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Abstract

Measurement error affects statistical inference. On the other hand, there are methods to correct
for measurement error. One of these methods are corrected score functions, that were developed to
correct for classical additive measurement error, that itself is just one of many statistical error types.
The aim of this thesis is to try to apply the concept of corrected score functions to additive Berkson
error in the linear, Poisson and Cox’s proportional hazards model with a response and an erroneous
covariate variable.

It is possible to derive theoretical corrected score functions. To evaluate the corrected estimators,
the newly derived functions are implemented in R and a simulation study is performed. For different
combinations of sample size and error variance, 500 data sets each are simulated and the ideal
maximum-likelihood, naive and corrected estimators are estimated. These are then compared in
boxplots to evaluate their bias and variance.

It turns out, that the corrected estimator tends towards a steady state near the true parameter
value with increasing sample size. In the same turn, its variance decreases. Increasing error variance
made for more variance and in some scenarios with very high error variance the corrected estimator
gets biased. Compared to the naive estimator, the corrected estimator is most of the times more
accurate at cost of a higher variance.

The simulation study is though very limited, since the parameter values are fixed in advance and
only one covariate variable is included. Furthermore, a sensitivity analysis reveals that a misspecifi-
cation of the error variance leads to remarkable changes regarding variance and bias of the corrected
estimator.

All in all, corrected score functions are applicable to additive Berkson error and are worth further
investigation.
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Notation

Y = (Y1, Y2, . . . , Yn)T vector of response variable, Yi ∈ R, Y ∈ Rn
X = (X1, X2, . . . , Xn)T vector of true unobserved covariate, Xi ∈ Rp, X ∈ Rn×p
U = (U1, U2, . . . , Un)T vector of additive measurement error, Ui ∈ Rp, U ∈ Rp×n
W = (W1,W2, . . . ,Wn)T vector of erroneous observed covariate, Wi ∈ Rp,W ∈ Rp×n

∆i, δi censoring indicator (1 = not censored), δi realisation of ∆i

Ti event time of observation i
Ci censoring time of observation i
τj , j = 1, . . . , k observed event times

`Xi(β, Yi, Xi), `X(β, Y,X) true log-likelihood without erroneous variables,
`Xi(β, Yi, Xi) = log(fi(Yi|Xi, β)), `X(β, Y,X) =

∑n
i=1 `Xi(β, Yi, Xi)

SXi
(β, Yi, Xi), SX(β, Y,X) true score function without erroneous variables,

SXi
(β, Yi, Xi) = ∂

∂β `Xi
(β, Yi, Xi), SX(β, Y,X) =

∑n
i=1 SXi

(β, Yi, Xi)

`Xi
(β, Yi,Wi), `X(β, Y,W ) naive log-likelihood, use of W instead of X in the true log-likelihood

SXi
(β, Yi,Wi), SX(β, Y,W ) naive score function, use of W instead of X in the true score function

`Wi(β, Yi,Wi), `W (β, Y,W ) corrected log-likelihood
SWi

(β, Yi,Wi), SW (β, Y,W ) corrected score function

λ(t|·),Λ(t) hazard rate and cumulative hazard rate
λ0(t),Λ0(t) baseline hazard rate and cumulative baseline hazard rate

βtrue true parameter, βtrue ∈ Rp

β̂ideal ideal Maximum-Likelihood-estimator, solution to SX(β, Y,X) = 0

β̂naive naive estimator, solution to SX(β, Y,W ) = 0

β̂cor corrected estimator, solution to SW (β, Y,W ) = 0

ΣUi covariance matrix of Ui,ΣUi ∈ Rp×p
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1 Introduction

Imagine a statistical model, e.g. Poisson regression. If a covariate suffers some sort of measurement error
the inference may be affected. Measurement error in clinical research, yes it matters is the title of a
recent publication by Groenwold and Dekkers [2020] and it is only one of many scientific articles that
deals with measurement error. However, measurement error is no the end of the world. If the properties
of the measurement error are known, one can correct it and (hopefully) improve the results. Corrected
score functions are such a measurement error correction method developed by Nakamura [1990] for the
classical additive error that itself is just one of a few different error types. This raises the question if
corrected score functions can also be applied to other sorts of measurement error.
This thesis focuses on the question if corrected score functions under additive Berkson error for three
selected models, linear and Poisson regression and Cox’s proportional hazards model (hereafter Cox’s PH
model), can be derived, and if so, how the corrected estimators behave in different scenarios.
Berkson and classical error are recapitulated in chapter 2.1 together with a general repetition of mea-
surement error. After that, the eponymous corrected score functions are presented. The whole chapter
2 benefitted from Carroll et al. [2006], a book that is worth reading. With this theoretical basis section
3 guides through the derivation process for the corrected score functions, first in general and then for
all three models. The behavior of the corrected estimators is evaluated in a simulation study following
the ADEMP scheme by Morris et al. [2019], that is shortly recalled in section 4.1. The remaining part
of chapter 4 covers the application of ADEMP to this simulation study and technical details in section
4.2. The open-source software R [R Core Team, 2020] is used to implement the corrected score functions
and perform the simulation study. Chapter 5 presents the results of the simulation study for the three
models and a sensitivity analysis what happens if the corrected score algorithm receives false assumptions
in section 5.4. This work concludes with some remarks and limitations.
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2 Methodology of Measurement Error and Corrected Score Func-
tions

This chapter focuses on the methodological foundations of measurement errors in statistics and the
idea and properties of corrected score functions. The first subsection 2.1 gives a brief overview over
measurement error and shows differences between the classical and Berkson error. Subsection 2.2 recalls
the idea and theory of corrected score functions, a measurement error correction for the classical additive
error developed by Nakamura [1990].

2.1 Measurement Error

Statistical models are based on measured data. The higher the data quality the more likely are more
accurate estimation results. However, not all variables can be measured directly and instead only an
erroneous substitute is measurable. In this case the variable is subject to measurement error. In general
a measurement error is defined as the difference of the true value X and the available value W. Independent
of the cause or origin of the error, in all cases the inference is affected. The coefficients may for example
be biased or the variance may be underestimated. [Carroll et al., 2006, page 2] shows an example for a
measurement error that completely masks the true underlying data structure.
The simple expression measurement error does not even describe the complexity of the topic. First of all
measurment errors exist for all types of attributes, whether discrete or continuous. In the first case one
also speaks of misclassification. An example would be a diagnosis as healthy though the person is in fact
ill, and for the continuous case the measurement of protein intake in a nutrition study. The feature of
interest may be subject to additive (X + U) or multiplicative (X ∗ U) error with U a random error. In
multiplicative error case higher absolute values of the covariate lead to higher or lower deviation of the
true values. In some settings the error may even contain information of another or the response variable,
which is called differential error. There are lots more error types (and corresponding correction methods)
that are all not relevant for this study, for more information see Carroll et al. [2006]. The differences
between Berkson and classical measurement error will be explained in detail in the subsequent sections.
If the properties of the error are known, one can do some kind of reverse calculations and, with some
uncertainty, try to deduce the true from the false values. The crux is the knowledge about the distribution
and properties of the measurement error. In practice this knowledge is most often not available or even
worse one does not know if the variables are subject to measurement error. Doing replication studies
or other methods for figuring out the type and properties of the underlying measurement error are very
expensive and time consuming. Because most correction method are based on some assumptions about
the error, it is hard to realize measurement error correction in real world applications.
This work has a focus on theory that will afterwards be evaluated in a simulation study. In consequence
all parameters and coefficients are always known, in contrast to real world applications. The expression
measurement error refers to additive non-differential error for continuous covariates in regression models,
if not labelled separately. The true target values are always available. The two subsequent subsections
cover the classical and the Berkson error, two types of measurement error. More detailed information
and mathematical properties can be found in section 3.

2.1.1 Classical Additive Measurement Error

The classical measurement error is given if the measurement W is the sum of the true value X and the
error U. X and U are assumed stochastically independent (see [Carroll et al., 2006, chapter 2]).

W = X + U, X ⊥ U (1)

If one assumes the errors U to be normally distributed with mean 0 and some variance σ2
u, the expectation

of the measured values given the true values is

E(W |X) = X (2)

So if one knows the true variable the measurement does not contain any additional information and this
also applies to the error.
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Classical Berkson Error

W = X + U X = W + U

W ⊥ U X ⊥ U
E(W |X) = X E(X|W ) = W

V ar(W ) = V ar(X) + V ar(U) V ar(X) = V ar(W ) + V ar(U)

V ar(W ) > V ar(X) V ar(X) > V ar(W )

Table 1: Comparison of Classical and Berkson measurement error; on top stochastic assumptions and
below implications if U and X or W respectively are normally distributed

An example are questionaires to personal nutrition. The answers from the participants in the questionaire
(W ) are related to their true nutrition (X ) and their subjective perception (U ).

2.1.2 Additive Berkson Measurement Error

On the other side, the additive Berkson error assumes stochastic independence of U and W instead of
X. Thus X and U are now stochastic dependent which leads to different conditional distributions and
expectations (see [Carroll et al., 2006, chapter 2]).

X = W + U, W ⊥ U (3)

In the same scenario as above with normally distributed error U the conditional expectation of the
measurement given the true values is in general not X (for details see section 3):

E(W |X) 6= X (4)

The dust exposure of a group of miners is an example of Berkson error. The true individual dust pollution
(X ) is given as the dust pollution of the whole group (W ) and some individual component (U ) such as
smoking behaviour etc. As in this example the Berkson error can be seen more as some sort of deviation
than error.

2.1.3 Comparison Classical and Berkson Error

Both types of error affect inference in a negative way. This can be e.g. coefficient bias in regression models,
loss of power or underestimation of variance. Though of course there are differences. In the linear model
the classical error introduces coefficient bias while the Berkson error does not bias the coefficients (see
[Carroll et al., 2006, chapter 3]). Table 1 compares the classical and Berkson measurement error. The
upper part shows the general definition and the lower part some more properties if the errors and true
values or measurements respectively are normally distributed.

2.2 Corrected Score Functions

This section first gives a very brief repetition of M- and ML-estimation and second describes the idea
of corrected score functions. An example of a corrected score function in the linear model closes this
section.

2.2.1 Maximum-Likelihood- and M-Estimation

M-estimation is a general approach for parameter estimation. The M-estimator θ̂ for the true parameter
θ is defined as the solution of an estimating equation of the form

1

n

n∑
i=1

ψi(Yi, θ̂)
!
= 0 (5)
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and ψi an estimating function that maps to Rp, p := dim(θ) (see for example [Carroll et al., 2006,
appendix A.6]).
If the estimating function is unbiased, that means E(ψi(Yi, θ)) = 0 holds, and under certain regularity

conditions θ̂ is a consistent estimator for θ (see [Carroll et al., 2006, appendix A.6] or Nakamura [1990]).

With the law of large numbers the asymptotic distribution of θ̂ can be derived

θ̂
a∼N(θ,

1

n
A−1n (θ)Bn(θ)A−1n (θ)T ) with

An(θ) =
1

n

n∑
i=1

E
{

∂

∂θT
ψi(Yi, θ)

}
and

Bn(θ) =
1

n

n∑
i=1

Cov(ψi(Yi, θ)).

(6)

The variance of the estimator can be estimated either by evaluating An(θ̂) and Bn(θ̂) in a model or
without distributional assumptions with the sandwich estimator formula.

Ân =
1

n

n∑
i=1

∂

∂θ̂T
ψi(Yi, θ̂) and

B̂n =
1

n

n∑
i=1

ψi(Yi, θ̂)ψi(Yi, θ̂)
T

(7)

2.2.2 Idea of Corrected Score Functions

The idea of corrected score functions and of Nakamura [1990] is, not to correct the estimator but the esti-
mating function, namely the score function, whose root is the estimator. You construct a new estimating
function that is centered around the ideal ML-estimator β̂ideal and therefore around the true parameter
βtrue.
The basic and ideal scenario is when X is given. Then the true score function SXi(β, Yi, Xi) yields the

ideal estimator β̂ideal. Now if the true values are unknown, one may simply replace X with the erroneous
surrogates W which leads to the naive score function SXi

(β, Yi, Xi). The root of
∑n
i=1 SXi

(β, Yi,Wi)

is the naive estimator β̂naive. It is not necessarily consistent since E(SXi
(βtrue, Yi,Wi)) = 0 does not

always hold, to say the expectation of the naive score function at the true parameter is not always equal
to zero.
Let F be an open convex subset of a parameter space that includes βtrue. A corrected log-likelihood
`Wi(β, Yi,Wi) is a function for that for all β ∈ F holds that the expectation of `Wi(β, Yi,Wi) given the
true response and covariate is the true log-likelihood.

E(`Wi
(β, Yi,Wi)|Yi, Xi) = `Xi

(β, Yi, Xi) for i = 1, . . . , n (8)

If `Wi
(β, Yi,Wi) is differentiable in F, then the derivative of a corrected log-likelihood SWi

(β, Yi,Wi) =
∂
∂β `Wi

(β, Yi,Wi) is a corrected score function. If differential and integral are interchangeable, so also
under regularity, the conditional expectation of the corrected score function given Yi and Xi is the true
score function.

E(SWi
(β, Yi,Wi)|Yi, Xi) = E(

∂

∂β
`Wi

(β, Yi,Wi)|Yi, Xi)

=
∂

∂β
E(`Wi

(β, Yi,Wi)|Yi, Xi)

=
∂

∂β
`Xi

(β, Yi, Xi)

= SXi
(β, Yi, Xi)

(9)

The corrected estimator β̂cor is the root of
∑n
i=1 SWi

(β, Yi,Wi), if unique. It is consistent under certain

regularity conditions and as M-estimator asymptotically normal distributed with mean β̂ideal ([Naka-
mura, 1990]).
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Variance estimation can be done using the normality of the estimator, if the conditions are fulfilled, or
by the methods of M-estimation described in the end of the previous section, for details see 2.2.1 and
[Nakamura, 1990, proposition 2].
Independent of this idea Stefanski [1989] also developed unbiased score functions. Note that every cor-
rected score function is also an unbiased one but the inversion is not always true.

2.2.3 Example: Corrected Score Function Under Classical Additive Measurement Error

This example is taken from [Nakamura, 1990, chapter 4.2] and discusses the method of corrected score
functions in the linear model under classical additive measurement error (Wi = Xi + Ui).
The Yi are assumed to be independent and identically normal distributed with mean βTXi and variance
σ2. Then if the true values Xi are given the log-likelihood is

`Xi
(β, Yi, Xi) = −1

2
log(2πσ2)− 1

2σ2
(Yi − βTXi)

2 (10)

and the score function

SXi
(β, Yi, Xi) =

∂

∂β
`Xi

(β, Yi, Xi) = − 1

2σ2
(−2YiXi + 2XiX

T
i β). (11)

Therefore the ideal estimator is the solution to
∑n
i=1(YiXi−XiX

T
i β) = 0 and identical with the Ordinary

Least-Squares estimator β̂ideal = (XTX)−1XTY . To reduce the coefficient bias and receive a consistent
estimator when only Wi instead of Xi is available, one can use the corrected score function. The procedure
to derive corrected score functions is described in 3.1. It is

SWi
(β, Yi,Wi) = − 1

2σ2
(−2YiWi + 2WiW

T
i β − 2ΣUi

β) (12)

with ΣUi the covariance matrix of Ui’s. In this special case, one can derive a concrete closed form of the

corrected estimator β̂cor (see [Gauß, 2020, chapter 2.2])

β̂cor = (WTW −
n∑
i=1

ΣUi)
−1WTY. (13)
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3 Derivation of Corrected Score Functions under Berkson Error

This chapter deals with the derivation of the corrected score functions. At first the procedure to construct
the corrected score functions will be explained. Second, the assumptions and basic stochastic concepts
are recalled and based on this the corrected score functions of the linear, the Poisson and Cox’s PH
model with one response and one Berkson-erroneous covariate are derived in sections 3.3, 3.4 and 3.5,
respectively.

3.1 General Procedure to Construct Corrected Score Functions

As described in [Carroll et al., 2006, chapter 7.4] one can find corrected score functions by being clever
or numerical methods, like Monte Carlo, if the solution is too complex. The derivation in this work
follows below scheme: At the beginning lie the stochastic assumptions for the errors U and the response
variable given the true covariate vector (Y |X). In this case of additive Berkson error, also a distribution
for the errorneous surrogates W is assumed. The conditional distribution for Y |X defines the model, e.g.
for a normal distribution one is in the special case of the linear model with the ordinary least squares
estimator (if the true covariate is available). Hence follows the true log-likelihood `X(β, Y,X). If you
calculate the conditional expectation of the naive log-likelihood `X(β, Y,W ) given Y and X the difference
to the true log-likelihood becomes visible. By adding additive and multiplicative components this bias can
be compensated. The new corrected term is the corrected log-likelihood `W (β, Y,W ) and the conditional
expectation of this expression is just the true log-likelihood, which can be shown by simply calculating
it. As already described in chapter 2.2.2, the corrected score function is the derivative of the corrected
log-likelihood with respect to the parameter of interest. Its root, if unique, is the corrected estimator
β̂cor.

3.2 Assumptions and Prerequisites

The following rules will be used for the derivation of the corrected score functions in the next paragraphs.
(16) is a conditional version of the variance and f is a fixed and not random function.

E(f(Z)|Z) = f(Z) (14)

E(f(Z)Y |Z) = f(Z)E(Y |Z) (15)

V ar(Y |Z) = E(Y 2|Z)− (E(Y |Z))2 (16)

For univariate normally distributed random variables with a, b ∈ R holds

Z ∼ N(µz, σ
2
z)⇒ aZ + b ∼ N(aµz + b, a2σ2

z). (17)

For the Poisson model the expectation of exp(Wi|Xi) will also be needed. In general it applies that if Z
is normally distributed with mean µz ∈ R and variance σ2

z > 0, then exp(Z) is log-normally dsitributed
with parameters µw and σ2

z (Carroll et al. [2006], Appendix A.2).

Z ∼ N(µz, σ
2
z)⇒ exp(Z) ∼ LN(µz, σ

2
z) (18)

Mean and variance of exp(Z) are given by

E(exp(Z)) = exp

(
µz +

1

2
σ2
z

)
V ar(exp(Z)) = exp(2µz)

(
exp(2σ2

z)− exp(σ2
z)
)
.

(19)

Especially, this means that the expectation of exp(Z) depends on the mean and variance of the normally
distributed Z.
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3.2.1 Stochastic Assumptions

For U and W below assumptions are made for all three models.

Ui ∼ N(0, σ2
u), (20)

Wi ∼ N(µw, σ
2
w) (21)

Wi ⊥ Ui, (22)

i = 1, . . . , n (23)

By definition of the Berkson error it follows that X is also normally distributed.

Xi := Wi + Ui ⇒ Xi ∼ N(µw, σ
2
w + σ2

u) (24)

The two-dimensional random variable
(
Wi

Xi

)
follows a two-dimensional normal distribution.(

Wi

Xi

)
∼ N

((
µw
µw

)
,

(
σ2
w σ2

w

σ2
w σ2

w + σ2
u

))
(25)

Based on above property one can derive the conditional distribution of Wi|Xi.

E(Wi|Xi) = µw +
σ2
w

σ2
w + σ2

u

(Xi − µw) =
σ2
w

σ2
w + σ2

u

Xi +
σ2
u

σ2
w + σ2

u

µw (26)

V ar(Wi|Xi) = σ2
w −

σ4
w

σ2
w + σ2

u

=
σ2
w(σ2

w + σ2
u)− σ4

w

σ2
w + σ2

u

=
σ2
wσ

2
u

σ2
w + σ2

u

(27)

Wi|Xi ∼ N
(

σ2
w

σ2
w + σ2

u

Xi +
σ2
u

σ2
w + σ2

u

µw,
σ2
wσ

2
u

σ2
w + σ2

u

)
(28)

Both (25) and (28) are analogous to the scenario with classical additive measurement error and normal
distribution, compare [Kauermann et al., 2021, chapter 11.4].

3.2.2 Consequences and Important Prerequisites

Now that we know the conditional expectation of Wi|Xi, we can construct an expression of the form
aWi + b with a, b ∈ R that has the conditional expectation E(aWi + b|Xi) = Xi:

σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw (29)

Comparing (28) and (29) yields that Wi is just multiplied with the inverse of the prefactor of Xi and after
multiplying the second term with the same prefactor, it is just subtracted. It is advised to remember
(29) since in every linear and also most non-linear parts of the three log-likelihoods containing Xi this
formula serves as correction.
Proof:

E
(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

∣∣∣Xi

)
=
σ2
w + σ2

u

σ2
w

E(Wi|Xi)−
σ2
u

σ2
w

µw

(28)
=

σ2
w + σ2

u

σ2
w

(
σ2
w

σ2
w + σ2

u

Xi +
σ2
u

σ2
w + σ2

u

µw

)
− σ2

u

σ2
w

µw

= Xi +
σ2
u

σ2
w

µw −
σ2
u

σ2
w

µw

= Xi

(30)
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When calculating the conditional expectation of the naive log-likelihood later, we will also condition on
Yi. The response variable is known but does not contain any information about the surrogates Wi. So
the expectation of Wi given Xi and Yi is the same as the expectation of Wi given Xi.

E(Wi|Yi, Xi) = E(Wi|Xi) (31)

The following two expectations are relevant for the calculations in the next sections. First, by transposing
(16) the expectation of W 2

i |Xi can be computed.

E(W 2
i |Xi) = (E(Wi|Xi))

2 + V ar(Wi|Xi)

=

(
σ2
w

σ2
w + σ2

u

Xi +
σ2
u

σ2
w + σ2

u

µw

)2

+
σ2
wσ

2
u

σ2
w + σ2

u

=

(
σ2
w

σ2
w + σ2

u

)2

X2
i + 2

σ2
wσ

2
u

(σ2
w + σ2

u)2
Xiµw +

(
σ2
u

σ2
w + σ2

u

)2

µ2
w +

σ2
wσ

2
u

σ2
w + σ2

u

(32)

Second, with (17) and (18), one is able to derive the expected value of a log-normally distributed random
variable. µw|x and σ2

w|x are substitutions for the mean and variance of (28). Let

a := β
σ2
w + σ2

u

σ2
w

, β ∈ R. (33)

Then aWi|Xi and exp(aWi|Xi) are normally and log-normally distributed respectively.

aWi|Xi ∼ N(aµw|x, a
2σ2
w|x)

exp(aWi|Xi) ∼ LN(aµw|x, a
2σ2
w|x)

(34)

Putting all pieces together the expectation of exp(aWi|Xi) is given by

E(aWi|Xi) = β
σ2
w + σ2

u

σ2
w

(
σ2
w

σ2
w + σ2

u

Xi +
σ2
u

σ2
w + σ2

u

µw

)
= β

(
Xi +

σ2
u

σ2
w

µw

)
V ar(aWi|Xi) = β2

(
σ2
w + σ2

u

σ2
w

)2
σ2
wσ

2
u

σ2
w + σ2

u

= β2 (σ2
w + σ2

u)σ2
u

σ2
w

⇒ E(exp(aWi|Xi)) = exp

{
β

(
Xi +

σ2
u

σ2
w

µw

)
+

1

2
β2 (σ2

w + σ2
u)σ2

u

σ2
w

} (35)

Note that this is not the naive conditional expectation since we multiplied Wi with a prefactor a. The
naive expectation is derived the same way with a = 1.

3.3 Linear Model

The underlying distribution in the linear model is a normal distribution for Yi|Xi where the mean is a
linear combination of Xi and some variance:

Yi|Xi ∼ N(β0 + β1Xi, σ
2
y) (36)
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(37), (39), (40) und (41) show the true density (or likelihood) (Kauermann et al. [2021], chapter 2),
log-likelihood and score functions for β0 and β1, respectively.

fYi|Xi
(Yi|Xi, β0, β1) =

1√
2πσ2

y

exp

(
− (Yi − (β0 + β1Xi))

2

2σ2
y

)
(37)

`Xi(β0, β1, Yi, Xi) = −1

2
log(2πσ2

y)− 1

2σ2
y

(Y 2
i − 2Yi(β0 + β1Xi) + (β0 + β1Xi)

2) (38)

= −1

2
log(2πσ2

y)− 1

2σ2
y

(Y 2
i − 2Yiβ0 − 2Yiβ1Xi + β2

0 + 2β0β1Xi + β2
1X

2
i ) (39)

SXi(β0, Yi, Xi) = − 1

2σ2
y

(−2Yi + 2β0 + 2β1Xi) =
1

σ2
y

(Yi − β0 − β1Xi) (40)

SXi(β1, Yi, Xi) = − 1

2σ2
y

(−2YiXi + 2β0Xi + 2β1X
2
i ) =

1

σ2
y

(YiXi − β0Xi − β1X2
i ) (41)

A short remark on the linear model under additive Berkson error: If in this special model the covariate is
subject to Berkson error the coefficients β0 and β1 are still unbiased (see for example Carroll et al. [2006]
chapter 3). If no bias is present to be corrected one could argue that measurement error correction is
redundant. Nevertheless this model will be used as a benchmark model to see how the corrected estimator
behaves and if numerical problems occur.
The conditional expectation of the naive log-likelihood is

E(`Xi(β0, β1, Yi,Wi)|Yi, Xi) =

= E
(
−1

2
log(2πσ2

y)− 1

2σ2
y

(Y 2
i − 2Yiβ0 − 2Yiβ1Wi + β2

0 + 2β0β1Wi + β2
1W

2
i )
∣∣∣Yi, Xi

)
= −1

2
log(2πσ2

y)− 1

2σ2
y

(Y 2
i − 2Yiβ0 − 2Yiβ1E(Wi|Xi) + β2

0 + 2β0β1E(Wi|Xi) + β2
1E(W 2

i |Xi))

(28)&(32)
= −1

2
log(2πσ2

y)− 1

2σ2
y

{
Y 2
i − 2Yiβ0 − 2Yiβ1

(
σ2
w

σ2
w + σ2

u

Xi +
σ2
u

σ2
w + σ2

u

µw

)
+ β2

0 + 2β0β1

(
σ2
w

σ2
w + σ2

u

Xi +
σ2
u

σ2
w + σ2

u

µw

)
+β2

1

[(
σ2
w

σ2
w + σ2

u

)2

X2
i + 2

σ2
wσ

2
u

(σ2
w + σ2

u)2
Xiµw +

(
σ2
u

σ2
w + σ2

u

)2

µ2
w +

σ2
wσ

2
u

σ2
w + σ2

u

]}
(42)

Remember equation (31) that Yi does not contain any information about the surrogates. By comparing
the true log-likelihood (39) with the above expectation one can spot the differences and construct a
corrected log-likelihood:

`Wi(β0, β1, Yi,Wi) = −1

2
log(2πσ2

y)− 1

2σ2
y

{
Y 2
i − 2Yiβ0 − 2Yiβ1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
+ β2

0

+ 2β0β1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
+ β2

1

[(
σ2
w + σ2

u

σ2
w

)2

W 2
i

−2
σ2
u

σ2
w

µw

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
−
(
σ2
u

σ2
w

)2

µ2
w −

(
σ2
w + σ2

u

σ2
w

)2
σ2
wσ

2
u

σ2
w + σ2

u

]} (43)

Like mentioned above, (29) serves as correction for linear combinations of Xi but furthermore appears in
the non-linear correction of W 2

i . As it satisfies (8), (43) is a corrected log-likelihood.
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Proof:

E(`Wi(β0, β1, Yi,Wi)|Yi, Xi) =

= E
(
−1

2
log(2πσ2

y)− 1

2σ2
y

{
Y 2
i − 2Yiβ0 − 2Yiβ1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
+ β2

0

+ 2β0β1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
+ β2

1

[(
σ2
w + σ2

u

σ2
w

)2

W 2
i

−2
σ2
u

σ2
w

µw

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
−
(
σ2
u

σ2
w

)2

µ2
w −

(
σ2
w + σ2

u

σ2
w

)2
σ2
wσ

2
u

σ2
w + σ2

u

]} ∣∣∣Yi, Xi

)

= −1

2
log(2πσ2

y)− 1

2σ2
y

{
Y 2
i − 2Yiβ0 − 2Yiβ1E

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

∣∣∣Xi

)
+ β2

0

+ 2β0β1E
(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

∣∣∣Xi

)
+ β2

1

[(
σ2
w + σ2

u

σ2
w

)2

E(W 2
i |Xi)

−2
σ2
u

σ2
w

µwE
(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

∣∣∣Xi

)
−
(
σ2
u

σ2
w

)2

µ2
w −

(
σ2
w + σ2

u

σ2
w

)2
σ2
wσ

2
u

σ2
w + σ2

u

]
β

}
(29)
= −1

2
log(2πσ2

y)− 1

2σ2
y

{
Y 2
i − 2Yiβ0 − 2Yiβ1Xi + β2

0 + 2β0β1Xi

+β2
1

[(
σ2
w + σ2

u

σ2
w

)2

E(W 2
i |Xi)− 2

σ2
u

σ2
w

µwXi −
(
σ2
u

σ2
w

)2

µ2
w −

(
σ2
w + σ2

u

σ2
w

)2
σ2
wσ

2
u

σ2
w + σ2

u

]}
(32)
= −1

2
log(2πσ2

y)− 1

2σ2
y

{
Y 2
i − 2Yiβ0 − 2Yiβ1Xi + β2

0 + 2β0β1Xi

+ β2
1

[(
σ2
w + σ2

u

σ2
w

)2
((

σ2
w

σ2
w + σ2

u

)2

X2
i + 2

σ2
wσ

2
u

(σ2
w + σ2

u)2
Xiµw +

(
σ2
u

σ2
w + σ2

u

)2

µ2
w +

σ2
wσ

2
u

σ2
w + σ2

u

)

−2
σ2
u

σ2
w

µwXi −
(
σ2
u

σ2
w

)2

µ2
w −

(
σ2
w + σ2

u

σ2
w

)2
σ2
wσ

2
u

σ2
w + σ2

u

]}

= −1

2
log(2πσ2

y)− 1

2σ2
y

{
Y 2
i − 2Yiβ0 − 2Yiβ1Xi + β2

0 + 2β0β1Xi + β2
1

[
X2
i + 2

σ2
u

σ2
w

µwXi

+

(
σ2
u

σ2
w

)2

µ2
w +

(
σ2
w + σ2

u

σ2
w

)2
σ2
wσ

2
u

σ2
w + σ2

u

− 2
σ2
u

σ2
w

µwXi −
(
σ2
u

σ2
w

)2

µ2
w −

(
σ2
w + σ2

u

σ2
w

)2
σ2
wσ

2
u

σ2
w + σ2

u

]}

= −1

2
log(2πσ2

y)− 1

2σ2
y

{
Y 2
i − 2Yiβ0 − 2Yiβ1Xi + β2

0 + 2β0β1Xi + β2
1X

2
i

}
= `Xi

(β0, β1, Yi, Xi)

(44)
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Differentiation of (43) with respect to β0 and β1 yields the corrected score functions.

SWi
(β0, Yi,Wi) =

∂

∂β0
`Wi

(β0, β1, Yi,Wi)

= − 1

2σ2
y

{
−2Yi + 2β0 + 2β1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)}
=

1

σ2
y

{
Yi − β0 − β1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)}
SWi

(β1, Yi,Wi) =
∂

∂β1
`Wi

(β0, β1, Yi,Wi)

= − 1

2σ2
y

{
−2Yi

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
+ 2β0

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
+ 2β1

[(
σ2
w + σ2

u

σ2
w

)2

W 2
i − 2

σ2
u

σ2
w

µw

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
−
(
σ2
u

σ2
w

)2

µ2
w

−
(
σ2
w + σ2

u

σ2
w

)2
σ2
wσ

2
u

σ2
w + σ2

u

]}

=
1

σ2
y

{
(Yi − β0)

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
− β1

[(
σ2
w + σ2

u

σ2
w

)2

W 2
i

−2
σ2
u(σ2

w + σ2
u)

σ4
w

µwWi +

(
σ2
u

σ2
w

)2

µ2
w −

(σ2
w + σ2

u)σ2
u

σ2
w

]}

(45)

3.4 Poisson Model

In contrast to the linear model, the Poisson model assumes a Poisson distribution for Yi|Xi with the only
parameter a linear combintion of Xi and (in this work) the exponential function as link function:

Yi|Xi ∼ Po(exp(β0 + β1Xi)) (46)

All other assumptions are and will be the same as in the linear and Cox’s PH model. The following four
equations show the true density (Kauermann et al. [2021], chapter 2), log-likelihood, and score functions,
respectively.

fYi|Xi
(Yi|Xi, β0, β1) =

exp(β0 + β1Xi)
Yi

Yi!
exp(− exp(β0 + β1Xi)) (47)

`Xi
(β0, β1, Yi, Xi) = − log(Yi!) + Yi(β0 + β1Xi)− exp(β0 + β1Xi) (48)

SXi(β0, Yi, Xi) = Yi − exp(β0 + β1Xi) (49)

SXi(β1, Yi, Xi) = YiXi − exp(β0 + β1Xi)Xi (50)

After calculating the conditional expectation of the naive log-likelihood one can construct a corrected
one.

E(`Xi
(β0, β1, Yi,Wi)|Yi, Xi) = E (− log(Yi!) + Yiβ0 + Yiβ1Wi − exp(β0 + β1Wi)|Yi, Xi)

= − log(Yi!) + Yiβ0 + Yiβ1E(Wi|Xi)− exp(β0)E(exp(β1Wi)|Xi)

(28)&(19)
= − log(Yi!) + Yiβ0 + Yiβ1

(
σ2
w

σ2
w + σ2

u

Xi +
σ2
u

σ2
w + σ2

u

µw

)
− exp(β0) exp

{
β1

(
σ2
w

σ2
w + σ2

u

Xi +
σ2
u

σ2
w + σ2

u

µw

)
+

1

2
β2
1

σ2
wσ

2
u

σ2
w + σ2

u

} (51)
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The corrected log-likelihood is

`Wi(β0, β1, Yi,Wi) = − log(Yi!) + Yiβ0 + Yiβ1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
− exp

{
β0 + β1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
− 1

2
β2
1

(σ2
w + σ2

u)σ2
u

σ2
w

}
.

(52)

(29) can again be found in the linear term of Xi and even in the corrected exponential term. The principle
is just the same: multiply by the inverse of some prefactor and afterwards subtract ”inverse prefactor
times the rest”.
Proof for (8):

E(`Wi
(β0, β1, Yi,Wi)|Yi, Xi) =

= E
[
− log(Yi!) + Yiβ0 + Yiβ1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
− exp

{
β0 + β1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
− 1

2
β2
1

(σ2
w + σ2

u)σ2
u

σ2
w

} ∣∣∣Yi, Xi

]
= − log(Yi!) + Yiβ0 + Yiβ1E

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

∣∣∣Xi

)
− E

(
exp

{
β1
σ2
w + σ2

u

σ2
w

Wi

} ∣∣∣Xi

)
exp

{
β0 −

σ2
u

σ2
w

β1µw −
1

2
β2
1

(σ2
w + σ2

u)σ2
u

σ2
w

}
(28)&(35)

= − log(Yi!) + Yiβ0 + Yiβ1Xi − exp

{
β1

(
Xi +

σ2
u

σ2
w

µw

)
+

1

2
β2
1

(σ2
w + σ2

u)σ2
u

σ2
w

}
exp

{
β0 −

σ2
u

σ2
w

β1µw −
1

2
β2
1

(σ2
w + σ2

u)σ2
u

σ2
w

}
= − log(Yi!) + Yiβ0 + Yiβ1Xi − exp(β0 + β1Xi)

= `Xi(β0, β1, Yi, Xi)

(53)

Differentiation again yields the corrected score functions.

SWi
(β0, Yi,Wi) =

∂

∂β0
`Wi

(β0, β1, Yi,Wi)

= Yi − exp

{
β0 + β1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
− 1

2
β2
1

(σ2
w + σ2

u)σ2
u

σ2
w

}
SWi(β1, Yi,Wi) =

∂

∂β1
`Wi(β0, β1, Yi,Wi)

= Yi

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
− exp

{
β0 + β1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
−1

2
β2
1

(σ2
w + σ2

u)σ2
u

σ2
w

}[(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
− β1

(σ2
w + σ2

u)σ2
u

σ2
w

]
(54)

3.5 Cox’s Proportional Hazards Model

Cox’s proportional hazards Modell [Cox, 1972] is a simple way to model survival data without distribu-
tional assumptions. The basic property is the assumption that every observation i = 1, . . . , n is connected
to the hazard rate λ(t|Xi) with covariate Xi by

λ(t|Xi) = λ0(t) exp(β1Xi) (55)

The covariates are assumed independent of time t and the baseline hazard rate λ0(t) independent of the
covariates and completely free in shape. The term proportional hazard refers to the difference between
two observations X1 and X2, exp(β1(X1 −X2)), which is propotional as it does not depend on time. To
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avoid identification problems, the model does not include an intercept β0. Therefore, in the context of
this work, the only parameter to be estimated is the coefficient of the covariate β1.
Since measurement error correction with corrected score functions is impossible with the partial likelihood
proposed by Cox (see Stefanski [1989]), instead the so called Breslow likelihood (see for example Augustin
[2004]) is used. Let τj , j = 1, . . . , k, be the true observed event times, D(τj) the set of all observations
with an event at τj and R(τj) the set of all observations just before τj that neither have had an event yet
nor have been censored before τj . Censoring times occuring in the intervall [τj−1, τj) are set to τj−1 and
τ0 := 0. The baseline hazard rate is assumed to be piecewise constant (λ0(t) ≡ λj > 0, τj−1 < t ≤ τj).
The response variable Yi is the minimum of the event times Ti and the censoring times Ci and only works
together with the censoring indicator δi (δi = 0 means the observation is censored). In the absence of
measurement errors the Breslow likelihood is identical to the partial likelihood and given by

LX(β1, δi, Yi, Xi) =
n∏
i=1

{
(λ0(ti) exp(β1Xi))

δi exp

(
− exp(β1Xi)

∫ ti

0

λ0(u)du

)}
. (56)

In the below partial log-likelihood dj is the cardinality of D(τj).

`X(β1, δi, Yi, Xi) =
k∑
j=1

dj log λj +
∑

i∈D(τj)

β1Xi − λj(τj − τj−1)
∑

i∈R(τj)

exp(β1Xi)

 (57)

The partial likelihood estimator β̂PL is the root of the score function, if unique.

SX(β1, δi, Yi, Xi) =
k∑
j=1

 ∑
i∈D(τj)

Xi − dj

∑
i∈R(τj)

Xi exp(β̂PLXi)∑
i∈R(τj)

exp(β̂PLXi)

 (58)

(57) also depends on λj which itself has to be estimated. (59) shows the Breslow estimator for the

cumulative baseline hazard rate Λ̂0,X(t)

Λ̂0,X(t) =
∑
j:τj≤t

dj∑
i∈R(τj) exp(β1Xi)

(59)

This cumulative estimator can be rebuilt to estimate the constant baseline hazard rate λj using X and
β1, given in (60). It is applied in the denominator of (58).

λ̂j,X =
dj∑

i∈R(τj) exp(β1Xi)
(60)

A corrected log-likelihood is based on the same expectations and derivations like in linear and Poisson
case and is shown below.

`W (β1, δi, Yi,Wi) =
k∑
j=1

dj log λj +
∑

i∈D(τj)

β1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
− λj(τj − τj−1)

∑
i∈R(τj)

exp

[
β1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
− 1

2
β2
1

(σ2
w + σ2

u)σ2
u

σ2
w

]
(61)
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Proof for (8):

E(`W (β1,δi, Yi,Wi)|δi, Yi, Xi) =

E

 k∑
j=1

dj log λj +
∑

i∈D(τj)

β1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
− λj(τj − τj−1)

∑
i∈R(τj)

exp

[
β1

(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

)
− 1

2
β2
1

(σ2
w + σ2

u)σ2
u

σ2
w

]∣∣∣δi, Yi, Xi


=

k∑
j=1

dj log λj +
∑

i∈D(τj)

β1E
(
σ2
w + σ2

u

σ2
w

Wi −
σ2
u

σ2
w

µw

∣∣∣Xi

)
− λj(τj − τj−1)

∑
i∈R(τj)

E
(

exp

(
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(62)

Because λj and Xi are unknown the baseline hazard rate has to be estimated using Wi. Therefore, the

Breslow estimator for the cumulative baseline hazard rate Λ̂0,X(t) (60) is corrected:
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Just as before this version is rebuilt to estimate λj .
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The correction of exp(β1Wi) is in fact the same as in the Poisson model, compare (52). First, differen-
tiating with respect to (the only parameter of interest) β1 and second, replacing λj with (64) yields the
corrected score function.
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(65)
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3.6 Remark on the Derived Corrected Score Functions

All derived estimation functions are based on the normal distribution assumptions for surrogates Wi and
errors Ui. Furthermore the correction requires knowledge of the true underlying variances. For the major
part of the simulation study they are always available and accessible. Part 5.4 presents the results of a
simulation with incorrect assumptions for σ2

u, since in reality, like mentioned in chapter 2.1, it is pretty
hard and expensive to acquire detailed information about the errors.
Compared to the corrected score functions in case of a classical additive measurement error (see Nakamura
[1990], Gauß [2020] or Augustin [2004]), the correction terms seem more complex and of a different
manner. While the moment generating function is very helpful for denoting corrected score functions for
classical error, the correction of Berkson error involves additional additive and multiplicative elements.
In general all derived corrections are of the form aWi + b with a, b ∈ R. The simplest case is (29), the

linear correction of Wi, with a =
σ2
w+σ2

u

σ2
w

and b = − σ2
u

σ2
w
µw. The correction terms for W 2

i and exp(β1Wi)

can also be written in this form with non-random prefactor a and non-random additive constants b.
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4 Simulation Study

This section covers the structure and technical implementation of the simulation study. At first, the
ADEMP scheme will be repeated and the second part deals with technical details, like determining the
corrected estimate.

4.1 ADEMP

4.1.1 The ADEMP Scheme

ADEMP is a blueprint for simulation studies proposed by Morris et al. [2019]. They analyzed simulation
studies of various papers and showed ways for improvement, whether in the design, implementation or
other aspects. This section will only describe the suggested scheme. More information can be found in
the original paper [Morris et al., 2019].
The goal of ADEMP is to start a simulation study by thorough planning and design the study as a
whole. The letters represent Aims, Data-generating mechanisms, Estimands and other targets, Methods
and Performance Measures. The first step is defining the aims. Is the goal of the study to compare
different methods in a special scenario or to evaluate one specific method in different scenarios? What
properties should be checked, e.g. robustness or bias? Since the advantage of simulated data compared to
real data is the knowledge of the true (usually hidden) parameters and properties, the way the artificial
data are generated is crucial. The data-generating mechanism can be accessed on many levels, which
requires rigorous thinking. For example should a parametric or non-parametric model be used, what
parameter values and sample size are chosen? Estimands and other targets refers to the goal of the
method of interest, e.g. whether it is for estimation, for prediction, ... Only relevant methods, which
in best case are already implemented, should be analyzed. This also means to look for similar work
with similar or even the same goal. The performance measures should give an answer to the questions
formulated in the previous points. One should also keep in mind that these measures are estimates
themselves and thus subject to errors. As always when working on any kind of project a well-thought
structure and clear terminology enhance the outcome.

4.1.2 Application of ADEMP

The Aims of this thesis are to evaluate the corrected estimators in linear, Poisson and Cox’s PH model
under additive Berkson error in different settings of sample size n and error variance σ2

u. Only parametric
Data-generating mechanisms are used, that means all random values are drawn from parametric mod-
els: Errors U and surrogates W from a normal distribution yielding the true covariate X. The response
variable Y in linear and Poisson case is drawn from a normal and Poisson distribution respectively, see
3.3 and 3.4. Realistic survival times are generated with the technique described in Bender et al. [2005].
Therefore uniformly distributed values are drawn and transformed to survival times following a Weibull
based PH model. The censoring times are drawn from an exponential distribution independently from the
event times. Y is constructed as the minimum of event and censoring time together with the censoring
indicator δi, where δi = 0 means censoring. The Estimands are the ideal, naive and corrected estima-
tors. In this thesis, the Method of interest is the estimation procedure for β̂cor. Since the measurement
error correction has been developed in this work and never been used before, a new implementation was
needed and is described below in part 4.2. Bias and variability of the estimators are the Performance
measures and are displayed in graphical form as boxplots.
So far the ADEMP setting. Sample size n and error variance σ2

u are modified while all other parameters
are held constant. The number of observations is varied from 20, to 5000 and the variance from 0 to 100
percent of the surrogate variance σ2

w. For a model, e.g. the linear model, a low and a high sample size
are fixed. Then for both sample sizes the error variance is modified and a simulation is run for every
parameter combination. Analogously n is varied for two fixed values of σ2

u. This makes four simulation
runs for a model. In each simulation run N = 500 datasets of sample size n and with error variance σ2

u

are simulated and the three estimators are estimated. These are then compared with the true (and in a
simulation study known) parameter value βtrue in a boxplot.
The subsequent section covers the technical details and the specific parameter values are described in
section 5 right prior to the results.
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4.2 Technical Details

The technical details and implementation of the simulation are subject of this section. This includes the
generation of random numbers, the optimization process and technical difficulties, like divergence of the
estimation algorithm. The whole simulation was carried out in R [R Core Team, 2020] and the code can
be found in the corresponding GitLab repository corr scores berkson git.

4.2.1 Generation of Random Numbers

Random numbers were generated with R’s built-in library stats. In detail, this includes the generation
of random numbers from a uniform, Poisson, exponential and normal distribution. As described in the
previous paragraph 4.1.2, the uniformly distributed values were transformed to survival times following
a cox-weibull model. Reproducibility was assured by using set.seed().

4.2.2 Determining the Corrected Estimator

In this work the corrected estimators for the linear and Poisson model will be derived by maximisation
of the corrected log-likelihoods with R’s function optim using method Nelder-Mead.
This simplex based algorithm developed by Nelder and Mead does not use derivatives but instead only
function values. Imagine a one-dimensional function like f(x) = −x2. You start with three points,
random or chosen in advance, that are connected to a triangle. For maximisation in every iteration we
evaluate another point and compare it with the edges of our triangle. If the function value is higher (in the
sense of maximisation better) than some other edge, replace one of the previous edges according to a set
of rules. Otherwise shrink the triangle towards the maximal edge. This way the triangle moves towards
the maximum until some stopping criterion is reached. Triangle is an example, the algorithm is defined
for arbitrarily large optimization problems. For more details see [Nocedal and Wright, 2006, chapter 9].
Although the algorithm is known to get stuck in local optima, it turned out the most robust method
in the sense of convergence and numerical problems compared to the quasi-Newton method BFGS and
conjugate gradients method CG of optim.
For the estimation in Cox’s PH model a hand-written Newton-Raphson algorithm from the internet
([Swaminathan, 2021]) has been adjusted. Newton-Raphson is closely related to Fisher-Scoring and in
this case the derivative of (65) with respect to β1 was used as learning rate.
Both methods require starting points. As suggested by [Nakamura, 1990, chapter 6] the naive estimates
for β0 and β1 serve as initial values. If the naive estimation terminated without yielding a valid estimate,
the initial values were set to 0.
All three methods for calculating corrected estimators were verified the following way: First, the true
log-likelihood was implemented and the ideal ML-estimators were derived. In the second step, these were
compared to the results from R’s functions lm and glm from package stats. For Cox’s PH model the
package survival with its function coxph was used as comparison. In all cases the difference between
already implemented and the above described procedures was less than 10−3.

4.2.3 Technical Difficulties

It is known that corrected score functions suffer from numerical problems meaning invalid estimators or
divergence of optimization procedures (see for example [Kong and Gu, 1999] or the simulation study of
Gauß [2020]). This was also the case in this work. Some brief explorative simulations indicated that
the higher the term β0 +Xiβ1, that also appears in the exponential function, the more likely divergence
or invalid values are. One must say that also with lower values of the above term numerical problems
occurred. Since, by technical reasons, optimization for β0 and β1 is performed simultaneously, the number
of valid estimates for both coefficients is the same. The goal of this work is to evaluate and compare the
corrected estimators, and not to analyse the numerical difficulties of corrected score functions. Therefore
the parameter values were selected so that also in extreme cases (e.g. high variance and low sample size)
at least a small number of estimates is valid.
An estimate is considered valid if the algorithm converges and yields a value that is reasonably close to
the true parameter value (abolute relative bias less than 10, for relative bias see section 5). All other
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estimates, that are either missing, infinite, mathematically undefined or very high absolute values, are
classified as invalid and removed from the dataset.
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Model β0 β1 µw σ2
w σ2

Linear -2 0.5 1 5 1
Poisson -2 0.5 1 5 /
Cox PH / 0.15 43 6 /

Table 2: True parameter values (except parameters of survival times). ”/” indicates that the parameter
does not appear in the model.

5 Results of the Simulation Study

This section presents the results of the simulation study. The presentation structure is the same for all
three models: First, the true parameter values used for simulating the data are introduced and ongoing
the results in graphical form are presented. Only selected results are shown, more graphics can be found
in the appendix. The last part of this section is a simulation of the Poisson model under false assumptions
for the corrected estimator.
For evaluating the estimators’ accuracy and variance all valid estimates are visualized in a boxplot grouped
by either sample size or error variance. The number of valid estimates is given above the corresponding
boxplot in a label. For example N = 500 means that on all 500 simulated data sets the estimation
procedure yielded a valid value whereas N = 482 means that 18 estimates are invalid for whatever
reason. The x axis groups by estimation method, ideal, naive or corrected. The y axis shows the relative
bias of an estimator β̂ defined as (β̂ − βtrue)/βtrue. So the relative bias 0 would be optimal as it means

that β̂ is βtrue, indicated as a black line in the plots. A positive relative bias means overestimation of the
parameter, and vice versa. For better visibility, outliers are winsorized. All values greater or less than 1
or -1 are set to 1 or -1 respectively.

5.1 Linear Model

The true parameter values and distributions of the linear model are

Wi ∼ N(1, 5)

Ui ∼ N(0, σ2
u)

Xi ∼ N(1, 5 + σ2
u)

Yi ∼ N(−2 + 0.5Xi, 1)

i = 1, . . . , n.

The intercept takes a negative value of -2 and the covariate coefficient the value 0.5. The surrogates Wi

are normally distributed around mean 1 with variance 5 and the response variance σ2
y is 1. An overview

over all true parameters for the three models is given in table 2.
Figure 1 shows estimates for β0 with different sample sizes for fixed error variance σ2

u = 0.7× σ2
w = 3.5.

Remember that there is no bias from additive Berkson error in the linear model and it thus just serves
as some sort of benchmark. From top-left to bottom-right the sample size gets larger. One can see, that
with higher n the variances of all estimators get smaller though the variance of β̂cor is always bigger than
that of β̂ideal. Almost all boxplots are centered around the relative bias zero. Note that with the lowest
sample (n = 20) size a few scenarios did not yield a valid estimate (N = 486).
Sample size fixed at 500 figure 2 shows varying error variance. From top-left to bottom-right σ2

u (in the
plot denoted as su) increases to 100 percent of σ2

w. The top-left pane is a control scenario with σ2
u = 0.

In this case covariates and surrogates are the same and the three boxplots are identical. The variance
of the naive and the corrected estimator increase with higher error variance. β̂cor has a higher deviation
than β̂naive.

So far the results are as expected: Lower σ2
u and higher n decrease the variance of the naive and the

corrected estimator and vice versa. Besides the fact that there is no bias in this model, neither of the
estimators introduces a bias.
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Figure 1: Estimates for β0 with σ2
u = 3.5 and varying n, linear model

Figure 2: Estimates for β1 with n = 500 and varying σ2
u, linear model
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5.2 Poisson Model

The true parameters in the Poisson model are the same as in the linear model, except that the Poisson
distribution does not need a second parameter:

Wi ∼ N(1, 5)

Ui ∼ N(0, σ2
u)

Xi ∼ N(1, 5 + σ2
u)

Yi ∼ P (−2 + 0.5Xi)

i = 1, . . . , n.

In contrast to the linear model additive Berkson error introduces a coefficient bias in the Poisson model,
as can be found in figure 3. The naive estimator for the intercept is clearly biased regardless of the sample
sizes. The corrected estimator, on the other hand, tends towards about 0.05 and is thus clearly better.
For all estimators, the variance decreases with increasing sample size. In the same manner the number of
valid estimates increases with n, though at n = 20 less than a fifth of the estimation procedures yielded
a valid estimate. One must admit that even the pre-defined and optimised routines from package stats
did not succeed in all cases.
As seen, the Berkson error affects the intercept estimate. However, the naive estimator for the covariate
coefficient is not biased, as figure 4 shows. σ2

u is again fixed at 3.5 and n is varied. The naive estimator
is pretty accurate while the corrected estimator is biased for lower sample sizes and then tends towards
0.05. Just like the corrected intercept estimator the corrected estimator for β1 has the highest variance
and pretty much behaves the same in terms of the median.
Looking at the effects of higher error variance on the intercept estimator, shown in figure 5, one can see

the bias of the naive estimator grow with σ2
u. For both naive and corrected estimation the variance also

increases with σ2
u, though β̂cor is a lot more uncertain. Until σ2

u is half as large as σ2
w, the median tends

towards some small positive value again. Interestingly, for σ2
u greater than 0.5σ2

w it drifts away from zero

in a negative direction and gets biased. In the scenarios depicted, β̂cor is always better than β̂naive. This
may not hold for more extreme scenarios where the error variance is greater than the surrogate variance.
For the highest error variance still about a third or more of the estimates are valid.
Figure 6 shows the same settings for the covariate coefficient estimators. Again the naive estimation
should be unbiased. However a small negative drift can be found for σ2

u = 3 upwards. The corrected
estimator for β1 behaves just like the one for β0. It first tends to a small positive value and then, at the
same point as the naive one, switches direction introducing a bias. Also the variance increases with the
error variance and is most of the times the highest of the three estimators.
In the Poisson model one may conclude that in scenarios where σ2

u is (much) smaller than σ2
w and sample

size is sufficiently large the corrected estimator is superior to the naive estimator. In rougher settings,
where those two conditions are violated, the naive estimation is advised. This might be important in the
context of diverging estimation algorithms, where the corrected estimation lacks stability, and especially
if the intercept is not of interest or cannot be interpreted.
More simulations with lower sample size and error variance can be found in the appendix. Just as one
might expect, a lower sample size introduces more uncertainty and a lower variance more certainty to
the estimators.
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Figure 3: Estimates for β0 with σ2
u = 3.5 and varying n, Poisson model

Figure 4: Estimates for β1 with σ2
u = 3.5 and varying n, Poisson model
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Figure 5: Estimates for β0 with n = 500 and varying σ2
u, Poisson model

Figure 6: Estimates for β1 with n = 500 and varying σ2
u, Poisson model
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5.3 Cox’s Proportional Hazards Model

The survival times generated imitate the uranium miners data ([Kreuzer et al., 1999] or [Bender et al.,
2005]). The basis are uniformly distributed random variables and a weibull distribution with shape
13.6141 and scale 69.4574 (in R’s parameterization; with parameterization of [Bender et al., 2005] the
scale is 69.4574−13.6141) so that the distribution’s mean and variance are close to 66.86 and 62 respectively.
Like in the original uranium miners study the true coefficient value is 0.15, and mean and variance of
surrogates W are 43 and 6, respectively. In this work the surrogate and measurement error are normally
distributed, so the uranium data cannot be copied perfectly. Nevertheless the simulated survival times
are pretty realistic. As described in chapter 3.5, Cox’s PH model has only one coefficient β1 but also
involves censoring. This censoring was simulated independently from an exponential distribution with
parameter λ and the four simulation runs were carried out with two different values of λ: 1/66.86 and
1/30. First value corresponds to about 16 to 20 percent of censored observations and the latter to about
36 to 40 percent censoring, observed in some simulations.
The first point to mention when looking at figure 7, that shows estimates for β1 with σ2

u = 4.2 and
λ = 1/66.86 for varying n, is the higher uncertainty of all estimators compared to the other models.

Therefore the bias of β̂naive only becomes visible at really high sample sizes. β̂cor on the other side tends
towards zero, but has again the highest variance. If n increases, the variances of the estimators decrease.
Regarding divergence of the optimization algorithm, this model is quite robust compared to the Poisson
model as a sample size of n = 50 yielded slightly more than 70 percent valid estimates. Though it cannot
be said if this is due to the different model or different implementation.

The absolute values of the levels of σ2
u, when n is fixed, differ from those of the previous models due

Figure 7: Estimates for β1 with σ2
u = 4.2, λ = 1/66.86 and varying n, Cox’s PH model

to the fact that σ2
w now takes the value 6 instead of 5. Actually, they are calculated in the same way

as fractions of the surrogate variance. Figure 8 shows various error variances for n = 500 and lower
censoring (λ = 1/66.86). From σ2

u = 0.3σ2
w = 1.8 upwards the naive estimator gets biased. In contrast to

the Poisson model its variance does not seem to get much larger, whereas the uncertainty of the corrected
estimator increases strongly. β̂cor again tends to a small positive value and seems to have reached a
steady state. In terms of numerical problems, the algorithm is robust as almost all estimates are valid in
the roughest setting.
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The last figure 9 depicts the same setting as before in figure 8 with more censoring (λ = 1/30). The
figures look pretty similar and in fact the signs of the medians are always the same. The only difference
is that more censoring makes for more uncertainty and thus the uncertainty of all estimators is larger.
This makes sense as more censoring means less information. The number of valid estimates is also lower
than in the scenarios with lower censoring.

In summary, it can be said that if there are many data, the corrected estimate does a good job and
seems consistent. On the other hand, if the error variance is high compared to the surrogate variance,
it is questionable if introducing more variance is worth compared to accepting a small bias. In fact, the
variance of β̂cor is always the largest. Numerically, the algorithm is satisfying as even in the toughest
settings with σ2

u = σ2
w, medium censoring and low sample size (n = 50) almost 40 percent of the estimates

are valid (see appendix figure 24, bottom-right pane).
The appendix contains some more simulations with lower sample size or variance and medium censoring
rate. The results are similar to those described in this section.

27



Figure 8: Estimates for β1 with n = 500, λ = 1/66.86 and varying σ2
u, Cox’s PH model

Figure 9: Estimates for β1 with n = 500, λ = 1/30 and varying σ2
u, Cox’s PH model
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estimation method Corrected Scenario 1 Scenario 2
true error variance 2.5 2.5 2.5
assumed error variance 2.5 1 4
relationship true to assumed assumed = true assumed < true assumed > true

Table 3: True and assumed parameter values for simulation under false assumptions

5.4 Poisson Model under False Assumptions

The results presented so far were based on the knowledge of the measurement error. As mentioned in
chapter 2.1, in practice it is very expensive and/or time consuming to obtain information about the
measurement error. To address the question what happens if the true underlying error structure is
misspecified, a small sensitivity analysis was performed. For a fixed true error variance of σ2

u = 0.5σ2
w =

2.5 with varying sample size in the Poisson model, two further estimators were calculated. In the first
scenario (S1) a lower error variance of 0.2σ2

w = 1 and in the second scenario (S2) a larger error variance
of 0.8σ2

w = 4 was assumed, which corresponds to an under- or overestimation of the true error variance
respectively. Table 3 gives an overview over the true and assumed parameter values.

Figure 10 shows the ideal, naive and corrected estimators, just like before, and on the right side the
estimators with assumed lower (S1) or higher (S2) error variance. The first three estimators behave like
in figure 3, where σ2

u takes the value 3.5 instead of 2.5. Scenario 1 leads to a biased estimator that
underestimates the true parameter value but is still better than the naive one. Scenario 2 also leads to
a biased estimator. This time, however, the estimator overestimates the true parameter value. It seems
that a higher assumed variance leads to an overestimation and vice versa. The higher the assumed error
variance, the higher is also the variance of the corrected estimator, at least with larger sample sizes.
Similarly, numerical problems increase and lead to fewer valid values.
Remember that only naive estimator for the intercept is biased in the Poisson model, but not the estimator
for the covariate coefficient. Figure 11 shows the same as the previous figure for β1. All versions of the
corrected estimator tend towards a small positive value. This value is lower for lower assumed variances.
Again, the higher the assumed error variance, the higher is the variance of the corresponding estimator.
Interestingly, there seems to be a correlation of assumed error variance and drift behaviour. The estimator
with assumed lower error variance (S1) reaches its stable state faster than the other two estimators. This
holds for all combinations of the corrected estimators.

In summary, a wrongly assumed error variance has an impact on the corrected estimator. A higher
assumed error variance leads to a higher variance of the estimator, a slower convergence to the steady
state and fewer valid values as numerical problems are more likely to occur. In this simulation the
estimator of scenario 2 turned out to be the worst. If σ2

u is assumed higher than it really is, the estimator
gets biased and much more uncertain. Contrary to this, the estimator with an assumed lower error
variance for β0 is better and for β1 as good as the naive estimator. On top of that, its variance is smaller
than the corrected estimator with true assumed variance and not much larger than that of the naive
one. An underestimation of the true error variance thus seems to have far less bad consequences than an
overestimation.
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Figure 10: Estimates for β0 under false assumptions and varying n, Poisson model

Figure 11: Estimates for β1 under false assumptions and varying n, Poisson model
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6 Concluding Remarks

The aim of this work was to investigate whether the method of corrected score functions can be applied
to additive Berkson error. Therefore in the first step the corrected score functions for normal distributed
error U and surrogate W were derived for linear and Poisson regression and Cox’s PH model. In the
next step, these functions were implemented in R in order to calculate corrected estimates. To evaluate
the behavior of the corrected estimator, a simulation study was performed.
To answer the introductory question, corrected score functions are applicable to correct for additive Berk-
son error. Furthermore, the results of the simulation study do not object the theoretical consistency of
the corrected estimator. More data or less error variance reduce the variance of the corrected estimator
and help reaching the steady state faster. The other way around, less data or higher error variance
increase the variance, cause more numerical problems and may even introduce a bias to the model.
As section 5.4 showed, the corrected estimator is sensitive towards misspecification. Hence, in practice a
measurement error correction for additive Berkson error with corrected score functions should be based
on thorough information about the error. It would be interesting to analyse the behavior of the cor-
rected estimator under different misspecification settings. For example when a false error distribution
is assumed or maybe even when the sample variance of the surrogates differs from the true surrogate
variance. This is also true for other true parameter values, since the true parameters in this simulation
study were determined, so that in all cases some estimates are valid.
Another point to discuss, is the censorship distribution in Cox’s PH model. Since the exponential distri-
bution is right-skewed and the event times imitate the age of adult miners in years, mainly small event
times get censored. In the same context, the effects of a high censoring share of maybe 60 or 80 percent
could be studied. When talking about the true parameter values in Cox’s PH model, of course also the
underlying model can be varied. For example a Cox-Gompertz model could be used, like in Bender et al.
[2005].
The models in this thesis were limited to a response and a covariate variable, which may not be realistic
in practice. The method of corrected score functions could be examined in models with more erroneous
and/or correct covariates and different distribution of the response variable, e.g. logistic regression.
Speaking of more coefficients and larger models, the factors that cause the numerical problems are worth
analysing. Subsection 5.4 proved that there are scenarios, where an estimate was valid and on the same
dataset solely the increase of the assumed variance led to an invalid value. This can be seen by comparing
the number of valid estimates for the three corrected estimators in a single pane of figures 10 or 11. As
mentioned earlier in part 4.2.3, also the value of the term β0 +β1Xi seems to be correlated with diverging
algorithm runs.
All in all, the method of corrected score functions is applicable to additive Berkson error and offers
potential for further research.

31



A Further Graphics

Figure 12: Estimates for β1 with σ2
u = 3.5 and varying n, linear model

Figure 13: Estimates for β0 with n = 500 and varying σ2
u, linear model
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Figure 14: Estimates for β0 with n = 50 and varying σ2
u, linear model

Figure 15: Estimates for β1 with n = 50 and varying σ2
u, linear model
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Figure 16: Estimates for β0 with σ2
u = 1 and varying n, linear model

Figure 17: Estimates for β1 with σ2
u = 1 and varying n, linear model
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Figure 18: Estimates for β0 with n = 50 and varying σ2
u, Poisson model

Figure 19: Estimates for β1 with n = 50 and varying σ2
u, Poisson model
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Figure 20: Estimates for β0 with σ2
u = 1 and varying n, Poisson model

Figure 21: Estimates for β1 with σ2
u = 1 and varying n, Poisson model
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Figure 22: Estimates for β1 with n = 50, λ = 1/66.86 and varying σ2
u, Cox’s PH model

Figure 23: Estimates for β1 with σ2
u = 1.2, λ = 1/66.86 and varying n, Cox’s PH model
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Figure 24: Estimates for β1 with n = 50, λ = 1/30 and varying σ2
u, Cox’s PH model

Figure 25: Estimates for β1 with σ2
u = 1.2, λ = 1/30 and varying n, Cox’s PH model
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Figure 26: Estimates for β1 with σ2
u = 4.2, λ = 1/30 and varying n, Cox’s PH model
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