20) or at least show a shift in the estimated probabilities between observations

with different true categories. In this simulation study, no such clear behaviour can be
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Figure 5.8: Differences between predefined and simulated correlation matrices for nsim =
100 for scenario 8.

observed. There are some small changes, but the category which is strongest represented

in the distribution of the response turns out to be estimated as most likely in nearly all

cases. Even though other categories usually express some small shifts depending on the

true category, they usually do not have their highest median probability at their true

category but the adjacent one or else. Thus, the predictive strength of the model remains

overall poor although two variables with high correlations are given. The models for first

and second order differences lead to very similar predictions, therefore only boxplots for

m=1 will be discussed.

The general evaluation of simulation and modelling shows that the simulation is good,

although ρy,x1 = 0.5 is sometimes realised lower (minimum 0.4). Model assumptions are

only fulfilled in half of the scenarios, which will be kept in mind for further analysis.

Predictions are not very sensitive to true categories. How they change depending on

the model specification will be discussed in the following section. The other questions

posed in section 5.1 will be answered likewise. For ease of understanding, correlations and

distributions will be referred to by their specified and not realised values.

5.5 Answering the Guiding Questions

I: Do predictions differ depending on the distribution of the response?

Whether predictions differ depending on the response’s distribution is investigated by com-
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Figure 5.9: Differences between predefined and simulated correlation matrices for nsim =
100 for scenario 10.

paring those scenarios which only differ in the y distribution. Thus, scenario 1 vs. 2, 3 vs.

4, 5 vs. 6 and 7 vs. 8 are compared. In fact, differences can be found. They will be de-

scribed exemplary for scenarios 3 and 4. Scenario 3 has a bell-shaped response distribution,

whereas in scenario 4 it is steeply sloped. Both have an approximately exponential x1 with

ρy,x1 = 0.5. The comparison is easier for the boxplots showing the probabilities given the

estimated category (see figures 5.12 and 5.13). In scenario 3, the dispersion of the predicted

probabilities is higher for all categories than in scenario 4, except for category 6. Further-

more, in scenario 3 whiskers exist mostly on the upper and lower end, whereas in scenario

4 the probabilities are skewed such that there are nearly no upper whiskers. As mentioned,

estimated category 6 is the only exception where dispersion of estimated probabilities is

larger in scenario 4 than in scenario 3. In similar manner the other scenario pairs can be

distinguished, with small differences depending on distribution and correlation strength

of x1. Generally, dispersion is higher given a bell-shaped response distribution than an

approximately exponential one, except for the plot for the probabilities given estimated

category 6. The question can thus be answered in the affirmative.

II: Do predictions differ depending on the distribution of the correlated pre-

dictors?

Now, scenarios 1 vs. 5, 2 vs. 6, 3 vs. 7 and 4 vs. 8 are compared, as they differ in the

choice of x1-distribution respectively. Scenarios 1 to 4 have an approximately exponen-

tial x1-distribution, while scenarios 5 to 8 have a bell-shaped x1-distribution. Differences
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Figure 5.10: Pearson’s Chi-squared test for nsim = 100 for scenario 8.
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Figure 5.11: Pearson’s Chi-squared test for nsim = 100 for scenario 12.

are a lot smaller, less systematic and more category-specific. The boxplots of estimated

probabilities given the true category are investigated for the following comparison (see

exemplary scenario 1 and 5 in figures 5.14 and 5.15). Those of scenarios 1 and 5 show

small differences in the first three plots (thus given true categories 1 to 3): in scenario 1,

dispersion and whiskers for categories 1 to 4 are more pronounced for one side. In scenario

5 these boxplots are more symmetrical. The comparison of scenarios 2 and 6 reveals that

they differ for all plots except for the last one. In scenario 2, the distribution is more

asymmetrical concerning the estimation of categories 1 to 4. In scenarios 3 and 7, patterns

are more complex. For the first, third and fourth plot, differences are found for boxplots

of categories 1 to 3 and for the last two plots, differences are found for categories 4 to 6.



5.5 Answering the Guiding Questions 32

Figure 5.12: Boxplots of estimated predictions given the estimated category of scenario 3.



5.5 Answering the Guiding Questions 33

Figure 5.13: Boxplots of estimated predictions given the estimated category of scenario 4.
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In the first plot, they show a higher dispersion in scenario 7 and in the third and fourth

plot, they have a higher dispersion in scenario 3. In the last two plots, the boxplots of

categories 4 to 6 display a higher dispersion in scenario 3. The comparison of the scenarios

4 and 8 exhibits a higher range of predicted values for the first five plots in scenario 8.

In general, the x1-distribution influences the distribution of probabilities for each category

(symmetry and dispersion). Predictors with bell-shaped distribution tend towards a more

symmetrical spread of predicted probabilities for a category whereas the asymmetrical,

approximately exponential distribution tends to a more asymmetrical distribution of the

predicted probabilities for a category (see especially scenarios 1, 2, 5 and 6). The question

can be answered positively, although the influence of the distribution of predictor x1 is less

systematic than the distribution of y.

III: Are relevant and irrelevant predictors correctly identified?

For the two predictors with correlations different from zero, rejection rates are at around

one (figure 5.16), which means they are constantly correctly classified as significant. The

correlation ρy,x3 on the other hand is set to zero, so in a regression analysis this variable

should not be significant. Therefore, p-values can be expected to be small. Figure 5.16

shows, that the rejection rates for α = 0.05 and α = 0.1 are in most scenarios higher than

α. The α level of 0.05 is kept only for scenarios 11 and 12, where the x3 distribution equals

the bell-shaped distribution of predictor x1. Furthermore, the α level of 0.1 is kept for

model m=2 for scenario 12. The strength of the other predictor’s correlation seems not to

affect this, as ρy,x1 = 0.2 in scenario 11 and ρy,x1 = 0.5 in scenario 12. In order to check the

findings for a not bell-shaped distribution, another simulation is run for a 13th scenario

(see appendix C.13) which resembles scenarios 3 and 10. The difference is that x3 has

the approximately exponential distribution of x1. Here, the rejection rate does not hold

the α level (figure 5.17). This means that the finding on scenarios 11 and 12 can not be

generalised to other distributions than the bell-shaped distribution.

Overall, it can be concluded that p-values seem not to be reliable as they do not correctly

identify the irrelevant variable x3. The correlation of predictors x1 and x2 has no effect.

It has to be said, however, that only scenarios where the predictor x1 and the response

had differently shaped distributions were analysed. On the other hand, the confidence

intervals of x3 cover the zero in at least 90% of all cases. Mostly, the 95% rate is also

reached. Hence, the confidence intervals in this application are found to be trustworthy

for irrelevant predictors.
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Figure 5.14: Boxplots of estimated predictions given the true category of scenario 1.
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Figure 5.15: Boxplots of estimated predictions given the true category of scenario 5.
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Figure 5.16: Rejection rates of each variable for m=1 and m=2 for all scenarios.
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Figure 5.17: Rejection rates of all variables for α = 0.05 and α = 0.1 for m=1 and m=2 for
scenario 13.
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IV: If predictors are not correctly identified: Is it due to their own marginal

distribution, their own correlation strength or that of other variables?

This question now refers only to x3, as the other predictors were correctly classified. As

depicted in the paragraph above, the marginal distribution of x3 might only have an effect

for some specific cases and the correlation strength of x1 has no influence. Overall, it can

be said that neither of the aspects has systematic effect on the correct identification of x3

as not significant.

V: Do models with m=1 and m=2 differ in terms of accuracy of predictions and

p-values?

The rejection rates of all predictors show no systematic difference between the two model

types (see figure 5.16). The confidence intervals of x3 on the other hand show a system-

atically lower coverage rate for m=2, although still keeping the 95%-rate in most cases (see

exemplary 5.18, for all plots see appendix C). Furthermore, there is no systematic differ-

ence between those models where the assumption of the proportional odds model is fulfilled

and those where it is not fulfilled.
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Figure 5.18: Confidene Interval Coverage for x3 in Scenario 4.
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5.6 Results

The scenario analysis conducted leads to several findings. First, the predictions are in-

fluenced by the response’s distribution in a way that a bell-shaped distribution leads in

tendency to more widespread prediction probabilities for the respective categories com-

pared to an approximately exponential one. Also, the distribution of a relevant predictor

has an impact on the prediction acuity insofar as that a predictor with a symmetrical

bell-shaped distribution is more likely to come with a more symmetrical dispersion of pre-

diction probabilities per category. Thus it can be concluded that distributions of response

and predictor affect the prediction range of the categories.

Another focus of the scenario analysis is the classification of relevant and irrelevant

predictors. For correlated covariates, rejection rates are high and show good results, but

for the uncorrelated predictor p-values turn out to be in general not reliable as rejection

rates are too high. The confidence intervals for the latter cover zero and perform well

overall. For m=1 the confidence intervals perform systematically better, while for m=2 there

are a few cases where the 95% coverage rate is a bit undercut. Changing the form of

the marginal distribution of x3 does generally not affect the model performance. The

correlation strength of x1 ( ρy,x1 being 0.2 or 0.5) has no influence on the detection of the

insignificant predictor x3. Therefore, the m=1 model is recommended for applications, as

at least confidence intervals can be fully relied upon.

This is an interesting finding, as Gertheiss et al. (2021) found the inverse to be true for

other gam() families (gaussian and binomial), where p-values were more reliable for m=1

and confidence intervals for m=2.

In the next chapter, the sociological question is dealt with based on the results of the

scenario analysis.



Chapter 6

Are Authoritarian Attitudes and

Experienced Discrimination Linked?

6.1 Method

The data which has been prepared as described in chapter 2 is now used to model the

six response variables. First, all missing rows of those variables used for the respective

regression are excluded. Data sets now comprise between 3747 and 3791 observations

each. The observations are split into a train and a test set (70% vs. 30%) and each model

is computed based on the train set. As suggested in chapter 5, only m=1 is implemented.

m1 <- gam(aut_neues ~ age

+ gender

+ bija

+ ostd_ohne_b

+ migration

+ s(ben_gewicht, bs = "ordinal", m = 1)

+ s(ben_religion, bs = "ordinal", m = 1)

+ s(ben_sozial_finanz, bs = "ordinal", m = 1)

+ s(ben_behinderung, bs = "ordinal", m = 1)

+ s(ben_gender, bs = "ordinal", m = 1),

family=ocat(link="identity",R=6),

method="REML",

data=train)
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The summary is printed for analysis and confidence interval boundaries are extracted

separately. Subsequently, the proportional odds assumption is tested via a likelihood ratio

test and finally predictions are made for the test set. They are visualised in the same types

of plots as used in chapter 5. Additionally, barplots of the mean estimated probability are

created. All output is found in appendix D.

6.2 Interpretation

General findings are that the assumptions of the proportional odds model are not fulfilled

for any model. The predictions are quite insensitive to different true categories, as the

plots of the predicted probabilities given the estimated categories reveal (see appendix D

for the respective response). Barplots for example look the same, only small changes for

aut neues, aut eltern and aut gewohnt are visible where the probability ratio between two

adjacent levels changes emphasising the higher one with ascending true category (levels 5

and 6 for the first, levels 2 and 3 for the latter).

As the assumptions are not fulfilled, estimates have to be treated with caution and the

emphasis of the interpretation is on the confidence interval coverage, as chapter 5 showed

they are reliable for irrelevant variables. Here, however, the real relevance of variables is

unknown. Aided by the correlation matrix which shows correlations close to zero between

ordinal predictors and the response variables (see appendix A and explanations in section

5.2), it will be assumed that the inverse is also true in this case: if confidence intervals of

smooth terms cover zero, they really are insignificant. The interpretation of the models

is exemplified in the following for one of the response variables, namely aut neues. The

summary() output gives:

##

## Family: Ordered Categorical(-1,0.41,1.61,2.16,3.08)

## Link function: identity

##

## Formula:

## aut_neues_integer ~ age + gender + bija + ostd_ohne_b + migration +

## s(ben_gew_ordered, bs = "ordinal", m = 1) + s(ben_rel_ordered,

## bs = "ordinal", m = 1) + s(ben_sozfin_ordered, bs = "ordinal",

## m = 1) + s(ben_beh_ordered, bs = "ordinal", m = 1) + s(ben_gender_ordered,

## bs = "ordinal", m = 1)
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##

## Parametric coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.3426925 0.1787374 7.512 5.82e-14 ***

## age 0.0001071 0.0078456 0.014 0.98911

## gender1 -0.3610960 0.0694870 -5.197 2.03e-07 ***

## bija 0.0360487 0.0127262 2.833 0.00462 **

## ostd_ohne_b -0.0835187 0.0957019 -0.873 0.38283

## migration 0.0041718 0.0734287 0.057 0.95469

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Approximate significance of smooth terms:

## edf Ref.df Chi.sq p-value

## s(ben_gew_ordered) 0.946149 5 1.845 0.1184

## s(ben_rel_ordered) 0.001344 5 0.001 0.6846

## s(ben_sozfin_ordered) 1.433450 5 4.133 0.0356 *

## s(ben_beh_ordered) 2.371794 5 17.542 3.45e-05 ***

## s(ben_gender_ordered) 0.001879 5 0.000 0.8472

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Deviance explained = 0.821%

## -REML = 4563.9 Scale est. = 1 n = 2653

The level-specific intercepts are found in the second line. They are also the thresholds of

the latent continuous ỹ and per default start at β01 = −1 for the transition from level 1 to

level 2, next being β02 = 0.41 for the transition from level 2 to level 3 and so forth. Another

intercept is given in the table of the parametric coefficients. This is usually not the case

in proportional odds models and might be due to the combination of two packages in an

unprecedented way. It is unclear what it stands for. It might have to be added to the level-

specific intercepts. Next, the metric and binary variables are listed with their respective

estimates. The (parametric) intercept, gender and bija are marked as significant but the

general reliability of the parametric estimates is still to be investigated. Smooth terms are

listed with their effective degrees of freedom and p-values. Details on the coefficients of
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the ordinal covariates can be accessed via gam.check() which also outputs the plots of the

confidence intervals (6.1). Note that k’ is always 5, as we have six levels per predictor and

the natural basis of the spline function equals the knots at each threshold between levels

(Gertheiss et al., 2021). This is also why there are no p-values computed to evaluate the

number of knots.

##

## Method: REML Optimizer: outer newton

## full convergence after 7 iterations.

## Gradient range [-0.0007233581,9.446607e-06]

## (score 4563.934 & scale 1).

## Hessian positive definite, eigenvalue range [0.0004179002,887.2551].

## Model rank = 31 / 31

##

## Basis dimension (k) checking results. Low p-value (k-index<1) may

## indicate that k is too low, especially if edf is close to k’.

##

## k’ edf k-index p-value

## s(ben_gew_ordered) 5.00000 0.94615 NA NA

## s(ben_rel_ordered) 5.00000 0.00134 NA NA

## s(ben_sozfin_ordered) 5.00000 1.43345 NA NA

## s(ben_beh_ordered) 5.00000 2.37179 NA NA

## s(ben_gender_ordered) 5.00000 0.00188 NA NA

The investigation of the smooth terms (figure 6.1) reveals confidence intervals covering

zero for all coefficients except those of predictor ben beh (deprivation due to disability or

physical impairment). Interesting to see is that the finding of chapter 5 is reflected here:

the p-value indicates ben sozfin as significant, but ultimately all its confidence intervals

cover zero. For ben beh, estimates of levels 1, 3, 4, 5, 6 are indicated to deviate from zero.

Table 6.1 displays these estimates. Effect size is not smaller than those of other variables,

Level 1 (Level 2) Level 3 Level 4 Level 5 Level 6
0.04121539 (-0.23496546) -0.38156444 -0.63970314 -0.87884511 -0.82433495

Table 6.1: Estimated coefficients for predictor ben beh. The confidence interval of level 2
covers zero.

for example age ∈ {16, ..., 32} with βage = −0.017 yields values [-0.556576; -0.278288].
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Thus, ben beh looks like a variable which actually has an influence. But upon examining

the marginal distribution of the predictor it appears not so certain anymore, as only very

few people have experienced any discrimination due to this aspect (3332 with no experience

vs. 360 of other levels). In category 2, for example, there are 119 people, in category 6 only

15. That is very few, considering they spread over six response categories. So few data

points can hardly show a consistent pattern, and a look at the contingency table (table

6.2) supports this. It is clearly very few data compared to those for category 1.

response \predictor 1 2 3 4 5 6
1 156 8 10 6 5 4
2 388 26 7 7 7 2
3 632 38 17 11 2 1
4 317 16 11 2 0 0
5 436 25 9 1 1 2
6 475 13 6 7 2 3

Table 6.2: Contingency table of aut neues and ben beh

Regardless of the question on trustworthiness, the concrete interpretation of an estimate

is now expounded. As for the ordinal covariates no reference category is set, it can be

achieved by comparing different levels. An example is given for levels 1 and 2 of ben beh.

Equation (3.1) on page 10 states the assumption that the cumulative odds ratio of two

populations X and X̃ is the same over all categories. For r = 1, (3.1) is

P (Y ≤ 1|X)/P (Y > 1|X)

P (Y ≤ 1|X̃)/P (Y > 1|X̃)
=

P (Y = 1|X)/(1− P (Y = 1|X))

P (Y = 1|x̃)/(1− P (Y = 1|x̃))
.

Let x and x̃ be two observations which only differ in the level of ben beh. For x let ben beh

take 1 and for x̃ let ben beh take 2. Here, the probability for y = 1 can be taken from a

prediction made for each of the observations x and x̃ yielding

P (y = 1|x)/(1− P (y = 1|x))
P (y = 1|x̃)/(1− P (y = 1|x̃))

= 0.76.

If the assumption were true, the ratio should hold for any category. It can be checked

for category y = 2 by the following calculation where the same procedure for obtaining
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P (y = 1|x) and P (y = 2|x) is used as above.

P (y ≤ 2|x)/P (y > 2|x)
P (y ≤ 2|x̃)/P (y > 2|x̃)

=
(P (y = 1|x) + P (y = 2|x))/(1− (P (y = 1|x) + P (y = 2|x)))
(P (y = 1|x̃) + P (y = 2|x̃))/(1− (P (y = 1|x̃) + P (y = 2|x̃)))

= 0.76

Cumulative odds ratios are computed correspondingly for the other categories, yielding

always the same value. For ben beh taking levels 1 and 2, the proportional odds assumption

holds. Interpetation is that the cumulative odds in a population with ben beh=1 are

0.76 the cumulative odds in a population with ben beh=2 and this cumulative odds ratio

holds for all categories of y. In other words, cumulative odds of a person who never

has experienced deprivation due to disability or physical impairment are lower by three

quarters compared to those of a person who rarely has experienced deprivation due to

disability or physical impairment for any given attitude level on the item ”New and unusual

situations make me uncomfortable”. Likewise, other estimates can be incorporated to

compute further cumulative odds ratios of interest. As the likelihood ratio test leads to

rejecting the proportional odds assumption, the cumulative odds ratio has to be checked

for each case individually. This is out of the scope of this thesis, but the general procedure

has been outlined.

6.3 Results

Now that the model itself has been discussed, the sociological question will be answered.

Is there a connection between the attitude on the statement ”New and unusual situa-

tions make me uncomfortable” and experienced deprivation? Mostly, there is no influence

detected by the model when looking at the confidence intervals. Only for the predictor

ben beh they differ from zero. But the data quality is not very high, as there is few vari-

ance. Therefore, the other types of experienced deprivation can be discarded, leaving only

experienced deprivation due to disability or physical impairment for further investigation,

for example via bootstrapping or oversampling.

As for the other response variables, no ordinal predictors stand out. When considering

the six coefficients of each of the ordered categorical predictors, there is usually only one

level of one or two ordinal covariates with a confidence interval not covering zero per
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model. For these coefficients, the interval mostly reaches close to zero. As stated earlier

(see section 4.2), ridge type penalties have no selection properties, but can only push

coefficients very close to zero. It depends thus on the researcher’s evaluation whether

or not to exclude a variable. The overall picture in this case leads to the conclusion

that experienced deprivation is not linked significantly to authoritarian attitudes. Further

investigation might be made for the item aut neues concerning the influence of experienced

deprivation due to disability or physical impairment.

In order to investigate whether authoritarian attitudes can be explained by experienced

deprivation, a penalized proportional odds model was run. Results show few influence of the

predictors and it can be concluded that there is no significant connection between the two

aspects. For one item, further investigation might be fruitful, namely the item ”New and

unusual situations make me uncomfortable” (aut neues) and the experienced deprivation

due to disability or physical impairment (ben beh). In a next step, the conducted penalized

ordinal regression is compared to one of the common but inappropriate methods in social

sciences to deal with ordinal data, namely linear regression.
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Figure 6.1: Estimates of smooth terms for aut neues.



Chapter 7

Penalized Cumulative Logistic

Regression vs. Linear Regression

7.1 Method

The linear model is based on the same variables as the proportional odds model, but treats

response and predictors as metric.

lm <- lm(aut_gewohnt ~ age

+ geschlecht

+ bija

+ ostd_ohne_b

+ migration

+ ben_gender

+ ben_sozial_finanz

+ ben_gewicht

+ ben_behinderung

+ ben_religion, train)

In order to compare the two models, some decision rules have to be applied, because

neither of them predicts one category per observation. For the proportional odds model,

probabilities for each category are given. Requirement of the rule for the ordinal model is

that the distribution of the train set is mapped onto the test set predictions. Starting from

the full test set with their predicted probabilities for all categories, the following steps are

conducted over categories 1 to 5:
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1. Determine, how many observations have to be allocated to category C:

sC = share in train set ∗ ntestset

2. Sort observations of the test set in descending order of the probabilities predicted for

category C

3. The upper sC observations are assigned to C and excluded from the test set

All remaining observations are allocated to level 6, leaving a margin for small rounding

errors (not more than one or two observations less than predefined in s6).

For the linear model predictions are assigned by rounding the values to the nearest

integer.

7.2 Results

Following the approach of machine learning, performance is compared albeit the assump-

tions not being fulfilled. Table 7.1 shows the accuracy of all six models. The accuracy

of the proportional odds model is always higher than of the linear model, for the latter

being as good as random allocation. Thus, although the assumptions of the proportional

odds model are not fulfilled, it performs better - which might be due to the fact that the

assumptions of the linear model are even less fulfilled. Using penalized ordinal regression

compared to a common social science method is worth the effort for this application with

survey data.
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aut beherrschen aut eltern aut staerkere
POM LM POM LM POM LM

Overall 0.29688889 0.1865402 0.24911661 0.18192564 0.22940655 0.1664394
Category 1 0.06666667 0.0000000 0.21264368 0.00000000 0.07894737 0.0000000
Category 2 0.16666667 0.0000000 0.34939759 0.18373494 0.07058824 0.0000000
Category 3 0.22026432 0.0000000 0.29179331 0.89057751 0.17224880 0.0000000
Category 4 0.14285714 0.5785714 0.12931034 0.01724138 0.17500000 0.6350000
Category 5 0.17703349 0.5406699 0.07608696 0.00000000 0.26515152 0.3636364
Category 6 0.50483092 0.0000000 0.12359551 0.00000000 0.32732733 0.0000000

aut gewohnt aut andere aut neues
POM LM POM LM POM LM

Overall 0.24250441 0.16679795 0.35237258 0.16739336 0.1987687 0.1613917
Category 1 0.24712644 0.00000000 0.00000000 0.00000000 0.1263158 0.0000000
Category 2 0.27794562 0.02719033 0.04255319 0.00000000 0.1600000 0.0000000
Category 3 0.33003300 0.97359736 0.16346154 0.00000000 0.2828283 0.1077441
Category 4 0.17714286 0.00000000 0.12121212 0.01515152 0.1212121 0.8606061
Category 5 0.06818182 0.00000000 0.26618705 0.98920863 0.2352941 0.0000000
Category 6 0.04761905 0.00000000 0.52994555 0.00000000 0.1704545 0.0000000

Table 7.1: Comparison of accuracy of proportional odds model (POM) and linear model
(LM) of six response variables on authoritarianism.



Chapter 8

Conclusion

There is little focus on ordinal regression in social sciences although ordered categorical

data play a huge role, for example in surveys. The aim of this thesis is to present correct

methods by means of a practical application. For this purpose, the sociological question

has been examined as to whether authoritarian attitudes can be explained by one’s own ex-

perience of discrimination. The basis for the analysis was a survey with ordinal dependent

and independent variables. The statistical tools to model this question were presented. For

ordinal response variables, ordinal regression models were explained concluding that a cu-

mulative logistic regression, also called proportional odds model, is the adequate model for

this undertaking. To account for the ordered categorical predictors, penalization terms can

be employed. It was argued that the preferable type should be able to deal with grouped

variables and have a selection property. Three penalties were identified to fulfil this req-

uisite. An overview over software packages showed that a proportional odds model with

these penalties is not available yet for the statistical open-source software R (R Core Team,

2021). A recent extension of the package ordPens (Hoshiyar and Gertheiss, 2021) allows

for first- and second-order generalised ridge type penalties in mgcv::gam() (Wood, 2011).

Using a proportional odds model was unprecedented for this method and its behaviour had

to be examined before it could be used on real data. To this aim, a scenario analysis was

conducted based on simulated data. It was concluded that using first-order differences is

recommended. The rejection rates of p-values were proven to be too high. The confidence

intervals for uncorrelated predictors on the other hand covered zero reliably. Therefore,

they were identified as the better measurement. Based on these findings, the initial soci-

ological question was pursued. Applying the model, no significant connection was found

between authoritarian attitudes and experienced deprivation. For the response item ”New
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and unusual situations make me uncomfortable” and the predictor ”experienced depriva-

tion due to disability or physical impairment” further investigations have been indicated.

Finally, the predictions of the penalized proportional odds model were compared to a lin-

ear regression, a common but inadequate method in social sciences to model ordinal data.

Decision rules were applied to both outcomes to obtain single categories as predictions. A

comparison of accuracy showed that the penalized ordinal regression performs better than

the linear model in all cases. It could be concluded that for this application with survey

data, the effort to familiarise oneself with this new method was worth it.

A caveat to these results is that the predictive power is surprisingly low, even for highly

correlated variables as in the scenario analysis. In case of the survey, this might also have

to do with the low variance predictors.

Moreover, the assumption of the proportional odds model was often not fulfilled. This

might be because the test of the assumption grows sensitive with small cell counts and

the contingency table for one pair of variables showed that there even are empty cells.

Ultimately, it is not clear whether the assumptions were truly unfulfilled, or whether it

was again due to the very skewed distribution of the predictors.

Apart from issues due to the data, some other aspects could be further analysed. For

example the predicted probabilities were visualised and interpreted via boxplots in the

scenario analysis, but they turned out to be very dense in information. Adding barplots

depicting only the average probabilities might simplify interpretation. They can be found

in the appendix

Also, data simulation was realised with a package which allows for adjustment of the

correlation between predictors and this could be deepened more in future analyses, because

in survey data it is very likely to have highly correlated predictors, for example when they

belong to a same scale.

The final comparison of linear and ordinal model was based on different prediction rules

for each model. This juxtaposition could be modified by using more similar prediction rules,

for example by applying the same distribution conserving rule to the linear model as applied

to the ordinal regression and compare it to random distribution-conserving allocation.

Beyond modifications to this study, there are open questions regarding the behaviour

of the ordPens (Hoshiyar and Gertheiss, 2021) extension. The outputs of the model need

further investigation to assure which characteristic values and plots can be consulted for

model assessment. For example the explained deviance specified in the summaries was

extremely low (for the simulations around 3% or 13%, for the survey data less than 1%).
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The values could not be interpreted as it was unclear whether these values actually indicate

a lower explained deviance for one model compared to the other.

Future analysis of the method should also verify the assumption made that confidence

intervals for significant estimators are trustworthy inasmuch as they do not cover zero. This

was assumed here, which might ultimately be incorrect. For this application it would not

have greater drawbacks, however, as it applied to only one variable which then was found

to be so skewed that results were not very trustworthy anyway. One option to realise this

would be to simulate data via a regression model. This would allow to check estimation

performance for significant coefficients. The evaluation could also be extended to other

than ordinal covariates and might shed some light on the second intercept listed under the

parametric coefficients.
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Files and Folders Included in the Electronic Appendix

## 1_clean_data.R

This file reads in the survey data and extracts the relevant variables.

It then creates clean variable names, excludes all persons who are

not target persons and those under 14. It saves the data in an .RDS-file.

## 2_recode_data.R

This file recodes the ordinal predictors in reversed order. Some variables

are changed in type and new variables are created for migration, background

and residency. Observations with the third option for gender ("none of the

above mentioned") are excluded.

An .RDS-file is created.

People older than 33 are excluded and a second .RDS-file is created.

## 3_correlations.R

Behaviour of gender==3 and age==33 is inspected. A correlation table of all

relevant variables is created.

## 4_first_impressions.Rmd

This file runs four different combinations of marginal distributions
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and correlation coefficients. A pdf is created.

## 5_*.Rmd

These files create each a simulation scenario and their evaluation tools.

The rejection rate of the p-values is saved in an .RDS file.

For each scenario, a PDF with the output is created.

## 6_rejection_rates_all_variations.Rmd

This file combines the rejection rates of the predictors of all scenarios

and describes them graphically in a PDF.

## 7_aut_*.Rmd

These files run a proportional odds model for the respective response named

in the filename. It is evaluated. A linear model based on the same variables

is run and compared to the proportional odds model. A PDF with the output is

created.

## Appendix.pdf

The appendix as usually found in the end of a thesis. It contains all PDF

files created by the files in the electronic appendix.

## Data

This Folder contains the following subfolders.

### clean data

This folder contains the following sub-folder.

#### p-values

This folder contains the rejection rates of the p-values as computed by

the scenarios in 5_*.RDS.
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