
Bachelor Thesis

Application of neural topic models to twitter data

from German politicians

Author

Anne Gritto

Supervisors

Matthias Aßenmacher
Prof. Dr. Christian Heumann

Department of Statistics

Prof. Dr. Paul Thurner
Department of Political Science

Department of Statistics

Ludwig-Maximilians-Universität München

Munich, 23 February 2022

Abstract

Topic modelling has become an important tool in the field of Natural Language Pro-
cessing in recent years. Since we have arrived in a time, where large amounts of data
are collected every day, we need tools that are able to understand, organize and label
this mass of data. Topic models are capable of automatically extracting meaning from
text data by identifying their topics. While the focus in the field of topic modelling
has long been on Bayesian methods such as Latent Dirichlet Allocation, a new research
area emerged that is known as neural topic modelling. In the scope of this thesis, the
neural topic model BERTopic is applied to Twitter data written by German politicians.
It leverages transformer as well as BERT embeddings in order to generate meaningful
topics, although other embedding methods can also be applied. In this thesis, we used
three different embedding models: Sentence BERT, German BERT and GottBERT. Our
results show that the topics generated with Sentence BERT as embedding model were
coherent and meaningful, whereas the other two models were not able to create cohesive
topics.

Contents

List of Figures I

List of Tables III

List of Abbreviations IV

1. Introduction 1

2. General methodological background 3
2.1. A Bayesian approach: Latent Dirichlet Allocation 4
2.2. Feedforward neural network . 7
2.3. Distributed representations of words, sentences and documents 10

2.3.1. Word2Vec . 10
2.3.2. Paragraph Vector . 12

2.4. Specialized architectures . 14
2.5. Transformer-based models . 18

2.5.1. Bidirectional Encoder Representations from Transformers 21
2.5.2. Robustly Optimized BERT Approach 23

3. Neural topic modelling 24
3.1. Top2vec: Distributed representations of topics 25
3.2. Clustering of embeddings by pre-trained language models with BERTopic 26

3.2.1. Embedding Documents . 26
3.2.2. Algorithm of UMAP . 27
3.2.3. Algorithm of HDBSCAN . 33
3.2.4. Idea of class-based TF-IDF . 35
3.2.5. Maximal Marginal Relevance . 36
3.2.6. Selection of parameters in BERTopic 37

4. Application to Twitter data 39
4.1. Data . 40
4.2. Political system in Germany . 45
4.3. Evaluation . 46

4.3.1. Sentence-Transformers . 47
4.3.2. German BERT . 56
4.3.3. GottBERT . 61

5. Discussion and Outlook 64
5.1. Possible ways to reduce noise . 65
5.2. Specialized approaches for short texts by leveraging meta-data 65

6. Conclusion 67

A. Details on preprocessing of tweets 69

B. Details on topics 72

References 78

List of Figures

2.1. Feedforward neural network with an input layer, two hidden layers
and an output layer by Goldberg (2015) 8

2.2. Example of the two word2vec architectures, CBOW and Skip-gram,
proposed by Mikolov et al. (2013a). 11

2.3. The framework of PV-DM adopted from Le and Mikolov (2014). The
concatenation or average of the paragraph vector with the word vec-
tors, which are the context words, is used to predict the forth word. . 13

2.4. The framework of PV-DBOW adopted from Le and Mikolov (2014).
The paragraph vector is trained to predict the words in a context
window. 14

2.5. Multi-Head Attention mechanism used in Transformer model of Vaswani
et al. (2017). 19

2.6. Architecture of the Transformer model which was proposed by Vaswani
et al. (2017). 20

3.1. The algorithm of BERTopic by Grootendorst (2020b) 27
3.2. Examples of simplices in low dimensions, figures are adopted from

McInnes (2018). 28
3.3. Example of the approximated manifold of specific data by McInnes

et al. (2018). 30

4.1. Line plot that shows the number of tweets per day in the period of
25th March until 24th September 2017. 41

4.2. Histogram of the number of words per tweet per data set. 44
4.3. Barplot that shows the number of tweets per party. 46
4.4. Scatterplot of embedded tweets that are reduced to three dimensions

using UMAP. Only tweets are shown that are assigned to a topic,
therefore no noise included. 49

I

4.5. Scatterplot of all embedded tweets, including noise, that are reduced
to three dimensions using UMAP. 51

4.6. Heatmap of the topic‘s similarity matrix, based on cosine similarity,
which is adopted from Grootendorst (2020a). Unique tweets with
strong preprocessing are embedded with Sentence BERT. 55

4.7. Heatmap of the topic‘s similarity matrix, based on cosine similarity,
which is adopted from Grootendorst (2020a). Unique tweets with
strong preprocessing are embedded with German BERT. 60

4.8. Heatmap of the topic‘s similarity matrix, based on cosine similarity,
which is adopted from Grootendorst (2020a). Unique tweets with
strong preprocessing are embedded with GottBERT. 63

List of Tables

4.1. Number of times a tweet is cut off. 42
4.2. Examples of cut tweets. 42
4.3. Number of duplicate, empty, non-German and resulting tweets for the

four data sets. 43
4.4. Topics that are generated with SBERT for text embedding in BERTopic

for all four data sets. 50
4.5. Top 8 representative words for each of 20 topics with their respective

label of the unique tweets with strong preprocessing. 53
4.6. Example representative tweets for certain topics of the unique tweets

with strong preprocessing. 54
4.7. Top 10 representative words for the unique tweets with strong pre-

processing. German BERT is used to embed the tweets. 58
4.8. Example representative texts for the unique tweets with strong pre-

processing that were either allocated to noise or topic 0. 59
4.9. Top 10 representative words for the unique tweets with strong pre-

processing. GottBERT is used to embed the tweets. 62

B.1. List of used stopwords. 73
B.2. Top 8 representative words for each of 50 topics of the unique tweets

with strong preprocessing. 74
B.3. Top 10 representative words for each of 20 topics of the duplicate

tweets with little preprocessing. 75
B.4. Top 10 representative words for each of 20 topics of the unique tweets

with little preprocessing. 76
B.5. Top 10 representative words for each of 20 topics of the duplicate

tweets with strong preprocessing. 77

III

List of Abbreviations

BERT Bidirectional Encoder Representations from Transformers
biRNN Bidirectional Recurrent Neural Network
BOW Bag-of-words
CBOW Continuous Bag-of-words
CNN Convolutional Neural Network
c-TF-IDF class-based Term Frequency - Inverse Document Frequency
DBOW Distributed Bag-of-words
DM Distributed Memory
FFNN Feedforward Neural Network
GRU Gated Recurrent Unit
HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with

Noise
LDA Latent Dirichlet Allocation
LSTM Long Short-Term Memory
MLM Masked Language Model
MMR Maximal Marginal Relevance
NLP Natural Language Processing
NSP Next Sentence Prediction
NTM Neural Topic Model
PV Paragraph Vector
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
RoBERTa Robustly Optimized BERT Pretraining Approach
SBERT Sentence-BERT
SGD Stochastic Gradient Descent
TF-IDF Term Frequency - Inverse Document Frequency
UMAP Uniform Manifold Approximation and Projection

IV

1. Introduction

Humans have many different ways to communicate with each other, for example by
using gesture, facial expressions and also language. With human language, one can ask
questions, give instructions or express feelings and it is “one of the most complex tools
used by humans“ (Pilehvar and Camacho-Collados, 2020). Natural Language Processing
(NLP) describes methods and techniques for machine processing and understanding of
natural, human language. This allows speech-oriented interactions between individuals
and computers.

NLP is a subfield of Artificial Intelligence as computers ‘behave intelligent‘ by being able
to process text or voice data and also to understand its meaning. There are many tasks
that can be achieved using NLP, such as sentiment analysis, text classification, semantic
relatedness or topic modelling. The latter is the subject of this thesis.

As the amount of data has grown rapidly in recent years, it is difficult to obtain rele-
vant and structured information (Bansal, 2016). While humans would struggle to label
thousands of documents or find specific documents given a query, a topic model is able
to extract the most important information of texts by assigning documents to specific
topics. It is an approach of unsupervised learning and is a widely used technique in doc-
ument clustering or information retrieval from unstructured texts (Arun et al., 2010).

Although there exist various methods for topic modelling, the focus in this thesis will
be on transformer-based models which consist amongst other things of neural networks.
Since the introduction of Transformer models by Vaswani et al. (2017), they have shown
amazing results in many NLP-related tasks. Especially pre-trained models have much
power as they already hold accurate representations of words and sentences (Grooten-
dorst, 2020b).

This thesis first gives an introduction to a topic model that does not rely on neural
networks, but on Bayesian methods. Then, the basis for topic modelling with large

1

pre-trained models is set by explaining neural networks in general, their application in
NLP and their impact on the Transformer. It continues to describe a neural topic model
by Grootendorst (2020a), called BERTopic, and its algorithm which will be applied in
the course of this thesis to twitter data from German politicians. The results will be
evaluated in Chapter 4 and the thesis concludes with some future outlook.

2

2. General methodological
background

Topic modelling is a part of natural language processing which comprises many tasks.
The goal is to extract meaningful topics from given text data. While these topics may
be known prior to the modelling in some examples, this is not the case for every data.
If one does not know the real labels, as is the case in this thesis, topic modelling is a
task of unsupervised learning.

Until this day, various topic models have already been introduced with different ap-
proaches. One of the most famous ones is Latent Dirichlet Allocation (LDA) which
will be explained in section 2.1. It is a generative, probabilistic model and is based on
Bayesian methods. In contrast to that are topic models that use neural networks to ac-
complish their task. For this approach, words or texts need to be mapped to numerical
vector spaces, which is known as word and text embedding, respectively. This enables
machine learning models to process these embeddings, e.g., cluster embeddings of text
to generate topics. There are several ways to embed words, sentences and documents.
The most intuitive one is the Bag-of-words (BOW) approach. The basic idea is that a
vocabulary is learned which consists of the words in each text. A text can be a sentence,
one or more paragraphs, or documents. Therefore, one can think of this approach as a
bag that contains all unique words which are used and so any information about gram-
mar or the structure or order of words in the text is discarded. The model does not know
where words are in the document, it only concerns whether known words appear in the
document. While the bag-of-words approach can be used to generate text embeddings,
it is moreover the basis for other models such as LDA.

This chapter first gives an overview of LDA in section 2.1, the topic modelling tech-
nique that is a part of probabilistic modelling. It assumes that each document exhibits
multiple topics, therefore a document can be described as a distribution over topics.

3

Additionally, each topic is given by a distribution over words. While the documents are
observed, the topic structure is unknown beforehand and needs to be inferred. As LDA
is a probabilistic model, the hidden topic structure can be computed using its condi-
tional distribution given the documents. This is also known as calculating the posterior
distribution (Blei, 2012) in Bayesian statistics.

Following that part, a general introduction to neural networks and their role in em-
bedding documents will be given in order to understand more complex tools such as
Bidirectional Encoder Representations from Transformers (BERT). These transformer-
based models have set a milestone in NLP and are the basis of topic models that are
applied in this thesis.

2.1. A Bayesian approach: Latent Dirichlet

Allocation

Latent Dirichlet Allocation (LDA) which has been introduced by Blei et al. (2003) is a
generative probabilistic model that is able to find latent, hidden topics in text corpora.
While this is limited to text data here, LDA can also be applied to general collections
of discrete data. The basic idea is that each document can be generated as a mixture of
topics and that each topic is described by a distribution over words. Specifically, “doc-
uments are modelled via a hidden Dirichlet random variable that specifies a probability
distribution on a latent, low-dimensional topic space“ (Blei et al., 2003). This means
that each document consists of multiple topics. In addition, the underlying topics are
the same for every document in a text corpus, but each document possesses different
proportions of these topics. Another assumption the LDA model makes is that both,
topics and words, are exchangeable within a document.

Let a vocabulary of V words be given, where each word is represented by a unit-basis,
sparse vector. A document consists of N words d = {w1, ..., wN}, a corpus is then the
collection of M documents D = {d1, ..., dM} and k is defined as the number of topics.
The LDA model assumes the documents to arise by a generative process displayed in
algorithm 1. In the first place, the number of words N per document needs to be
determined with the help of a Poisson distribution. After that, the topic proportions θ

for a document d, are sampled by using a Dirichlet distribution with the parameter α

that defines the per-document topic distributions. For a small α value, the documents

4

are likely to consist of only a few topics and as α gets bigger, the documents will have
more of a topic mixture. The sum of the parameter θ equals 1 over all topics per
document,

∑k
i=1 θi = 1 with θi ≥ 0. The documents with N words are then generated

iteratively: first, a topic zn is picked that represents the topic for the nth word of
document d by using a Multinomial distribution with parameter θ. Finally, a word wn

is chosen given the selected topic and β, which is a distribution over the vocabulary
for each topic. Therefore, β can also be represented by a k × V matrix with an entry
being the probability of a certain word wj occurring in a document given a topic zi,
βij = p(wj = 1|zi = 1). Furthermore, β is the parameter of a Dirichlet distribution and
controls the distribution of words per topic. The topics will be represented by only a
few words if β is small and, in turn, consist of many words if β is large. The resulting
documents do not have correct grammar or syntax, but they contain representative
words of the distributions of topics that were chosen to be in a document. Therefore,
the LDA model is based on the bag-of-words assumption that ignores the order of words
in a document (Blei et al., 2003; Blei, 2012).

Algorithm 1: Generative process of LDA for each document d in a corpus D,
see Blei et al. (2003)
Choose number of words N˜ Poisson(ξ) in document;
Choose a topic mixture for the document θ ˜ Dir(α);
for each of the N words wn in the document do

Pick a topic zn˜ Multinomial(θ);
Choose a word wn based on p(wn|zn, β), the topic‘s zn multinomial
distribution;

end

This algorithm describes how documents can be generated. However, the documents are
given to the algorithm as input in real life and the goal is to learn the topics as well as
the word distribution of each topic. Blei (2012) describes this process as follows:

“[...] the goal of topic modeling is to automatically discover the topics from
a collection of documents. The documents themselves are observed, while
the topic structure — the topics, per-document topic distributions, and the
per-document per-word topic assignments — is hidden structure. The central
computational problem for topic modeling is to use the observed documents
to infer the hidden topic structure. This can be thought of as ‘reversing‘ the
generative process — what is the hidden structure that likely generated the

5

observed collection¿‘

As mentioned before, LDA is a generative, probabilistic model which contains observed
as well as hidden variables. The goal is to find the probabilities of these latent variables
given the observed data by computing the posterior distribution of the hidden random
variables given the observed documents. This is also called a conditional distribution
(Blei et al., 2003) and is given by

p(θ, z | d, α, β) =
p(θ, z, d |α, β)
p(d |α, β)

. (2.1)

The numerator is the joint distribution of the topic proportions θ, a set of topics z and a
document d given the parameters α and β and is according to Blei et al. (2003) defined
as

p(θ, z, d |α, β) = p(θ |α)
N∏

n=1

p(zn | θ) p(wn | zn, β).

The denominator of equation 2.1, p(d |α, β), is the probability that the real document
can be recreated, but under any topic model. This probability could be computed the-
oretically “by summing the joint distribution over every possible instantiation of the
hidden topic structure“ (Blei, 2012). However, this is intractable to compute and thus,
Blei et al. (2003) propose to use approximate inference algorithms such as Laplace ap-
proximation, variational approximation and Markov chain Monte Carlo (Blei et al., 2003;
Jordan et al., 1999).

Since its introduction, LDA has been an effective tool for topic modelling and has shown
good results in many fields (Blei, 2012). Besides, it is easy to apply as there are im-
plementations in Python, e.g. in the package scikit-learn by Pedregosa et al. (2011).
Another advantage of LDA is that it can also contribute to more complicated goals by
extending and adapting the model in different ways. However, LDA suffers from some
drawbacks as well, such as determining the number of topics K in advance. While the
bag-of-words assumption can be accepted when doing topic modelling, it still loses the
order of words and therefore also its context and could not be used, for example, for
language generation (Blei, 2012). Apart from LDA, which is a Bayesian approach, neu-
ral networks have gained a lot of attention in recent years to perform topic modelling,
as those are able to capture the semantics and context of words in documents.

6

2.2. Feedforward neural network

The beginning of neural networks can be traced back to the 1940s, when neurophysiol-
ogist, Warren McCulloch, and mathematician, Walter Pitts, described how neurons in
the brain work. These neurons are attached and operate as information messengers. A
neuron can initiate an electrical impulse when some threshold of excitation is exceeded
(Pitts and McCulloch, 1943). This enables neurons “to transmit information between
different areas of the brain, and between the brain and the rest of the nervous system“
(National Institute of Neurological Disorders and Stroke, 2002). Neural networks are
inspired by this computation mechanism of the brain.

A Feedforward Neural Network (FFNN) takes an input, gives that through a number of
hidden layers which are non-linear functions to pass it to its output. Figure 2.1 shows
a typical neural network with two hidden layers. Every circle can be thought of as
neurons that are arranged in layers and each neuron of a layer is connected to those of
the adjoined layer. Therefore, this FFNN is fully connected. Each neuron is connected
by arrows which all carry a weight that reflect its importance. Furthermore, “the sigmoid
shape inside the neurons in the middle layer represents a non-linear function [...] that
is applied to the neuron‘s value before passing it to the output“ (Goldberg, 2015). The
layers can be represented as vectors which may have different dimensions. In figure 2.1,
e.g., the input vector x = (x1, ..., x4) has 4 dimensions, while the first and second hidden
layer consist of 6 and 5 layers respectively, and the output layer y = (y1, y2, y3) then
only has 3 dimensions. One can think of the first hidden layer as a linear transformation
that starts with 4 dimensions and results in 6 dimensions.

The hidden layers are represented as functions which need to be approximated. Specif-
ically, a good mapping ŷ = f(x; θ) needs to be found where θ is learned by the neural
network. As the neural network in figure 2.1 contains two hidden layers, it has two
functions f (1) and f (2) which are attached in a chain to form f(x) = f (2)(f (1)(x)). The
depth of the model is given by the length of this chain (Goodfellow et al., 2016, Chapter
6).

The simplest FFNN is the perceptron which can be seen as a linear function f(x; θ) of
the input:

f(x;w, b) = xTw + b

7

Figure 2.1.: Feedforward neural network with an input layer, two hidden layers and an
output layer by Goldberg (2015)

where w is the weight matrix and b a bias term (Goodfellow et al., 2016, Chapter 6). To
describe the features adequately, a non-linear function must be used which is called an
activation function ϕ. The activation function for a vector of hidden units is defined as

h = ϕ(W Tx+ c)

with W being the weights of a linear transformation and c the biases, therefore a vector
of biases b. While W and c are learned during training, the function ϕ is given and can
have different forms, e.g., sigmoid, tanh or rectified linear unit (ReLU). The latter is
simple to work with, computationally cheap and also produces excellent results. It is
defined as

ϕ(x) = ReLU(x) = max(0,x) =

0 x < 0

x otherwise.
(2.2)

A FFNN is called feedforward because the information flows only in one direction and

8

there exist thus no feedback connections. If a neural network has feedback connections,
it is called a recurrent neural network (RNN).

Training a neural network with stochastic gradient descent

Training a FFNN is similar to training a typical machine learning model with gradient
descent (Nielsen, 2015). Therefore, a cost function

J(θ) = E(x,y) L(ŷi, yi) = E(x,y) L(f(xi|θ), yi)

between predicted ŷi and actual values yi needs to be minimized, where L is the loss
function. The goal is to find those parameters θ of the neural network that minimize
the cost function J(θ) (Nielsen, 2015). The loss function that is used to train neural
networks relies typically on maximum likelihood estimation and is the negative log-
likelihood L(f(xi|θ), yi) = − log p(yi|xi; θ).

To minimize J(θ) with respect to its parameters θ, an iterative algorithm called Stochastic
Gradient Descent (SGD) can be used. Algorithm 2 gives an overview of SGD. First, a
random data point is sampled from the training data set. Second, the loss function needs
to be computed and therefore also the prediction ŷ = f(x|θt) based on the initial pa-
rameter θt. The gradient is then obtained via backpropagation (Rumelhart et al., 1986)
which calculates the derivatives of the loss function by using the chain rule. Lastly, the
parameters θt are updated in the direction of the gradient and scaled with a learning
rate η (Goldberg, 2015).

Algorithm 2: Training a neural network with stochastic gradient descent and
mini-batch size of 1. Algorithm is adopted from Goldberg (2015).
while stopping criteria have not met do

1. Randomly sample a data point (x, y);
2. Compute loss function based on parameter estimation θt
L(ŷ, y) = L(f(x|θt), y) = log p(yt|xt; θ);

3. Get the gradient of the loss function w.r.t θ

gt+1 = ∇L(ŷ, y) =
(

∂
∂θj
L(ŷ, y)

)
j=1,...,r

;

4. Update the parameter with the gradient gt+1 and a learning rate η
θt+1 ← θt − η gt+1;

end

The following chapter now presents ways to embed words and texts in numerical vectors

9

that are based on neural networks.

2.3. Distributed representations of words, sentences

and documents

There exist several ways to transform text data into numerical vectors in order to feed
them to other machine learning algorithms. The most simple one is the bag-of-words
approach which was shortly described at the beginning of this chapter. Although it is
intuitive to understand and easy to implement, it loses the order of words and therefore,
the context of a document. Methods that are based on neural networks are more complex
on the one hand. But on the other hand, they are able to capture the semantics and
contexts of words. One important component in neural networks for language is the
usage of an embedding layer in which words, sentences or texts are mapped to continuous
vectors in a relatively low-dimensional space. Machine learning algorithms can then
operate with these embeddings because they are numerical representations of symbols.
This representation of phrases is learned by the neural network while training (Goldberg
and Hirst, 2017).

Rumelhart et al. (1986) first proposed distributed representations for words which was
the beginning of various other methods. One successful technique to embed words was
then introduced by Mikolov et al. (2013a) known as Word2Vec. One advantage of
distributed representations of words is that words with similar meanings are close to each
other in the vector space. For example, the representations of Germany and France are
close to each other, whereas Germany and apple are more distant. After that milestone
in NLP was set, other forms of embedding methods were researched, such as sentence
and document embeddings.

2.3.1. Word2Vec

Word2Vec learns vector representations for words by using a simple feedforward neural
architecture that is trained with language modelling objective (Pilehvar and Camacho-
Collados, 2020; Mikolov et al., 2013b). Every word is mapped to a unique vector and is
represented by a column in the weight matrix W . Word2Vec is also known as a predictive
model as the task is to predict a word given the other words in a context (Le and Mikolov,

10

2014). Unlike bag-of-words, Word2Vec captures the context and semantics of a word,
e.g., the representations of vector(King) - vector(Man) + vector(Woman) result in a
vector that is very close to vector(Queen) (Mikolov et al., 2013c).

(a) The framework of CBOW combines the vector
representations of the surrounding words to pre-
dict the middle word.

(b) The framwork of Skip-gram uses the distributed
representation of an input word to predict its
context.

Figure 2.2.: Example of the two word2vec architectures, CBOW and Skip-gram, pro-
posed by Mikolov et al. (2013a).

Two different Word2Vec models were proposed: Continuous Bag-of-words (CBOW) and
Skip-gram which are depicted in figure 2.2. The training objective of the CBOW model
is to join the representations of surrounding words, the context, to predict the current
middle word. This can be achieved according to Le and Mikolov (2014) by maximizing
the average log probability, given a sequence of words w1, w2, ..., wT , as

1

T

T−k∑
t=k

log p(wt|wt−k, ..., wt+k)

with wt being the target word and

p(wt|wt−k, ..., wt+k) =
exp (ywt)∑
i exp (yi)

.

The Skip-gram model is the counterpart of Continuous Bag-of-words. Its aim is to
predict the context given the distributed representation of the input word. The objective

11

of the the Skip-gram model is according to Mikolov et al. (2013b) also to maximize the
average log probability

1

T

T∑
t=1

∑
−c≤ j≤ c, j ̸=0

log p(wt+j|wt)

where c denotes the size of the context and p(wt+j|wt) is defined by using the softmax
function

p(wO|wI) =
exp

(
v

′
wO

T vwI

)∑W
w=1 exp

(
v′
wO

T vwI

)
with vw and v

′
w being the input and output vector representation of words and W being

the number of words in the vocabulary. The architectures of these models are shown in
figure 2.2. Both, CBOW and Skip-gram, are trained by using stochastic gradient descent
and the gradient is then obtained via backpropagation (Rumelhart et al., 1986).

2.3.2. Paragraph Vector

Le and Mikolov (2014) introduced Paragraph Vector (PV), which is also known as
Doc2Vec, to predict words in a given paragraph. It is an unsupervised algorithm that
learns continuous distributed vector representations of texts. These texts may differ in
length and can therefore be sentences, paragraphs or large documents as well. Doc2Vec
is inspired by the method for learning word vectors but adds a unique vector for each
paragraph. There are two different approaches of Paragraph Vector: Distributed Mem-
ory and Distributed Bag-of-words.

In the Distributed Memory (DM) model of Paragraph Vectors (PV-DM), paragraph
vectors and word vectors both contribute to predicting the next word given several
contexts which are sampled from the document. This framework is depicted in figure
2.3. Every paragraph gets a vector, which is represented by a column in matrix D.
The paragraph vectors are unique among paragraphs, while the word vectors, which are
vectors represented by a column in matrix W , are shared. The paragraph vectors and
word vectors are either concatenated, averaged or summed to predict the next word in
a context.

This approach is called Distributed Memory as the “paragraph vector represents the

12

Figure 2.3.: The framework of PV-DM adopted from Le and Mikolov (2014). The con-
catenation or average of the paragraph vector with the word vectors, which
are the context words, is used to predict the forth word.

missing information from the current context and can act as a memory of the topic of
the paragraph“ (Le and Mikolov, 2014). The training of word and paragraph vectors is
done by using stochastic gradient descent and backpropagation (Rumelhart et al., 1986).
At every step of gradient descent, a fixed-length context is sampled from a random
paragraph. Then an error gradient is computed which is used to update the parameters
in the model. If a paragraph vector needs to be computed for a new paragraph, an
inference step is being used, which is also attained by gradient descent. When the
training has finished, one can use the paragraph vectors as features to feed to machine
learning techniques such as logistic regression (Le and Mikolov, 2014). PV-DM is based
on the idea of Continuous bag-of-words which was described in part 2.3.1.

The Distributed Bag-of-words (DBOW) model of Paragraph Vectors (PV-DBOW) loses
the order of words as the context words are being ignored. Here, only the paragraph
vectors are used to predict words in a small window. Figure 2.4 shows the framework
of Distributed bag-of-words that is inspired by Le and Mikolov (2014). It illustrates
that only the paragraph vectors of matrix D are used to predict the output. Paragraph
vectors are also trained in this approach by gradient descent and backpropagation. At

13

Figure 2.4.: The framework of PV-DBOW adopted from Le and Mikolov (2014). The
paragraph vector is trained to predict the words in a context window.

every step of stochastic gradient descent, a text window and a random word from that
specific text window are sampled to form a classification task given the paragraph vector.
PV-DBOW is similar to the Skip-gram model of Word2Vec. This model is conceptually
simple. Furthermore, it does not need to store as much data as Distributed Memory
has to because it does not have to learn vector representations of each word. In Le
and Mikolov (2014), the authors suggest combining PV-DM and PV-DBOW because its
combination is more consistent across many tasks.

2.4. Specialized architectures

Apart from feedforward neural networks that are used, e.g., in Word2Vec or Paragraph
Vector presented in section 2.3, other architectures such as Convolutional Neural Net-
works (CNNs) or Recurrent Neural Networks (RNNs) find application in the machine
learning context. CNNs, for example, are prevalent in image processing tasks or com-
puter vision. This network uses filters to extract relevant features from the input data.
If the input data are images, CNNs capture their spatial features which help to iden-
tify objects (Pai, 2020). A feedforward neural network becomes a CNN as soon as one
hidden layer is a convolutional layer and has several assumptions. Firstly, it assumes

14

that the same object can be in different areas, therefore the features of an object are not
determined by its position in the input. Secondly, a CNN expects meaningful objects
to occur in a coherent area. Lastly, with a higher number of convolutional layers, the
features become more complex and can capture bigger objects (Goodfellow et al., 2016,
Chapter 9). In the following, recurrent neural networks will be explained in more depth
as those are often applied in natural language processing tasks.

Recurrent neural networks

While CNNs use convolutional layers to deal with a grid of values, a RNN (Elman,
1990) processes sequences of input data. As text is written and read sequentially, RNNs
are particularly important in natural language processing. Especially RNNs with gated
architectures such as LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Cho et al.,
2014) are “powerful at capturing statistical regularities in sequential inputs“ (Goldberg
and Hirst, 2017). A RNN consists of an input and output layer, as well as of a dynamic
number of hidden layers, just like a FFNN. However, a recurrent neural network shares
its parameters across different time steps. Furthermore, it accepts a new input at each
time step which acts as a memory of the contents of the previous sequences (Ruder,
2019).

Let x = {x1, ..., xJ} be an ordered sequence of inputs, e.g. a sentence with embedded
words. The hidden units of the network are updated recursively and the current hidden
state h is represented at each time step t as

ht = tanh(Wxt + Uht−1 + b)

yt = ϕy(V ht + c)

where h0 is initialized with 0 at the beginning, W,U and V are weight matrices and b

as well as c denote the biases. One can see here that the previous hidden state ht−1

is considered when computing the new hidden state ht. Furthermore, the RNN can
produce an output yt at each time step, where ϕt is an activation function (Ruder, 2019;
Goodfellow et al., 2016, Chapter 10).

Recurrent neural networks can be trained via backpropagating through time (Werbos,
1988). However, when training an RNN, one may encounter the problem of vanishing or

15

exploding gradients. During backpropagation, the gradients are multiplied repeatedly
with the same values. Gradients that are smaller or greater than 1, will either vanish or
explode at some point when going back through the network (Aßenmacher, 2021). Due
to the vanishing gradients problem, a model is unable to learn long-range dependencies
across time steps which is also known as a short-term memory (Phi, 2018). As RNNs
suffer from short term memory, LSTMs and GRUs can be applied to combat that weak-
ness. These two are special recurrent neural networks that are able to learn long-term
dependencies by using gates. The gates are tensor operations that learn which informa-
tion to add to or remove from the hidden state (Phi, 2018; Hochreiter and Schmidhuber,
1997; Cho et al., 2014).

While an RNN is able to model sequential data, it processes this data in a left-to-right
manner and therefore only considers the previous words w1, ..., wt−1 of a word wt. How-
ever, future input information wt+1, ..., wn is also useful for prediction. To overcome
this limitation, Schuster and Paliwal (1997) proposed a bidirectional recurrent neural
network (biRNN) that adds a hidden layer to the network to process information in a
backward direction. Hence, two different representations of the forward and backward
RNN can be produced with a biRNN which are then concatenated and form a represen-
tation of each token that considers its left and right context (Aßenmacher, 2021; Zhang
et al., 2021, Chapter 9).

Encoder-decoder architecture

One task when processing text data is machine translation which can be understood as
automatically translating a sequence, e.g., a sentence to another language. As sentences
are built differently in languages, the length of the output sequence may have a different
length than the input sequence. Encoder-decoder architectures take this requirement
into account. The encoder transforms the input of variable sequence length into a state
which has a fixed shape. Then, the decoder uses that state to map it to a variable-
length output sequence. Sutskever et al. (2014) introduced this architecture, which
is also known as sequence-to-sequence modelling, and both, encoder and decoder are
designed by using RNNs (Zhang et al., 2021, Chapter 9).

Attention mechanism

Encoder-decoder architectures are neural models that have set an important milestone
in NLP and specifically machine translation. Nevertheless, the encoder transforms the

16

input sequence into a fixed-length hidden state which results in a bottleneck when trying
to improve the performance of this architecture. For that reason, Bahdanau et al. (2014)
proposed the attention mechanism, to allow a model to automatically search for those
parts of an input sentence that contain the relevant information to predict a target word.
Just as neurons in neural networks, attention-based models are inspired by the brain.
For example, although a human receives more visual information every second than the
brain can process, one is able to filter and direct one‘s attention to objects of inter-
est. Attention models try to adopt this ability by weighting representations differently,
therefore aligning only to those parts that are relevant for prediction (Zhang et al., 2021,
Chapter 10). Formally, weights can be computed for every encoded representation in the
hidden layers (h1, ..., hTin

), also called annotations, where Tin denotes the length of the
input sequence. The weight αij for each annotation hj is given according to Bahdanau
et al. (2014) by

αij =
exp (eij)∑Tin

k=1 exp (eik)
, (2.3)

where eij is the alignment calculated by an alignment model a(.) with inputs being the
previous hidden state si−1 and the annotation hj:

eij = a(si−1, hj). (2.4)

After that, a context vector ci can be computed as the weighted sum of the annotations
of the input sequence:

ci =

Tin∑
j=1

αijhj. (2.5)

This process is described by Bahdanau et al. (2014) as:

“The probability αij , or its associated energy eij, reflects the importance of
the annotation hj with respect to the previous hidden state si−1 in deciding
the next state si and generating yi. Intuitively, this implements a mechanism
of attention in the decoder. The decoder decides parts of the source sentence
to pay attention to. By letting the decoder have an attention mechanism, we
relieve the encoder from the burden of having to encode all information in

17

the source sentence into a fixed-length vector. With this new approach the
information can be spread throughout the sequence of annotations, which
can be selectively retrieved by the decoder accordingly.“

An important advantage of the attention mechanism when being compared to RNNs is
its remarkable long-term memory. In theory, it has an infinite context window which the
model can resort to while generating text. Transformer models, which will be explained
in section 2.5, share this advantage as they consist of an attention-based encoder-decoder
architecture (Phi, 2020).

2.5. Transformer-based models

Since their introduction by Vaswani et al. (2017), transformer models have been applied
in many tasks in the field of NLP such as machine translation or conversational chat-
bots because they show state-of-the-art results. Transformers have an encoder-decoder
architecture (Section 2.4) where both networks, encoder as well as decoder, rely on self-
attention and multi-head attention. The principle of attention mechanism was described
in the previous section. To achieve self-attention, the embeddings of an input sequence
are fed through three distinct linear layers to create a query, key and value vector, de-
noted as qi, ki and vi respectively of dimensions dq, dk and dv. The attention function
is calculated on a set of queries simultaneously and therefore the vectors of query, key
and value result in the matrices Q ∈ Rnin×dk , K ∈ Rnin×dk and V ∈ Rnin×dv . While
the computation of the attention weights αij and the context vector ci is equivalent to
formulas 2.3 and 2.5, the alignment score is calculated as

a(Q,K) =
QKT

√
dk

(2.6)

Note that the dimensions of the queries and keys, dq and dk, must be equal. This
attention mechanism is also known as the scaled dot-product attention and when putting
the pieces of formulas 2.3, 2.5 and 2.6 together, the Attention function is given in matrix
notation according to Vaswani et al. (2017) by

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V.

18

Generally speaking, the self-attention mechanism empowers the model to associate each
individual word in the input to other words in the input and is able to predict which
words are likely to occur together (Phi, 2020).

Figure 2.5.: Multi-Head Attention mecha-
nism used in Transformer model
of Vaswani et al. (2017).

The multi-head attention mechanism is
then displayed in figure 2.5. Vaswani
et al. (2017) found it beneficial to exe-
cute this mechanism of self-attention h

times in parallel, rather than conducting
a single attention function. This means
that the model learns h different projec-
tion matrices for values, keys and queries,
respectively, which “project the input em-
beddings into different sub-spaces of the
original embedding space“ (Aßenmacher,
2021). The scaled dot-product attention
is then computed in parallel and its results
are concatenated. Lastly, the concate-
nated vector is being linearly projected
which results in the final values. Both, encoder and decoder, contain self-attention
layers.

The architecture of the Transformer model is depicted in figure 2.6 where the encoder
is shown on the left half and the decoder on the right. In general, the encoder produces
distributed representations z = (z1, ..., zTin

) of an input sequence of tokens (x1, ..., xTin
).

The decoder then uses z to generate the output sequence (y1, ..., yTout), while the previ-
ously produced tokens are being fed at each time step as an additional input (Vaswani
et al., 2017). In the following, the encoder and afterwards the decoder will be explained
in more detail.

The first step of the encoder is to embed an input sequence into vector representations
of each token. Due to the lack of the model‘s recurrence or convolution, it would lose
information about the order of the sequence. To counteract this, Vaswani et al. (2017)
added positional encodings such as

19

Figure 2.6.: Architecture of the Transformer model which was proposed by Vaswani et al.
(2017).

PE(pos,2i) = sin
(pos

100002i/dmodel

)

PE(pos,2i+1) = cos
(pos

100002i/dmodel

) (2.7)

with pos being the position, i the dimension and dmodel denotes the output dimension
of the encoder. It produces output vectors for even and odd indices of the input vector,
respectively, which are then added to their corresponding input embedding (Phi, 2020).
The embeddings with their positional encoding are subsequently passed in the encoder
layer which is constructed of a stack of six identical layers, where each layer consists
of a multi-head self-attention mechanism and a feedfoward neural network. Residual
connections (He et al., 2015) are employed around the multi-head attention module
as well as the FFNN, which means that the output of each module is added to their
corresponding input. Furthermore, the outputs of both residual connections go through

20

a layer normalization (Ba et al., 2016). The outputs of the embedding layers and the
modules, multi-head attention mechanism and FFNN, in the encoder are of dimensions
dmodel = 512.

The decoder layer also consists of a stack of six identical layers and its construction is
similar to the one of the encoder. Each layer consists of two multi-headed self-attention
mechanisms and a FFNN, where all modules also have residual connections and a layer
normalization. The decoder takes two inputs: the true outputs and the continuous
representations generated by the encoder which contains the inputs‘ information (Phi,
2020). The true outputs are first fed into an embedding and positional encoding layer as
in formulas 2.7. The resulting embeddings then go through the first multi-head attention
module which returns the attention scores for the continuous representations of the
encoder. This self-attention mechanism behaves a little different than the other two.
As the decoder generates a sequence token by token and is, moreover, autoregressive,
it should not consider future tokens. Therefore, a mask is applied on future tokens
which prevents them from contributing to the predictions. This first module outputs
a masked vector that holds information on how the model should attend to the input.
Furthermore, it acts as an input, specifically as the values vector vi, for the second multi-
head attention mechanism. The continuous representations produced by the encoder are
the queries and keys in this layer and the decoder can then decide on which inputs to
focus (Phi, 2020). The third module is then again a feedforward neural network and the
outputs are passed through a linear layer which can be thought of as a classifier. Lastly,
that produced output is fed into a softmax layer to produce probability scores.

This concludes the architecture of the Transformer model, a sequence transduction model
that is based on attention mechanisms. Originally, the focus of the research of Trans-
former models was laid on translation tasks, but after that, other influential models based
on the Transformer architecture, such as BERT (Bidirectional Encoder Representations
from Transformers), were introduced (Carrigan et al., nd).

2.5.1. Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT), proposed by Devlin
et al. (2018), relies on a Transformer-based architecture and is able to capture bidirec-
tional context from text data. It has been pre-trained as a language model on large
amounts of unlabelled text in a self-supervised manner (Carrigan et al., nd). To exploit

21

its full potential, the model can be fine-tuned on a given downstream task in a supervised
way. This process is also called transfer learning as the knowledge of the pre-trained
model is shifted to a more task-specific knowledge.

A BERT model can have different sizes. In the original paper, Devlin et al. (2018)
put their focus on a base and a large model. The base model of BERT consists of 12
Transformer blocks L, a hidden size of H = 768 and A = 12 self-attention heads, while
the large model is trained with L = 24, H = 1024 and A = 16. The vocabulary of BERT
is defined by the WordPiece embeddings (Wu et al., 2016) which contains 30000 tokens.

Pre-training BERT

The goal of pre-training is to give the model an understanding of the language and its
context. Therefore, BERT is trained in this phase on two unsupervised tasks simultane-
ously: Masked Language Modelling (MLM) and Next Sentence Prediction (NSP). The
training objective of MLM is to predict masked tokens given a sentence. The masked
tokens all represent a word because a certain percentage of input words are being ran-
domly masked out to train a bidirectional representation (Devlin et al., 2018). When
training with NSP, BERT considers two sentences s1 and s2 and determines whether s2
actually follows s1. This can be understood as a binary classification problem in order
to capture the relationship between two sentences. Specifically, 50% of the time the sec-
ond sentence is the actual next sentence and 50% of the time it is a randomly sampled
sentence (Devlin et al., 2018). BERT has been pre-trained as a language model on large
amounts of raw text, specifically on the BooksCorpus (Zhu et al., 2015) and English
Wikipedia which consist of 800 million and 2500 million words, respectively. The base
BERT model results after pre-training in 110 million parameters and the large model in
340 million total parameters (Devlin et al., 2018).

Fine-tuning BERT

Once the BERT model is pre-trained, which needs huge computational cost, it can be
fine-tuned on specific tasks which requires less data to get good results. Furthermore,
the amount of time and resources that are needed are much lower (Carrigan et al., nd).
Fine-tuning is done by initializing the BERT model with the parameters learned from
pre-training which are then fine-tuned while training the model on the downstream task
(Devlin et al., 2018).

22

2.5.2. Robustly Optimized BERT Approach

Robustly optimized BERT approach (RoBERTa), proposed by Liu et al. (2019), relies
heavily on the architecture of a BERT model, but some adjustments have been made.
Firstly, the authors decided to use a larger text corpora to pre-train the model. While
BERT is trained on approximately 16GB of uncompressed text, RoBERTa considers
over 160GB of text data. Secondly, instead of masking the tokens once before pre-
training, Liu et al. (2019) chose a dynamic masking which means that the masking
pattern is updated each time, a new sequence is fed to the model. Thirdly, RoBERTa
discards the NSP objective in the pre-training phase as Liu et al. (2019) found that it
would slightly improve the performance of downstream tasks. The RoBERTa model is
furthermore trained on a larger batch size than BERT (8000 vs. 256) as the perplexity
score improves for the MLM objective as well as the accuracy of the downstream task.
Lastly, RoBERTa is trained with a vocabulary that consists of 50000 tokens, it has
therefore increased compared to the vocabulary used for BERT (Liu et al., 2019).

23

3. Neural topic modelling

Topic modelling is an important task in NLP because it can help humans to understand
large document collections. This would be challenging otherwise as the amount of data
has immensely increased in recent years. It is an unsupervised approach which has been
successfully applied for text analysis for nearly twenty years. The goal of a topic model
is to find a set of latent topics from a collection of documents. Each topic is supposed
to be represented by an interpretable semantic concept (Zhao et al., 2021).

In the beginning, a lot of focus was on LDA, a Bayesian probabilistic topic model, which
was explained in section 2.1. When neural networks were used for topic modelling, a new
research area emerged, called neural topic models (NTMs; Zhao et al., 2021). NTMs
can also be applied to NLP tasks such as summarization, text generation or translation
which was not feasible for LDA.

The focus of this thesis is on NTMs with pre-trained language models such as BERT.
Note, however, that also neural topic models exist that do not rely on pre-trained models,
e.g. an autoregressive NTM (Larochelle and Lauly, 2012).

This Chapter will first describe Top2vec which outputs distributed representations of
topics, given a document collection. This approach set the basis for BERTopic, an
algorithm that performs density-based clustering on low-dimensional embeddings gen-
erated with BERT. It is used in this thesis to perform topic modelling of tweets written
by German politicians. In the end, methods to evaluate the resulting topics will be
explained.

24

3.1. Top2vec: Distributed representations of topics

Top2vec is a technique introduced by Angelov (2020) that leverages word and docu-
ment embeddings, which are described in section 2.3, to create continuous vector rep-
resentations of topics. While word2vec (Section 2.3.1; Mikolov et al., 2013a) produces
distributed representations of words that are able to capture semantic and syntactic
word relationships, doc2vec (Section 2.3.2; Le and Mikolov, 2014) extends word2vec by
additionally generating distributed representations of documents.

According to Griffiths et al. (2007), “the association between words [and documents] de-
pends on the distance between them in a semantic space“. Therefore, semantically sim-
ilar documents and words, respectively, should be close to each other in the embedding
space. Since doc2vec calculates both, vector representations of words and documents,
Angelov (2020) uses this approach to jointly learn word and document embeddings which
are hence represented in the same semantic space. Angelov (2020) sees this space as a
continuous representation of topics, where a topic is represented by a dense area of doc-
uments because they are close to each other and are therefore similar. The topic vectors
can then be computed, for example, as an average of all document vectors that belong
to the same dense area. Representative words for each topic are determined by finding
those word vectors that are the closest to each topic vector in semantic space. Finally,
top2vec assumes that the number of topics is given by the number of dense areas that
the document vectors form (Angelov, 2020).

The resulting document vectors of doc2vec in the embedding space, that typically con-
sists of around 300 dimensions, are very sparse. Hence it is difficult to find dense areas
and it would need high computational cost. Therefore, Angelov (2020) uses the algo-
rithm Uniform Manifold Approximation and Projection in order to reduce the dimen-
sions of the distributed representations of documents. Dense areas can then be found in
low-dimensional space with the density-based clustering algorithm Hierarchical Density-
Based Spatial Clustering of Applications with Noise (Angelov, 2020). Both algorithms
will be explained in more detail in sections 3.2.2 and 3.2.3, respectively.

Top2vec set the basis for other approaches that use dimension reduction and density-
based clustering in order to find semantically similar documents and topics, such as
BERTopic (Grootendorst, 2020a). Although BERTopic is similarly structured as top2vec,
it does not use doc2vec to produce vector representations of documents, but it relies on
BERT models. The following section will further describe BERTopic.

25

3.2. Clustering of embeddings by pre-trained

language models with BERTopic

BERTopic which was introduced by Grootendorst (2020b) is a topic modelling technique
that uses dimensionality reduction and density-based clustering to create topics of em-
bedded texts. The algorithm can be described in roughly three steps which are shown
in figure 3.1. First, the documents at hand need to be embedded which can be per-
formed by using BERT, but also by any other embedding technique. Second, Uniform
Manifold Approximation and Projection (UMAP) reduces the dimensionality of the re-
sulting embeddings whilst keeping a significant part of the high-dimensional structure in
lower dimension (McInnes et al., 2018). Additionally, these low-dimensional embeddings
are being clustered using HDBSCAN (Hierarchical Density-Based Spatial Clustering of
Applications with Noise). Each created cluster then consists of semantically similar doc-
uments. Third, representative words need to be extracted from each cluster to determine
the topics, which is done via class-based TF-IDF (Term Frequency - Inverse Document
Frequency). If the document embeddings are generated within BERTopic, the coherence
of words within each topic will be improved. This can be achieved by using Maximal
Marginal Relevance. In the following, each step will be explained more in-depth.

3.2.1. Embedding Documents

In this step, the documents are converted into numerical vectors in order to feed them
to machine learning algorithms. There are many ways to achieve this, e.g. with the bag-
of-words approach which does not rely on neural networks or Doc2Vec as explained in
section 2.3. Furthermore, BERTopic is able to use transformer-based models which show
state-of-the-art results. One huge advantage of using BERT for embedding documents
is that there are many pre-trained models available which are ready to be used. In
this work the sentence transformer models are used since the resulting representations
usually work well for document-level embeddings. The defaults in BERTopic are set
to two sentence transformers, depending on whether one selects a multilingual model.
The default model for English texts only, ‘all-MiniLM-L6-v2‘, is an all-round model
that is trained on a large and diverse dataset of over one billion training pairs. If
the data consists of non-English texts, the parameter language needs to be changed to
‘multilingual‘. Then, the sentence transformer model ‘paraphrase-multilingual-MiniLM-

26

Figure 3.1.: The algorithm of BERTopic by Grootendorst (2020b)

L12-v2‘ will be used to embed the documents. It is similar to the English model, however
it works for more than 50 languages and is therefore a bit larger.

3.2.2. Algorithm of UMAP

UMAP is a manifold learning technique by McInnes et al. (2018) that performs non-
linear dimension reduction. The theoretical foundations are based on topological data
analysis, manifold theory and Riemannian geometry (McInnes et al., 2018). UMAP
can also be described as a weighted graph because it works in terms of fuzzy simplicial
sets that are constructed of simplicial complexes which consist of 0- and 1-simplices
(Hatcher, 2000). These fuzzy simplicial sets of local manifold approximations are being
connected to build a topological representation of the data in high dimensional space.
The low dimensional data is then supposed to have a fuzzy topological structure that
is as similar as possible which can be achieved by minimizing the cross-entropy of these
two representations. To construct a fuzzy topological representation one needs to ap-
proximate a manifold on which the data is assumed to be located. In the following, a

27

little introduction to topology and simplicial complexes will be given. After that, the
method for approximating the manifold will be explained. Then, it will be discussed how
to find and optimize the corresponding low dimensional representations. To conclude
this section, an overview of the algorithm of UMAP will be given.

Topological data analysis, simplicial complexes and simplicial sets

Topological spaces can be constructed out of simple combinatorial components with the
help of simplicial complexes (Jänich, 2005, Chapter 7). These simplicial complexes are
built by glueing together some building blocks which are called simplices. According to
Dieck (2008), a simplicial complex C = (E, S) contains a set E of vertices and a set
S of finite non-empty subsets of E. A set s ∈ S which has q + 1 elements is called a
q-simplex of C, where q is also called the dimension of s. An example can be seen in
figure 3.2 in which a 0-simplex is just a point or a vertex, a 1-simplex is a line or an
edge between two 0-simplices, a 2-simplex is represented as a triangle and a 3-simplex
as a tetrahedron. A simplicial complex then constructs topological spaces by glueing
together these simplices. A simplicial complex has n dimensions if it consists of at least
one n- simplex but no (n+1)-simplices. In the case of UMAP, the simplicial complexes
consist of only one dimension and are therefore a graph Dieck (2008).

Figure 3.2.: Examples of simplices in low dimensions, figures are adopted from McInnes
(2018).

Simplicial sets are more abstract, but they can create a broader class of topological
spaces. May (1967) defined a simplicial set K as a graded set indexed on the non-
negative integers together with maps ∂i : Kq → Kq−1 and si : Kq → Kq+1, 0 ≤ i ≤ q,
which satisfy the following identities:

28

(i) ∂i ∂j = ∂j−1 ∂i if i < j,

(ii) si sj = sj+1 si if i ≤ j,

(iii) ∂i sj = sj−1 ∂i if i < j,

∂j sj = identity = ∂j+1 sj,

∂i sj = sj ∂i−1 if i > j + 1

Here, the elements of Kq are called q-simplices, ∂i and si are called face and degeneracy
operators. A simplex x is degenerate if x = si y for a simplex y and degeneracy operator
si. If this is not true, then x is non-degenerate.

Uniform distribution of data on a manifold.

In this step, the manifold which the data is assumed to lie on will be approximated
using geodesic distance. Belkin and Niyogi (2003) have stated in their work on Lapla-
cian eigenmaps that the data is assumed to be uniformly distributed on the manifold.
However, in practice, real-world data usually does not behave that way. Figure 3.3
demonstrates that assumption. The manifold is constructed in figure 3.3a by creating
balls of some fixed radius around each data point. As the example data set only consists
of finite samples, one cannot be sure that it truly is an open cover. In the example of
non-uniformly distributed data, not all samples are covered by the approximated man-
ifold. If the radius was chosen too large, the simplicial complex would turn into just
a few high dimensional simplices and cannot capture the manifold structure anymore
(McInnes, 2018). However, one can see in figure 3.3b that a suitable radius can easily be
selected if the data is uniformly distributed to ensure that the cover actually connects
the whole manifold.

Therefore, McInnes et al. (2018) assume that the data actually is uniformly distributed
on the manifold and even if it seems as it is not, that must be due to the fact that the
notion of distance is varying across the manifold. Moreover, the authors assume that the
manifold has a Riemannian metric which is not inherited from the ambient space and
one can then “find a metric such that the data is approximately uniformly distributed
with regard to that metric“ (McInnes et al., 2018).

Let the input data be X = {X1, ..., Xn}, M the manifold the data lies on, and g be

29

(a) Distribution of example data with ball around
each data point.

(b) Uniformly distributed data with ball around
each data point.

(c) Open balls around data points with locally vary-
ing metric.

(d) Data as a graph. Data points are the vertices
which are connected with weighted edges.

Figure 3.3.: Example of the approximated manifold of specific data by McInnes et al.
(2018).

the Riemannian metric onM. By assuming the data to be uniformly distributed onM
with respect to g, any ball of fixed volume around the data points of X should consist
of approximately the same number of data points, while not taking into account where
on the manifold it is centred. This is being visualized in figure 3.3c.

Furthermore, a ball around Xi contains exactly the k-nearest neighbours of this data
point and one can compute “geodesic distance from Xi to its neighbours by normalising
distances with respect to the kth nearest neighbour of Xi“ (McInnes et al., 2018). To
put this formally, let d : X × X → R≥0 be a dissimilarity measure of X. For each
xi, the set {xi1 , ..., xik} of the k-nearest nearest neighbours under the metric d is being

30

computed. Then, for each xi, McInnes et al. (2018) defines ρi, the distance to the kth

nearest neighbour, and σi. Let

ρi = min{d(xi, xij) | 1 ≤ j ≤ k, d(xi, xij) > 0}.

This assures that every data point is connected to at least another xi. Furthermore, set
σi to be the value such that

k∑
j=1

exp

(−max(0, d(xi, xij)− ρi

σi

)
= log2(k).

The local Riemannian metric for each data point is defined by the selection of σi as it
corresponds to the normalisation factor. This results in a local metric space associated
with each point of X which needs to be merged into a global structure. This can be
achieved by using fuzzy simplicial sets which means that being a k-nearest neighbour to
Xi is not binary anymore, but a weighted, fuzzy value between zero and one. As UMAP
only deals with 0- and 1-simplices, this can also be represented as a weighted directed
graph Ḡ = (V,E,w). The graph consists of vertices V which are the data points of X,
edges between points E and the weight function w for the edges. The set of directed
edges can be formed by E = {(xi, xij) | 1 ≤ j ≤ k, 1 ≤ i ≤ N} and the weight function
acording to McInnes et al. (2018) by

w((xi, xij)) = exp

(−max(0, d(xi, xij)− ρi)

σi

)
.

Figure 3.3d depicts this weighted graph for the example data set, where each weight is
represented by the thickness of the connecting line (edge).

Finding and optimizing a low dimensional representation.

The goal in this step is to find a low dimensional representation Y = {Y1, ..., Yn} ⊆ Rd

of the data X that has a topological structure that is as similar as possible to the
one of X. The manifold for Y is given a priori and is commonly just Rd, meaning the
euclidean space. As the manifold and the metric are already known, the fuzzy topological
representation can be computed directly. The distance to the nearest neighbour of
any point Xi should also be taken into consideration. Therefore, UMAP has a hyper-

31

parameter min_dist which determines the expected distance between nearest neighbours
in the embedded space.

The algorithm of UMAP only considers 0- and 1-simplices as more would result in
higher computational cost. Therefore, the fuzzy simplicial sets can also be described as
a weighted graph as shown in figure 3.3d and one can use cross-entropy to compare the
representations of X and Y . Let A denote the fuzzy set of all possible 1-simplices, wh(a)

and wl(a) are the weights of the 1-simplex a in the high and low dimensional case, then
the cross-entropy C will be

C((A,wh), (A,wl)) =̂
∑
a∈A

(
wh(a) log

(
wh(a)

wl(a)

)
+ (1− wh(a)) log

(
1− wh(a)

1− wl(a)

))
.

The embedding of Y can be optimized with respect to C by using stochastic gradient
descent. The optimization problem at hand is to minimize the error between the high
and low dimensional topological representations (McInnes et al., 2018; McInnes, 2018).

The UMAP algorithm and its hyperparameters

To conclude, the algorithm of UMAP consists primarily of two steps: the data at hand
first needs to be represented on a manifold which can be achieved by using fuzzy sim-
plicial sets to construct a weighted k-neighbour graph. In the second step, this graph
needs to be embedded in lower dimensions while preserving the topological structure.

UMAP has some important hyperparameters that have an impact on the resulting low-
dimensional embedding. One hyperparameter is n_neighbours which controls the num-
ber of neighbours of a point to be considered when approximating the manifold. Small
values for n_neighbours will result in a fine-grained and detailed manifold structure,
but by potentially losing the ‘big picture‘. Higher values, on the other hand, capture
manifold structure on a larger scale but may lose the detailed structure. The default
value for n_neighbours is 15. Another hyperparameter is min_dist. It controls the
construction of fuzzy simplicial sets for the low-dimensional embedding by determining
how close points are allowed to be to each other. Low values for min_dist will repre-
sent more structure of the approximated manifold as higher values because they allow
densely packed regions. If min_dist is chosen to be higher, the points in the embed-
ding are forced to spread out which does not capture the structure of the manifold as

32

faithfully as lower values do. The default value for min_dist is 0.1. If one wants to
determine the number of dimensions, the data should be reduced to, one can define the
hyperparameter n_components whose default is 2. Another hyperparameter is metric.
It defines how the distance in the ambient space of the input data is computed. The
default is the euclidean metric (McInnes et al., 2018). Although there are many more
parameters of UMAP, these are the most important ones.

3.2.3. Algorithm of HDBSCAN

Campello et al. (2013) introduced a clustering algorithm that extends DBSCAN by
incorporating hierarchy. Unlike DBSCAN, hierarchical density-based spatial clustering
of applications with noise is able to find clusters with varying densities and is also more
robust to the selection of parameters. The algorithm works in several steps. First, the
space is being transformed to better distinguish possible outliers and noise from other
data points. Second, a minimum spanning tree is built from that to then convert it
into the cluster hierarchy which can be described as a dendrogram. In the next step,
HDBSCAN needs to simplify that dendrogram by condensing the cluster tree. The last
step is to extract the clusters which can be achieved by maximizing the overall ‘stability‘
of the set of clusters.

Transforming the space

Before the clustering is done, the algorithm transforms the space, the input data X =

{x1, ..., xn} lie in, in order to find the data points xi that are noise. HDBSCAN uses
single linkage clustering

DSL(Cr, Cs) = min{d(ai, al) | ai ∈ Cr, aj ∈ Cs}

which denotes the distance d between two clusters Cr and Cs as the minimum distance
between the members of the two clusters. However, it can be sensitive to noise. There-
fore, Campello et al. (2013) use a different metric to measure the distance of data points
which locates objects of noise further away from the other ones. The core distance of a
data point xp ∈ X is the distance from xp to its kth-nearest neighbour and is denoted
as dcore(xp) with k being an input parameter of HDBSCAN. Points in areas that have a
low density, therefore have probably a high core distance. The new metric is the mutual

33

reachability distance that is defined for two objects xp and xq with respect to k as

dmreach(xp, xq) = max{dcore(xp), dcore(xq), d(xp, xq)}

where d(xp, xq) is the original distance metric between these two objects. Furthermore,
Campello et al. (2013) define that a data point xp ∈ X is called an ϵ-core object for
every dcore(xp) ≤ ϵ. The dissimilarity matrix of size n × n consists now of the mutual
reachability distance between each point. The data X can now also be seen as a graph,
the mutual reachability graph, with the objects as vertices and the mutual reachability
distance between the respective pair of data points as the weight of each edge.

Consider the threshold value ϵ which starts high and gets steadily lower. The general
idea is to drop any edges that have a weight above ϵ and treat the resulting single points
dcore(xp) > ϵ as noise. This can be done in a hierarchical way by building a Minimum
Spanning Tree of the mutual reachability graph from which a dendrogram can be derived.
Then, the edges can be dropped in decreasing order of the weights (Campello et al., 2013;
McInnes et al., 2016).

Hierarchy Simplification and Cluster Extraction

The HDBSCAN hierarchy of the data X can also be visualized in a dendrogram.
Campello et al. (2013) state that these plots are difficult to interpret and process for
large and noisy data. Therefore, they want to extract a summarized tree of only consid-
erable clusters from the dendrogram. For that reason, the parameter minimum cluster
size minclSize is set. At each split of the hierarchy, the newly created cluster should
contain at least minclSize objects. If it does not, these points fall out of the cluster and
become noise. If a cluster got split in two clusters that have at least minclSize data
points, then this is considered a true split which will be kept in the tree. After looking
at each node, the tree will have become smaller and easier to interpret as it lost some
data points to noise.

To find the optimal global solution of cluster extraction, Campello et al. (2013) describe
the problem of maximizing the overall stability. To describe that, let define the density
threshold λ = 1

ϵ
∈ [0,∞). It is intuitive that if λ increases, ϵ, the threshold that

determines which edges of the tree are dropped, decreases and thus the clusters will get
smaller. The following concept is adapted from the notion of excess of mass by Müller
and Sawitzki (1991). If the density level λ is being increased, then a cluster Ci appears

34

at the level λmin(Ci). To compare the stabilities of nested clusters which may appear in
the tree, Campello et al. (2013) introduced the Relative Excess of Mass of a cluster that
arises at level λmin(Ci) as

ER(Ci) =

∫
x∈Ci

(λmax(x,Ci) − λmin(Ci)) dx

where λmax(Ci) denotes the density level at which Ci is spilt or vanishes. As the HDB-
SCAN hierarchy has finite data X and a density threshold that is associated with each
hierarchical level, the stability of a cluster Ci can be adapted to

S(Ci) =
∑

xj ∈Ci

(λmax(xj, Ci) − λmin(Ci)) =
∑

xj ∈Ci

(
1

ϵmin(xj, Ci)
− 1

ϵmax(Ci)

)
.

Here, λmin(Ci) is the minimum level at which this cluster exists, λmax(xj, Ci) is the
threshold level beyond which the data point xj does not belong to cluster Ci anymore
and ϵmin(xj, Ci) and ϵmax(Ci) are the related values for the threshold ϵ.

To find the best set of non-overlapping clusters, one needs to start at the leaf nodes
and declare them as selected clusters. Then, the algorithm decides at each node Ci

bottom-up, while ignoring the root node, whether the cluster selection up-to-then of
Ci‘s subtrees or Ci itself should be selected as a cluster. This decision is made at each
node Ci by updating the total stability Ŝ(Ci) of the clusters that are selected in the
subtree rooted at Ci. Ŝ(Ci) is then defined as

Ŝ(Ci) =

S(Ci), if Ci is a leaf node

max{S(Ci), Ŝ(Cil) + Ŝ(Cir)} if Ci is an internal node
(3.1)

with Ŝ(Cil) and Ŝ(Cir) being the left and right children of Ci. In the end, HDBSCAN
returns a flat, non-overlapping clustering of the input data (Campello et al., 2013).

3.2.4. Idea of class-based TF-IDF

Once the clusters are created by using HDBSCAN, the next step is to find representative
words for each cluster. Term Frequency - Inverse Document Frequency (TF-IDF) com-
pares the importance of words between documents and penalizes words that are frequent
across all documents by rescaling the frequency of words. Term Frequency (TF) is a

35

measure of how many times a word w appears in a document d:

tfw,d =
nw,d

Number of words in the document

with n being the number of times a word w occurs in a document d. Inverse Document
Frequency (IDF) measures the importance of a word w:

idfw = log

(
Number of texts

Number of texts with word w

)
.

The TF-IDF score can then be computed for each word in the vocabulary. The higher
the score, the more important is hence the word (Huilgol, 2020):

tfidfw,d = tfw,d · idfw

Grootendorst (2020b) now treats all documents that belong to the same topic as a single
document and then applies TF-IDF. This would return those words per topic that are
most important and unique within each cluster and disregard those that are frequent
across all topics. The author called this method class-based TF-IDF, abbreviated c-TF-
IDF.

3.2.5. Maximal Marginal Relevance

By using c-TF-IDF, representative words for each topic are found. However, these words
do not necessarily describe a coherent topic. Therefore, Maximal Marginal Relevance
(Carbonell and Goldstein, 1998) can be applied to improve the coherence of words by
removing those words that do not contribute to a topic. Furthermore, it reduces the
number of synonyms that occur as topic representatives, hence it diversifies the words
that describe a topic (Grootendorst, 2020b).

MMR was introduced by Carbonell and Goldstein (1998) and is “a method for combining
query-relevance with information-novelty in the context of text retrieval and summariza-
tion“. Given a user query, an intuitive notion is to find those documents that are most
similar to this query. However, if there exist many potentially relevant documents that
are redundant to each other, it is favourable to find those documents that consider the
query-relevance on the one hand but also find documents with new information on the

36

other hand. The Maximal Marginal Relevance criterion is therefore supposed to re-rank
documents in order to reduce their redundancy while also considering their relevance
given the user query. A high marginal relevance means that it maintains the relevance
of the query while having a minimal similarity to documents that have already been se-
lected. Therefore, the goal is to maximize marginal relevance and MMR is then defined
as

MMR = argmax
Di ∈R\S

[
λ Sim1(Di, Q) − (1− λ) max

Dj ∈S
Sim2(Di, Dj)

]
.

Carbonell and Goldstein (1998) describe the parameters used in this definition as follows:

“[...] C is a document collection (or document stream); Q is a query or user
profile; R = IR(C,Q, θ), i.e., the ranked list of documents [D] retrieved by an
IR system, given C and Q and a relevance threshold θ, below which it will not
retrieve documents (θ can be degree of match or number of documents); S is
the subset of documents in R already selected; R\S is the set difference, i.e,
the set of as yet unselected documents in R; Sim1 is the similarity metric used
in document retrieval and relevance ranking between documents (passages)
and a query; and Sim2 can be the same as Sim1 or a different metric.“

Furthermore, λ is the diversity parameter that is tunable by the user. A higher λ gives
higher accuracy, whereas a lower λ delivers a higher diversity.

3.2.6. Selection of parameters in BERTopic

One can set many parameters when using BERTopic. In the following, some im-
portant parameters will be named with their value in brackets that we use for topic
modelling. One can either choose English or multilingual as language (language =

‘multilingual‘) for the model, as well as the number of words that should be extracted
per topic (top_n_words = 10). Furthermore, the diversity of the topic representatives
can be chosen with a value between 0 and 1 (diversity = 0.4).

Additionally, one can use custom models for the 3 steps: embedding documents, reducing
dimension with UMAP and clustering low-dimensional embeddings with HDBSCAN.
To embed the documents, one can use Sentence Transformers as it is the default, but
any other embedding technique as well. The UMAP model that is used for dimension

37

reduction considers the k-nearest neighbour points of each data point (n_neighbours

= 15), reduces the embeddings to certain dimension (n_components = 10) and the
distance in the ambient space between objects is computed by using the cosine metric
(metric = ‘cosine‘). Given two vectors a and b, the cosine similarity can be computed
as

SC(a, b) =

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

Moreover, one can determine how close data points are allowed to be to each other
(min_dist = 0.0).

The model for clustering with HDBSCAN returns clusters that consist of at least 15 doc-
uments (min_cluster_size = 15). Furthermore, a parameter can be set that affects
the amount of documents that are declared as noise (min_samples = 1). The higher it
is, the more points will be labelled as noise (McInnes et al., 2016). In order to get the
most persistent clusters the Excess of Mass algorithm (cluster_selection_method =

‘eom‘) is used. Lastly, the distance between instances is calculated by using the Eu-
clidean metric (metric = ‘euclidean‘).

38

4. Application to Twitter data

This chapter describes the application of neural topic models, specifically BERTopic
(Section 3.2), to Twitter data from German politicians. Twitter is a social media plat-
form where users can write and interact with messages which are also called ‘tweets‘.
The interactions comprise, e.g. to post, to like or retweet tweets.

According to Schmidt (2017), the use of social media by political parties and individual
politicians has long been the focus of research. There is a recognisable focus on the
use of these instruments, such as Twitter or Facebook, in election campaigns as these
are phases in which democratic societies particularly debate different political goals and
proposals. In Germany, social media played an important role for the first time in 2009,
although Twitter, specifically, was used only by a few candidates. In the federal election
campaign in 2013 and 2017, the use of Twitter then continued to rise (Schmidt, 2017).

Since political goals are more and more discussed in social media, it is interesting to
understand the communication behaviour of candidates as well as the topics that are
debated and their sentiment towards it. In order to determine sentiments of discussed
topics, the topics first need to be generated. The focus of this thesis is to extract topics
from Twitter data written by German politicians. This chapter first describes the data,
specifically the tweets, and then moves on to give a short overview of the political system
in Germany. Lastly, different results of topic modelling with BERTopic are presented
and compared.

39

4.1. Data

In order to apply neural topic models to Twitter data, the tweets need to be scraped
first. As a scholar at LMU (Weingärtner, 2021) performed a sentiment analysis with the
same tweets, he kindly provided the data. The tweets were pulled from the Twitter API
by using the academictwitteR package (Barrie and Ho, 2021), for which the usernames
are needed. For that purpose, a data set by Stier et al. (2018) is used which contains
detailed information of members of the German government. Specifically, it contains
information on 2516 politicians, e.g. about their respective surname, first name, age,
sex, party affiliation, place of residence, place of birth, profession and Twitter-URL. The
latter determines whether a candidate has a Twitter account. Since 1294 candidates do
not have one, the data set downscales to 1222 politicians whose tweets were scraped.

Tweets were pulled in the period of 25th March 2017 until 24th September 2017. This,
therefore, covers six months leading up to the German federal election 2017 as election
day was on September 24th. Out of 1222 candidates, only 811 politicians were active on
Twitter during that time and 269000 tweets in total were pulled from the Twitter API
along with their respective metadata. The metadata contains information, e.g. on how
often a tweet was retweeted or the exact date and time it has been posted. Furthermore,
we know whether a tweet is an original tweet, a retweet, a reply to a different text or
a quote. The data set consists of around 120000 retweets, 93000 original tweets, 39000
replies and approximately 19000 quotes. Although each tweet can be associated with its
author, the most important subject for topic modelling are the tweets as the approach
of BERTopic (Section 3.2) does not need any metadata.

Figure 4.1 shows the number of tweets that were posted each day from 25th March until
24th September 2017. During this time period, approximately 1467 tweets were posted
on average each day. It starts in April at around 1000 tweets per day and increases until
the end of September to approximately 2000 tweets a day, although it varies throughout
the months. A peak can be seen at the beginning of September. The famous duel for
chancellorship in Germany was aired on September 3rd and candidates of all parties
referred to that on Twitter which explains the peak.

When writing a tweet, users can use smileys or hashtags to underline their statement.
Furthermore, one can tag other people in their message when referring to someone, for
example. These are some of the reasons why the tweets need to be properly prepared
before applying topic models. The process of data cleaning will be described in the

40

Figure 4.1.: Line plot that shows the number of tweets per day in the period of 25th
March until 24th September 2017.

following in more detail.

Data preprocessing

As results of any machine learning algorithm rely on its input, text data, which can
be messy and might contain unwanted texts such as URLs or smileys, needs to be
preprocessed. Some parts of preprocessing are adopted from Weingärtner (2021) which
are specified in the Appendix. Since he did his analysis in the statistical software R,
preprocessing for this thesis was also done in R, while Python was then used for topic
modelling. We decided to use Python for topic modelling as it provides an extensive
collection of NLP tools and libraries.

What got conspicuous after taking a closer look at the tweets at hand, was that some
tweets were cut off at the end. Table 4.1 shows the number of times a tweet was cut off
in total, in a URL, Tag, Hashtag or in a word.

81145 tweets were cut off in total, this concerns therefore around 30% of the data. Most
of the tweets that are cut off are retweets, specifically 81113 cut retweets. If a person
retweets a tweet of a different user, the content does not change, but it gets marked as a
retweet by adding ‘RT @...‘ in the front. Examples of cut tweets and the original tweets
can be seen in table 4.2.

41

Cut tweets Number of times

In total 81145

In a word 33618

In URL 29761

In Hashtag 13247

In Tag 4519

Table 4.1.: Number of times a tweet is cut off.

Original Tweet Scraped Tweet

In 7 Tagen können wir uns aufregen, dass
rechte Hetzer im Bundestag sitzen. Oder
wir können diese 7 Tage nutzen, das zu
verhindern.

RT @MartinSchulz: In 7 Tagen können
wir uns aufregen, dass rechte Hetzer im
Bundestag sitzen. Oder wir können diese
7 Tage nutzen, das zu v...

Ein Bericht aus den Schulen in meinem
Kiez. Man stelle sich vor,Pfarrer wür-
den sich verhalten wie Neuköllns Imame...
https://google.de/amp/amp.berlin

RT @RobertRossmann: Ein Bericht aus
den Schulen in meinem Kiez. Man stelle
sich vor,Pfarrer würden sich verhalten wie
Neuköllns Imame... ht. . .

Wenn Wahrnehmung und Fakten deut-
lich auseinanderfallen, besteht das Risiko,
dass Stimmungen das Bild prägen.
@jensspahn #DialogBMF

RT @BMF_Bund: Wenn Wahrnehmung
und Fakten deutlich auseinanderfallen,
besteht das Risiko, dass Stimmungen das
Bild prägen. @jensspahn #Dial. . .

Table 4.2.: Examples of cut tweets.

Since each tweet can be identified by its unique id, the cut tweets can be replaced
with the original tweet if the author of the original tweet is one of the 811 politicians.
Otherwise, the tweet can not be changed. We were able to replace 15511 cut tweets with
their respective original tweet. Hence 65634 tweets (24.3%) are still cut off at the end.

The next step of preprocessing was to replace German umlauts and ligature s‘. After
that, we removed all URLs, the ‘RT‘ at the beginning which classifies a text as a retweet,
the cut-off word at the end of a tweet, smileys, extra whitespaces, line breaks, symbols
and special characters. Furthermore, some hashtags can be split back into their original
words if they were written in camel case. Lastly, the hashtag symbol ‘#‘ and Tags ‘@...‘
were removed from the tweets and all words were converted into lower case.

42

Data set # Duplicates # Empty # Not Ger-
man

Resulting
Tweets

Little preprocessing
with duplicates

51221 8121 14089 247690

Little preprocessing
without duplicates

51221 8121 11805 198753

Strong preprocessing
with duplicates

52468 8395 13728 247777

Strong preprocessing
without duplicates

52468 8951 11243 197237

Table 4.3.: Number of duplicate, empty, non-German and resulting tweets for the four
data sets.

If one uses a topic model with a bag-of-words assumption such as LDA, some more
preprocessing steps are usually done, e.g. removing stopwords, digits or punctuation.
However, BERT is a pre-trained language model that is supposed to understand the con-
text which indicates to keep as much context as possible in tweets. Nevertheless, tweets
are very short because Twitter only allowed texts that are no longer than 140 characters
in that period 1. Since URLs or Tags have been removed, a tweet might have already lost
important context. Therefore, we decided to use two differently preprocessed data sets:
little and strong preprocessed tweets. Little preprocessing means the data preparation
that was described in the last paragraph and strong preprocessing additionally removes
all digits, punctuation and stopwords.

The resulting two data sets with little and strong preprocessing, respectively, are further
used to create two more data sets: one that consists of only unique tweets and one that
contains some duplicate tweets. If someone retweets a text of a person whose tweets
were pulled from Twitter as well, the tweet exists at least two times in the data set. To
examine whether the results differ between data sets with and without duplicated tweets,
the topic models will be applied to four data sets: little preprocessing with duplicates
denoted as Dl, little preprocessing without duplicates Dl,u, strong preprocessing with
duplicates Ds and strong preprocessing without duplicates Ds,u. As some candidates
only tweeted URLs, some tweets are empty character strings after being preprocessed
and were also removed.

1Twitter increased the maximum length to 280 characters in November 2017.

43

Although the tweets are written by German politicians, the language does not necessarily
be German. Therefore, we used the package fasttext proposed by Joulin et al. (2016b)
and Joulin et al. (2016a) to identify the language of each tweet. Finally, we removed the
tweets from all four data sets that were not written in German. Table 4.3 particularly
shows the number of resulting tweets per dataset after preprocessing. The number of
words per tweet is depicted in figure 4.2 for each data set.

Figure 4.2.: Histogram of the number of words per tweet per data set.

44

Both data sets with little preprocessing consist of tweets that comprise up to 28 words
and the average amount of words are 13 which is represented as the orange, dashed
line. The mode of both data sets is 15 words. While the distribution of the number of
words is similar for the data sets with little preprocessing, the difference is the count
of tweets. The data set with duplicates contains about 20000 tweets that consist of 15
words. The dataset without duplicates in contrast comprises around 16000 tweets of 15
words each. This discrepancy is due to removing 51221 duplicate tweets in this data
set. The same pattern can be observed for both data sets with strong preprocessing,
although the average tweet contains 7 words, the mode is 8 words and the maximum
amount of words in a tweet is 18 and 19 words, respectively.

This concludes the preprocessing. In summary, topic models will be applied to four
different data sets, with little and strong preprocessing as well as with and without
duplicate tweets, respectively. It will be examined whether this leads to different results.
The next part will give an overview of the political system in Germany.

4.2. Political system in Germany

This section is supposed to give a general overview of the political system in Germany and
its multi-party system. The Basic Law of the Federal Republic of Germany was signed
in 1949 and came into force the same year. Accordingly, the principles of democracy and
republic, the welfare state, the federal state and constitutional state apply in Germany
(Marschall, 2018, p. 31). The principle of democracy comprises amongst other things
multi-party system, equal opportunities for every party and sovereignty of the people
(Marschall, 2018). Furthermore, dictatorship is excluded. In regular general elections,
the people themselves determine who should govern them. They can choose between
competing parties. Whoever receives the majority of the electoral votes then governs,
but only for a certain period of time. Once a party is in power, it must be able to be
voted out again. German Federal elections take place every four years (Thurich, 2011).

Since Germany has a multi-party system, the parties and their respective manifestos
play a central role when it comes to elections. The tweets that are considered for topic
modelling are written by candidates running for one of the major parties CDU, CSU,
SPD, FDP, Bündnis90/Die Grünen, Die Linke and AfD. Figure 4.3 depicts the number
of tweets that each party posted. The order of the parties in this plot reflects the election

45

result in the federal election 2017, where CDU got most votes (26.8%) and CSU received
the least (6.2%; Der Bundeswahlleiter, 2017).

Figure 4.3.: Barplot that shows the number of tweets per party.

The Green party Bündnis90/Die Grünen were most active of all as they posted more
than 73000 tweets in the period of 25th March 2017 until 24th September 2017, which
comprises around 26% of all tweets. The social party SPD released around 50000 tweets,
closely followed by the AfD with approximately 48000 tweets. The conservative CDU
and Die Linke both tweeted roughly 34000 messages, the liberal FDP about 26000,
while the Bavarian sister party of the CDU, the CSU, wrote around 3700 tweets.

4.3. Evaluation

This section evaluates three different results of topic models2. All of them were generated
with BERTopic proposed by Grootendorst (2020b). The algorithm of BERTopic first
transforms the tweets into numerical vector representations with some embedding model
that can be chosen by the user. Then the dimensions of these vector representations are
reduced by using UMAP in order to cluster the low-dimensional vectors with HDBSCAN

2All codes can be found here: https://github.com/annegriddl/Neural-topic-modeling

46

https://github.com/annegriddl/Neural-topic-modeling

which results in the topics. The representative words for each topic can be found by
using class-based TF-IDF (see section 3.2). A method of BERTopic in Python is to up-
date the representative words of a topic model. This will be done for the resulting topics
of the data sets with little preprocessing to prevent stopwords to become representa-
tives. Furthermore, we decided to use three different embedding models: a multilingual
Sentence-BERT (SBERT), German BERT and GottBERT. The latter is a RoBERTa
model (Section 2.5.2) and the other two are both based on BERT (Section 2.5.1). In the
following sections, the resulting topics of the three different embedding models, SBERT,
German BERT and GottBERT, will be first described and then compared.

4.3.1. Sentence-Transformers

SBERT was proposed by Reimers and Gurevych (2019) and is based on the pre-trained
BERT network. It is able to derive fixed-length vectors for input sentences where se-
mantically similar sentences are close to each other in vector space and can be found
by using a similarity measure such as Euclidean distance or cosine similarity (Reimers
and Gurevych, 2019). While BERT needs to compare every combination to find the
most similar pair of sentences in a collection, SBERT is more efficient. Furthermore,
it maintains the accuracy from BERT and shows state-of-the-art results on tasks such
as Semantic Textual Similarity (Reimers and Gurevych, 2019). Since SBERT was only
for English texts until then, Reimers and Gurevych (2020) introduced the multilingual
Sentence-BERT which maps translated sentences and their respective original text to
the same location in vector space. The multilingual SBERT can be applied to more
than 50 different languages, including German. SBERT was trained on two different
data sets: SNLI (Bowman et al., 2015) which comprises 570000 sentence pairs and the
MultiNLI data set (Williams et al., 2018) with 430000 sentence pairs (Reimers and
Gurevych, 2019). The specific multilingual SBERT model that is used in this thesis is
called ‘paraphrase-multilingual-mpnet-base-v2‘ (Reimers, 2022).

Since topic modelling is an approach of unsupervised learning and the real topics are
unknown beforehand, it is difficult to find the ‘perfect‘ number of topics. In this thesis,
we fitted BERTopic models with SBERT as embedding model for different numbers of
topics k = {10, 20, 30, 40, 50}. Although there exist more than 1000 topics for each data
set at the beginning, BERTopic offers a method that reduces the number of topics to a
certain amount. This can be achieved by “iteratively merging the least frequent topic

47

with the most similar one based on their c-TF-IDF matrices“ (Grootendorst, 2020a).
The topics, their sizes, as well as their representations are then updated. The lower the
number of topics k, the more tweets are assigned to noise by HDBSCAN. For the sake
of reproducibility, a seed is set to 1997. However, the results do vary, especially the
size of the topics. When applying the model several times on the same data set, the
resulting topics are very similar, but the order and therefore their respective size differs.
Therefore, we advise saving the topic model after it had been fit as the results can not
be reproduced otherwise.

While the representative words of topics for k = {10, 20, 30, 40, 50} always seem to be
semantically meaningful and coherent for each topic, the models for k = 50 topics contain
most information. Although the topics may be smaller with k = 50, the topics are more
specific than the ones of models with 20 topics. Furthermore, most of the resulting
topics of the four different data sets are the same when using 50 topics, only the size of
the topics differs. When the number of topics decreases, the topics of the four data sets
vary more because the sizes of the respective topics get more relevant. Moreover, the
smaller the number of topics, the more tweets are labelled as noise, probably because
the tweets of the omitted topics can not be re-allocated to different, existing clusters.

Nevertheless, many topics for k = 20 for the four data sets, little and strong preprocessing
as well as with and without duplicates, respectively, are similar when ignoring their size.
The labels of the topics are shown in table 4.4 for k = 20 and each data set. Note that
these topics are labelled subjectively by consulting the top ten representative words for
every topic and data set. Furthermore, the table does not reflect the size of each topic
as the order was changed to display similar topics next to each other. Topics that occur
in every model are Climate change, the Chancellorship duel, Taxes and Twitter. Other
topics that can frequently be found are, e.g. Police, Digitization, Freedom of press with
reference to Turkey or Education. Topics that appear in only one model are, for example,
Sea rescue of refugees, Extremism, Pension or German Federal Armed Forces.

Looking at table 4.4 gives the impression that the tweets have been labelled successfully.
However, every topic model of these four declared more than 80% of the tweets as noise,
since the algorithm of HDBSCAN is used to cluster the low-dimensional embeddings.
HDBSCAN is able to label those tweets as noise that are considered as outliers (see
section 3.2.3). The fitted model for data set Dl assigned only around 10% of the tweets
to real topics and the model for the data set Dl,u approximately 15%. Moreover, about
14% of the duplicate tweets that were strongly preprocessed were allocated to topics

48

and approximately 16% of the tweets in data set Ds,u. Since the fitted topic models
produce similar outputs, we will now focus the evaluation on the model for unique
tweets and strong preprocessing because it assigns the greatest percentage of tweets to
topics. Furthermore, the model with k = 20 topics will be evaluated for better clarity.
The representative words of the model fitted with 50 topics with the data set Ds,u are
shown in the Appendix.

Figure 4.4.: Scatterplot of embedded tweets that are reduced to three dimensions using
UMAP. Only tweets are shown that are assigned to a topic, therefore no
noise included.

The low-dimensional tweet embeddings with their respective topic label are depicted
in figure 4.4. While the embeddings get reduced to 10 dimensions in the BERTopic
algorithm, the vector representations were reduced into three-dimensional space with
UMAP in order to visualize the topics. The topics do form recognisable cluster, especially
when moving away from the centre. The topics of tweets in the centre, in contrast, are
more widespread. Tweets that are assigned, for example, to the topics concerning Terror
attacks, Extremism, Germany or Duel for Chancellorship, blend into each other.

49

Little preprocessing Strong preprocessing

Topic Duplicated
tweets

Unique tweets Duplicated
tweets

Unique tweets

0 Climate change Climate change Climate change Climate change

1 Thankfulness Thankfulness Thankfulness Renewable energies

2 Police Politics Police Police

3 Digitization Digitization Digitization Digitization

4 Chancellorship duel Chancellorship duel Chancellorship duel Chancellorship duel

5 Election campaign Election campaign Chancellorship duel Social media

6 Europe Berlin Berlin Berlin

7 Freedom of press
(Turkey)

Freedom of press
(Turkey)

Freedom of press
(Turkey)

Interview

8 Opinion polls Opinion polls Opinion polls Politics

9 Equity Human rights Equity Equity

10 Diesel scandal Europe Diesel scandal Diesel scandal

11 Foreign affairs Religion Foreign affairs Religion (Christian-
ity)

12 Islamisation Humans Immigration Islamisation

13 Taxes Taxes Taxes Taxes

14 German Federal
Armed Forces

Child poverty Child poverty Terror attacks

15 Pension Health Health Health

16 Twitter Twitter Twitter Twitter

17 Education Education Congratulations Education

18 National debt
(Greece)

Immigration Sea rescue of
refugees

Extremism

19 Violence at G20
summit

Violence at G20
summit

Terror attacks Germany

Table 4.4.: Topics that are generated with SBERT for text embedding in BERTopic for
all four data sets.

50

Tweets that are recognizable as distinct clusters belong to the topics, e.g., Twitter,
Taxes, Islamisation, Interview or Education. Furthermore, the topics Renewable ener-
gies, Climate change and Diesel scandal are very close to each other which is plausible
since their contents are linked. Also, the vector representations of tweets concerning the
topics Twitter, Social media and Interview are located in the same direction, away from
the centre.

Figure 4.5.: Scatterplot of all embedded tweets, including noise, that are reduced to
three dimensions using UMAP.

Figure 4.5 then shows all embedded tweets that were allocated to noise, coloured in blue,
and the vector representations of tweets that belong to a topic in orange. This exemplifies
that the majority of tweets are labelled as noise since the blue points dominate the plot.
Nevertheless, especially the topics that are located further away from the centre do stand
out.

The topics are labelled by consulting the top 10 representative words in German of each
cluster which are shown in table 4.5. While some topics are more general, for example
the topics with label Berlin, Germany, Politics or Extremism, most are easy to label such
as topics regarding Terror attacks, Religion or Education. Furthermore, this table shows

51

the number of tweets that are assigned to each topic. The topic concerning the Duel
for Chancellorship contains the most, specifically 3230 tweets, while the smallest topic,
which consists of 960 tweets, represents Taxes. Remember that the data set contains
around 197000 tweets. Therefore, the sizes of the topics are just a small fraction of the
total amount of given tweets. Nevertheless, the representative topics give the impression
that the tweets of each resulting topic are coherent and semantically similar.

Following this, it is interesting whether the tweets that are assigned to the same topic
are coherent. Table 4.6 lists representative tweets for the topics -1 (Noise), 0 (Duel
for Chancellorship), 1 (Berlin), 5 (Diesel scandal), 6 (Terror attacks) and 19 (Taxes).
Those tweets are found by using a method of BERTopic which outputs representative
documents for each topic. Most of the tweets shown in this table, but also other tweets
that are not displayed here, seem to fit in their respective topic. However, there exist
also tweets that we could assign to different topics. Tweets that subjectively do not
represent their allocated topic are, for example

“laessig meldet barack obama zurueck“ in topic chancellorshipduel and

“vorsitzender finanzausschuss us senat haelt unternehmenssteuerplaene
donald trump kaum realisierbar“ in topic taxes.

Tweets that are labelled as noise consist in turn of a variety of different topics. Some
examples are also shown in table 4.6. Some tweets that can be found in noise are very
short, such as “stimmt“ and are therefore probably difficult to assign to a specific topic.
Other tweets, for example

“herzlichen glueckwunsch geburtstag lieber“ or

“danke kanzlerin merkel fordert erdogan insbesondere freilassung
denizyuecel“,

would fit into topics that are build when increasing the number of topics to k = 38 (see
table B.2), but can not be assigned to any current topic with k = 20. But, then again,
there exist also tweets labelled as noise that could have been put in topics, for example

“aufruf tegel schliessen zukunft oeffnen“ in topic Berlin and

“herr schulz falsch verstanden denke seit minuten merkelvsschulz“ in topic
Duel for Chancellorship.

52

Topic Count Label Representative words

0 3230 Chancellorshipduel tvduell, schulz, tv, martin, duell, merkel, martinschulz,
kanzlerduell

1 2855 Berlin berlin, berliner, txl, btw, tegel, berlins, mitte, bundestag

2 2253 Police polizei, polizisten, hamburger, hamburg, via, sicherheit,
bundespolizei, polizeigewalt

3 2106 Twitter retweeted, tweet, tweets, twittern, servicetweet, retweeten,
linksfraktion

4 1737 Germany traudichdeutschland, deutschen, holdirdeinlandzurueck,
deutsche, btw, opposition, bayern, bundestag

5 1628 Diesel scandal diesel, dieselgate, autoindustrie, diesesgipfel, dobrindt,
automobilindustrie, fahrverbote, abgasskandal

6 1440 Terror attacks barcelona, terror, terroristen, london, opfer, angehoerigen,
anschlag, manchester

7 1381 Education schulen, bildung, schule, bildungspolitik, lehrer, koopera-
tionsverbot, studiengebuehren, ausbildung

8 1358 Politics politik, politiker, politische, wolf, politikwechsel, men-
schen, politischer, political

9 1355 Climate change klimaschutz, klimawandel, klima, klimakrise, darumgruen,
trump, klimapolitik, planeten

10 1350 Social media facebook, livestream, live, zensur, fb, meinungsfreiheit,
whatsapp, netzdg

11 1257 Islamisation islam, muslime, terror, islamisierung, oezoguz, ramadan,
islamismus, islamisten

12 1207 Religion kirche, kirchentag, christen, kirchen, religionsfreiheit, reli-
gion, stephanuskreis, religionen

13 1168 Interview interview, sommerinterview, radio, interviewt, podcast,
schulz, merkel, spitzenkandidatin

14 1163 Digitization digitalisierung, digitale, bildung, digitalebildung, digi-
talen, schulen, agenda, zukunft

15 1150 Equity gerechtigkeit, soziale, zeitfuermehrgerechtigkeit, zeitfuerg-
erechtigkeit, sozial, zeit, zeitfuermartin, marktwirtschaft

16 1115 Health pflege, gesundheit, pflegekraefte, patienten, weltgesund-
heitstag, gesundheitspolitik, antibiotika, personal

17 1024 Extremism linksextremismus, populismus, rechtsextremismus, ex-
tremismus, linksextremisten, rechtsextreme, rechtspopulis-
ten

18 963 Renewable energies energiewende, windkraft, windenergie, erneuerbare,
kohleausstieg, energien, klimaschutz, energiepolitik

19 960 Taxes steuern, steuerkonzept, steuer, euro, panamapapers,
einkommen, steuerzahler, steuersenkungen

Table 4.5.: Top 8 representative words for each of 20 topics with their respective label
of the unique tweets with strong preprocessing.

53

Topic Label Representative sentences

-1 Noise abschiebestopp afghanistan zeigt erneut merkels regierung fuerchtet
negative schlagzeilen konsequenzen.

na bitte zivil kenne schaerferes.

herzlichen glueckwunsch geburtstag lieber.

gut weiterhin erfolg.

tod rechtsstaats kaempfen demokratie verein rechtsmissbrauch un-
terstuetzen.

waehlen gehen saarland.

stolz pulseofeurope brauchen unterstuetze gerne.

fall griechenland loesen bevor fall italien eintritt.

stimmt.

danke kanzlerin merkel fordert erdogan insbesondere freilassung
deniz yuecel.

gute richtige entscheidung.

aufruf tegel schliessen zukunft oeffnen.

herr schulz falsch verstanden denke seit minuten merkelvsschulz.

0 Chancellorshipduel erst glueck kam pech schulz ruft sieger duell.

kanzlerduell zwei sozialdemokraten streiten schulz merkel.

laessig meldet barack obama zurueck.

1 Berlin weiterbetrieb txl fordert einzelmeinung o position uebernimmt bund
mrd kosten.

guten berlin.

danke koblenz bekommt verstaerkung berlin klasse.

5 Diesel scandal fahrverbote kalte enteignung autofahrer.

herr dobrindt fahrverbote versagt grenzwerte einzuhalten schlagab-
tausch.

diesel betrug resultat verflechtungen politik industrie lobbyismus
parteispenden sagt.

6 Terror attacks terror stoppen aufhoeren hinzusehen koennten freunde familien
besser abschied nehmen.

erschuettert traurig wann hoert terror endlich.

thooooooomas fehlt.

19 Taxes vorsitzender finanzausschuss us senat haelt unternehmenssteuer-
plaene donald trump kaum realisierbar.

aufregen steuereinnahmen hoch nie einordnung.

heinrich schoeller reeder millionen euro steuergeld geschenkt
bekommt

Table 4.6.: Example representative tweets for certain topics of the unique tweets with
strong preprocessing.

54

Furthermore, figure 4.6 is a heatmap of the similarity matrix between topic embeddings
that are generated with the sentence transformers for the unique tweets with strong
preprocessing. The topic embeddings are the weighted average of word embeddings,
that represent their topic, based on their c-TF-IDF value3. The similarity of these topic
embeddings is then computed by using cosine similarity SC . Therefore, each rectangle
represents a similarity score of two topics. The squares that lie on the diagonal all have
a similarity score of 1, since two, equal topics are being compared.

Figure 4.6.: Heatmap of the topic‘s similarity matrix, based on cosine similarity, which
is adopted from Grootendorst (2020a). Unique tweets with strong prepro-
cessing are embedded with Sentence BERT.

3See https://github.com/MaartenGr/BERTopic/blob/master/bertopic/_bertopic.py in lines
1527-1562 for more information about creating topic embeddings

55

https://github.com/MaartenGr/BERTopic/blob/master/bertopic/_bertopic.py

The two topics with the lowest similarity score are labelled as Twitter and Berlin. These
topic embeddings are therefore the most diverse. Remarkably, the cluster Twitter has
low similarity scores with all other topics (all below 0.35), except with the topic Social
media which results in a score of 0.52, approximately. Topics with a high similarity
in contrast are for example Berlin and Germany (SC = 0.69), Police and Germany
(SC = 0.67), Climate change and Renewable energies (SC = 0.67) and Equity and
Education (SC = 0.66). Since one would expect that these topics may be similar, this
shows that SBERT is able to capture semantics of tweets and that it generates meaningful
topics.

However, topics such as Germany, Interview and Equity show the highest similarity
score in combination with the cluster of noise, specifically SC = 0.79, SC = 0.72 and
SC = 0.72, respectively. Therefore, these topic embeddings are similar to the one of
noise and might also underline that some tweets should be rather in existing topics than
in noise.

4.3.2. German BERT

The German BERT model by Deepset (2019) makes working with German text data
more efficient. It was pre-trained on 12 GB of German text data, specifically on German
Wikipedia data (6GB of raw text), the OpenLegalData dump (2.4GB; Ostendorff et al.,
2020) and news articles (3.6GB; Deepset, 2019).

The ten words that describe each resulting topic of the strongly preprocessed, unique
tweets best, are shown in table 4.7. When looking at the words, it is difficult to derive
meaningful topics from that since many words are rather general, for example, words in
topics 3, 5 or 11. However, meaningful words that may contribute to labelling a topic,
are often mixed. Topic 7, e.g. consists of the following words translated into English

“Education, Islamisation, Examine Candidates, Equity, Constitution, Cli-
mate protection, Monday, Racism, Meaning, Economy“.

Each of those words may form its own cluster, but here they describe the same topic.
This pattern can also be seen in topic 19. Nevertheless, some clusters can be labelled,
for example topic 8 might be about Congratulations, topic 9 about Opinion polls since

56

Dimap4 and Ipsos5 do psephology. Furthermore, topic 11 could consist of tweets regard-
ing the Duel for Chancellorship. All other resulting topics are more difficult to label.
Table 4.7 furthermore displays the number of tweets in each topic. It is interesting to
see that around 137000 tweets (70%) are assigned to topic 0, whereas only 25.5% are
labelled as noise. After this first, huge topic, the clusters get much smaller, topics 1 to
19 particularly only comprise approximately 4.9% in total of all tweets.

Since 70% of the tweets are assigned to topic 0, table 4.8 contains examples of rep-
resentative documents for both, topic 0 and noise. We can see that the cluster noise
really consists of mixed topics, such as expansion of the fiber optic network, rent and a
topic concerning elections. The other four tweets in noise are rather short and are more
difficult to assign to a topic. The tweets “sowas bereit live“ and “gleich gehts los“ may
refer to the duel for chancellorship, since they are announcements which can be often
found in the tweets at hand.

When looking at the tweets in topic 0, they do not seem to be coherent. The first text
in table 4.8 relates to libraries and book, whereas the second tweet refers to a murder
trial in Germany. The other tweets are also very short and are about closing borders,
closing the airport Tegel in Berlin, the ‘Landtag‘ in Magdeburg and probably about the
election results. We can see, therefore, that topic 0 also acts as a noisy cluster.

When comparing the representative words for each topic with SBERT and German
BERT as embedding models, we notice that the words generated with SBERT form
more coherent topics and are easier to label than the words resulting from German
BERT as embedding model.

4Visit https://www.infratest-dimap.de/ for more details.
5Visit https://www.ipsos.com/de-de for more details.

57

https://www.infratest-dimap.de/
https://www.ipsos.com/de-de

Topic Count Representative words

-1 50348 danke, dabei, merkel, ehefueralle, wahlkampf, wahl, leider, klar, wohl, na

0 137274 berlin, nrw, danke, politik, gruenen, traudichdeutschland, neue, europa, tag, seit

1 1977 bpt, traudichdeutschland, schlussrunde, merkel, kandidatencheck, wahlpro-
gramm, land, einfachmachen, muenster, gute

2 1498 merkel, migranten, europa, einwanderer, oesterreich, neues, erdogan, nrw,
fluechtlinge, wegen

3 656 frohe, ostern, gott, peinlich, waere, wohl, welt, weiss, abend, waehlt

4 524 wahlprogramm, programm, wirtschaft, werbung, bund, arbeitnehmer, bilanz, in-
vestitionen, jahre, luft

5 437 wahr, wissen, leider, tut, lass, passiert, schlecht, ernst, stimme, halt

6 434 oh, hae, och, waere, besuch, oha, spaet, schoen, ok, nich

7 417 bildung, islamisierung, kandidatencheck, gerechtigkeit, grundgesetz, klimaschutz,
monday, rassismus, bedeutung, wirtschaft

8 415 herzlichen, dank, glueckwunsch, tolles, unterstuetzung, toller, schliesse, besuch,
grossartige, glueckwuensche

9 384 sonntagsfrage, landtagswahl, dimap, landesparteitag, ard, kandidaten, ipsos, faz,
neuwahlen, umfrage

10 384 interview, infostand, online, hinzugefuegt, lesen, infos, besuch, bade, stupid,
eingebettet

11 335 tvduell, merkel, martin, schlusswort, tipp, strunz, moderator, update, telefonliste,
abend

12 334 zukunftwirdausmutgemacht, mutlufuermitte, wahlkampf, hassistkeinemeinung,
schauenwirnichtlaengerzu, innenstadt, wartenwirnichtlaenger, weilwirdichlieben,
einervonuns, zukunft

13 315 willkommen, veranstaltung, unserer, gaeste, gmuend, bericht, termine, themen,
informative, lorch

14 287 gehoert, geschaetzt, geaendert, gefaellt, gefruehstueckt, abgeholt, aufgeschrieben,
leider, geprueft, gekehrt

15 268 schoenen, tag, allerseits, schoenes, nachmittag, laeuft, heimat, druecke, schoene,
urlaub

16 260 eurovision, fedidwgugl, rumaenien, kanonen, team, durchhalten, punkte, frueher,
leben, ganz

17 259 genau, ganz, finde, leider, unsinn, schlecht, wohl, entgeht, trifft, darauf

18 219 oh, ltwsh, hach, spdbpt, aehm, ueberall, csuler, oekofete, sed, jusos

19 212 rentenkonzept, diskriminierung, freiheit, sicherheit, ideologie, verfassungsschutz,
wertegemeinschaft, voraussetzungen, mehrwertsteuer, existenz

Table 4.7.: Top 10 representative words for the unique tweets with strong preprocessing.
German BERT is used to embed the tweets.

58

Topic Representative sentences

-1 glasfaserausbau dornroeschenschlaf setzt stattdessen

mietpreisbremse ausbauen statt abschaffen linke

wahlomat getestet ergebnis eindeutig daher wohl waehlen

gut gerne leben

sinne menschen

sowas bereit live

gleich gehts los

0 erhalten bibliotheken kuenftig buecher stange

fremdwahrnehmung verantwortung gutachter sass nsu prozess frau zschaepe via

grenzen schliessen

tegelschliessen ruhe geniessen

gestern landtag magdeburg

gibt offizielles ergebnis

Table 4.8.: Example representative texts for the unique tweets with strong preprocessing
that were either allocated to noise or topic 0.

Furthermore, figure 4.7 depicts the heatmap of the similarity matrix between topic
embeddings that are generated with German BERT for the tweets of the data set Ds,u.
In this figure, the top two representative words of each topic are displayed on both the
x-axis and y-axis. Each rectangle also represents a similarity score of two topics here,
but note that the scale of the similarity score starts at 0.5 instead of 0. Additionally, we
see that each combination of two topics has a score higher than 0.7 whereas the lowest
similarity score with SBERT as embedding model was approximately 0.12. Hence, we
know that the topic embeddings generated with SBERT are more diverse than the ones
by German BERT. The two topics that are most similar are topics 0 and 2 with a
similarity score of 0.9845. Topic 0 is very general, whereas topic 2 might be about
Immigration. The lowest similarity scores can always be found when combining topic 12
with others. The representative words of topic 12 seem to be hashtags that could not
have been split back into their original words. The lowest similarity score is 0.7486 of
topics 12 and 5.

59

Figure 4.7.: Heatmap of the topic‘s similarity matrix, based on cosine similarity, which
is adopted from Grootendorst (2020a). Unique tweets with strong prepro-
cessing are embedded with German BERT.

60

4.3.3. GottBERT

GottBERT which was introduced by (Scheible et al., 2020), is a RoBERTa model for
German only. The model was trained on the German parts of the OSCAR6 data set
which comprises 145GB of text.

Here, GottBERT was used to embed the tweets. The representative words are then found
by using class-based TF-IDF. The top ten representative words for the application of
this model on the strongly preprocessed, unique tweets are shown in table 4.9. These
topics are also not labelled because here again the words within a topic are mixed
and some words are very general and are therefore not useful in order to label the
topics. Furthermore, some words occur in more than one topic. For example, the word
“campaign“ represents topics 1, 2, 5, 6, 14 and 18, therefore in total six topics.

Topics that might be labelled are for example topic 4 as Congratulations and cluster 19
as Duel for Chancellorship. Note that these two topics can also be found when using
German BERT as embedding model. Moreover, around 90% of the tweets are assigned
to noise. This exceeds both values of topic modelling with SBERT (84% to noise) and
German BERT (25.5% to noise).

Figure 4.8 displays the heatmap for this topic model. The first 15 and the last 3 topics
are apparently very similar to each other because all similarity scores are higher than
0.96. Topics 16 and especially 15 stand out. Although they are very similar with a
similarity score of 0.9535, topics 15 and 16 have an average score of 0.79 and 0.91,
respectively, to all other topics. The most dissimilar pair are topics 13 and 15 with a
score of 0.7533. Here, topic 15 seems to be very general, whereas topic 13 might be
about Turkey.

6Visit https://oscar-corpus.com/ for more details.

61

https://oscar-corpus.com/

Topic Count Representative words

-1 177011 btw, danke, gut, nrw, wahlkampf, tvduell, gruenen, wahl, ganz, neue

0 3466 genau, na, glaube, gut, danke, tweet, link, thema, ganz, willkommen

1 1958 btw, einzelfall, tzt, deinestimme, rawert, stimme, wahlkampf, migrantenkrimi-
nalitaet, unterwegs, gera

2 1690 berliner, leben, nrw, politik, schueler, wahlkampf, polizisten, polizei, gut, mili-
taer

3 1392 migranten, ak, migrant, facebook, altenkirchen, terror, migration, zensur,
trump, gold

4 1243 dank, herzlichen, vielen, danke, frohe, muslimen, engagement, super, schoenen,
ergebnis

5 1132 wahlkampf, gestern, leben, neue, terror, ganz, tvduell, btw, fluechtlinge, gruenen

6 938 nrw, ms, landtag, landtagswahl, sh, btw, holstein, mai, wahlkampf, ergebnis

7 853 btw, gut, neue, unserer, thema, wurde, tvduell, gehts, migranten, gestern

8 843 steineke, abend, btw, besuch, gute, viele, austausch, gaeste, interessante, ver-
anstaltung

9 781 berliner, neue, gestern, gruenen, migranten, besuch, gut, wurden, nrw, gast

10 774 btw, zeit, lsa, buerger, nrw, deutschen, kinder, sonntag, stimmen, anmelden

11 739 wurde, gespannt, verstehen, darf, na, gut, sonntag, zahn, jahren, zeit

12 686 danke, guter, hinweis, folgen, engagement, super, kommentar, lieber, btw, oh

13 647 tuerkeireferendum, istanbul, verhaftet, hdp, geheimdienst, tuerkischer, diktatur,
akp, rheinmetall, bundeswehr

14 628 gruenen, klimaschutz, gerechtigkeit, stimme, zweitstimme, platz, gut, gesund-
heit, wahlkampf, katrin

15 514 sehen, ordnung, passt, btw, spass, urlaub, ok, warten, viele, zeichen

16 499 kampf, ehe, partei, kommentar, terror, reden, ging, kinder, facebook, leichteren

17 490 btw, film, gestern, themen, interessante, rente, sicherheit, dank, danke, frank-
furt

18 483 btw, teampaul, tzt, regierungsprogramm, wahlkampf, gut, erzgebirge, tvduell,
gehts, kanzlerin

19 470 tvduell, duell, nachlesen, kanzlerduell, strunz, rente, kanzlerin, rum, schroeder,
trump

Table 4.9.: Top 10 representative words for the unique tweets with strong preprocessing.
GottBERT is used to embed the tweets.

62

Figure 4.8.: Heatmap of the topic‘s similarity matrix, based on cosine similarity, which
is adopted from Grootendorst (2020a). Unique tweets with strong prepro-
cessing are embedded with GottBERT.

63

5. Discussion and Outlook

The last chapter showed that meaningful topics can be built when using Sentence BERT
as embedding model for BERTopic. However, the resulting topics when using German
BERT or GottBERT to embed the tweets, do not seem to capture the meaning of a tweet
since the topics can not be easily interpreted. This is interesting to see because both,
GottBERT and German BERT are German models only, whereas the model used with
SBERT is a multilingual one. According to Scheible et al. (2020), “multilingual models
are inferior to monolingual models“, which could not be confirmed throughout this thesis.
The author of BERTopic, Grootendorst (2020b), advises using sentence transformers
(SBERT) to embed documents since they are of good quality and show state-of-the-art
results on tasks such as semantic textual similarity (Reimers and Gurevych, 2019). As
a result, we did see that the usage of SBERT as embedding model lead to the most
meaningful and coherent topics.

Nevertheless, many tweets (around 84%) are labelled as outliers because they have low
specificity towards the resulting, cohesive topics. But we also noticed that tweets in noise
are allocated to new topics when the number of topics is increased. While we evaluated
topic models with 20 topics for the sake of simplicity, 50 topics also form coherent topics
and would therefore also be reasonable. Note that table B.2 shows the representative
words for k = 50 and the topic model with SBERT as embedding model.

In the following section, we propose an idea, how the topic model may still be advanced
and how the number of tweets assigned to noise might be reduced. After that, specialized
approaches are described that can be applied when using short texts for topic modelling.
The idea is to aggregate certain, connected tweets into longer documents by leveraging
its meta-data.

64

5.1. Possible ways to reduce noise

The algorithm BERTopic which was used for topic modelling in this thesis, performs
all steps, embedding documents, reducing dimensions, clustering low-dimensional vector
representations and applying class-based TF-IDF, in a single pass. If we want to try
different values for the hyperparameters, all steps hence need to be repeated all over
again. Therefore, it is worth considering performing all steps successively in order to be
able to optimize the parameters, for example when using UMAP or HDBSCAN. This
may lead to even better results where those tweets that could have been allocated to
topics are not labelled as noise anymore, since we are able to customize our models.

Another possibility to reduce the size of the cluster noise is to calculate the proba-
bility of a tweet belonging to any topic by setting calculate_probabilities = True

in BERTopic. By doing this, we can re-allocate outliers to the topic with the highest
probability after the model had been trained. Note, however, that the extraction of top-
ics needs an immense computation time when calculating the probabilities of all topics
per document and should therefore only be used if we have less than 100000 documents
(Grootendorst, 2020a). Furthermore, we should probably define a threshold below which
the documents can not be re-allocated to topics since the concept of noise does make
sense. The purpose of noise is to collect all those tweets that can not be assigned to any
topics. Especially when looking at the tweets at hand, we noticed that many tweets just
consist of one or two words after preprocessing. The approach of labelling those tweets
as noise may therefore be reasonable.

5.2. Specialized approaches for short texts by

leveraging meta-data

Although tweets may vary in length, many of them can be very short1, which may lead
to a lack of context in each tweet (Feng et al., 2020). Since the average amount of
words in tweets with strong preprocessing are 7 words and the average tweet with little
preprocessing consists of 13 words, the tweets at hand that are fed to embedding models
are in fact short texts.

1In 2017, the maximum length of a tweet was set to 140 characters.

65

There exist so-called “aggregation strategies“ that are specifically used in social media
contexts that leverage their meta-data. Weng et al. (2010), for example, aggregated
tweets written from the same authors and then trained a topic model. Furthermore,
Hong and Davison (2010) compare the results of LDA models with different aggregation
strategies such as aggregated user profiles or aggregation of all texts that contain a
certain term for all terms in the training corpus. Although we did not use LDA for topic
modelling, but instead a neural topic model, our data consists apart from the tweets of
meta-data which could be leveraged to aggregate the tweets. First, we know the author
of each tweet and could therefore aggregate all tweets based on the user. However, in
a time period of 6 months, it would not be surprising if the topics will vary, especially
since politicians need to address recent events and news. Second, we know the exact
date and time, a tweet was posted. Hence, we could aggregate the tweets based on the
date which would capture the turn of events. While a time window of one day may be
too large, we could think about aggregating all tweets that were posted in the same hour
and the same day. Third, it is specified whether a tweet is a retweet, original tweet, reply
or a quote. Moreover, a unique tweet ID is given, referring to the original tweet. We
could thus recap a conversation, for example, by aggregating the original tweets with the
reply to it. However, it would be necessary that the authors of the respective original
tweet belong to those candidates whose tweets are scraped from Twitter. Lastly, we can
extract all hashtags in texts and aggregate the tweets based on those hashtags. Since
“hashtags can be viewed as topical markers, an indication to the context of the tweet
or as the core idea expressed in the tweet“ (Mehrotra et al., 2013), this may also be a
promising approach.

66

6. Conclusion

In this thesis, we applied BERTopic, a neural topic model, to tweets written by German
politicians. The first step of this algorithm is to embed the tweets at hand. We used
three different models to generate these vector representations: Sentence BERT, German
BERT and GottBERT. While SBERT is a multilingual model, the other two are for
German texts only. We found that the sentence transformer model is most appropriate
in order to find meaningful and coherent topics. For that reason, we fitted BERTopic
with the sentence transformer on four different data sets: tweets with little and strong
preprocessing and unique and duplicate tweets, respectively. The results of all four
data sets in combination with SBERT as embedding model lead to very similar results.
Moreover, we discovered that the topic models with 50 topics hold the most information
when comparing them to the fitted models with 10, 20, 30 and 40 topics. Since we started
initially with 269000 tweets, it is obvious that many different topics are probably being
discussed. Although choosing 50 topics seemed most appropriate, we decided to evaluate
the models with 20 topics in more depth to obviate information overload.

When taking a closer at the model with 20 topics and SBERT as embedding model,
we found that not only the representative words for each cluster are coherent, but also
the representative tweets. Nevertheless, some tweets that are labelled as noise, could
have also been assigned to existing clusters. This might be resolved by calculating the
probabilities of all topics per document and re-allocate those tweets in noise above a
certain threshold to their highest respective topic probability. As the unique tweets
with strong preprocessing allocated the greatest percentage of tweets (16%) to topics,
we focused for further analysis on this data set. Moreover, the unique tweets with
strong preprocessing were visualized in a three-dimensional space, where many topics
were visible as distinct clusters. Other topics were more widespread but still recognizable
as clusters. Lastly, we examined a heatmap that visualized the cosine similarity scores of
each pair of topic embeddings. We found that those clusters that share a similar topic,
also have a higher similarity score and those that describe different topics thus have a

67

lower score.

When the topic model with German BERT as embedding model and the unique tweets
with strong preprocessing was fit, it was interesting to see that only 25.5% of the tweets
were labelled as noise, whereas 70% are assigned to topic 0. Nevertheless, the representa-
tive words of the topics are very general and it is, therefore, difficult to label each topic.
Hence, it seems that BERTopic in combination with SBERT generated more valuable
and meaningful topics. This suspicion strengthens when looking at the heatmap that
depicts the similarity matrix of the topic embeddings generated by German BERT. Not
only do the scores start at a higher threshold, but also many similarity scores are close
to one.

A similar pattern can be observed when generating the embeddings with GottBERT.
The representative words for each topic are rather general and the topics can therefore
not be labelled. Nearly all topic embeddings have moreover a cosine similarity score
close to one. A difference compared to German BERT as embedding model is that
approximately 90% of the tweets are allocated to noise.

For all results we have evaluated in this thesis, we used the model BERTopic introduced
by Grootendorst (2020a). It is a powerful topic modelling algorithm because it combines
transformer-based models such as BERT with TF-IDF in order to find representative
words for each topic and to interpret the topics. Furthermore, it is arguably straight-
forward to apply and comprises great visualization tools. It generated meaningful and
cohesive topics when combining it with Sentence BERT as embedding model, although
24.3% of the tweets were cut off at the end. It would be interesting to see for future
topic modelling how the results will change with those tweets pulled from Twitter that
are not cut off in the end.

68

A. Details on preprocessing of
tweets

Since the data was provided by Weingärtner (2021) who had already preprocessed the
tweets, we adopted some of his code. The following will specify which passages of
preprocessing were transferred.

1 library(tidyverse)
2 library(stringr)
3 library(stringi)
4 library(quanteda)
5 library(data.table)
6 library(Rcpp)
7 library(qdapRegex)
8

9 tweets <- readRDS("data_tweets.rds")
10

11 little_preprocessing <- function(tweets) {
12 tweets <- rm_url(tweets)
13 tweets <- gsub("\\b+RT", "", tweets)
14 tweets <- gsub("@\\S+", "", tweets)
15 tweets <- gsub("\\s[[: graph :]]+...$", "", tweets)
16 tweets <- stringi ::stri_trans_general(tweets ,
17 "Any -Latin") # Weingaertner
18 tweets <- stringr ::str_replace_all(tweets ,
19 c("\u00c4" = "Ae",
20 "\u00e4" = "ae",
21 "\u00d6" = "Oe",
22 "\u00f6" = "oe",
23 "\u00dc" = "Ue",
24 "\u00fc" = "ue",
25 "\u00df" = "ss")) # Weingaertner
26 tweets <- stringr ::str_replace_all(tweets ,
27 pattern = "\\n",

69

28 replacement = " ") # Weingaertner
29 tweets <- gsub("&", "und", tweets)
30 tweets <- gsub(">", "", tweets)
31 tweets <- gsub("<", "", tweets)
32 pattern <- stringr ::str_c(c(
33 "\U0022",
34 "\U0027",
35 "\U2018",
36 "\U2019",
37 "\U201C",
38 "\U201D",
39 "\U201E",
40 "\U201F",
41 "%",
42 " http ([^]*)",
43 "http ([^]*)",
44 "\\\n"),
45 collapse = "|") # Weingaertner
46 tweets <- stringr ::str_remove_all(tweets , pattern) # Weingaertner
47 tweets <- gsub("[^ -~]", "", tweets)
48 tweets <- gsub(’[[: punct :]]’, ’ ’, tweets) # Strong preprocessing
49 tweets <- gsub("\\d", " ", tweets) # Strong preprocessing
50 tweets <- gsub("^[[: space :]]*", "", tweets)
51 tweets <- gsub("[[: space :]]*$", "", tweets)
52 tweets <- gsub(" +", " ", tweets)
53

54 return(tweets)
55 }
56

57 tweets$text <- little_preprocessing(tweets[, "text"])
58

59 # The following passage is fully adopted by Weingaertner
60 pattern_hashtag <- "(#) [[: alnum :]]+"
61 pattern_camelcase_hashtag <- "#(.) +[: upper :][: lower :]{2 ,}"
62 pattern_split_camelcase <- "(? <=[: lower :]) (?=[: upper :])"
63

64 tweets <- as.data.table(tweets)
65 tweets[, text := lapply(
66 .I,
67 function(i) {
68 components <- unlist(stringr ::str_split(text[i], " "))
69 case_numbers <- which(stringr ::str_detect(

70

70 components , pattern_camelcase_hashtag))
71 cases <- components[case_numbers]
72 solved_cases <- sapply(
73 stringr ::str_split(cases , pattern_split_camelcase),
74 function(j) paste0(c(j), collapse = " "))
75 components[case_numbers] <- solved_cases
76 paste0(c(components), collapse = " ")})]
77

78 tweets[, text := stringr ::str_remove_all(text , pattern_hashtag)]

Listing A.1: Preprocessing example

This part of preprocessing was performed in R. Everything following this preprocessing,
for example extracting and deleting tweets in non-German languages, was done in the
scope of this thesis in Python 1.

1All codes can be found here: https://github.com/annegriddl/Neural-topic-modeling.git

71

https://github.com/annegriddl/Neural-topic-modeling.git

B. Details on topics

This part comprises more tables with representative words for the four data sets with
little and strong preprocessing as well as with unique and duplicate tweets for 20 top-
ics. Furthermore, the representative words for 50 topics and the data set with strong
preprocessing and unique tweets is displayed. Moreover, the list of stopwords is shown
in table B.1

72

Stopwords

ab aber afd alle allem allen aller
alles als also am an ander andere
anderem anderen anderer anderes anderm andern anderr
anders auch auf aus bei beim bin
bis bist cdu cducsu csu da dafuer
damit dann darum dafuer der den des
dem die das dass dass derselbe derselben
denselben desselben demselben dieselbe dieselben dasselbe dazu
dein deine deinem deinen deiner deines denn
derer dessen dich dir du dies diese
diesem diesen dieser dieses doch dort durch
deutschland deutschlands ein eine einem einen einer
eines einig einige einigem einigen einiger einiges
eigentlich einmal er ihn ihm es etwas
euer eure eurem euren eurer eures fuer
fdp gegen gerade gewesen hab habe haben
hat ham hatte hatten haette haetten hallo
hier hin hinter ht heute ich mich
mir immer ihr ihre ihrem ihren ihrer
ihres euch im in indem ins ist
ja jede jedem jeden jeder jedes jene
jenem jenen jemand jener jenes jetzt kann
kein keine keinem keinen keiner keines koennen
koennte machen man manche manchem manchen mancher
manches mein meine meinem meinen meiner meines
meines mehr mit muss musste muessen morgen
gruen nach nein nicht nichts noch nun
nur ob oder ohne schon se spd
sehr sein seine seinem seinen seiner seines
selbst sich sie ihnen sind so solche
solchem solchen solcher solches soll sollte sollten
son sondern sonst ueber um und uns
unsere unserem unseren unser unseres unter uhr
tl viel vielleicht vom von vor waehrend
war warum waren warst was weg weil
weiter welche welchem welchen welcher welches wenn
werde werden wie wieder will wir wird
wirst wo wollen wollte wuerde wuerden zu
zum zur zwar zwischen

Table B.1.: List of used stopwords.

73

Topic Representative words
0 berlin, berliner, txl, tegel, berlins, mitte, btw, bundestag
1 tvduell, tv, duell, schulz, merkel, martin, moderatoren, kanzlerduell
2 polizei, polizisten, hamburger, hamburg, bundespolizei, polizeigewalt, sicherheit, hh
3 retweeted, twitter, tweet, tweets, twittern, servicetweet, retweeten, linksfraktion
4 traudichdeutschland, deutschen, holdirdeinlandzurueck, deutsche, opposition, bayern, kraft, bun-

destag
5 schulen, bildung, schule, bildungspolitik, lehrer, kooperationsverbot, studiengebuehren, ausbildung
6 politik, politiker, politische, politischen, politisch, wolf, politikwechsel, political
7 klimaschutz, klimawandel, klimakrise, darumgruen, klimapolitik, trump, planeten, klimaziele
8 facebook, livestream, live, zensur, fb, whatsapp, meinungsfreiheit, netzdg
9 islam, muslime, islamisierung, terror, oezoguz, ramadan, islamismus, islamisten
10 kirche, kirchentag, christen, kirchen, religionsfreiheit, religion, stephanuskreis, religionen
11 interview, sommerinterview, radio, interviewt, podcast, btw, nachhoeren, spitzenkandidatin
12 digitalisierung, digitale, digital, bildung, digitalebildung, digitalen, schulen, agenda
13 gerechtigkeit, soziale, zeitfuermehrgerechtigkeit, sozialen, sozial, marktwirtschaft, zeitfuermartin,

zeit
14 pflege, gesundheit, pflegekraefte, patienten, weltgesundheitstag, versorgung, gesundheitspolitik, an-

tibiotika
15 linksextremismus, populismus, rechtsextremismus, extremismus, rechtsextreme, rechtspopulisten,

extremisten
16 diesel, autoindustrie, automobilindustrie, luft, fahrverbote, dieselgipfel, autos, stickoxide
17 energiewende, windkraft, wind, windenergie, erneuerbare, energien, kohleausstieg, energie
18 steuern, steuerkonzept, steuer, panamapapers, euro, einkommen, steuerzahler, steuersenkungen
19 journalisten, pressefreiheit, freedeniz, tuerkei, journalist, deniz, yuecel, journalismus
20 familien, familie, familiennachzug, familienpolitik, kinder, wuensche, papa, luftballons
21 migranten, einwanderungsgesetz, migration, illegale, einwanderung, zuwanderung, migrationshin-

tergrund
22 union, sonntagsfrage, nordrhein, bundestagswahl, wahlkampf, btw, wahlumfrage, forsa
23 euro, schulden, eu, banken, millionen, bank, finanzkrise, eurozone
24 italien, libyen, mittelmeer, kuestenwache, eu, seenotrettung, ngos, fluechtlinge
25 demokratie, direkte, namen, europa, sozialdemokratie, demokratisch, waehlen, freiheit
26 glueckwunsch, herzlichen, geburtstag, birthday, happy, glueck, liebe, glueckwuensche,
27 essen, verbraucherschutz, skandal, eier, fipronil, verbraucher, lecker, milch
28 homophobie, queer, heiraten, lgbti, wedding, homosexuelle, ehefueralle, tschetschenien
29 elektromobilitaet, mobilitaet, verkehrswende, elektroautos, elektroauto, autos, verkehrspolitik, rad-

verkehr
30 martin, schulz, martinschulz, kanzlerkandidat, sozialdemokraten, obama, kanzler, zeitfuermartin
31 danke, dank, vielen, unterstuetzung, beste, feedback, freut, veranstaltung
32 minister, ministerin, innenminister, verkehrsminister, finanzminister, ministerpraesident, dobrindt,

schaeuble
33 armut, kinderarmut, kinder, ungleichheit, grundeinkommen, kindergrundsicherung, einkommen,

armutsbericht
34 protest, demo, proteste, demonstranten, hamburg, friedlich, demonstrieren, hh
35 foto, bild, fotos, bilder, instagram, account, kamera, fotoshooting
36 terror, terroristen, stockholm, terrorismus, manchester, gedanken, angehoerigen, opfern
37 afghanistan, abschiebungen, abschiebestopp, kabul, afghanen, abschiebung, afghane, taliban
38 nazis, nazi, neonazis, neonazi, nonazis, hitler, helden, nationalsozialismus
39 barcelona, london, terror, opfer, angehoerigen, anschlag, trauer, gedanken
40 antisemitismus, israel, juden, antisemitismusdoku, doku, gabriel, jerusalem, antisemiten
41 feminismus, gender, sexismus, frauen, diskriminierung, gleichberechtigung, feministin,

geschlechtergerechtigkeit
42 bundeswehr, haushaltsausschuss, mali, soldaten, drohnen, engagement, kampfdrohnen, truppe
43 trump, nordkorea, usa, charlottesville, aussenpolitik, praesident, kim, korea
44 asyl, asylbewerber, asylrecht, refugeeswelcome, asylpolitik, refugees, asylkrise, einwanderung
45 plakate, plakat, haengen, wahlplakate, plakaten, btw, vandalismus, logo
46 diskussion, dialog, interessant, spannende, freue, spannend, spass, interessante,
47 jamaika, koalition, koalitionsvertrag, nrwkoalition, nrw, gruene, koalitionsverhandlungen, vertrag
48 hamburg, olaf, scholz, gipfel, nog, tk, hamburgs, gipfels
49 dieselgate, diesel, software, abgasskandal, dobrindt, lobbyismus, dieselgipfel, dieselskandal

Table B.2.: Top 8 representative words for each of 50 topics of the unique tweets with
strong preprocessing.

74

Topic Count Representative words

0 2686 polizei, polizisten, hilfe, sicherheit, polizist, polizistinnen, bundespolizei, police,
polizeigewalt, polizeieinsatz

1 1998 tweet, twitter, tweets, twittern, retweeten, servicetweet, getwittert, lesen, twit-
tert, retweetet

2 1846 europa, kohl, helmut, pulseofeurope, europe, populismus, europaeer, eu, eu-
ropaeische, pulse

3 1805 steuerkonzept, steuern, einkommen, entlasten, steuersenkungen, steuerpolitik,
steuer, entlastet, zahlen, vermoegensteuer

4 1663 trump, syrien, nordkorea, paris, usa, venezuela, syrer, donald, pariser, agreement

5 1559 grundgesetz, rechtsstaat, gesetz, kinderrechte, verfassungsschutz, gesetze, leitkul-
tur, recht, netzdg, kultur

6 1548 diesel, dieselgate, dobrindt, abgasskandal, fahrverbote, dieselgipfel, luft, au-
tokartell, stickoxide, softwareupdate

7 1507 polizei, polizisten, g20, polizeigewalt, polizist, hamburg, sicherheit, nog20,
polizistinnen, gewalt

8 1446 digitalisierung, tvduell, infrastruktur, bildung, zukunft, nix, digital, verkehrsmin-
ister, schlechteste, klima

9 1430 klimaschutz, klimawandel, klimakrise, klima, gruen, arktis, irma, ueberschwem-
mungen, wetter, kohleausstieg

10 1339 danke, vielen, hol, zurueck, follower, dank, landzurueck, land, btw17, folgen

11 1302 martin, schulz, gerechtigkeit, 70, rente, tvduell, merkel, zeitfuer, tvspot, machts

12 1293 euro, griechenland, milliarden, schulden, mio, roaminggebuehren, millionen, ver-
schuldet, eu, bahn

13 1286 deniz, free, journalisten, pressefreiheit, yuecel, tuerkei, haft, journalismus, tagen,
inhaftierten

14 1273 islam, muslime, islamisierung, terror, islamismus, islamisten, trau, moschee, is-
lamischen, gehoert

15 1195 sonntagsfrage, bundestagswahl, forsa, btw17, 39, sternl, emnidbams, 24, 65, pro-
jektion

16 1036 bildung, schulen, schule, investieren, ausbildung, lehrer, investitionen, studienge-
buehren, bildungspolitik, hochschulen

17 981 rente, buergerversicherung, gruensozial, sozialpolitik, forderungen, rentenniveau,
gruene, garantierente, befristung, altersarmut

18 920 bundeswehr, incirlik, soldaten, kampfdrohnen, feuerwehr, abzug, drohnen, frei-
willigen, waffen, leyen

19 903 woche, waehlen, wahltag, ehe, abstimmen, abstimmung, steineke, sekunden,
beschliessen, bundestag

Table B.3.: Top 10 representative words for each of 20 topics of the duplicate tweets
with little preprocessing.

75

Topic Count Representative words

0 3230 mann, kohl, helmut, recht, weiss, peinlich, heiner, geissler, herr, kanzlerin

1 2855 europa, eu, pulseofeurope, europe, europaeische, europas, pulse, europaeischen,
of, worms

2 2253 digitalisierung, digitale, bildung, digital, digitalen, zukunft, agenda, digitaler,
schulen, digitalgipfel

3 2106 bildung, schulen, schule, investieren, ausbildung, investitionen, lehrer, studienge-
buehren, bildungspolitik, kinder

4 1737 politik, parteien, partei, politiker, altparteien, opposition, politische, politischen,
populismus, politisch

5 1628 berlin, guten, berliner, btw17, bundestag, gehts, stadt, sitzungswoche, tegel, blog

6 1440 tvduell, duell, tv, schulz, merkel, martin, moderatoren, machts, martinmachts,
btw17

7 1381 danke, herzlichen, glueckwunsch, geburtstag, dank, vielen, erfolg, happy, birth-
day, liebe

8 1358 kirche, christen, kirchentag, religionsfreiheit, kirchen, ostern, frohe, wuensche,
religion, ramadan

9 1355 sonntagsfrage, bundestagswahl, btw17, insabild, forsa, emnidbams, sternl, 36,
programm, 38

10 1350 klimaschutz, klimawandel, klima, klimakrise, gruen, 2030, klimapolitik,
kohleausstieg, klimaziele, darumgruen

11 1257 pflege, buergerversicherung, gesundheit, pflegekraefte, versorgung, weltgesund-
heitstag, hunderttausend, personal, bessere, patienten

12 1207 deniz, journalisten, free, pressefreiheit, yuecel, tuerkei, journalismus, haft, tagen,
inhaftierten

13 1168 steuern, steuerkonzept, einkommen, steuersenkungen, panama, soli, entlasten,
steuerpolitik, steuer, vermoegensteuer

14 1163 freiheit, zensur, menschenrechte, meinungsfreiheit, netzdg, gesellschaft, maas,
grundrechte, sicherheit, offene

15 1150 twitter, tweet, tweets, twittern, retweeten, getwittert, lesen, twitteraccount, ser-
vicetweet, twittert

16 1115 kinder, kinderarmut, armut, kind, kinderrechte, kindergrundsicherung, kindern,
kindertag, eltern, kinderehen

17 1024 migranten, einwanderungsgesetz, asyl, asylbewerber, migration, illegale, einwan-
derung, zuwanderung, migrantenkriminalitaet, asylmissbrauch

18 963 polizei, polizisten, hamburg, sicherheit, polizist, polizistinnen, bundespolizei, g20

19 960 bundestagswahl, wahlkreis, kandidaten, kandidatencheck, wdrkandidatencheck,
btw17, kandidat, direktkandidat, kandidatinnen, direktkandidatin

Table B.4.: Top 10 representative words for each of 20 topics of the unique tweets with
little preprocessing.

76

Topic Count Representative words

0 2262 terror, barcelona, london, terroristen, gedanken, opfer, manchester, islam, opfern,
angehoerigen

1 2166 polizei, polizisten, hamburger, hamburg, polizist, nog, bundespolizei, polizeige-
walt, sicherheit, hh

2 2076 pressefreiheit, journalisten, tuerkei, freedeniz, deniz, yuecel, haft, erdogan, tagen,
journalist

3 2070 twitter, tweet, tweets, retweeten, instagram, account, twittern, selfie, thermilind-
ner, nurmitgruen

4 2024 glueckwunsch, herzlichen, geburtstag, umwelt, birthday, happy, darumgruen, nrw,
glueck, liebe

5 2024 sonntagsfrage, bundestagswahl, btw, bams, forsa, emnid, stern, insa, haustuer-
wahlkampf, dimap

6 2021 dieselgate, diesel, dobrindt, dieselgipfel, verkehrsminister, software, verbren-
nungsmotor, autokartell, waehlt, dieselskandal

7 1980 armut, kinderarmut, kinder, ungleichheit, grundeinkommen, kindergrund-
sicherung, kind, arm, einkommen, armutsbericht

8 1891 berlin, berliner, txl, tegel, berlins, mitte, btw, bundestag, agh, tegelschliessen

9 1715 klimaschutz, klimakrise, klimawandel, klima, darumgruen, kindergarten, arktis,
merkel, planeten, klimapolitik

10 1684 migranten, einwanderungsgesetz, migration, einwanderung, illegale, zuwan-
derung, migrationshintergrund, flucht, braucht, brauchen

11 1561 danke, richtig, super, political, correctness, ganz, hinweis, dank, grossartig, seid

12 1525 italien, libyen, mittelmeer, kuestenwache, libysche, seenotrettung, eu, ngos, pdf,
libyschen

13 1500 martin, schulz, martinschulz, sommerinterview, zukunftsplan, tvduell, emissions-
freie, auto, merkel, duell

14 1476 tvduell, tv, merkel, schulz, duell, martinmachts, politbarometer, spot, btw, fak-
tencheck

15 1438 pflege, gesundheit, weltgesundheitstag, hunderttausend, pflegekraefte, patienten,
versorgung, kompromiss, gesundheitspolitik, personal

16 1428 trump, syrien, nordkorea, paris, usa, venezuela, syrer, donald, pariser, agreement

17 1394 gerechtigkeit, soziale, sozialpolitik, forderungen, gruensozial, gruene, familienbud-
get, arbeitsmarkt, sozial, sozialer

18 1346 digitalisierung, digitale, bildung, tvduell, agenda, digital, digitalen, moderatoren,
schulen, digitalebildung

19 1337 steuern, steuerkonzept, einkommen, steuer, entlasten, panamapapers, mrd, euro,
steuersystem, steuersenkungen

Table B.5.: Top 10 representative words for each of 20 topics of the duplicate tweets
with strong preprocessing.

77

References

Angelov, D. (2020). Top2Vec: Distributed Representations of Topics. CoRR,
abs/2008.09470.

Arun, R., Suresh, V., Veni Madhavan, C. E., and Narasimha Murthy, M. N. (2010). On
Finding the Natural Number of Topics with Latent Dirichlet Allocation: Some Obser-
vations. In Zaki, M. J., Yu, J. X., Ravindran, B., and Pudi, V., editors, Advances in
Knowledge Discovery and Data Mining, pages 391–402. Springer, Berlin, Heidelberg.

Aßenmacher, M. (2021). Comparability, evaluation and benchmarking of large pre-trained
language models. PhD thesis, Ludwig-Maximilians-Universität München.

Ba, L. J., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. CoRR,
abs/1607.06450.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural Machine Translation by Jointly
Learning to Align and Translate.

Bansal, S. (2016). Beginners Guide to Topic Modeling in Python. https:

//www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-mod

eling-in-python/#respond. Accessed: 2022-01-29.

Barrie, C. and Ho, J. (2021). academictwitteR: an R package to access the Twitter
Academic Research Product Track v2 API endpoint. Journal of Open Source Software,
6: 3272.

Belkin, M. and Niyogi, P. (2003). Laplacian Eigenmaps for Dimensionality Reduction
and Data Representation. Neural Computation, 15(6): 1373–1396.

Blei, D. M. (2012). Probabilistic Topic Models. Communications of the ACM, 55(4):
77–84.

78

https://www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-modeling-in-python/#respond
https://www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-modeling-in-python/#respond
https://www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-modeling-in-python/#respond

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet Allocation. The
Journal of Machine Learning Research, 3: 993–1022.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A large annotated
corpus for learning natural language inference. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, pages 632–642, Lisbon,
Portugal. The Association for Computational Linguistics.

Campello, R. J. G. B., Moulavi, D., and Sander, J. (2013). Density-Based Clustering
Based on Hierarchical Density Estimates. In Pei, J., Tseng, V. S., Cao, L., Motoda,
H., and Xu, G., editors, Advances in Knowledge Discovery and Data Mining, PAKDD
2013, pages 160–172. Springer, Berlin, Heidelberg.

Carbonell, J. and Goldstein, J. (1998). The Use of MMR, Diversity-Based Reranking for
Reordering Documents and Producing Summaries. In Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’98, page 335–336, New York, NY, USA. Association for Computing
Machinery.

Carrigan, M., Debut, L., Gugger, S., Noyan, M., Saulnier, L., Tunstall, L., and von
Werra, L. (n.d). How do Transformers work? https://huggingface.co/course/ch

apter1/4?fw=pt. Accessed: 2022-01-31.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. CoRR, abs/1406.1078.

Deepset (2019). Open Sourcing German BERT Model. https://www.deepset.ai/ger
man-bert. Accessed: 2022-02-15.

Der Bundeswahlleiter (2017). Wahl zum 19. deutschen Bundestag am 24. Septem-
ber 2017. Heft 3. https://www.bundeswahlleiter.de/dam/jcr/3f3d42ab-fae

f-4553-bdf8-ac089b7de86a/btw17_heft3.pdf. Accessed: 2022-02-14.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. CoRR, abs/1810.04805.

Dieck, T. (2008). Algebraic Topology. EMS textbooks in mathematics. European Math-
ematical Society.

79

https://huggingface.co/course/chapter1/4?fw=pt
https://huggingface.co/course/chapter1/4?fw=pt
https://www.deepset.ai/german-bert
https://www.deepset.ai/german-bert
https://www.bundeswahlleiter.de/dam/jcr/3f3d42ab-faef-4553-bdf8-ac089b7de86a/btw17_heft3.pdf
https://www.bundeswahlleiter.de/dam/jcr/3f3d42ab-faef-4553-bdf8-ac089b7de86a/btw17_heft3.pdf

Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2): 179–211.

Feng, J., Zhang, Z., Ding, C., Rao, Y., and Xie, H. (2020). Context Reinforced Neural
Topic Modeling over Short Texts. CoRR, abs/2008.04545.

Goldberg, Y. (2015). A Primer on Neural Network Models for Natural Language Pro-
cessing. CoRR, abs/1510.00726.

Goldberg, Y. and Hirst, G. (2017). Neural Network Methods in Natural Language Pro-
cessing. Morgan & Claypool Publishers.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Griffiths, T. L., Tenenbaum, J. B., and Steyvers, M. (2007). Topics in semantic repre-
sentation. Psychological Review, 114: 2007.

Grootendorst, M. (2020a). BERTopic: Leveraging BERT and c-TF-IDF to create easily
interpretable topics.

Grootendorst, M. (2020b). Topic Modeling with BERT: Leveraging BERT and TF-IDF
to create easily interpretable topics. https://towardsdatascience.com/topic-mod
eling-with-bert-779f7db187e6. Accessed: 2022-01-29.

Hatcher, A. (2000). Algebraic topology. Cambridge Univ. Press, Cambridge.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image
Recognition. CoRR, abs/1512.03385.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8): 1735–1780.

Hong, L. and Davison, B. D. (2010). Empirical Study of Topic Modeling in Twitter. In
Proceedings of the First Workshop on Social Media Analytics, SOMA ’10, page 80–88,
New York, NY, USA. Association for Computing Machinery.

Huilgol, P. (2020). Quick Introduction to Bag-of-Words (BoW) and TF-IDF for Creating
Features from Text. https://www.analyticsvidhya.com/blog/2020/02/quick-int
roduction-bag-of-words-bow-tf-idf/. Accessed: 2021-12-14.

Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. (1999). An introduction to
variational methods for graphical models. Machine learning, 37(2): 183–233.

80

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://towardsdatascience.com/topic-modeling-with-bert-779f7db187e6
https://towardsdatascience.com/topic-modeling-with-bert-779f7db187e6
https://www.analyticsvidhya.com/blog/2020/02/quick-introduction-bag-of-words-bow-tf-idf/
https://www.analyticsvidhya.com/blog/2020/02/quick-introduction-bag-of-words-bow-tf-idf/

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., and Mikolov, T.
(2016a). Fasttext.zip: Compressing text classification models. arXiv preprint
arXiv:1612.03651.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016b). Bag of tricks for efficient
text classification. arXiv preprint arXiv:1607.01759.

Jänich, K. (2005). Topologie. Springer Berlin, Heidelberg.

Larochelle, H. and Lauly, S. (2012). A neural autoregressive topic model. In Pereira,
F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc.

Le, Q. V. and Mikolov, T. (2014). Distributed Representations of Sentences and Docu-
ments. CoRR, abs/1405.4053.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettle-
moyer, L., and Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pre-
training Approach. CoRR, abs/1907.11692.

Marschall, S. (2018). Das politische System Deutschlands. UTB basics. UVK Verlag,
München. 4. aktualisierte Auflage.

May, J. (1967). Simplicial objects in algebraic topology. Princeton, NJ: VanNostrand
Co.

McInnes, L. (2018). How umap works. https://umap-learn.readthedocs.io/en/lat
est/how_umap_works.html. Accessed: 2022-01-31.

McInnes, L., Healy, J., and Astels, S. (2016). How HDBSCAN Works. https://hdbs

can.readthedocs.io/en/latest/how_hdbscan_works.html. Accessed: 2022-01-31.

McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform manifold approximation
and projection for dimension reduction.

Mehrotra, R., Sanner, S., Buntine, W., and Xie, L. (2013). Improving LDA Topic Models
for Microblogs via Tweet Pooling and Automatic Labeling. SIGIR ’13, pages 889–892,
New York, NY, USA. Association for Computing Machinery.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word
representations in vector space.

81

https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013b). Distributed rep-
resentations of words and phrases and their compositionality. CoRR, abs/1310.4546.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013c). Linguistic Regularities in Continuous
Space Word Representations. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 746–751, Atlanta, Georgia. Association for Computational
Linguistics.

Müller, D. W. and Sawitzki, G. (1991). Excess Mass Estimates and Tests for Multi-
modality. Journal of the American Statistical Association, 86(415): 738–746.

National Institute of Neurological Disorders and Stroke (2002). Life and Death of a Neu-
ron. https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Li

fe-and-Death-Neuron. Accessed: 2022-01-07.

Nielsen, M. (2015). Neural Networks and Deep Learning. Determination Press.

Ostendorff, M., Blume, T., and Ostendorff, S. (2020). Towards an Open Platform for
Legal Information. In Proceedings of the ACM/IEEE Joint Conference on Digital
Libraries in 2020, JCDL ’20, page 385–388, New York, NY, USA. Association for
Computing Machinery.

Pai, A. (2020). CNN vs. RNN vs. ANN – Analyzing 3 Types of Neural Networks in Deep
Learning. https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp
-analyzing-3-types-of-neural-networks-in-deep-learning/#h2_1. Accessed:
2022-01-09.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research, 12: 2825–2830.

Phi, M. (2018). Illustrated Guide to Recurrent Neural Networks. https:

//towardsdatascience.com/illustrated-guide-to-recurrent-neural-net

works-79e5eb8049c9. Accessed: 2022-01-18.

Phi, M. (2020). Illustrated guide to Transformers - Step by Step Explana-
tion. https://towardsdatascience.com/illustrated-guide-to-transformers-s
tep-by-step-explanation-f74876522bc0. Accessed: 2022-01-25.

82

https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Life-and-Death-Neuron
https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Life-and-Death-Neuron
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/#h2_1
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/#h2_1
https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9
https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9
https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Pilehvar, M. and Camacho-Collados, J. (2020). Embeddings in natural language pro-
cessing: Theory and advances in vector representations of meaning. Synthesis Lectures
on Human Language Technologies, 13(4): 1–175.

Pitts, W. and McCulloch, W. S. (1943). A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5: 115–133.

Reimers, N. (2022). Sentence-Transformers. https://www.sbert.net/docs/pretrai

ned_models.html#multi-lingual-models. Accessed: 2022-02-14.

Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics.

Reimers, N. and Gurevych, I. (2020). Making Monolingual Sentence Embeddings Mul-
tilingual using Knowledge Distillation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics.

Ruder, S. (2019). Neural Transfer Learning for Natural Language Processing. PhD
thesis, National University of Ireland, Galway.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Representations
by Back-propagating Errors. Nature, 323(6088): 533–536.

Scheible, R., Thomczyk, F., Tippmann, P., Jaravine, V., and Boeker, M. (2020). Got-
tBERT: a pure German Language Model. CoRR, abs/2012.02110.

Schmidt, J.-H. (2017). Twitter-Nutzung von Kandidierenden der Bundestagswahl 2017.
Verbreitung, Aktivität und Informationsquellen. Media Perspektiven, (12): 616–629.

Schuster, M. and Paliwal, K. (1997). Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45: 2673–2681.

Stier, S., Bleier, A., Bonart, M., Mörsheim, F., Bohlouli, M., Nizhegorodov, M., Posch,
L., Maier, J., Rothmund, T., and Staab, S. (2018). Systematically Monitoring Social
Media: the case of the German federal election 2017, volume 2018/04 of GESIS Papers.
GESIS - Leibniz-Institut für Sozialwissenschaften, Köln.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning with
Neural Networks. CoRR, abs/1409.3215.

83

https://www.sbert.net/docs/pretrained_models.html#multi-lingual-models
https://www.sbert.net/docs/pretrained_models.html#multi-lingual-models

Thurich, E. (2011). Pocket Politik. Demokratie in Deutschland. Bundeszentrale für
politische Bildung. Überarbeitete Neuauflage Bonn.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017). Attention Is All You Need. CoRR, abs/1706.03762.

Weingärtner, J. (2021). Positive and negative campaigning on Twitter in multiparty
systems. Bachelorarbeit (unveröffentlicht).

Weng, J., Lim, E.-P., Jiang, J., and He, Q. (2010). Twitterrank: Finding topic-sensitive
influential twitterers. In Proceedings of the Third ACM International Conference on
Web Search and Data Mining, WSDM ’10, pages 261–270, New York, NY, USA.
Association for Computing Machinery.

Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent
gas market model. Neural Networks, 1(4): 339–356.

Williams, A., Nangia, N., and Bowman, S. R. (2018). A Broad-Coverage Challenge
Corpus for Sentence Understanding through Inference. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1, pages 1112–1122. The Association
for Computational Linguistics.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao,
Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L.,
Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang,
W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes,
M., and Dean, J. (2016). Google’s Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation. CoRR, abs/1609.08144.

Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2021). Dive into Deep Learning.
https://d2l.ai.

Zhao, H., Phung, D., Huynh, V., Jin, Y., Du, L., and Buntine, W. L. (2021). Topic
modelling meets deep neural networks: A Survey. CoRR, abs/2103.00498.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and Fidler,
S. (2015). Aligning Books and Movies: Towards Story-Like Visual Explanations by
Watching Movies and Reading Books. In The IEEE International Conference on
Computer Vision (ICCV).

84

https://d2l.ai

Declaration of Authenticity

The work contained in this thesis is original and has not been previously submitted for
examination which has led to the award of a degree.

To the best of my knowledge and belief, this thesis contains no material previously
published or written by another person except where due reference is made.

Anne Gritto

85

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	General methodological background
	A Bayesian approach: Latent Dirichlet Allocation
	Feedforward neural network
	Distributed representations of words, sentences and documents
	Word2Vec
	Paragraph Vector

	Specialized architectures
	Transformer-based models
	Bidirectional Encoder Representations from Transformers
	Robustly Optimized BERT Approach

	Neural topic modelling
	Top2vec: Distributed representations of topics
	Clustering of embeddings by pre-trained language models with BERTopic
	Embedding Documents
	Algorithm of UMAP
	Algorithm of HDBSCAN
	Idea of class-based TF-IDF
	Maximal Marginal Relevance
	Selection of parameters in BERTopic

	Application to Twitter data
	Data
	Political system in Germany
	Evaluation
	Sentence-Transformers
	German BERT
	GottBERT

	Discussion and Outlook
	Possible ways to reduce noise
	Specialized approaches for short texts by leveraging meta-data

	Conclusion
	Details on preprocessing of tweets
	Details on topics
	References

