
Ludwig-Maximilians-Universität München Department of Statistics

Bachelor’s Thesis

Visualizing Hyperparameter Performance
Dependencies

Author
Simon Pradel

Supervisor
Dr. Janek Thomas, M.Sc. Florian Pfisterer,

M.Sc. Lennart Schneider

Munich, February 9, 2022

Abstract

The settings of hyperparameters are often decisive whether an algorithm, for instance from the
field of machine learning, delivers good performance values or not. The choice of the hyperpa-
rameter configuration is often based on the result of a hyperparameter optimization algorithm
such as Bayesian optimization. However, the tractability of the delivered results is poorly un-
derstood in this context, as it neither gives a deeper insight into the structure of achievable
performances generated by different hyperparameter configurations nor provides information
on how relevant each hyperparameter is for the selected performance measure. In the theoreti-
cal part of this paper, several methods are presented that can help to understand the relationship
between hyperparameters and a performance measure. As a result of this work, a new R pack-
age is presented including four of the shown visualization methods, namely parallel coordinate
plots, partial dependence plots, importance plots and heatmaps. Furthermore, an interactive use
of the integrated plots is enabled in the R package by a Shiny application. At the end of this
work, an application study of two datasets is used to demonstrate the insights that can be gained
for optimal hyperparameter configurations through the use of the new R package.

Contents

1 Introduction 4

2 Methods for the Visualization of Hyperparameter Dependencies 5
2.1 Notation . 6
2.2 Descriptive Analysis . 7

2.2.1 Parallel Coordinate Plot . 7
2.2.2 Heatmap . 8
2.2.3 Other Methods . 10

2.3 Parameter Effects . 11
2.3.1 PDP . 11
2.3.2 Marginal Hyperparameter Performance 12
2.3.3 Other Methods . 14

2.4 Parameter Importance . 15
2.4.1 Permutation Parameter Importance Plot 16
2.4.2 Functional ANOVA . 17
2.4.3 Local Parameter Importance . 18
2.4.4 Other Methods . 19

2.5 Interaction Detection . 20

3 Results 20
3.1 Implementations in R and Shiny . 21
3.2 Application Study of Two Similar Datasets 21

3.2.1 Dataset: smashy_lcbench . 23
3.2.2 Dataset: smashy_super . 27
3.2.3 Comparison of Results . 31

4 Discussion and Conclusion 32

References 34

List of Figures 38

List of Tables 39

Appendix 40

3

1 Introduction

In the field of machine learning, most algorithms (e.g. random forests or deep neural networks)
contain hyperparameters. A hyperparameter is a categorical or continuous parameter that is
set before the data learning process and often influences decisive factors of the algorithm such
as the complexity or the speed (Bischl et al., 2021). When choosing a hyperparameter value,
it is important that it should be set as optimally as possible, since it can have a crucial influ-
ence on the model performance (Claesen and De Moor, 2015). One way to find approximately
optimal hyperparameter configurations is to select them manually. However, since there are
usually a myriad of hyperparameter combinations and settings, this approach is unlikely to
result in a satisfactory algorithm performance. In addition, manual tuning is further compli-
cated by non-linear hyperparameter interactions and time-consuming model evaluations (Yang
and Shami, 2020). Another possibility to search for optimal hyperparameter configurations is
through automatic algorithms. In the field of machine learning, this is often referred to as the
hyperparameter optimization problem (Bischl et al., 2021). Many automatic machine learn-
ing algorithms such as the Bayesian optimization (Snoek et al., 2012) or hyperband (Li et al.,
2017) exist. The superiority of algorithms compared to manual searches is often demonstrated
in increased performance, reduced human effort, and reproducibility. (Feurer and Hutter, 2019).

Nevertheless, the results can be difficult to understand due to complicated algorithms that do
not provide explanations for the relationship between hyperparameters and performance. Us-
ing methods that provide a visual insight into the dependency of the performance measure of
the hyperparameters can help to increase the general understandability and traceability. Visu-
ally represented methods can, for example, illustrate how important individual parameters are,
which configuration spaces of the hyperparameters lead to a positive or negative effect on per-
formance, and whether there are interaction terms that have a significant impact on the results
(Hutter et al., 2014).

This is a relatively under-researched area in literature, but became more and more important
in recent years. Basically, two tasks are involved here. On the one hand, methods have to be
found that are suitable for the investigation of hyperparameter performance dependencies, and
on the other hand, software is needed that enables the investigation in a user-friendly way. An
example of the use of visualization methods for our topic is provided by the work of Hutter
et al. (2014). In this approach, the calculation of marginal performance using the random forest
is proposed to show the effects of hyperparameters on the performance measure. Furthermore,
using the results, functional ANOVA is used to calculate the importance of hyperparameters
and their interactions. In other work, software have been developed to support the selection
of hyperparameters and make them more comprehensible. For instance, the approach of Joo
et al. (2021) introduced a visual analysis tool to support the search for optimal hyperparameter
values. Another approach by Park et al. (2020) presented a software called HyperTendril, which
is a system for visual analysis and control of the hyperparameter optimization process for deep

4

neural networks.

The goal of this work is to provide visualization methods that allow a deeper understanding of
various hyperparameter configurations. For this purpose, the present work makes the following
contributions:

• existing visualization methods are presented, categorized and compared;

• four different visualization methods, namely partial dependence plot, importance plot,
heatmap and parallel coordinate plot, are implemented in a new R package (Team, 2020);

• by using a Shiny application (Chang et al., 2021), also implemented in the R package,
these plots can be used interactively;

• in a final application study, the implemented methods are used to generate knowledge
about the dependencies of the performance measure on the hyperparameter configuration
spaces of two datasets.

In order to provide a meaningful structure, the present thesis is organized as follows. In
chapter 2 an overview of different visualization methods is provided. In subsection 2.1 some
basic terms and notations are clarified. In the following subsections 2.2 to 2.5 the different
methods are discussed in more detail so that a clear distinction and comparison can be made.
Subsequently, an overview of the results of this work is given in section 3. In the subsection
3.1, a new R package called VisHyp is introduced, which makes it possible to analyze a dataset
with four different visualization methods. For interactive analyzes, a Shiny application is also
included in the R package. In addition, an application study is performed in subsection 3.2,
showing that knowledge about good configuration spaces of hyperparameters can be generated
using the plots of the VisHyp package. Finally, in the concluding section 4, a summary of the
findings and an outlook on further research possibilities is given. A limitation of the bachelor’s
thesis is that only a fraction of the possible visualization methods can be presented. For more
visualization methods that are transferable to this work, one can refer to the book by Molnar
(2019).

2 Methods for the Visualization of Hyperparameter
Dependencies

Visualization methods are helpful to understand the relationship between hyperparameters and
a performance measure and are discussed in this chapter. For this purpose, the basic notation of
the theory is explained first before the different methods are presented, which are divided into
four categories. An overview of the different methods for each category can be found in table
1. The methods of the first category do not require a surrogate model and therefore are used for
direct examination of the dataset. We refer to these methods as descriptive methods and they

5

are mainly used to get a quick overview of the parameters and to identify some first interactions
and dependencies. In the following subsection parameter effect methods are presented. These
methods calculate and visualize the effects of one or two parameters on these performance
measure depending on the parameter configurations applied. Based on the results, parameters
can be set manually, as these methods output the estimated average performance values for each
possible parameter configuration. In the following category parameter importance methods
for determining the importance of hyperparameters are discussed. Importance methods are
often a first approach, as they show which parameters should be examined in more detail with
parameter effect plots in order to set them optimally as well as which parameters are possibly
even negligible as their configurations only have a minor effect on the performance results.
Finally, in the last category, methods for finding interaction effects are presented, since these
can increase performance in addition to the main effects of the individual parameters. With the
so-called interaction detection methods it is possible to find the strongest interaction effects in
order to investigate them specifically again with methods from the two categories parameter
effects and descriptive analysis.

Table 1: All visualizations methods mentioned in the bachelor’s thesis.
Classification Methods Literature

Descriptive Analysis Parallel coordinate plot Gannett and Hewes (1883); Joo et al. (2021)
Heatmap Loua (1873); Hamid et al. (2019)
Scatterplot Helton and Kleijnen (1999)
Colored scatterplot Pianosi et al. (2016)
Principal component analysis Wang et al. (2019)

Parameter Effects Partial dependence plot Friedman (2001)
Marginal hyperparameter performance Hutter et al. (2014)
ICE plot Goldstein et al. (2015)
ALE plot Apley and Zhu (2020)
Sensitivity analysis methods Cortez and Embrechts (2013)
Further methods Molnar (2019)

Parameter Importance Permutation parameter importance plot Breiman (2001); Fisher et al. (2019)
Functional ANOVA Hutter et al. (2014)
Local parameter importance Biedenkapp et al. (2018)
Break-down plot Staniak and Biecek (2018)
Sensitivity analysis methods Iooss and Lemaître (2015)

Interaction Detection H-statistic Friedman and Popescu (2008)
PDP based interaction detection Greenwell et al. (2018)
Variable interaction networks Hooker (2004)

2.1 Notation

To visualize hyperparameters, one can think of hyperparameter settings and estimated perfor-
mance as column entries in a dataset. The research subjects are hyperparameters, but in our
setting hyperparameters are treated like features. Therefore, in the context of this work, the
terms parameter, hyperparameter, and feature are used interchangeably to describe hyperpa-
rameters. The base notation to describe hyperparameters and configurations mainly follows
Hutter et al. (2014) and has been adapted for this setting. A parameter is named x and can take
values from its domain X , which can be numeric or categorical. The configuration space of p

6

hyperparameters isXXX =X1× ...×Xp and the set of all parameters {1, ..., p} can be denoted by
P. A single instantiation is denoted as xxx = ⟨x1, ...,xp⟩ with xi ∈ Xi. The partial instantiation of
a subset U = {u1, ...,uq} ⊆ P is xxxU = ⟨xu1, ...,xuq⟩ with xui ∈ Xui . The extension set X(xxxU) of a
partial instantiation xxxU is defined as xxxP|U = ⟨x′1, ...,x′p⟩ such that ∀ j(j = uk⇒ x′j = xuk). In case
not single hyperparameter configurations are of interest, but the dataset containing all hyperpa-
rameter configurations and targets, the notation of Fisher et al. (2019) is followed. A row in a
dataset is the combination of a parameter instantiation and one or more target variables. The
combinations of all instantiations xxx(1), ...,xxx(n) in a dataset is a matrix with n observations and
denoted as X. The column of a single target variable representing the predicted performance
of the hyperparameter configurations is called y and is a vector labeled y. When a predictive
model is used, it is denoted by f̂ : X → R. A loss function is denoted by L and the expected
loss result is denoted by the term model error e.

2.2 Descriptive Analysis

Descriptive analysis is used for visualization raw data without the support of a surrogate model.
Its methods are usually easy to use, understand, and not computationally intensive. In the fol-
lowing sections well-known hyperparameter visualization methods are shown that can be used
to analyze hyperparameter performance dependencies. For visual examples, the hyperparame-
ters for recursive partitioning and regression trees (rpart) from the iaml_rpart dataset are used.

2.2.1 Parallel Coordinate Plot

A very frequently used tool for the visualizations of hyperparameters performance dependencies
are parallel coordinate plots (Joo et al., 2021). Parallel coordinate plots (PCP) were developed
at the latest by Gannett and Hewes (1883) and enable the visualization of high-dimensional data
in a two-dimensional graphic for quick diagnoses. Here, each vertical line presents the range of
a single hyperparameter. For each hyperparameter configuration, the values are marked on the
respective axis and connected by a line, with each line given a color corresponding to the value
of the performance. The order of the axes representing hyperparameters play an essential role.
For example, if two categorical parameters with only a few levels are displayed side by side,
the lines between the axes will overlap and a identification of the individual configurations will
not be possible. This problem can be circumvented by creating a dynamic plot so that the axes
can be moved. A screenshot of a dynamically PCP can be seen in figure 1.

In this graphic, four hyperparameters are shown together with the logloss performance mea-
sure. The red lines indicate configurations with a high performance and the blue lines config-
urations with a poor performance. For instance, it can be seen that configurations with low cp

seem to produce lower logloss values and that the minsplit parameter does not have a large
impact on the outcome. Further, it can be seen that this method provides a useful way to find
potentially good ranges for parameter configurations in higher dimensional data. However, the

7

Figure 1: A parallel coordinate plot for four hyperparameters and the logloss performance mea-
sure of the iaml_rpart dataset. Red lines indicate good parameter configuration, dark
blue lines indicate configurations with poor performance.

PCP quickly reaches its limits by increasing the numbers of configurations, which also increases
the number of lines. This can result in a confusing display and makes it difficult to distinguish
potentially good areas from seemingly worse ones. Even though there are alternatives to plot-
ting with lines like RadViz plots or Andrew’s curves (Dzemyda et al., 2013) these options share
the same problems and more. For example, the RadViz plots are even more obscure due to the
representation of the axes inside a circle, and Andrew’s curves lose the values of the individual
configurations. Although, too many lines in a PCP can lead to confusing plots and thus difficul-
ties in finding good configuration spaces, PCPs are still a good option to get a first impression of
the dependencies. In addition, they show their strengths when fewer configurations are plotted,
for example, when a large dataset is meaningfully filtered or only a small dataset is considered.

2.2.2 Heatmap

Another way to visualize the relationship between parameters and performance are heatmaps.
A heatmap shows performance as a function of two features (Hamid et al., 2019) and originates
from shaded matrix display by Loua (1873). In case of multiple hyperparameters, one can use
multiple heatmaps to analyze the respective dependence of the performance measure of two pa-
rameters and thereby find possible interactions (Park et al., 2020). To calculate a heatmap, the
configuration spaces of the two parameters under consideration are divided into spaces of equal

8

size. Then, a grid of cells is created using the Cartesian product. Finally, a summary function δ

can be applied to each cell. Usually the mean is used for the function to get an overview of the
average performance, but other options such as the standard deviation are also conceivable. In
algorithm 1 the computation of the heatmap can be seen in more detail.

Algorithm 1 ComputeHeatmap(Xi, X j, y, δ)

InputInputInput: Xi = (x(1)i , ...,x(n)i), X j = (x(1)j , ...,x(n)j) y = (y(1), ...,y(n)), δ

OutputOutputOutput: Result of a summary function δ

initializes an empty matrix M with r rows and s columns
Xi = [c0,c1[, ..., [cr−1,cr[▷ Split the domain of Xi
X j = [d0,d1[, ..., [ds−1,ds[▷ Split the domain of X j
[ck−1,ck[×[dl−1,dl[, k = 1, ...,r, l = 1, ...,s ▷ Create a grid of cells
for all k ∈ 1, ...,r do

for all l ∈ 1, ...,s do
z←{ /0} ▷ Initialize an empty vector
for all t ∈ 1, ...,n do

if (x(t)i ,x(t)j) ∈ [ck−1,ck[×[dl−1,dl[then
z← z∪ y(t)

end if
end for
δ (z) ▷ Calculation of the summary result
M(k,l)← δ (z) ▷ Add the result of δ (z) to the matrix M

end for
end for
returnreturnreturn M

It should be noted that other parameters are completely ignored by the calculation of a
heatmap. This means that the effect of other parameters is not kept constant, so that it can-
not be said with certainty whether the performance is caused only by the selected parameters.
Nevertheless, a heat map is useful to get an overview of the different parameter configurations
and can be displayed quickly without additional models or calculations.

For a visual representation, the parameters are plotted on the axes of a Cartesian coordinate
system and the cells in the grid are colored according to the result. For illustration, figure
2 shows a heatmap for the hyperparameters minbucket and maxdepth and the performance
measure logloss of the iaml_rpart dataset. Dark blue cells indicate configurations with a per-
formance above average (low logloss), whereas light blue cells indicate configurations with a
performance below the average (high logloss). Cells without a color indicate that there are no
combinations of values for these two parameters available. It appears that poor performance
values are associated with low maxdepth values but also the minbuck parameter should not be
set too low.

9

Figure 2: A heatmap for the two hyperparameters minbucket and maxdepth as well as the per-
formance measure logloss of the iaml_rpart dataset. Empty cells mean that no com-
bination of the two parameters are available. In this graphic, low values for both
parameters seem to lead to worse performance values.

2.2.3 Other Methods

A very common method for visualizing the relationship between an input variable and an out-
put variable are scatterplots (Helton and Kleijnen, 1999). Scatterplots are quite easy to use
and understand and can be helpful for studying the relationship between parameters and their
performance measure. However, a simple scatterplot ignores all other parameters, so possible
interactions cannot be found. A possibility to find interactions is to extend the simple scatterplot
to a colored one, where two parameters are plotted against each other and a color is added to
each point according to the value of its performance (Pianosi et al., 2016). Unfortunately, they
also have the disadvantage mentioned in subsection 2.2.1, since a huge number of configura-
tions can lead to a confusing display. An example of a simple as well as a colored scatterplot
can be found in figure 14 in the appendix.

Theoretically, dimensionality reduction methods such as principal component analysis are
also possible to analyze the dependence of performance on parameters (Wang et al., 2019).
However, since the results of such methods lose the details of the hyperparameter values that
are important for finding good configurations, they are not recommended for our purpose.

10

2.3 Parameter Effects

While the descriptive analysis methods presented in the previous subsection attempt to find a
good hyperparameter configuration using the raw data, the parameter effect methods presented
in this subsection use a surrogate model. Surrogate models estimate the performance of param-
eter configurations corresponding to a trained model. Using such a model results in a loss of
accuracy, since they only approximate the values, but they offer the advantage of being able
to estimate a performance value for each configuration. When choosing a suitable surrogate
model, random forest is often used in literature since it is accurate and flexible (Breiman, 2001)
and is therefore also used for the evaluations in this work. Another difference to the methods
from the subsection of description analysis is that the following methods determine the depen-
dencies of the performance of hyperparameters only from a few parameters, as in the heatmap
or the scatterplot, and not from all combinations, as in the PCP.

2.3.1 PDP

A partial dependence plot (PDP) is a visualization tool that plots average predicted values based
on the marginal effect of one or two parameters and is particularly useful for interpreting black-
box models with higher dimensions (Friedman, 2001). The definition of the partial dependence
function is given by:

fU(xxxU) = ExxxC [f̂ (xxxU ,xxxC)] =
∫

f̂ (xxxU ,xxxC)pC(xxxC)dxxxC.

The partial dependence function f̂ is a machine learning model that computes the average
predicted outcome for a subset of fixed parameter values xxxU . For the computation, the comple-
ment parameter vector xxxC is defined as xxxC = xxx \ xxxU and is varied over its marginal probability
density pC(xxxC). Thus, the output of the function shows the marginal effect of the parameter in
xxxU on the predicted values. Since the marginal probability density is not known, the result must
be estimated using different xxxC values from the data. For this, the formula can be rewritten as a
function that averages f̂ (xxxU ,xxxC), where xxxU is fixed and xxxC varies over its n observations:

fU(xxxU) =
1
n

n

∑
i=1

f̂ (xxxU ,xxx
(i)
C).

For categorical parameters, we obtain a PDP estimate by forcing all data instances into the
same category. More specifically, to calculate the value for a particular category of a categori-
cal parameter, all other categories of all data instances are replaced by the desired category and
then the average of the predictions is calculated (Molnar, 2019). The goal of the PDP is to com-
pare the estimated marginal performance of one or two parameters for different configurations.
Therefore, different combinations are created for the considered parameters within their param-
eter space and then the performance is estimated. In the R package iml a gridsize is used for
this, which divides the parameter space evenly (Molnar et al., 2018). With the calculation of the
average performance of different configuration tuples, the PDP can then finally be visualized.

11

Figure 3: A partial dependence plot for the hyperparameter maxdepth of the iaml_rpart dataset.
It can be seen that high values achieve better performance values because the predicted
logloss values are lower.

The results of a single numerical parameter can be plotted in a line graph, exemplified in
figure 3. For a categorical parameter, a bar chart can be used to show the estimated average
marginal performance. The results of two numeric or two categorical parameters can be visual-
ized in a heatmap. For a numerical and a categorical parameter, a line can be displayed for each
category. In general, the subset xxxU has no more than one or two variables because it is difficult
to represent higher dimensional data in a graphical representation. In addition, it is useful to plot
a rug together with the results, otherwise areas with almost no data could be over-interpreted.
While PDPs have the disadvantage that the calculation of marginal effects is computationally
intensive, they do provide helpful hints for good hyperparameter configurations and are well
suited for the analysis of single hyperparameters or hyperparameter pairs (Moosbauer et al.,
2021b). When a PDP is plotted in a heatmap, the interaction of two parameters is captured,
providing additional information about the joint behavior of the parameters.

2.3.2 Marginal Hyperparameter Performance

An alternative way to calculate the marginal effect of a partial instantiation of hyperparameters
is the marginal performance approach by Hutter et al. (2014). Compared to the PDP, where only
the combinations of the n observations were used to estimate the marginal performance, this ap-
proach aims to estimate the marginal performance over all possible instances. This is obviously

12

an impossible task, since, for example, continuous hyperparameters have infinite configuration
values. As a possible solution Hutter et al. (2014) proposed the marginal performance to make
an approximate analysis based on a model and the use of the following formula:

âU(xxxU) = E[f̂ (xxxP|U)|xxxP|U ∈ X(xxxU)].

The function of the marginal performance âU takes a partial instantiation xxxU as an input which
is the same as in the PDP. For the calculation, a model f̂ is used which takes the vector of an
extension set X(xxxU) of the partial instantiation xxxU as input. When analyzing hyperparameters,
the values xxxU in the entire hyperparameter space are usually of interest, so we assume that X(xxxU)

is uniformly distributed and has the probability density 1
||X(xxxU)|| . By definition the formula of

the marginal performance can be rewritten as:

âU(xxxU) =
1

||X(xxxU)||

∫
f̂ (xxxP|U)dxxxP\U .

The first part refers to the probability density over X(xxxU). This is similar to the probability
density function or a probability mass function of a uniform distribution where the range size is
in the denominator. For Hutter’s formula, the range size ||S|| for both continuous and categorical
hyperparameters are defined as follows. The range size ||S|| of an empty set S is defined as 1; for
other finite S, the range size is equal to the cardinality ||S||= |S|. For closed intervals S = [l,u]⊆
R with l < u, the range size is defined as ||S|| = u− l and for cross products the definition is
S= S1× ...×Sk, where ||S||=∏

k
i=1 ||Si||. Because the fixed parameters are considered as scalars

in the calculation of cross products, the formula can be rewritten again so that 1
||X(xxxU)|| =

1
||XXX T || ,

where T = {t1, ..., tk}= P\U andXXX T = Xt1× ...×Xtk :

âU(xxxU) =
1

||XXX T ||

∫
f̂ (xxxN|U)dxxxT .

Ultimately, the expected marginal performance of an instantiation is estimated from the re-
sults of a surrogate model. Hutter explains in his paper that a particularly good model f̂ is the
random forest because the marginally predicted performance can be computed in linear time
and also provides high performance predictions for a wide range of highly parameterized al-
gorithms. With his explanation, he also provides the necessary theory to apply the marginal
performance formula on a random forest.

Both the PDP and marginal performance compute the average marginal performance for a
given instantiation using a machine learning model, such as the random forest. While the PDP
takes the surrogate model to estimate and then average the performance of existing data, this
approach uses a surrogate model f̂ to try to approximate the true marginal performance function.
Just as with PDP, the result for a given partial instantiation is just a single value, but as U is
varied, we can create a similar line graph or heatmap showing the marginal performance of one
or two parameters.

13

2.3.3 Other Methods

Both of the mentioned methods are already used for visualization hyperparameter configura-
tions. However, since the concept of hyperparameter effects is no different from feature effects
in terms of visualization, there are other conceivable ways from the field of machine learning to
illustrate the connection between hyperparameters and performance measures. In the following,
we briefly review ICE curves and the ALE plot to present an extension and an alternative to the
PDP. Many alternative methods from the field of interpretable machine learning can be found
in Molnar (2019), which presents a summary of different methods for model interpretation.

As just mentioned, an important addition to the PDP is the ICE plot (Goldstein et al., 2015).
While the PDP displays the partial effect between the hyperparameters and the performance on
average, the ICE plot shows the functional relationship for individual observations. The cre-
ation of an ICE plot for numerical parameters is done by drawing one line per observation and
can help to find heterogeneous relationships between hyperparameters and performance through
interactions. For categorical features, the ICE curves can be taken to expand the barplot to a
boxplot. This helps to see how the performance values are distributed. An example can be
viewed in Figure 15 in the appendix. In general, an ICE plot is a useful addition to the PDP, but
it can take a long time to render the lines if there are many observations. In addition, ICE curves
are only applicable for one parameter, because at higher dimensions the individual curves would
no longer be recognizable, since they all overlap.

A good alternative to the PDP is the ALE plot (Apley and Zhu, 2020). It also describes how
a parameter affects performance on average, but can calculate it faster due to the differences
in mathematical calculation. However, ALE plots cannot be drawn together with ICE curves,
which add value to the PDP. Figure 4 shows the visualization of the three different methods
PDP, ICE curves and ALE plot. It can be seen that both methods show that the maxdepth pa-
rameter of the iaml_rpart dataset should not be set too low in order to achieve a high average
performance (low logloss). Nevertheless, too high values could also have a negative impact on
the result, as shown in particular by the ICE curves. Furthermore, it can be seen that the ALE
plot centers the performance values and thus also differs from the PDP.

Methods from the field of data mining (DM) can also be used to visualize hyperparameter
performance dependencies. Data mining aims to extract patterns from raw data using algo-
rithms (Fayyad et al., 1996). A concrete approach by Cortez and Embrechts (2013) presents
visualizations based on sensitivity analysis that open black-box models. Similar to PDP, sensi-
tivity analysis uses methods to measure the impact on the output of a given model when inputs
are varied. While in a PDP one or two parameters are varied by using a grid size and all other
parameters are hold constant, the DM approach provides different methods for estimating the
predictions. Moreover, the PDP and ALE plots only represent the average of the predictions,
while the proposed methods also illustrate other statistics such as minimum, quantiles or other

14

Figure 4: The left plot shows the ALE plot with centered predictions. In the right plot the
PDP is displayed together with the ICE curves. Both plots show that values for the
hyperparameter maxdepth of the iaml_rpart dataset should not be too low for a good
average performance (low logloss).

sensitivity measures. Different visualization tools such as variable effect characteristic (VEC)
curves, boxplots, VEC surfaces, and contour plots are proposed to represent the effect. If the
parameters are normalized, multiple parameters can also be plotted in the same graph. Some of
the proposed graphs for visualizations can be seen in the appendix in figure 16. The author has
also implemented his approach in the R package rminer.

2.4 Parameter Importance

Parameter effect methods are very useful to analyze a few hyperparameters at the same time
in more detail. However, often there are a lot of hyperparameters and most of the time not
every hyperparameter has a significant impact on the performance. For this reason, it is often
worthwhile to examine the importance of the parameters with so-called parameter importance
methods, which return only one value per hyperparameter. With these methods, one can quickly
get an overview of the most important parameters and obtain information about which hyper-
parameters should be further investigated and which can be neglected.

15

2.4.1 Permutation Parameter Importance Plot

Permutation provides the ability to swap values in a vector, and was used by Breiman (2001) to
compute an importance measure for random forest using permuted parameters for the first time.
Later, Fisher et al. (2019) introduced the importance of permutation parameters to calculate
how important each parameter is for any predictive model. In the following, we also refer to the
work of (Molnar, 2019). The idea behind this approach is to compare the model error eorig =

EL(y, f̂ (X)) from a trained prediction model f̂ with the model error eswitch = EL(y, f̂ (Xswitch))

from the same model but with permuted values. Swapping the values of a selected explanatory
parameter cancels its effect, making the parameter completely uninformative for the target y

while preserving its marginal distribution. The fraction or the difference of the two outcomes
deliver a formula to measure hyperparameter importance:

Ii =
eswitch

eorig
or Ii = eswitch− eorig.

The importance I of the parameter i ∈ P is high when the change in the model error is large
and the importance of the parameter is low when the difference is close to zero. If the values of
only one parameter in XSwitch are swapped, the result explains the importance of this parame-
ter. If the values of more than one parameter are swapped, the result computes the importance
of that subset of parameters. After the result is calculated for each parameter and subset, the
parameters can be sorted by descending importance to allow comparison between parameters.
It needs to be mentioned that for the loss function only non-negative functions, e.g. root mean
square error, can be used.

It should also be noted that this method takes all interactions with other parameters into ac-
count. This is basically an advantage, since we thus know important parameters for sure, but
it is also a disadvantage, since the interaction effects for both parameters are included in the
performance measure (Molnar, 2019). In addition, we do not know how large the interaction
effects are and where they occur. A further disadvantage of this tool is that the model error
depends on the swapping of the parameter values. The result can vary greatly if the effect is
calculated with a different permutation. Therefore, it makes sense to perform the permutation
several times and average the results. While it increases the computation time, it also stabilizes
the measure. Although, there are some limitations as already mentioned, the method can be
used to estimate and interpret the importance of individual parameters very well and is there-
fore quite suitable for obtaining an overview of important parameters.

Often the results are presented in bar charts or just as points. Figure 5 shows a plot of the
importance of parameters. In this case, it can be seen that cp is the most important and minsplit

the least important parameter. The loss function used was mean absolute error (mae), and the
model used was a random forest.

16

Figure 5: An importance plot for four hyperparameters. A higher value also means a higher
importance of the parameter. It can be seen that cp is the most important and minsplits
the least important hyperparameter for the data of the iaml_rpart dataset.

2.4.2 Functional ANOVA

The functional analysis of variance (fANOVA) is a technique that decomposes a high-dimensional
function into additive components (Sobol, 1993). Based on the multi-index notation for the
fANOVA proposed by (Hooker, 2004) and the marginal performance from section 2.3.2 a new
tool was featured by Hutter et al. (2014). The tool allows to quantify the importance of an
algorithms individual hyperparameter but also of interactions between two or more hyperpa-
rameters. By definition the model f̂ : X1× ...×Xp → R can be decomposed into additive
components that depend on subsets of hyperparameters P:

f̂ (xxx) = ∑
U⊆P

ĝU(xxxU).

Hutter et al. (2014) defines each component of the function f̂ with the following formula:

ĝU(xxxU) =

 1
||X ||

∫
f̂ (xxx)dxxx if U = /0,

âU(xxxU)−∑W⊊U ĝW (xxxW) otherwise.

If U = /0, then the function mean is formed over the entire domain. If |U |= 1, the components
are called main effect and capture the effect of changes of only one parameter. Specifically,
it computes the importance of a hyperparameter by recording the effect of a change in this
parameter, taking the average over all possible value of all other hyperparameters. If |U | > 1,

17

all interactions between the hyperparameters in U are recorded, subtracted by low ordering
interaction effects of W ⊊ S. According to the definition of the fANOVA the variance for each
subset can be calculated with

VU =
1
||XU ||

∫
ĝU(xxxU)dxxxU

and the total variance is the sum of the variances of all possible subsets

V= ∑
U⊂P

VU .

Finally, the importance of each subset of parameters can be calculated using the formula
FU = VU/V, which gives the fraction of the total variance for the parameters.

The biggest advantage of the fANOVA hyperparameter importance in comparison to the hy-
perparameter importance plot we introduced earlier is the possibility to calculate importance of
interaction effects instead of only main effects. But by taking interactions into account, compu-
tational time is also greatly increased. The visual representation is just like the importance of
the permutation parameters in a bar chart or simply as points in a coordinate system.

2.4.3 Local Parameter Importance

Another method to determine the importance of each parameter is the local parameter impor-
tance (LPI) which was introduced by Biedenkapp et al. (2018). With LPI the importance of
the parameters is calculated based on a specific parameter configuration. This is particularly
interesting for tuned parameters, as it allows the parameters responsible for the achieved per-
formance to be clearly identified. For the LPI of a parameter i ∈ P, one needs an error metric
e and an empirical performance model (e.g., random forests) that can predict the model error ê

for different parameter configurations. For the calculation itself, the variance of the estimated
error values ê of the different parameter values xi is computed and divided by all variances. The
formula for the LPI is:

LPI(i|xxx) =
Varv∈Xi ê(xxx[xi = v])

∑i′∈PVarw∈Xi′ ê(xxx[xi′ = w])

The outcome for the LPI of the parameter i is depending on a specific parameter configura-
tion xxx ∈XXX . In the numerator, the parameter i is varied within its parameter space Xi, while the
other parameters remain constant. In the denominator, the same is done for each parameter i′ in
the entire parameter spaceXXX to obtain the variance caused by all parameters.

The local property of this method is also the biggest difference to the fANOVA and the Per-
mutation importance plot. While the two other methods are interested in the general importance
of a hyperparameter, the LPI calculates the importance for a specific parameter configuration.
They still share similarities with the fANOVA, due to the decomposition of variance, and with

18

the permuted parameter importance, due to the fact that this method also does not calculate
interactions between parameters. While this method can be very interesting when trying to un-
derstand changes in the environment of a parameter configuration, its approach is less interest-
ing for this work because we are not interested in a specific configuration of hyperparameters,
but only want to understand the dependencies between configurations and performance mea-
surements in general. In addition, the approach does not provide interaction values, so there
is no advantage by using the local parameter importance instead of the permutation parameter
importance plot.

2.4.4 Other Methods

A local method to explain the performance for a given hyperparameter configuration is a break-
down plot (Staniak and Biecek, 2018). In this approach, the calculated performance is decom-
posed so that contributions can be assigned to the various hyperparameters. While this method
is also local like the local importance plot, it differs in computation and provides a plot for visu-
alizing the effects of the parameters. An example for a break-down plot can be found in figure
17 in the appendix and further explanation of its interpretation can be found in the book of Sta-
niak and Biecek (2018). On one hand it is advantageous that the importance of the parameters
on the results can be seen and that the set configuration has a positive or negative effect on the
result and its extent. But on the other hand the importance of the variables can be misleading if
the interaction is large, since s break-down plot calculates the contributions based on the spec-
ified order of the parameters. For this problem, interaction-break-down, an alternative that can
handle interactions but also takes more time, was proposed.

Most of these methods we introduced find application in the field of machine learning. An-
other field that analyze the dependencies between input and output for a similar purpose is the
field of sensitivity analysis. Sensitivity analysis examines how uncertainty in the predicted out-
put of a model can be attributed to various sources of uncertainty in the model inputs (Iooss and
Lemaître, 2015). We have previously mentioned effect methods from the field of data mining
that rely on sensitivity analysis, now we will directly address the field. The following discus-
sion of alternative methods used in global sensitivity analysis is based on the paper by Iooss and
Lemaître (2015).

In the global sensitivity analysis a variable selection is performed by the so-called screening
to find unimportant parameters. Screening is performed under the assumption that many vari-
ables have only a small effect on the target variable. The target of these method is to reduce
the number of input parameters to achieve less computationally intensive calculation methods
as the ones mentioned in the following. A well known method in this field is the morris method
(Morris, 1991). In this attempt not only input variables with negligible effects are categorized
but also linear effects and non-linear effects with or without interaction effects. Even though the
screening attempts to reduce the computationally intensity it is a fairly complex procedure and

19

therefore still requires a considerable amount of computational capacity. For good results, the
number of observations should therefore always be greater than the number of variables. Af-
ter preprocessing, there are different importance measures based on linear methods, functional
decomposition of variance (for non-linear and non-monotonic models) and other methods. For
example, Sobol indices is a method which also make use of the fANOVA. Unlike the fANOVA
suggested by Hutter et al. (2014), these methods do not use random forest but are applicable to
the data itself via Monte Carlo sampling based methods. A disadvantage of these procedure is
that these methods are often extremely costly, unstable and biased when the number of input
parameter and number of instantiations increases. Therefore, some alternative methods with
and without surrogate models are presented in this paper.

2.5 Interaction Detection

Functional ANOVA already provides a way to determine the importance of interaction effects
between parameters. Another method to gain insight into interactions is the h-statistic (Fried-
man and Popescu, 2008). Similar to the interaction effects measured by functional ANOVA,
the h-statistic measures how much the performance differences depend on the interaction of
parameters. However, the h-statistic decomposes the partial dependence function, whereas the
functional ANOVA decomposes a function that depends on the marginal prediction. Thus, the
h-statistic does not measure the importance of the interaction terms, but rather the contribution
of the interaction effect to the performance outcome. Unlike fANOVA, it is unknown whether
the interaction effect has a high impact on the outcome. One way to combine the advantages
of h-statistics and importance plots is proposed by Inglis et al. (2021). Accordingly, interac-
tions and importance should be plotted together in a heatmap or a network diagram. However,
Inglis et al. (2021) mentioned the computation of h-statistics is computationally intensive, as it
requires the underlying calculations of the PDP.

In another approach, interaction effects are searched via the variance, since weak variances
of the individual parameters also indicate weak interactions. For this purpose, the importance
of one parameter is calculated as a function of different points of the other parameters and the
standard deviation is formed over the results (Greenwell et al., 2018). Alternatively, interactions
can be computed using variable interaction networks from Hooker (2004), where the prediction
function is split into main and interaction effects supported by the functional ANOVA.

3 Results

The goal of this work is to understand the relationship between hyperparameters and a selected
performance measure using visualization methods. To this end, several visualization tools have
been implemented in a R package and can be used through various callable functions or a
Shiny application. In addition, an application study was conducted on two similar datasets

20

to show what knowledge can be gained through the visualization tools. The results of the
implementation and the application study are now presented.

3.1 Implementations in R and Shiny

There are several ways to visualize hyperparameters. For this work, the four visualization
methods heatmap, parallel coordinate plot, partial dependence plot and permuted importance
plot were implemented in a new R package called VisHyp. The R package is available on
Github via the link https://github.com/Pizzaknoedel/visualize-hyperparameter. Furthermore, a
Shiny application was implemented for easier use of the plots, which is also included in the R
package. An example of the Shiny application including the different visualization methods can
be seen in figure 6 below.

Figure 6: An example of the Shiny application implemented in the VisHyp package which is
able to visualize the four methods simultaneously and can be controlled by different
settings.

3.2 Application Study of Two Similar Datasets

In the following the implemented methods are explained by a use case in which the two datasets
smashy_lcbench and smashy_super were examined. Both datasets contain the same eleven
hyperparameters, which are settings for a hyperparameter optimizer. The performance measure
of the configurations is yval, which must be maximized to achieve a high performance. An
overview of the parameters can be seen from table 2, for further details the work of Moosbauer

21

https://github.com/Pizzaknoedel/visualize-hyperparameter

et al. (2021a) is recommended. The application study of the two datasets aimed to understand
the relationship between the hyperparameters and the performance measure to the extent that
the parameter configuration spaces can be constrained while retaining the best configurations
with the highest performance values.

Table 2: An overview of all hyperparameters including explanations, configuration ranges and
scale. The table was partially adopted from Moosbauer et al. (2021a).

Parameter Meaning Range Scale

sample samples algorithm {random, bohb}
surrogate_learner surrogate learner {KNN1, KKNN7, TPE, RF}
survival_ f raction survival rate [1,∞) 1/survival_ f raction
budget_log_step fidelity rate [21/4,24] log logbudget_log_step
f ilter_algorithm SAMPLE method {TOURNAMENT, PROGRESSIVE}
f ilter_select_per_tournament filter sample per tournament {1, . . . , 10} log f ilter_select_per_tournament
f ilter_ f actor_ f irst filtering rate of first point in batch at t = 0 [1,1000] log f ilter_ f actor_ f irst
f ilter_ f actor_last filtering rate of first point in batch at t = 1 [1,1000] log f ilter_ f actor_last
f ilter_with_max_budget surrogate prediction always with maximum r {TRUE, FALSE}
random_interleave_ f raction random interleave fraction [0,1]
random_interleave_random random interleave the same number in every batch {TRUE, FALSE}

The results of the evaluation were visually verified by a parallel coordinate plot with pa-
rameter spaces constrained, respectively. In addition, mathematically calculated quality criteria
were used to support the visual impression. In the following, the performance values from the
datasets are given in set notation. The set of all occurring performance values in the datasets is
denoted by Yall . If only a subset of the performance values of the configurations is considered,
the set is denoted by Yrem. The set of the overall best 5% of all performance values are denoted
Ybest . The following quality criteria are used for verification:

• The average performance (mean) of the considered configurations.

• The highest (max) and lowest (min) performance of the considered configurations.

• The quality criterion shows which quantile can be reached with respect to all configura-
tions if the optimization is performed only for the considered configurations (Yrem). For
our two datasets, the formula for a quantile can be written as follows:

quantile =
|{y : y ∈ Yall ∧y≤ max(Yrem)}|

|Yall|

• The proportion of the performance values of the remaining configurations (Yrem) and the
total number of performance values (Yall) calculated with the following formula:

proportion =
|Yrem|
|Yall|

• The number of remaining configurations (Yrem) that belong to the best 5% of performance
values (Ybest) divided by the remaining configurations to explain what fraction of the
configurations considered are part of to the best:

top con f ig =
|(Yrem∩Ybest)|
|Yrem|

22

Only the most important results of the analysis are discussed below. A detailed analysis of the
individual hyperparameters can be found in the electronic appendix or via the Github repository.
It should be noted that both the complete and filtered datasets were analyzed. For instance, the
best configurations (top 20% of configurations with highest yval values) were examined and
their range were restricted according to certain factors of parameters.

3.2.1 Dataset: smashy_lcbench

When analyzing the smashy_lcbench dataset, the first step was to select the most important
parameters using the permuted importance plot. We used the mean absolute error (mae) as the
distance measure. The importance plot result formed the basis for further investigation, as it
indicated which parameters were primarily relevant and needed further investigation. Figure 7
shows the plot and it can be seen that the sample parameter is the most important parameter as
it has the highest value. The most important findings of all parameters are summarized in the
following.

Figure 7: An importance plot for the smashy_lcbench dataset. The parameter sample has the
highest value and therefore is the most important parameter.

sample: When examining the sample parameter, it was shown that the bohb factor should
be preferred over the random factor, as it gave much better results on average. Moreover, by
looking at the best 20% of the configurations, most of the remaining ones contained the bohb
factor. Therefore, only the respective configurations with the factor bohb were used for the

23

following investigations.

survival_fraction: The next important parameter was survival_ f raction. It has been found
that, on average, better performance was achieved with low values, but great performances
could also be achieved with high values if the configuration of the other parameters were set
correctly. The predicted performances can be seen in figure 8 by comparing the ICE curves
with the PDP curve. While the average performance decreases with higher survival_ f raction

values, some ICE curves reach the same performances with high and low values. In addition, to
set the parameter correctly, the surrogate_learner parameter should be restricted first, since its
values cause large differences in the PDP.

Figure 8: A PDP with ICE curves for the survival_ f raction parameter of the dataset
smashy_lcbench. The PDP shows that configurations with low values achieve the
best performance on average. The ICE curves illustrate that high values can also lead
to great performance values if the other parameters are set properly.

surrogate_learner: Generally, the parameter surrogate_learner was not as important, but it
had various influences on the other parameters’ performances and was therefore set first. The
various influences were already mentioned for the parameter survival_ f raction, but were also
observed for other parameters like random_interleave_ f raction. Figure 9 shows the different
effects of the parameter random_interleave_ f raction on the yval performance depending on
the selected surrogate_learner.

24

Figure 9: Different PDPs for the random_interleave_ f raction parameter corresponding to
the datasets constrained by the knn1, knn7, bohblrn, and ranger factors of the
surrogate_learner parameter. It can be seen that the factors have different effects
on the estimated performance.

budget_log_step: Another important parameter according to the importance plot was the
budget_log_step parameter. So far, a high importance was an indication that the parameter had
configuration ranges with high and low performances. However, for this parameter, we could
not clearly specify a range in which the configurations gave better performance values on aver-
age. We found that the line in the PDP showed many small fluctuation, and concluded that this
led to the increased metric value for the importance plot. Therefore, the parameter was not as
important, so no restrictions were needed except for not setting the parameter too low, since the
poorest performance values were mostly obtained at the beginning.

filter_with_max_budget: The parameter f ilter_with_max_budget was generally not impor-
tant, but since it only has two factors it can easily be restricted. On average, the parameter led
to a better performance for the factor TRUE. Nevertheless, it should be noted that combined with
the parameter surrogate_learner and its factor bohblrn the effect was much more of impor-
tance than for its other factors.

Other parameters: The already mentioned hyperparameters were the most important. For
other parameters like f ilter_ f actor_ f irst, f ilter_ f actor_last, f ilter_select_per_tournament

or f ilter_algorithm the impact and importance strongly depended on the settings of the other

25

parameters and the desired goal. For example, if the best configurations for the factor bohblrn
of the surrogate_learner parameter were of interest, the best combination was with TRUE for
f ilter_algorithm and a value above5 for f ilter_ f actor_last, so that as many bad configurations
as possible were discarded. However, these parameters did not require any constraints, since the
most important restrictions have already been made with the other parameters. The remaining
parameter random_interleave_random did not perform very well no matter what the situation
of the settings was and could therefore be ignored completely. For a deeper understanding, the
evaluation of the parameters can be read in the detailed analysis in the electronic appendix.

Finally, to verify the results, a PCP was created for all data and constrained according to the
analysis. It should be noted that this was only one possible restriction of the parameter spaces
and therefore other restrictions would have been possible as well. The restricted configuration
ranges are shown as pink lines in figure 10. If no pink lines are visible, no parameter restriction
is applied. It can be seen that the remaining configurations indeed achieve good performances.
The exact parameter restrictions can be found in chapter 3.2.3 in the table 5 or in the more
detailed analysis of the datasets.

Figure 10: A PCP for the smashy_lcbench dataset. The applied constraints lead to configura-
tions with mostly good performance values.

Additionally, the previously introduced quality criteria were used to confirm the visual im-
pression. Here, the quality criteria were applied to the complete and the constrained dataset to
allow a comparison. In table 3 it can be seen that 67% of the leftover configurations belong
to the top 5% configurations of the entire dataset. Moreover, the 99.9% quantile is reached,
which is the 5th best configuration. Also, the worst configuration (min) of the performance
values of the remaining configurations is 0.6003, which is considerably better than the worst
configuration of the whole dataset with the performance value of -0.9647.

26

Table 3: The evaluated quality criteria for the complete and constrained smashy_lcbench
datasets. It can be seen if that the restricted range contains mostly good as well as
top configurations values.

dataset |yrem| mean min max quantile proportion top config

smashy_lcbench 10712 -0.5646 -0.9647 -0.4690 1 1 0.05
chosen subset 49 -0.5026 -0.6003 -0.4713 0.9995 0.0046 0.67

3.2.2 Dataset: smashy_super

After examining the smashy_lcbench dataset, a further application study was performed with
the smashy_super dataset to see if the results differed. First, an importance plot was plotted
again to identify the most important parameters. As can be seen in figure 11 the parameter
surrogate_learner is the most important and the two parameters random_interleave_random

and f ilter_with_max_budget are the least important ones. In the following, the results of the
parameters are again summarized individually, using the same order as in the previous chapter.

Figure 11: An importance plot for the smashy_super dataset, showing the surrogate_learner
parameter as the most important parameter.

sample: On average, configurations of the samples parameter achieved a better performance
with the random factor than with the bohb factor. In the best 20% of the configurations mostly
bohb samples were sorted out, but those that remained had better performance on average than

27

the random samples. Ultimately, both samples could result in good performance values, but
since a lot of the remaining samples were random, this factor was chosen for our final configu-
rations.

survival_fraction: In general, lower values performed better than higher values for the
survival_ f raction parameter. Regarding the top configurations, higher values did not seem to be
worse, so with good configurations of the other parameters, the value of the survival_ f raction

parameter could also be high and still achieved greats performances. Although it could be
shown that not all high values resulted in poor performances, lower values seemed to be the
right choice, as the better configurations had mostly lower values and showed better perfor-
mance on average. In figure 12 the results can be seen. For the interpretation of the PDPs, it
should be noted that in the right plot, containing the best configurations, the remaining values
are distributed differently as shown by the rug. Thus, while on average better performance is
achieved with higher values, there are many more configurations with low values. In addition,
the range of the y-axis should be taken into account, since the line in the right plot increases
rapidly, but the range of the performance values only show small differences. For these reasons,
low values are probably the better choice.

surrogate_learner: The surrogate_learner parameter was one of the most important pa-
rameters of the whole dataset. After reducing the dataset to the best 20% of the configurations,
we could see that the parameter became less important, since the remaining surrogate_learner

were mainly configurations with the factor knn1. Even though the best configurations of all
other Surrogate_learner could achieve better yval values than the most configuration of knn1,
knn1 should be chosen in principle, since it gave better results on average and made up a clear
majority of the best configurations.

random_interleave_fraction: Another very important parameter which was also the most
important hyperparameter for the best configurations was the random_interleave_ f raction pa-
rameter. In this case, the results were unambiguous, so higher values led to better results for
both the complete dataset and the subset with the best configurations. This result could be
shown with all of the effect tools used in this bachelor’s thesis.

budget_log_step: A problem, similar to the problem of the survival f raction parameter, oc-
curred for the budget_log_step hyperparameter. Across the entire dataset, higher values were
better on average, but in the best 20% of the configurations, lower values achieved better yval

values. It should be noted, however, that unlike the survival_ f raction parameter, the parameter
values were more evenly distributed and therefore good performance values could be obtained
with low and high values. In this case it was better not to limit the parameter.

filter_factor_first: If the factor knn1 of the surrogate_learner parameter has been chosen,

28

Figure 12: One PDP for the complete dataset (left) and one PDP for the best configurations
(right) for the parameter survival_ f raction. In the left plot, low values generally
achieve better average performances. For the right plot low values are a better choice
as well, since most of the top configurations have low values and the range of the
predicted values is quite small.

the f ilter_ f actor_ f irst parameter was the most important one. However, by looking at the
complete dataset, this parameter was not important. There was also a difference between the
ranges of the complete and the partitioned dataset. While values above 6 did not perform well
for the complete dataset, they achieved the best results for the partitioned dataset. Since the
majority of good values were above 4 after splitting the configurations into the best 20%, values
above 4 seemed to be a reasonable choice.

filter_factor_last: The interpretation of f ilter_ f actor_last was a little more complicated.
The hyperparameter showed large fluctuations and ranges of different prediction quality de-
pending on whether the complete or the partial dataset was considered. Moreover, although
the importance was high due to the large fluctuations, the range of predicted performances was
not very large (and actually refutes the importance). In general, it could be concluded that the
parameter value for f ilter_ f actor_last should preferably not be between 4 and 5.

filter_with_max_budget: Compared to the parameters mentioned above, the hyperparam-
eter f ilter_with_max_budget was quite easy to interpret, but was not really important for the
complete dataset, even though, considering the best configurations, the factor TRUE was the first

29

choice in combination with knn1.

Other parameters: The parameters f ilter_algorithm, f ilter_select_per_tournament and
random_interleave_random had little effect and were therefore not constrained.

The results were reviewed again by using a PCP with restricted configuration ranges. It was
found that almost exclusively performances above the average were obtained, whereas most of
them were even great performances. Nevertheless, not all top configurations could be found.
The result of the PCP is visualized in figure 13. The exact applied restrictions of the values for
the parameters can be looked up in the following chapter in table 5 or in the electronic appendix.

Figure 13: A PCP for the smashy_super dataset. The applied constraints lead to configurations
with mostly good performance values.

Lastly, the result of the dataset with the restricted parameter ranges was expressed in various
quality criteria and compared to the complete dataset. The results can be seen in table 4. It is
striking that only 13% of the remaining configurations are top configurations. This is mainly due
to the definition of the quality criterion, as configurations are only considered top configurations
if they belong to the best 5% of all configurations. If a percentage of 20% is selected, the
quality criterion would take on a value of 67%. In addition, the maximum performance value
of the constrained dataset has a value of -0.2196, which corresponds to the 99% quantile of the
complete dataset and shows that a pretty good configuration is included. The worst performance
in the restricted dataset with -0.2335 is also much better than the worst performance value of
-0.3732 concerning the entire dataset.

30

Table 4: The evaluated quality criteria for the complete and constrained smashy_super datasets.
It can be seen that the restricted range contains many good configurations and also
achieves top values.

dataset number of yrem mean min max quantile proportion top config

smashy_super 2845 -0.2347 -0.3732 -0.2105 1 1 0.05
chosen Subset 96 -0.2260 -0.2335 -0.2196 0.9933 0.0337 0.13

3.2.3 Comparison of Results

In the previous subsections the parameters were investigated for both datasets. The goal was to
restrict the configuration areas to achieve a smaller subset with including mostly good perfor-
mance values. The chosen restrictions can be seen in table 5. The results are displayed under
retransformation in order to compare them optimally with the original scaled values.

Table 5: The table contains all hyperparameters of the dataset including suggested configuration
restrictions. If no changes were made, a minus sign is used.

Parameter Range in Dataset smashy_lcbench: Restriction smashy_super: Restriction

sample {random, bohb} {bohb} {random}
surrogate_learner {KNN1, KKNN7, BOHBLRN, RF} {BOHBLRN} {KNN1}
survival_ f raction [1,∞) - [3,20]
budget_log_step [21/4,24] [21/3,24] -
f ilter_algorithm {TOURNAMENT, PROGRESSIVE} {PROGRESSIVE} -
f ilter_select_per_tournament]0,10] - -
f ilter_ f actor_ f irst [1,1000] -]55,1000)
f ilter_ f actor_last [1,1000] [148,1000)]0,55) &]148,1000)
f ilter_with_max_budget {TRUE, FALSE} {TRUE} {TRUE}
random_interleave_ f raction [0,1] [0.05,0.65] [0.5,1]
random_interleave_random {TRUE, FALSE} - -

While this table above only provides a suggested set of configuration constraints, a more
general comparison is made below, to highlight the similarities and differences of the datasets
smashy_lcbench and smashy_super.

Similarities: Fundamentally, the importance of the individual parameters in the datasets were
very similar. Thus, sample, survival_ f raction, random_interleave_ f raction were among the
most important parameters for both datasets according to the importance plot. The parameter
surrogate_learner was also quite important. In the smashy_lcbench dataset the choice of the
surrogate_learner factor was crucial for the performances of the different settings made. In the
smashy_super dataset the parameter was the most important according to the importance plot.
However, the importance of the less important parameters were also similar. Even though the
factor bohblrn was chosen for the smashy_lcbench dataset, due to the fact that, on average,
the best performance values were obtained and for the smashy_super dataset most good results
were attained with the factor knn1. High performance could be achieved for both datasets with
all factors of the surrogate_learner parameter. The result for the survival_ f raction parameter
was similar for both datasets. Generally, lower values seem to result in better performances.
Nevertheless, if the right configurations are used for the other parameters, high performances

31

can also be achieved with high values. Furthermore, other parameters showed similarities as
well. For the parameter f ilter_ f actor_ f irst most good results were obtained for values above
4 and the parameter f ilter_with_max_budget should always be set to TRUE. The parameters
f ilter_algorithm, f ilter_select_per_tournament, and random_interleave_random had little
effect on performance in either dataset and can therefore be neglected.

Differences: For the smashy_lcbench dataset, the bohb factor of the sample parameter should
always be chosen, since it was involved in almost all good results. On the contrary, for the
smashy_super dataset most of the high performances were obtained with the random factor, but
good results were achieved with bohb factors as well. Additionally, for the smashy_lcbench
dataset, the performance of the parameter depended on the surrogate_learner, while for the
smashy_super dataset, higher values generally led to better results.

4 Discussion and Conclusion

In this bachelor’s thesis, we introduced a new R package called VisHyp to visualize the achieved
performance of an algorithm in dependency of hyperparameter configurations by using four
different methods. The implemented visualization methods are partial dependence plots, im-
portance plots, heatmaps and parallel coordinate plots and can be used via a Shiny application
integrated in the VisHyp package. Furthermore, to provide a more general overview of visual-
ization methods that can be used to analyze the performance dependencies of hyperparameters,
several alternative methods have been discussed. Finally, the four main methods of this the-
sis were used to explore the hyperparameter space of two datasets and to suggest parameter
configurations. Although, the analysis resulted in configurations with good performances, the
methods reached their limits at certain points which are enumerated below:

• For the importance plot, the main effects of individual hyperparameters were calculated
and sorted by importance, but the interaction effects of combined hyperparameters were
not calculated at all. This problem can easily be solved using, for example, the func-
tional ANOVA of Hutter et al. (2014), since it computes the interaction effects up to a
desired order. Early detection of interaction terms through this method can be helpful, as
searching for interaction effects through parameter effect methods can be tedious due to
the myriad combinations of hyperparameters.

• During the analysis, it was found that PCP quickly reaches its limits with large datasets.
For many observations, the results overlapped strongly, so that hardly any statements
about good configurations could be made. With constraints of a few hyperparameter
ranges, the number of observations can be limited, but it would also be helpful to be able
to narrow down the performance values to highlight a subset of configurations.

• Finally, there is room for improvement in the implemented Shiny application. For exam-
ple, it is not yet possible to save and comment on the results of the interactive analysis.

32

This would be necessary to make the results comprehensible, which was the reason to
perform the analysis via R Markdown and not via the Shiny application. In addition, the
methods that require a surrogate model can currently only be performed with the random
forest and the application is limited to the four visualization methods mentioned. Both
could be supplemented in the future. Finally, it would be conceivable to publish the Shiny
application and to rely on extremely powerful servers in the background, since the calcu-
lation of these methods require a lot of computational time for large datasets on a local
computer.

In this work, we have shown the relationship between hyperparameters and performances
using different visualization tools without analyzing the algorithm used for the configurations.
Selecting an appropriate algorithm is an important task, but can be difficult without additional
knowledge, as running multiple algorithms can be very computationally intensive (Bischl et al.,
2012). Exploratory landscape analysis is used to create knowledge about the optimization prob-
lem before executing algorithms, so that a suitable algorithm can be found based on the prop-
erties it contains (Mersmann et al., 2011). Moreover, the knowledge about the characteristics
of the underlying optimization problem can not only be used to choose the algorithm, but could
also contribute to a better understanding of the relationship between performance and hyper-
parameter settings. Therefore, this approach could be an alternative or a complement to the
visualization methods and could be further investigated.

Nevertheless, the VisHyp package can be used for a deep analysis to support the understand-
ing of the relationship between hyperparameters and performances. The effect of individual
parameter values on the performance can be visually displayed and, for example, increase the
confidence in the selected configuration. By calculating the importance of individual hyper-
parameters, attention can be paid to the important parameters when analyzing and configuring
them. At the same time, individual parameters can be neglected due to the lack of importance,
which can lead to time savings and a better overview during the evaluation. Descriptive analysis
also provides quick insights into structures and is therefore a good complement.

33

References

D. W. Apley and J. Zhu. Visualizing the effects of predictor variables in black box supervised
learning models. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
82(4):1059–1086, 2020.

A. Biedenkapp, J. Marben, M. Lindauer, and F. Hutter. Cave: Configuration assessment, visual-
ization and evaluation. In International Conference on Learning and Intelligent Optimization,
pages 115–130. Springer, 2018.

B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß. Algorithm selection based on ex-
ploratory landscape analysis and cost-sensitive learning. In Proceedings of the 14th annual

conference on Genetic and evolutionary computation, pages 313–320, 2012.

B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann,
M. Becker, A.-L. Boulesteix, et al. Hyperparameter optimization: Foundations, algorithms,
best practices and open challenges. arXiv preprint arXiv:2107.05847, 2021.

L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

W. Chang, J. Cheng, J. Allaire, C. Sievert, B. Schloerke, Y. Xie, J. Allen, J. McPher-
son, A. Dipert, and B. Borges. shiny: Web Application Framework for R, 2021. URL
https://CRAN.R-project.org/package=shiny. R package version 1.7.1.

M. Claesen and B. De Moor. Hyperparameter search in machine learning. arXiv preprint

arXiv:1502.02127, 2015.

P. Cortez and M. J. Embrechts. Using sensitivity analysis and visualization techniques to open
black box data mining models. Information Sciences, 225:1–17, 2013.

G. Dzemyda, O. Kurasova, and J. Zilinskas. Multidimensional data visualization. Methods and

applications series: Springer optimization and its applications, 75:122, 2013.

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discovery in
databases. AI magazine, 17(3):37–37, 1996.

M. Feurer and F. Hutter. Hyperparameter optimization. In Automated machine learning, pages
3–33. Springer, Cham, 2019.

A. Fisher, C. Rudin, and F. Dominici. All models are wrong, but many are useful: Learning
a variable’s importance by studying an entire class of prediction models simultaneously. J.

Mach. Learn. Res., 20(177):1–81, 2019.

J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of

statistics, pages 1189–1232, 2001.

34

https://CRAN.R-project.org/package=shiny

J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. The Annals of

Applied Statistics, 2(3):916 – 954, 2008. doi: 10.1214/07-AOAS148. URL https://doi.
org/10.1214/07-AOAS148.

H. Gannett and F. Hewes. General summary showing the rank of states by ratios 1880. Scrib-

ner’s statistical atlas of the United States showing by graphic methods their present condition

and their political, social and industrial development, Hewes FW,(Ed.). United States. Cen-

sus Office, page 151, 1883.

A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking inside the black box: Visualizing
statistical learning with plots of individual conditional expectation. journal of Computational

and Graphical Statistics, 24(1):44–65, 2015.

B. M. Greenwell, B. C. Boehmke, and A. J. McCarthy. A simple and effective model-based
variable importance measure. arXiv preprint arXiv:1805.04755, 2018.

S. Hamid, A. Derstroff, S. Klemm, Q. Q. Ngo, X. Jiang, and L. Linsen. Visual Ensemble
Analysis to Study the Influence of Hyper-parameters on Training Deep Neural Networks. In
D. Archambault, I. Nabney, and J. Peltonen, editors, Machine Learning Methods in Visual-

isation for Big Data. The Eurographics Association, 2019. ISBN 978-3-03868-089-5. doi:
10.2312/mlvis.20191160.

J. Helton and J. P. Kleijnen. Statistical analyses of scatterplots to identify important factors in
large-scale simulations, 2. robustness of techniques. Technical report, Sandia National Labs.,
Albuquerque, NM (US); Sandia National Labs . . . , 1999.

G. Hooker. Discovering additive structure in black box functions. In Proceedings of the tenth

ACM SIGKDD international conference on Knowledge discovery and data mining, pages
575–580, 2004.

F. Hutter, H. Hoos, and K. Leyton-Brown. An efficient approach for assessing hyperparameter
importance. In Proc. of ICML-14, 2014. To appear.

A. Inglis, A. Parnell, and C. B. Hurley. Visualizing variable importance and variable interaction
effects in machine learning models. Journal of Computational and Graphical Statistics,
(just-accepted):1–26, 2021.

B. Iooss and P. Lemaître. A review on global sensitivity analysis methods. In Uncertainty

management in simulation-optimization of complex systems, pages 101–122. Springer, 2015.

H. Joo, C. Bao, I. Sen, F. Huang, and L. Battle. Guided hyperparameter tuning through visual-
ization and inference. arXiv preprint arXiv:2105.11516, 2021.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. The Journal of Machine Learning

Research, 18(1):6765–6816, 2017.

35

https://doi.org/10.1214/07-AOAS148
https://doi.org/10.1214/07-AOAS148

T. Loua. Atlas statistique de la population de Paris. J. Dejey & cie, 1873.

O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph. Exploratory
landscape analysis. In Proceedings of the 13th annual conference on Genetic and evolution-

ary computation, pages 829–836, 2011.

C. Molnar. Interpretable Machine Learning. 2019.

C. Molnar, B. Bischl, and G. Casalicchio. iml: An r package for interpretable machine learn-
ing. JOSS, 3(26):786, 2018. doi: 10.21105/joss.00786. URL https://joss.theoj.org/
papers/10.21105/joss.00786.

J. Moosbauer, M. Binder, L. Schneider, F. Pfisterer, M. Becker, M. Lang, L. Kotthoff, and
B. Bischl. Automated benchmark-driven design and explanation of hyperparameter optimiz-
ers. arXiv preprint arXiv:2111.14756, 2021a.

J. Moosbauer, J. Herbinger, G. Casalicchio, M. Lindauer, and B. Bischl. Towards explaining
hyperparameter optimization via partial dependence plots. In 8th ICML Workshop on Auto-

mated Machine Learning (AutoML), 2021b.

M. D. Morris. Factorial sampling plans for preliminary computational experiments. Techno-

metrics, 33(2):161–174, 1991.

H. Park, Y. Nam, J.-H. Kim, and J. Choo. Hypertendril: Visual analytics for user-driven hy-
perparameter optimization of deep neural networks. IEEE Transactions on Visualization and

Computer Graphics, 27(2):1407–1416, 2020.

F. Pianosi, K. Beven, J. Freer, J. W. Hall, J. Rougier, D. B. Stephenson, and T. Wagener. Sensi-
tivity analysis of environmental models: A systematic review with practical workflow. Envi-

ronmental Modelling & Software, 79:214–232, 2016.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems, 25, 2012.

I. M. Sobol. Sensitivity analysis for non-linear mathematical models. Mathematical modelling

and computational experiment, 1:407–414, 1993.

M. Staniak and P. Biecek. Explanations of Model Predictions with live and breakDown
Packages. The R Journal, 10(2):395–409, 2018. doi: 10.32614/RJ-2018-072. URL
https://doi.org/10.32614/RJ-2018-072.

R. C. Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2020. URL https://www.R-project.org.

Q. Wang, Y. Ming, Z. Jin, Q. Shen, D. Liu, M. J. Smith, K. Veeramachaneni, and H. Qu.
Atmseer: Increasing transparency and controllability in automated machine learning. In

36

https://joss.theoj.org/papers/10.21105/joss.00786
https://joss.theoj.org/papers/10.21105/joss.00786
https://doi.org/10.32614/RJ-2018-072
https://www.R-project.org

Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages
1–12, 2019.

L. Yang and A. Shami. On hyperparameter optimization of machine learning algorithms: The-
ory and practice. Neurocomputing, 415:295–316, 2020.

37

List of Figures

1 A parallel coordinate plot for four hyperparameters and the logloss performance
measure of the iaml_rpart dataset. Red lines indicate good parameter configu-
ration, dark blue lines indicate configurations with poor performance. 8

2 A heatmap for the two hyperparameters minbucket and maxdepth as well as the
performance measure logloss of the iaml_rpart dataset. Empty cells mean that
no combination of the two parameters are available. In this graphic, low values
for both parameters seem to lead to worse performance values. 10

3 A partial dependence plot for the hyperparameter maxdepth of the iaml_rpart
dataset. It can be seen that high values achieve better performance values be-
cause the predicted logloss values are lower. 12

4 The left plot shows the ALE plot with centered predictions. In the right plot the
PDP is displayed together with the ICE curves. Both plots show that values for
the hyperparameter maxdepth of the iaml_rpart dataset should not be too low
for a good average performance (low logloss). 15

5 An importance plot for four hyperparameters. A higher value also means a
higher importance of the parameter. It can be seen that cp is the most important
and minsplits the least important hyperparameter for the data of the iaml_rpart
dataset. 17

6 An example of the Shiny application implemented in the VisHyp package which
is able to visualize the four methods simultaneously and can be controlled by
different settings. 21

7 An importance plot for the smashy_lcbench dataset. The parameter sample has
the highest value and therefore is the most important parameter. 23

8 A PDP with ICE curves for the survival_ f raction parameter of the dataset
smashy_lcbench. The PDP shows that configurations with low values achieve
the best performance on average. The ICE curves illustrate that high values can
also lead to great performance values if the other parameters are set properly. . 24

9 Different PDPs for the random_interleave_ f raction parameter corresponding
to the datasets constrained by the knn1, knn7, bohblrn, and ranger factors of
the surrogate_learner parameter. It can be seen that the factors have different
effects on the estimated performance. 25

10 A PCP for the smashy_lcbench dataset. The applied constraints lead to config-
urations with mostly good performance values. 26

11 An importance plot for the smashy_super dataset, showing the surrogate_learner

parameter as the most important parameter. 27

38

12 One PDP for the complete dataset (left) and one PDP for the best configurations
(right) for the parameter survival_ f raction. In the left plot, low values gener-
ally achieve better average performances. For the right plot low values are a
better choice as well, since most of the top configurations have low values and
the range of the predicted values is quite small. 29

13 A PCP for the smashy_super dataset. The applied constraints lead to configura-
tions with mostly good performance values. 30

14 A scatterplot (left) and a colored scatterplot (right). In the left plot, only the
parameter minbucket is plotted against the performance logloss. The value of
the parameter should not be too low to achieve better performance. In the right
plot, the two parameters minbucket and minsplot are displayed and colored
according to the performance values. Because of the high number of dots the
graphic is too cluttered. The data is available from the iaml_rpart dataset. . . . 40

15 Two PDP for the categorical parameter "splitrule" of the iaml_ranger dataset.
The left plot shows the result of the classical PDP. The right plot additionally
shows the points calculated by the ICE method. It can be seen that both factors
have an almost identical effect on the performance. 40

16 Various visualization techniques and their graphics proposed by Cortez and Em-
brechts (2013) to represent parameter effects. 41

17 A break-down plot for the local importance of features. It can be seen that only
age = 8 and class = 1 have a positive effect while all other feature settings have
a negative effect on the result. The method and the example are from Staniak
and Biecek (2018). 42

List of Tables

1 All visualizations methods mentioned in the bachelor’s thesis. 6
2 An overview of all hyperparameters including explanations, configuration ranges

and scale. The table was partially adopted from Moosbauer et al. (2021a). . . . 22
3 The evaluated quality criteria for the complete and constrained smashy_lcbench

datasets. It can be seen if that the restricted range contains mostly good as well
as top configurations values. 27

4 The evaluated quality criteria for the complete and constrained smashy_super
datasets. It can be seen that the restricted range contains many good configura-
tions and also achieves top values. 31

5 The table contains all hyperparameters of the dataset including suggested con-
figuration restrictions. If no changes were made, a minus sign is used. 31

39

Appendix

Figure 14: A scatterplot (left) and a colored scatterplot (right). In the left plot, only the pa-
rameter minbucket is plotted against the performance logloss. The value of the pa-
rameter should not be too low to achieve better performance. In the right plot, the
two parameters minbucket and minsplot are displayed and colored according to the
performance values. Because of the high number of dots the graphic is too cluttered.
The data is available from the iaml_rpart dataset.

Figure 15: Two PDP for the categorical parameter "splitrule" of the iaml_ranger dataset. The
left plot shows the result of the classical PDP. The right plot additionally shows the
points calculated by the ICE method. It can be seen that both factors have an almost
identical effect on the performance.

40

Figure 16: Various visualization techniques and their graphics proposed by Cortez and Em-
brechts (2013) to represent parameter effects.

41

Figure 17: A break-down plot for the local importance of features. It can be seen that only
age = 8 and class = 1 have a positive effect while all other feature settings have
a negative effect on the result. The method and the example are from Staniak and
Biecek (2018).

42

Declaration of Authenticity

The work contained in this thesis is original and has not been previously submitted for ex-
amination which has led to the award of degree. To the best of my knowledge and belief, this
thesis contains no material previously published or written by another person excepts where due
reference is made.

Simon Pradel
Munich, February 9, 2022

	Introduction
	Methods for the Visualization of Hyperparameter Dependencies
	Notation
	Descriptive Analysis
	Parallel Coordinate Plot
	Heatmap
	Other Methods

	Parameter Effects
	PDP
	Marginal Hyperparameter Performance
	Other Methods

	Parameter Importance
	Permutation Parameter Importance Plot
	Functional ANOVA
	Local Parameter Importance
	Other Methods

	Interaction Detection

	Results
	Implementations in R and Shiny
	Application Study of Two Similar Datasets
	Dataset: smashy_lcbench
	Dataset: smashy_super
	Comparison of Results

	Discussion and Conclusion
	References
	List of Figures
	List of Tables
	Appendix

