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Abstract

Throughout the Coronavirus pandemic, the amount of available COVID-19 related data
is increasing steadily and with it the potential to extract valuable information. Data-
related insights enable decision-makers in healthcare and politics to make informed and
data-driven decisions. Alongside COVID-19 incidence rates and hospitalization rates, the
intensive care capacity (ICU) occupancy by COVID-19 patients is an essential key metric
for the magnitude of the pandemic outbreak. This thesis focuses on producing reliable
forecasts of ICU bed occupancy by COVID-19 patients on German district level for a time
forecasting horizon of up to two weeks.

Current literature has been dominated by research on the effective prediction performance
of various machine learning models. In the last two decades, machine learning (ML) models
have been increasingly adopted to solve forecasting tasks and have established themselves
as serious contenders to classical statistical models. However, there is a small amount of
work comparing their predictive performance relative to traditional statistical methods.
Within this thesis, we conduct a benchmark experiment, which investigates two ensemble
methods based on regression trees, random forest and gradient boosting, and compares
them to one of the most widely used statistical forecasting models - autoregressive inte-
grated moving average (ARIMA). Alongside data on COVID-19 ICU occupancy, additional
COVID-19-related data is included in the machine learning approaches, to enhance predic-
tion performance.

The results from the benchmark experiment show that all three models perform comparably
well on average across all districts and prediction horizons. With increasing prediction hori-
zon, random forest and gradient boosting moderately outperform ARIMA. These results
suggest that random forest and gradient boosting provide a powerful alternative to ARIMA
but are accompanied by higher computational expenses. Therefore, it is strongly recom-
mended to use classical statistical methods as a baseline to more elaborate ML methods in
order to justify their usage. The benchmark experiment results are accompanied by variable
importance measures and interactive visualizations of the produced forecasts.

Keywords: COVID-19, Coronavirus, ICU bed occupancy, time series forecasting, multi-
step forecasting, ARIMA, regression trees, random forest, gradient tree boosting, skranger,
XGBoost, walk-forward cross-validation, benchmark experiment, benchmark experiment,
variable importance, uncertainty quantification
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1. Introduction

On March 11, 2020, the World Health Organization (WHO) characterized the global spread
of the novel coronavirus (SARS-CoV-2) as a pandemic. The COVID-19 pandemic is con-
stantly bringing about enormous challenges for the society, the economy, and the health
system worldwide. In the middle of a health crisis, it is crucial to adequately control the
pandemic in the short-term as well as long-term and to strengthen the response capacity
to the health needs of the population. To enable timely decision-making, we need well
established and reliable key indicators for evaluating the severity of the coronavirus situa-
tion.

Throughout the Coronavirus pandemic, the available COVID-19 related data is increasing
steadily, with it the potential to extract valuable information. Data-related insights enable
decision-makers in healthcare and politics to make informed and data-driven decisions.
The 7-day reporting incidence (number of new infections per 100.000 inhabitants) is an
important measurement for the spread of the pandemic and has been the central parameter
for assessing the pandemic situation in Germany until October 2021. With the change in the
dynamics of the pandemic, such as progressed vaccination and the advanced testing strategy,
the number of reported cases has become an insufficient criterion for evaluating the severity
of the pandemic situation. Recently, the reporting incidence has been accompanied by
measurements of the utilization of the healthcare system as complementary indicators. The
occupancy of intensive care units and the new hospital admissions of COVID-19 patients
have become important key metrics for describing the pandemic process in many German
states. These metrics represent the epidemiological dynamics by focusing on severe courses
of the disease and have the advantage of accurately reflecting the magnitude of the pandemic
outbreak. Moreover, available data on the level of occupancy of intensive care units (ICUs)
by COVID-19 patients is updated daily and is accurate and complete. Meanwhile, data
on reported new infections and COVID-19 hospital admissions, in general, is associated
with reporting delays or a considerable number of unreported cases, which makes real-time
analysis of the current and expected situation more difficult. For these reasons, we set the
focus of this thesis on the level of occupancy of ICUs by COVID-19 patients.

The aim of this thesis is to investigate the potential of various machine learning methods
for producing reliable forecasts on German intensive care units occupancy by COVID-19
patients and to compare them with a classical statistical time series model as a benchmark.
Within the framework of this work, forecasting is based on a time horizon for up to two
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CHAPTER 1. INTRODUCTION

weeks.

In the last two decades, machine learning models have been increasingly adopted to solve
forecasting tasks and have established themselves as serious contenders to classical sta-
tistical models (see Ahmed et al., 2010; Zhang et al., 1998). Machine learning models
are non-parametric methods, which explicitly evaluate the spectrum or the covariance of
the stochastic process without making strong assumptions on the structure of the process.
These methods have shown to be very effective but can also be computationally expen-
sive (Boulesteix and Schmid, 2014). Meanwhile, parametric models are often preferred,
due to their transparency and moderate computational complexity. The parametric meth-
ods assume that the basic stochastic stationary process has a certain structural formation
which may be described by utilizing a small number of parameters (Gautam and Singh,
2020).

Current literature has been dominated by research on the effective prediction performance
of various machine learning models. However, there is a small amount of work comparing
their predictive performance relative to traditional statistical methods (Cerqueira et al.,
2019). Within the framework of this work, we conduct a benchmark experiment, which
investigates the prediction performance of different machine learning methods for ICU bed
occupancy forecasting, compared to a classical statistical forecasting approach. The per-
formed experiment focuses on ensemble methods based on regression trees (ensemble tree
methods), more precisely on the methods random forest (RF) and gradient boosting (GB).
These models have been widely used in practice and numerous studies have demonstrated
their abilities to produce robust prediction models (see Caruana and Niculescu-Mizil, 2006;
Chen and Guestrin, 2016; Rokach, 2016). Additionally, these models exhibit many use-
ful properties – the ability to automatically find the structure of the model, successful
incorporation of non-linear patterns and interactions in the data, and ability to deal with
high-dimensional data (Boulesteix and Schmid, 2014). As a benchmark, we incorporate one
of the most widely used statistical forecasting models - autoregressive integrated moving
average (ARIMA). The ARIMA model is backed up by a solid theoretical foundation and
is particularly effective in short-term forecasting (O’Donovan, 1983). Alongside producing
point forecasts, we focus on quantifying the uncertainty of the predicted values by con-
structing prediction intervals for different prediction horizons. To reflect the uneven spread
of the disease across the country, ICU occupancy forecasting is conducted on a regional
level, i.e., for each German district.

While ARIMA is a purely autoregressive model, which explicitly relies on past observa-
tions of the series, machine learning models have shown to be successful in incorporating
various exogenous variables into the modeling procedure. To exploit this advantage and
better reflect the dynamic development of the pandemic, we incorporate additional publicly
available COVID-19 related data into the ML models. Alongside data on occupied ICU
beds, data on the reported number of new cases and deaths in different age groups, as
well as data on vaccination rates is included. Our aim is to investigate the contribution
of additional key metrics of the pandemic for producing more reliable estimates. For that,
different variable importance techniques are explored. In this context, a further desirable
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CHAPTER 1. INTRODUCTION

property of the investigated tree-based ensemble methods is that they provide embedded
variable importance measurement.

Chapter 2 presents the necessary methodological background knowledge of this thesis. This
chapter introduces basic concepts of time series analysis and forecasting. In addition, the
autoregressive integrated moving average approach to time series forecasting is introduced,
including details on multi-step forecasting and the construction of prediction intervals. Fur-
thermore, this chapter introduces relevant machine learning methods, focusing on regression
trees, random forest, and gradient boosting. Finally, important concepts of model inter-
pretability are discussed, investigating methods for uncertainty quantification, as well as
quantifying the impact of different features, also known as the concept of variable impor-
tance.

Chapter 3 focuses on the data used in the project. After a description of the raw data
sources and structures, the conducted data pre-processing and manipulation such as feature
engineering, missing data imputation, and variable recording are introduced. Additionally,
the final choice of features and the creation of a supervised learning dataset is discussed.
Finally, we take a look into the structure of the data and the developments of key COVID-
19 pandemic measures. We motivate the importance of considering different key metrics
and their change over time to better capture dynamic variations in the environment.

Chapter 4 presents the conducted benchmark experiment. This section discusses major
aspects of the benchmark implementation strategy - the experimental setup, the choice of
model implementations, the evaluation strategies and metrics, and hyperparameter tun-
ing. We discuss time series specific evaluation and tuning strategies, which respect the
chronological order of the data and support capturing dynamic changes. In addition, main
hyperparameters and their impact on prediction performance are examined and different
hyperparameter tuning strategies are discussed.

Chapter 5 comprises the results of the conducted benchmark experiment. After an overview
of the results from the hyperparameter tuning procedure, prediction performances of the
selected models are compared. We take a look into the average results, as well as into the
geographical distribution of prediction accuracy across all German districts. To provide
an overview of the prediction curves, we have developed an interactive visualization tool,
which retrospectively compares predicted and observed time series for each district and
forecast horizon. Additionally, the insights obtained by the variable importance measures
are summarized.

The results are accompanied by a discussion on important findings, limitations and future
work propositions in Chapter 6. Finally, Chapter 7 summarizes the subject matter and
emphasizes the main findings.
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2. Methodological Background

This section discusses the necessary methodological background knowledge of this thesis.
First, we provide an introduction to basic concepts of time series analysis and forecasting.
In addition, the autoregressive integrated moving average (ARIMA) approach to time series
forecasting is presented, including details on multi-step forecasting and the construction of
prediction intervals. Furthermore, we examine the relevant machine learning methods for
this thesis, focusing on regression trees, random forest, and gradient boosting. Finally, we
focus on model interpretability by introducing methods for quantifying uncertainty, as well
as methods for quantifying the impact of different features, also known as the concept of
variable importance.

2.1 Basic Concepts of Time Series Analysis

2.1.1 Time Series Data

A time series is a set of observations measured sequentially through time. These measure-
ments may be made continuously through time (continuous time series) or be taken at a
discrete set of time points (discrete time series). From a statistical point of view, time series
are regarded as the recording of the stochastic process which varies over time (Shumway
and Stoffer, 2006).

A time series {yt : t ∈ T} is referred to as a stochastic process which in turn is composed
of random variables observed over time. For the scope of this thesis t ∈ Z is discrete and
varies over a subset Z of the integers. We assume that the time series values we observe
y1, y2, ..., yn are the realisations of random variables Y1, Y2, ..., Yn of the stochastic process
{yt : t ∈ T}. Throughout this thesis and depending on the context, we use the term time
series for both references: the process or the particular realization.

2.1.2 Stationarity

One of the most useful concepts in time series modeling is to assume some form of distribu-
tional invariance over time or stationarity. When we observe a time series, the fluctuations
appear random, but often exhibit the same type of stochastic behaviour from one time
period to the next. Stationary stochastic processes are probability models for time series
with time-invariant behaviour.
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CHAPTER 2. METHODOLOGICAL BACKGROUND

A time series is said to be strictly stationary if the probabilistic behaviour of every collection
of values remains unchanged by shifts in time (Shumway and Stoffer, 2006). Mathematically,
stationarity is defined as the requirement that for every m and n, the joint distribution of
y1, ..., yn is the same as the joint distribution of y1+m, ..., yn+m. The version of stationarity
is too strong for most applications and it is often difficult to assess strict stationarity from a
single dataset (Shumway and Stoffer, 2006). Moreover, many important questions relating
to a stochastic process can be adequately answered by imposing fewer conditions on the
process.

A weakly stationary time series {yt : t ∈ T} is a process meeting two conditions. First, the
mean value function

µt = Et

is constant and does not depend on time t. Second, the autocovariance function

γt,t+s = Cov(yt, yt+s) = E[(yt − µt)(yt+s − µt+s)]

of two time point t and t+s depends only through their difference s = |t+s−t|. This means
that for all s the time series {yt} moves in a similar way as the ’shifted’ time series {yt+s}.
Throughout this thesis, we will use the term stationary to mean weakly stationary.

The simplest example of a stationary process is white noise (WN). White noise is a time
series of uncorrelated random variables with constant µt = 0 and constant variance σ2. We
denote this process as

wt ∼WN(0, σ2).

A particularly useful white noise series is Gaussian white noise, wherein the wt are inde-
pendent normal random variables, with mean 0 and variance σ2,

wt
i.i.d.∼ WN(0, σ2).

2.1.3 Time Series Forecasting

The objective of time series analysis is to identify the nature of the phenomenon represented
by the sequence of observations, understand patterns and predict further development of
the time series variable. The latest is often referred to as the process of forecasting. The
fundamental idea of time series forecasting is to use past observations to predict the future.
The model that describes best the data will later be used to predict the future based
on records. Time series forecasting can be based on endogenous variables, which are the
past values of the series, or exogenous variables, which are external factors that can be
correlated to the value of the series. Within the scope of this thesis, we take both types into
consideration: models using only endogenous variables (autoregressive integrated moving
average models) and models that incorporate further exogenous variables (machine learning
approaches).
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CHAPTER 2. METHODOLOGICAL BACKGROUND

Suppose we have an observed time series y1, y2, ..., yn and wish to forecast future values such
as yn+h. The integer h is called the lead time or the forecasting horizon and the forecast
of yn+h made at time n for h steps ahead will be denoted by ŷn(h).

One-step and Multi-step time series forecasting

Time series forecasting is typically discussed, where only a one-step prediction is required.
Predicting a sequence of values in a time series is called multi-step time series forecasting.
Formally, a multi-step ahead time series forecasting task consists of predicting the next h
values yn+1, ..., yn+h of a historical time series y1, ..., yn, with h > 1. Strategies for predicting
time series multi-step ahead have been extensively discussed in Ben Taieb et al. (2012). For
the scope of this thesis, we are interested in two general strategies: the recursive and the
direct strategy.

The recursive strategy (also called iterated or multi-stage) is the most intuitive forecast-
ing strategy. In this strategy, a single model f is trained to perform a one-step-ahead
forecast

ŷt(1) = f(y1, ..., yt)

When forecasting h steps ahead, we first forecast the first step by applying the model.
Subsequently, we use the forecasted value as part of the input variables for forecasting the
next step. For prediction t+ h values we obtain

ŷt(1) = f(y1, ..., yt1)

...
ŷt(h− 1) = f(y1, ..., yt, ŷt(1), ..., ŷt(h− 2))

ŷt(h) = f(y1, ..., yt, ŷt(1), ..., ŷt(h− 1))

The iterative approach is used generally by autoregressive models, where each prediction
is based on previous records. The weakness of this method is that it propagates the error
committed in earlier forecasts to the future which might render the quality of long-term
forecasts unreliable (Ing, 2003).

The direct strategy (also called independent) consists of forecasting each horizon indepen-
dently from the others. In other terms, h models are learned (one for each horizon) from
the time series.

ŷt(h) = f(y1, ..., yt)

This implies that the direct strategy does not use any approximated values to compute the
forecasts, being then immune to the accumulation of errors. This approach is applied to
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the machine learning forecasting in the conducted benchmark experiment. Since we use a
supervised learning approach, where we shift the target to h steps to create a supervised
learning set (see Chapter 2.3.1), the above equation should be rewritten into

ŷt(h) = f(y1, ..., yt−h)

2.2 Statistical Techniques for Time Series Modeling

A variety of time series forecasting models have been evolved in the literature. One of the
most well-known statistical methods for time series forecasting is the ARIMA model, also
called the Box-Jenkins model, originally proposed by Box and Jenkins (1970).

2.2.1 ARIMA

ARIMA stands for ‘autoregressive integrated moving average’. As the acronym indicates,
ARIMA(p, d, q) captures the key elements of the model: Auto Regression (AR): A model,
which incorporates past values in forecasting future values. Integrated Term (I): Method
to make the time series stationary by measuring the differences between consecutive ob-
servations. Moving Average (MA): A model, which incorporates past forecast errors in
forecasting future values.

Auto Regressive AR(p)

The autoregressive model simply follows the idea that any value of a time series can be
modeled as a weighted average of past observations plus a white noise ’error’, which is also
called the ’noise’ or ’disturbance’. An autoregressive model of order p, abbreviated AR(p),
is of the form

yt = ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + ϵt

yt =

p∑
i=1

ϕiyt−i + ϵt

where yt is stationary series, ϕ1, ..., ϕp are constants and ϵt an error term (or residual). As
usual in time series modeling, a basic assumption is that the random error ϵt is Gaussian
white noise. The parameter p of AR(p) determines the number of lags that will be used in
predicting the value of yt.

Moving Average MA(q)

A moving average process can be expressed as a weighted average of the past values of the
white noise process {ϵt}. The moving average model of order q, or MA(q) model, is of the
form

yt = ϵt + θ1ϵt−1 + θ2ϵt−2 + ...+ θqϵt−q

7
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yt =

q∑
j=1

ϵjθt−j

where yt is stationary series, θ1, ..., θq are constants and ϵt is assumed to be a Gaussian
white noise.

Differencing I(d)

Stationary time series with complex autocorrelation behaviour often are more accurately
modeled by mixed autoregressive and moving average (ARMA) processes than by either a
pure AR or pure MA process. An ARMA(p, q) model combines both AR and MA terms
and is defined by the equation

yt = ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + θ1ϵt−1 + θ2ϵt−2 + ...+ θqϵt−q + ϵt

yt =

p∑
i=1

ϕiyt−i +

q∑
j=1

ϵjθt−j + ϵt

where ϕ ̸= 0, ϵ ̸= 0 and σ2 > 0. The equations show how yt depends on lagged values of
itself and lagged values of the white noise process.

A weakness of the ARMA model is its assumption that the underlying time series is sta-
tionary. Since many real-life cases time series do not meet the assumption of stationarity,
ARMA processes can not be applied directly. One possible way of handling non-stationary
series is to apply the differencing operation to stationarize the series. This operation is
handled by the ARIMA model which generalizes the ARMA model for non-stationary time
series. The I (integrated) indicates the process of making a time series stationary with
differencing. The differencing operator is defined as △ = 1 − B, where B is the backward
operator, so that

△yt = yt −Byt = yt − yt−1

Differencing may be repeated as required and △d is called the dth-order differencing oper-
ator. A process {yt} is said to be an ARIMA(p, d, q) process if

△dyt = (1−B)dyt

is ARMA(p, q). In general, the model can be represented as follows

ϕ(B)(1−B)dyt = θ(B)ϵt

8
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Multi-horizon forecating

Given the necessary input values, ARIMA models make point forecasts one time step into
the future. To obtain multi-horizon forecasts an iterative (recursive) strategy is applied,
where the model is trained to predict one step ahead and the predicted value is used as
an input to predict the value for the next step. Assuming an ARMA(p, q) model, the
h-step-ahead prediction is obtained as follows:

Initially, a one-step-ahead prediction is conducted. For the one-step-ahead prediction t is
replaced by t+ 1.

yt(1) = ϕ1yt + ...+ ϕpyt−p+1 + θ1ϵt + ...+ θqϵt−q+1 + ϵt+1.

Assuming we have observations up to time t, all values on the right side of the equation
are known except ϵt+1, which we replace by 0, and ϵt, ..., ϵt−q+1, which we replace with the
last observed residuals et, ..., et−q+1

ŷt(1) = ϕ1yt + ...+ ϕpyt−p+1 + θ1et + ...+ θqet−q+1 + 0.

Subsequently, we take the estimate ŷt+1 for yt+1 and plug it in to obtain the second-step-
ahead prediction

ŷt(2) = ϕ1ŷt+1 + ...+ ϕpyt−p+2 + θ2et + ...+ θqet−q+2 + 0 + 0

This process is then repeated, until ŷt(h) is reached (Hyndman and Athanasopoulos, 2018).

2.2.2 Uncertainty Quantification

Usually, a point estimate ŷ returns a value that does not match the true future outcome y
of a time series. A prediction interval is a quantification of the uncertainty on a prediction.
It provides probabilistic upper and lower bounds such that y lies within that range with a
desired probability (1− α).

A h-step-ahead (1 − α)-level prediction interval for the ARMA(p,q) process can be con-
structed as follows

[ŷt+h − qα/2σ̂(h); ŷt+h + q1−α/2σ̂(h)]

where qα is the α-level quantile of the error disturbance and

σ̂2(h) = σ2
h−1∑
j=0

θ̂2j

9
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is the estimate of σ2(h), the variance of the errors {ϵt}. θ̂j , j = 0, .., h−1 are the estimated
coefficients of the moving-average representation of the ARMA(p,q) process (Brockwell and
Davis, 2002).

With the assumption of normally distributed error, the prediction interval is given by

ŷt+h ± zα/2

√√√√σ2

h−1∑
j=0

θ̂2j

where zα is the α-level quantile of the standard normal distribution.

The introduced prediction interval for the ARIMA-based models only takes into account the
variability from the errors, thus it tends to be too narrow. Alongside the random error term,
there are several sources of uncertainty, such as the uncertainty in the model building and
selection process, which is not adequately considered (Hyndman and Athanasopoulos, 2018).
Furthermore, the prediction intervals for ARIMA models are asymptotically valid only
under the assumption that the residuals are uncorrelated and normally distributed.

2.3 Machine Learning Techniques for Time Series Modeling

Machine learning techniques have gained lots of attention in recent years with their appli-
cations in many disciplines. The success of non-parametric methods lies in the ability to
learn by trial-error method and by improving model accuracy over iterations. Furthermore,
machine learning models exhibit various useful properties, which can effectively improve
time series forecasting performance - ability to automatically identify the structure and
pattern of the data, successful incorporation of non-linear patterns and interactions, and
ability to deal with high-dimensional data (Boulesteix and Schmid, 2014).

The presented methodological background on decision trees, random forest and gradient
boosting is general, i.e., the notation is not adapted to a time series forecasting task.
Moreover, the theoretical overview of these models is closely based on a project report of
a statistical consulting project conducted at the LMU Munich (’Supervised learning for
day-ahead wind power forecasting’, 2021).

2.3.1 Supervised Learning Setting

Supervised learning consists in modeling the relationship between a set of input variables
and output variables, which are considered somewhat dependent on the inputs. In formal
notation, the supervised dataset is given in the following form

D = ((x(1), y(1)), ..., (x(n), y(n)) ∈ (X × Y)n

with X the input space, Y the output space and the tuple (x(i), y(i)) the i-th observa-
tion.
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Supervised learning can be seen as the task of learning a function that maps an input to
an output based on example input-output pairs. It infers a function from labeled training
data consisting of a set of training examples. A supervised learning algorithm analyzes
the training data and produces an inferred function, which can be used for mapping new
examples.

One-step forecasting can be tackled as a problem of supervised learning. Assuming a purely
autoregressive model of order p, we want to forecast future observations by using p previous
observations of the time series. Effectively, we construct a set of observations which are
based on the past p lags of the time series. Each observation is composed of a feature
vector xi ∈ X ⊂ Rp, which denotes the previous p values and a target yi ∈ Y ⊂ R, which
represents the value we want to predict. The objective is to construct a model f : X 7→ Y,
where f denotes the regression function. For a task, which is trained on n data points and
a fixed forecast horizon of h, the training set is derived by creating the [p × n] input data
matrix and the [1× n] output vector

Y =


yt
yt−1

...
yt−n

 X =


yt−h yt−1−h yt−2−h . . . yt−p−h

yt−1−h yt−2−h yt−3−h . . . yt−p−h−1
...

...
...

...
...

yt−n−h yt−n−h−1 yt−n−h−2 . . . yt−n−h−p


Assuming the presence of p exogenous features in the model, the feature matrix and output
vector for training on n data points for predicting the h-th prediction horizon can be
represented as follows

Y =


yt
yt−1

...
yt−n

 X =


x1t−h

x2t−h
x3t−h

. . . xpt−h

x1t−1−h
x2t−1−h

x3t−1−h
. . . xpt−1−h

...
...

...
...

...
x1t−n−h

x2t−n−h
x3t−n−h

. . . xpt−n−h


The conducted supervised learning modeling in this thesis is based on a dataset, which
consists of both - endogenous and exogenous features. Therefore, the constructed feature
matrix in this thesis can be represented as a combination of both presented feature matrices
above.

2.3.2 Regression Trees

Decision trees are a non-parametric method for predicting the response y from the predictor
variables x1, ..., xp and build accurate, flexible, and easily interpretable models. One of
the most popular tree-building algorithms is the methodology of the classifications and
regression trees (CART), proposed by Breiman et al. (1984). In the case of a continuous
response, one speaks of a regression tree. On the contrary, a classification tree aims to
model data with a categorical response. The basic idea of decision trees is to recursively
partition the covariate space to form subsets that are more homogeneous concerning the
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response variable. To choose the binary partition in a way that the arising child nodes are
"purer" (i.e., more homogeneous) than the parent nodes, a measure of node impurity is
minimized.

The algorithm starts at the root node, which contains all observations (x(i), y(i)) with
i = 1, ..., n and performs a search through all potential binary splits (through all variables
x and variable values s), then selects the best one according to a splitting criterion. A
split with respect to variable xj and split point s divides the root node N into two disjoint
subsets (left and right daughter nodes):

NL = {(x, y) ∈ N : xj ≤ s} and NR = {(x, y) ∈ N : xj > s}.

The most common splitting criteria are based on impurity reduction in the daughter nodes.
This corresponds to minimizing response differences in the daughter nodes. A natural
measure of node impurity in regression trees is mean squared error. Formally the goal is to
minimize the expected value of the loss function, the so-called empirical risk R(N).

We estimate the mean squared error by

R(N) =
1

|N |
∑

(x,y)∈N

(y − c)2

with the mean response as a constant prediction

c = yN =
1

|N |
∑

(x,y)∈N

y.

In order to evaluate how good a split is, we compute the empirical risks in both child nodes
and sum them up

R(N, j, s) =
|NL|
|N |
R(NL) +

|NR|
|N |
R(NR)

Finding the best way to split N into NL, NR formally means solving

argmin
j,t

R(N, j, s).

We want to find variable x∗j and split point t∗, such that R(N, j∗, s∗) ≤ R(N, j, s) for
all xj and c. The resulting subsets are referred to as daughter nodes. These are further
split into daughter nodes throughout the entire tree construction. The process is repeated
recursively until a stopping criterion is reached. This method eventually creates disjoint
subsets (terminal nodes) in the predictor feature space X . Suppose we partition the data
into G terminal nodes Ng with g = 1, ..., G. We model the response y with a constant cg
in region Ng:

f(x) =
T∑

g=1

cgI(x ∈ Ng).
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The estimate of cg is usually given by the average of y(i) in region Ng. Hence, predictions
for new observations can be uniquely determined by tracking the observations down the
tree until it arrives at a terminal node. The prediction for a new observation i falling into
the terminal node Ng is given by

ŷ(i) =
1

|Ng|
∑
i∈Ng

y(i).

The CART algorithm usually produces large and complex trees, which often lead to over-
fitting and large prediction errors. A natural solution is to stop growing the tree when
a pre-defined stopping criterion is met - e.g., a given threshold for the impurity measure
that is not exceeded by any split, total purity for terminal nodes, or a minimum number of
observations in a node for splitting it further. Alternatively, a tree can be grown very large
and subsequently "pruned" back to circumvent the issue of over-fitting. Breiman et al.
(1984) proposed the cost-complexity criterion, which takes both the cost (prediction error)
and complexity (size) of the tree into consideration and gives an overall score for further
selection.

Alternatively, an ensemble tree method can be used to avoid the problem of selecting a
single tree of the appropriate size. Ensemble methods aim at improving the predictive
performance of a given statistical learning or model fitting technique (Bühlmann, 2004).
The general principle of ensemble methods is to construct a linear combination of some
model fitting method, instead of using a single fit of the method. Ensemble tree methods
can essentially improve the accuracy of the prediction since single tree models can suffer
in terms of stability to small changes in the learning data. There are two main ensemble
techniques. The bagging procedure improves accuracy by reducing the variance of the
prediction. On the other hand, boosting methods are primarily reducing the model bias of
the base procedure.

The following chapter introduces the main properties of both ensemble tree techniques:
bagging (random forests) and boosting.

2.3.3 Random Forest

Bagging, a portmanteau for "bootstrap aggregating", is an ensemble method for improving
the unstable estimation of rather weak prediction methods. Breiman (1996) motivates
bagging as a variance reduction technique for a given base procedure, such as decision
trees. In bagging, several trees are fit to bootstrapped or sub-sampled data. Predictions
from every tree are averaged to produce the final prediction of the ensemble.

The random forest (RF) method proposed by Breiman (2001) is an extension of bagging,
which enforces further diversity between trees. In bagged trees, bootstrap samples are
drawn randomly from the learning sample and an individual tree is grown on each sample.
This already implies that bagged trees differ in their structure. Random forest trees are
grown fully and differ from CART as they are grown non-deterministically using a two-stage
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randomization procedure. In addition to the randomization, which is introduced by growing
the tree using a bootstrap sample of the original data, the second level of randomization is
added - at each node of each tree, only a random subset of variables is selected as candidates
for splitting. The purpose of both randomization steps is to create decorrelated trees, which,
when aggregated, reduce the variance of the ensemble and improve accuracy.

The random forest algorithm is described in Algorithm 1:

Algorithm 1: Random Forest Algorithm

1. Draw B bootstrap samples from the original dataset. Each bootstrap sample
excludes on average about 37% of the data, called out-of-bag (OOB data).

2. Grow a random-forest tree Tb for each bootstrap sample b = 1, ..., B . At each node
randomly select mtry ≤ p covariates as candidates for splitting (default:
mtry =

√
p). Find the best variable/split-point. Grow the tree to full size.

3. Output the ensemble of trees {Tb}B1 . To make a prediction at a new point, aggregate
information from B trees, i.e., majority for classification, average for regression.

4. Using OOB data, calculate error rate (not applicable to this thesis).

Ensemble Estimation
The key estimate, produced by random forest is the average prediction over all B trees. We
denote the produced tree ensemble {Tb}B1 with b = 1, ..., B. For a new observation i with
predictor x(i) the response estimation is given by

f̂B(x(i)) =
1

B

B∑
b=1

f̂∗b(x(i))

where f̂∗b(x(i)) denotes the prediction for observation i for tree b = 1, ..., B.

2.3.4 Gradient Tree Boosting

In machine learning theory, boosting is considered to be one of the most powerful learn-
ing ideas. The main idea of boosting is to take a weak learner, e.g., a decision tree, and
sequentially apply it to modified versions of the training data. In each step, the model
tries to compensate for the weaknesses of its predecessor. The gradient boosting technique,
which was introduced by Friedman (2001) is probably the most widely used boosting tech-
nique. Gradient boosting combines two different techniques, boosting and the gradient
descent method. The theoretical overview in this section is closely based on Hastie et al.
(2009).
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Gradient descent
Gradient descent is a first-order iterative optimization algorithm for finding a local mini-
mum of a differentiable function. The gradient descent algorithm moves towards the local
minimum in every iteration. In the literature, gradient descent has been often proposed
as a method for minimizing empirical risk Remp. Let f(x) be an arbitrary, differentiable
objective function that is to be minimized. The gradient ∇f(x) can be understood as the
direction of the steepest ascent of the function. Correspondingly, −∇f(x) points towards
the steepest descent of f(x). For a function f : Rn → R we denote

∇f(x) =
(
∂f(x)

x1
, ...,

∂f(x)

xn

)T

.

For a current iteration step, we minimize the function f(x) by updating the current point
x[m] by

x[m+1] = x[m] − ν∇f(x[m]))

for m = 1, ...,M . The update results in a lower value of the objective function f(x[m]) >
f(x[m+1]). The step length ν controls the step size towards the steepest descent. For a very
small ν the learning process will converge very slowly. On the other side, a bigger ν might
miss the minimum.

Forward Stagewise Additive Modeling
Boosting is a way of fitting an additive expansion in a set of elementary "basis" functions.
The approach builds strong learners by slightly improving weaker learners and over a series
of iterations. The boosting framework is based on the forward stagewise additive model,
which estimates the prediction function as an additive model in a forward stagewise way.
An additive basis function expansion can be expressed as

f(x) =
M∑

m=1

f [m](x) =
M∑

m=1

β[m]b(x, θ[m])

with weights β[m], m = 1, ...,M and base learner parameter θ[m]. The goal is to minimize
the empirical risk, given by

Remp(f) =
n∑

i=1

L
(
y(i), f

(
x(i)
))

=
n∑

i=1

L

(
y(i),

M∑
m=1

β[m]b
(
x(i), θ[m]

))

with the training data (y(i),x(i)), i = 1, ..., n and some loss function L.

Minimizing Remp(f) with respect to ((β(1), θ(1)), ..., (β[m], θ[m])) requires computationally
intensive numerical optimization techniques, since the parameter space is a high-dimensional.
Alternatively, the forward stagewise additive modeling approach can be used to sequentially
minimize the empirical risk only with respect to the next component

min
β,θ

n∑
i=1

L
(
y(i), f̂ [m−1]

(
x(i)
)
+ βb

(
x(i), θ

))
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Algorithm 2 describes the process of the forward stagewise additive modeling.

Algorithm 2: Forward Stagewise Additive Modeling

Initialize f̂ (0) = 0
for m = 1→M do

(β̂m, θ̂m) = argmin
β,θ

∑n
i=1 L

(
y(i), f̂ [m−1]

(
x(i)
)
+ βb

(
x(i), θ

))
Update f̂ [m] ← f̂ [m−1](x) + β̂[m]b

(
x(i), θ̂[m]

)
end

Gradient Boosting
Gradient boosting incorporates the methods of gradient descent and forward stagewise
additive modeling. Concretely, gradient boosting uses stagewise additive models for which
the empirical risk Remp is minimized via gradient descent. The gradient of the empirical
risk Remp with respect to each component of the parameter vector for a differentiable loss
function L is given by

∂Remp

∂f(x(i))
=

∂L(y(i), f(x(i)))

∂f(x(i))

The gradient descent update for each vector component of f is given by

f(x(i))← f(x(i))− β
∂L(y(i), f(x(i)))

∂f(x(i))

Consequently, we can determine the direction of the steepest descent for each observation.
In combination with the iterative additive procedure of forward stagewise modeling, we are
at the spot f [m− 1] during minimization. At this point we calculate the direction of the
negative gradient and define the pseudo residuals r[m](i)

r[m](i) = −

[
∂L(y(i), f(x(i)))

∂f(x(i))

]
f=f [m−1]

The pseudo-residuals r[m](i) match the usual residuals for squared loss.

For regression problems, the parameter θ[m] in base learner b(x(i), θ[m]) can be estimated
by minimizing the sum of squared error

θ[m] = argmin
θ

n∑
i=1

(r[m](i) − b(x(i), θ))2

In general, one boosting iteration is exactly one approximated gradient step in function
space, which minimizes the empirical risk as much as possible. The gradient boosting
algorithm is described in Algorithm 3.
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Algorithm 3: Gradient Boosting Algorithm

Initialize f̂ (0) = argmin
θ

∑n
i=1 L(y

(i), b(x(i), θ))

for m = 1→M do
For all i: r[m](i) = −

[
∂L(y(i),f(x(i)))

∂f(x(i))

]
f=f̂ [m−1]

Fit a regression base learner to the pseudo-residuals r[m](i):
θ[m] = argmin

θ

∑n
i=1(r

[m](i) − b(x(i), θ))2

Line search: β̂m = argmin
β

∑n
i=1 L

(
y(i), f [m−1](x(i)) + βb(x(i), θ[m])

)
Update f̂ [m] ← f̂ [m−1](x) + β̂[m]b(x(i), θ̂[m])

end
Output f̂(x) = f̂ [m](x)

Gradient Boosting and Trees
The most commonly used base learner for gradient boosting are decision trees. A tree can
be formally expressed as

b(x) =
T∑
t=1

ctI(x ∈ Nt)

with Nt the disjoint terminal regions and ct the corresponding means. Accordingly, this
specific additive structure can be exploited by boosting

f [m] = f [m−1](x) + β[m]b[m](x) = f [m−1](x) + β[m]

T [m]∑
t=1

c
[m]
t I(x ∈ N

[m]
t ).

The above expression can be rewritten as

f [m] = f [m−1](x) +

T [m]∑
t=1

γ[m]I(x ∈ N
[m]
t )

with γ[m] = β[m]c
[m]
t Again, minimizing the loss function provides the optimal coefficients

for γ[m]

γ[m] = argmin
θ

n∑
i=1

L

f [m−1](x) +

T [m]∑
t=1

γ[m]I(x ∈ N
[m]
t )



Regularization and Shrinkage
Due to its aggressive loss minimization, gradient boosting can easily overfit the model. An
overfitted model tends to fit the noise in the training data and fails to generalize to new
data. Regularization methods attempt to prevent overfitting by constraining the fitting
procedure.
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One natural regularization parameter is the number of components M . Limiting the num-
ber of additive components by stopping the boosting iterations early ("early stopping")
regulates the degree to which expected loss on the training data can be minimized (Fried-
man, 2001). Further, the model complexity can be regulated by limiting the depth of the
trees. Another way is to shorten the step length β[m] in each iteration by multiplying a
shrinkage parameter (learning rate) ν ∈ (0, 1]:

f [m](x) = f [m−1](x) + ν[m]b(x, θ[m])

All regularization parameter control the trade-off between complexity and accuracy of the
model and do not operate independently. It has been empirically shown that smaller values
of ν favor better test error, and require correspondingly larger values of M (Friedman,
2001). Generally it is advisable to tune all regularization parameters simultaneously.

Some gradient boosting implementations, e.g., XGBoost introduce further advanced regular-
ization (L1 and L2), which improves model generalization. Furthermore, feature subsam-
pling similar to the random forest is introduced in XGBoost. Only a random subset of all
features is considered for each split. A more detailed look into the theoretical background
of XGBoost can be found in the paper of Chen and Guestrin (2016).

2.3.5 Uncertainty Quantification

Machine learning techniques are often highly effective in keeping the reducible error at a
minimum as they require little to no assumptions to be made on the function for making
predictions. However, this often makes statistical inference difficult. Due to their black-box
nature, models like random forest and gradient boosting are difficult to interpret and the
inherent modeling and input uncertainties are difficult to quantify. However, we are often
not only interested in accurate prediction, but in valuable insights into the complex process,
e.g., transparency with regards to the quantification of prediction uncertainties. Instead of
minimizing the prediction error, the objective in uncertainty quantification is to quantify
how large this expression of errors could be for a newly predicted unobserved point. In
this context, multiple approaches to uncertainty quantification for machine learning models
have been proposed in the literature. One existing method for uncertainty quantification
in random forest involves estimating the conditional distribution of the response variable
given the predictor vector via quantile regression forests (Meinshausen, 2006). In this
method, an empirical cumulative distribution function (CCDF) is calculated by keeping
the complete distribution of all observed response values of every node of each tree in
the forest. Prediction intervals are therefore derived from the empirical CCDF. Quantile
regression can be used to estimate prediction intervals for the gradient boosting algorithm
as well. As shown in Kriegler and Berk (2007) the gradient tree boosting algorithm predicts
the Qα quantile, when implemented with an appropriate cost function. Another possible
approach with random forest models is to construct prediction intervals using the empirical
distribution of out-of-bag prediction errors (Zhang et al., 2020). These prediction intervals
can be obtained as a by-product of a single random forest. Mentch and Hooker (2016)
have proposed an approach for constructing confidence intervals from a procedure similar
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to random forests. By training a multitude of trees on strict subsample combinations of the
training set and averaging their results, random forest can be seen as a U-statistic which
is proven to be asymptotically normal. Furthermore, Mentch and Hooker (2016) developed
a consistent estimator for the variance of the relevant limiting normal distribution that
naturally leads to a confidence interval for the mean of their estimator.

Another way to think about the length of the prediction interval is in terms of the mag-
nitude of the prediction error. Analogously to the prediction intervals introduced in the
ARIMA modeling, regression models can produce prediction intervals analytically. Assum-
ing normally distributed errors, a (1−α)-level prediction interval can be acquired by

ŷt+h ± zα/2σ̂t

where zα is the α-level quantile of the standard normal distribution and σ̂ is an estimate
of the standard deviation. A 95% prediction interval is then asymptotically given by

ŷt+h ± 1.96σ̂t

2.3.6 Variable Importance

In the context of machine learning, we are often not only interested in accurate prediction,
but in valuable insights into the complex process. Furthermore, gaining a well-grounded
understanding of a model is essential for further improvement and tackling shortcomings.
Besides quantifying uncertainty (see Chapter 2.3.5), we are often interested in quantifying
the impact of different features and gaining information on the association between features
and the target. Unfortunately, random forests and gradient boosting are not intrinsically
interpretable since their prediction results from averaging or updating several hundreds of
decision trees. However, there are established methods that focus on model interpretation
and a better understanding of the relationship between features and the outcome variables.
This methods are often referred as variable importance or feature importance measures. In
this section we introduce the two most widely used variable importance measures for tree-
based methods: impurity-based importance and permutation-based importance, as well as
assess their advantages and disadvantages.

The impurity-based importance measure (also called information gain-based importance, or
Gini importance) quantifies variable importance by measuring the contribution to impurity
reduction of each variable. As decribed above, CART splitting rules aim to minimize
variance or impurity, in child nodes. As a consequence variables used for splitting at
important splits are also considered important. Based on this idea, impurity-based measures
calculate the importance of a variable xj by taking the sum of the impurity decrease of all
nodes at which a split on xj has been conducted. In random forests, this measure is
normalized by the number of trees.

Impurity-based measures are relatively intuitive and easy to calculate. A disadvantage of
impurity-based measures is that they tend to be biased in favor of variables with high car-
dinality, since variables with higher cardinality have more split points, which affords them
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a higher probability of being selected to split variables (Wright et al., 2016a). Moreover, an
important issue, which is tightly related the structure of time series data, is the behavior
of variable importance measures in the presence of correlated features. Archer and Kimes
(2008) observe that the Gini measure is less able to detect the most relevant variables when
the correlation increases. Hence, interpretation of variable importance outputs must be
cautious, to not overstate the meaningfulness of results.

The permutation importance measure, proposed by Breiman (2001) is one of the most com-
mon and most advanced variable importance measures. It measures how prediction error
for the ensemble is influenced when a variable is randomly "shuffled", meaning that its val-
ues are moved to different positions to create noise. By randomly permuting the predictor
variable xj , its original association with the response y is affected. If the variable consists
of purely random noise, prediction accuracy likely won’t be markedly changed. On the
contrary, prediction performance is expected to drop for relevant variables. In random for-
est, the out-of-bag observations have proven useful for computing the permutation variable
importance.

Permutation importance has the advantage of dealing well with interactions between vari-
ables (Wright et al., 2016b; Scornet, 2020). By shuffling the variable, the association is
untethered not only from the response but also the other variables with which it interacts
(Scornet, 2020). Its interpretation is also relatively clear: the contribution of a variable to
the model is measured by how the model behaves when the association of the response is
removed. A main disadvantage of the permutation variable importance is its behavior in
the presence of correlated features. Adding a correlated feature to the model can decrease
the importance of the associated feature by splitting the importance between both features
(Nembrini et al., 2018).

Both methods display different advantages and disadvantages, which should be considered
when interpreting the metrics. Both concepts of feature importance can be regarded as
complements that enable interpretability from different angles. Examining different impor-
tance metrics while bearing their shortcomings and the structure of the data in mind, can
help avoid misinterpretations.
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This section focuses on the necessary data for the conducted benchmark experiment. Within
the framework of this thesis, we do not limit modeling only to purely autoregressive ap-
proaches. Therefore, alongside data on COVID-19 ICU occupancy, additional key metrics
for the progression of the pandemic are considered. After a description of the raw data
sources and structures, the conducted data pre-processing and manipulation such as feature
engineering, missing data imputation and variable recording are introduced. Additionally,
the final choice of features and the creation of a supervised learning dataset is discussed.
Finally, we take a look into the structure of the data and the developments of key COVID-
19 pandemic measures. We motivate the importance of considering different key metrics
and their change over the course of the pandemic in response to new conditions.

3.1 Raw Datasets

COVID-19 bed occupancy in German intensive care units

Data on free and occupied capacities in German ICUs is publicly available and provided
by the German Interdisciplinary Association for Intensive Care and Emergency Medicine
(DIVI) intensive care register1. Moreover, information on beds occupied by COVID-19
patients is included. Data is recorded at around 1,300 intensive care hospitals in Germany
on a daily basis and aggregated and provided on district level. The available information
for 397 German districts is provided daily until 13:00 CET and exclusively reflects the data
according to the status of the considered day. For the scope of this thesis, we are interested
in data, which reflects the respective day and does not include any subsequent reporting
corrections. This assures data representativeness for future forecasts.

The available data should be treated cautiously. The number of occupied beds is based on
the postal code of the intensive care unit. The postal code of the patients is not included
in the data. Therefore, a patient may reside in a district other than the district of the
intensive care unit he is hospitalized in.

1https://www.intensivregister.de
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COVID-19 cases data of new infections and deaths

The publicly available dataset, provided by the Robert Koch-Institut, represents the daily
updated case numbers of positive COVID-19 infections and deaths reported by public health
authorities in Germany according to the requirements of the German Law on Prevention
and Control of Infectious Diseases (Infektionsschutzgesetzes). This data represents a daily
updated status (00:00 CET) of all previously reported cases of infection in Germany. Similar
to the ICU data, we are interested in the values reported on the given day and are not
updated by cases transmitted on subsequent days. Therefore, we consider not only the
current cases dataset, but all previous datasets, updated on each respective day of interest.
The RKI Github-Repository 2, contains an archive with a collection of all previous datasets,
since 01.04.2021. For the time frame until 01.04.2021, the datasets are provided by CODAG
(COVID-19 Data Analysis Group) of Ludwig-Maximilians-University Munich. The raw
data is provided on district level. This data forms the basis for the calculation of COVID-
19 new infections and deaths incidence rates. The exact procedure is explained in Chapter
3.2.

COVID-19 vaccination data

The COVID-19 vaccination data represents a daily update (8:30 CET) of all vaccinations
reported to the RKI on district level in Germany. Similar to the COVID-19 cases data,
RKI provides a Github-Repository 3, containing an archive with a collection of all previous
vaccination datasets, since 21.07.2021. The raw data is provided on federal, as well as
on district level. Based on each dataset, a vaccination rate up to the respective day is
calculated, resulting in a new vaccination rate time series for each district.

The proportion of vaccinated population residing in a district should be treated cautiously.
The allocation of vaccination figures to federal states and countries is based on the postal
code of the vaccinating sites. Only this indication of the place of vaccination is included
in all data sources. The postal code of the vaccinated person is not included in the data.
Therefore, a vaccinated person may reside in a district other than the district of the vacci-
nating site.

German districts demographic data

For the calculation of incidence and vaccination rates, population data on district level
in total, as well as population data, broken down by age groups, is needed. This data
is available in the main database of the Federal Statistical Office 4. Since age groups in
both datasets do not entirely match (affected groups: ’0 to 4 years’ and ’80+’ years), some
assumptions are met. We assume that the population distribution of the affected groups
on district level is the same as the population distribution on national level. More granular
population data on national level is available in the same database.

2https://github.com/robert-koch-institut/SARS-CoV-2_Infektionen_in_Deutschland
3https://github.com/robert-koch-institut/COVID-19-Impfungen_in_Deutschland
4https://www-genesis.destatis.de/genesis/online

22

https://github.com/robert-koch-institut/SARS-CoV-2_Infektionen_in_Deutschland
https://github.com/robert-koch-institut/COVID-19-Impfungen_in_Deutschland
https://www-genesis.destatis.de/genesis/online


CHAPTER 3. DATA FOUNDATION

3.2 Data Preprocessing

Feature engineering

While ARIMA is a purely autoregressive model, which explicitly relies on past observations
of the series, machine learning models have shown to be successful in incorporating various
exogenous variables into the modeling procedure. Alongside past observations of ICU oc-
cupancy by COVID-19 patients, we want to add additional COVID-19 related data to the
machine learning models to better reflect the dynamic development of the pandemic situ-
ation. This includes data on new infections, deaths and vaccination rates. In this section
we explain how key metrics are derived from the raw data and discuss the final choice of
features for the analysis.

Lag features

To address the specifics of time series data, we primarily model the number of COVID-19
patients in intensive care units based on endogenous variables. These are previous periods
of the target, also called lag features of the target. Lags are very useful due to the tendency
for values within a time series to be correlated with previous observations of itself. Lags can
contribute to the identification of patterns and trends within the time series. A critical step
is the right determination of the number of lags. Within the framework of this thesis, the
number of lags is handled as a hyperparameter. The choice of the optimal length is based
on the lowest average out-of-sample loss over a time series cross-validation sample. More
on this procedure can be found in Chapter 4.3. We denote the derived l lagged variables
as cases_covid_intensive_t-1,...,cases_covid_intensive_t-l.

Other ICU-related features

Alongside information on previous observations of number of COVID-19 patients in inten-
sive care units, we add exogenous variables into the machine learning models, to potentially
enhance prediction performance. The number of COVID-19 patients in intensive care units,
receiving invasive ventilation treatment, adds additional information on the severity of the
infection. Moreover, we include the number of free beds in ICUs. An increase in bed
occupancy can only be expected, if respective capacities are available.

Incidence rates

The 7-day reporting incidence is another important measurement for the spread of the
pandemic. This metric measures the number of new cases reported within the last 7 days
per 100.000 inhabitants and indicates the speed at which infections spread. We calculate 7-
day incidence values based on the RKI data for new infections and deaths. The calculation
is based on the reporting date, i.e., the date on which the local health department became
aware of the case and recorded it electronically. For today’s 7-day incidence, cases with
reporting dates in the last 7 days are counted. The current day is not included in the
calculation because additional reports may occur on that day and thus a full 7 days would
not be included. As already mentioned, we are interested in the values reported until a
given day and are not updated by cases transmitted on subsequent days. Therefore, the
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7-day incidence rate is calculated based on each dataset in the archive for the respective
day. Consequently, the 7-day incidence values derived from the single datasets are merged
into a new 7-day incidence time series for each district. To gain more detailed information
into the spread of the pandemic, incidence values by age groups are derived. This results
in the following new variables: 7_day_incidence_cases, as well as 7_day_incidence_cases
for the age groups A05-A14, A15-A34, A35-A59, A60-A79, A80+. In order to consider
the time between the occurrence of symptoms, worsening of symptoms, and admission in
the ICU, we add lagged observations of the incidence as well. This results in the following
new variables: 7_day_incidence_cases_t-1,...,7_day_incidence_cases_t-m. The number
of lags is handled as a hyperparameter (see Chapter 4.3).

Analogously, the 7-day incidence of deaths is calculated, as this is an additional important
metric for the progression of the pandemic. The 7-day death incidence measures the number
of deaths reported within the last 7 days per 100.000 inhabitants. Once again, we are
interested in the values reported until a given day and are not updated by cases transmitted
on subsequent days. However, in comparison to new cases, which are recorded by their
reporting date, new deaths appear only in the respective dataset from the respective day,
on which the death has been reported. The death reporting day in this case is the timestamp
of the respective dataset. In order to obtain today’s 7-day death incidence, we aggregate
all deaths reported in the past 7 datasets from the archive, regardless the cases’ reporting
date. This procedure is done for each day of interest, resulting in a new 7-day death
incidence time series for each district. Additionally, values by age groups are calculated
here as well. This results in the following new variables: 7_day_incidence_deaths, as well
as 7_day_incidence_deaths for the age groups A05-A14, A15-A34, A35-A59, A60-A79,
A80+.

Vaccination coverage

Another important factor of the pandemic is the vaccination coverage. The vaccine coverage
shows the percentage of people who are vaccinated against COVID-19 until a certain point
in time. To calculate vaccination coverage, the number of fully vaccinated persons up to
a point is aggregated and the proportion to the total population in the respective district
is calculated. This results in a new vaccination coverage time series for each district.
Vaccination coverage rates are calculated for fully vaccinated citizens, as well as for persons
with a booster vaccination. Values by age groups are derived as well. This results in
the following new variables: vaccination_rate_full, vaccination_rate_booster as well as
vaccination_rate_full, vaccination_rate_booster for the age groups A12-A17, A18-A59,
A60+.

As already mentioned, there is often a discrepancy between the district of the intensive
care unit or the vaccination site and the district of residence of a person. While ICU and
vaccination data is based on the postal code of the hospital or vaccination site, RKI cases
data is based on the persons’ residential postal code. This decreases the quality of the data
and can possibly lead to lower prediction performance of the models. One easy solution,
which partially addresses this issue, is to assume, that people from the country could go to
a hospital in the city. To model this effect, we add an additional variable, which signifies

24



CHAPTER 3. DATA FOUNDATION

whether the district is a country district (Landkreis) or a city district (Stadtkreis). This
results in a new variable is_city.

Final dataset

Finally, all relevant features are merged into one final dataset. The resulting dataset has
district-level granularity and daily frequency. Table 3.1 summarizes all features included in
the final merged dataset, which is used for the benchmark experiment.

data source features
Infections 7_day_incidence_cases 7_day_incidence_deaths
and deaths 7_day_incidence_cases_A05-A14 7_day_incidence_deaths_A05-A14
data 7_day_incidence_cases_A15-A34 7_day_incidence_deaths_A15-A34

7_day_incidence_cases_A35-A59 7_day_incidence_deaths_A35-A59
7_day_incidence_cases_A60-A79 7_day_incidence_deaths_A60-A79
7_day_incidence_cases_A80+ 7_day_incidence_deaths_A80+

Vaccination vaccination_rate_full vaccination_rate_booster
data vaccination_rate_full_A12-A17 vaccination_rate_booster_A12-A17

vaccination_rate_full_A18-A59 vaccination_rate_booster_A18-A59
vaccination_rate_full_A60+ vaccination_rate_booster_A60+

Lagged cases_covid_intensive_t-1 7_day_incidence_cases_t-1
features cases_covid_intensive_t-2 7_day_incidence_cases_t-2

. .

. .
cases_covid_intensive_t-l 7_day_incidence_cases_t-m

ICU data cases_covid_intensive_ventilated
features beds_free
Additional districtid
features is_city

Table 3.1: Overview of features of the final dataset.
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Data pre-processing

After creating the final dataset, further basic data pre-processing, such as missing data
imputation, and variable recording is required.

While some of the applied machine learning implementations (e.g., XGBoost) support in-
ternal missing values imputation, other do not (e.g., skranger). To guarantee consistency
between models, we employ a unified missing data imputation method. The final dataset
exhibits little missing data with small gaps of up to a couple of periods. Such missing data
periods are imputed via a forward fill strategy, also known as the last value carried forward
strategy. This method replaces every missing value with the value of the last observed
period. Imputation is not directly applied to the data but integrated into scikit-learn
pipelines. Pipelines create machine learning flows, by combining singular data and model
manipulation steps into the learner. Hence, we incorporate missing data imputation op-
erations into a learner, which is later directly applied for resampling, benchmarking, and
tuning.

None of applied machine learning implementations in the benchmark experiment requires
data scaling and normalizing. However, some do not internally handle categorical variables.
Therefore, the single categorical variable in our dataset districtid is converted to numerical,
via one-hot-encoding. This data pre-processing step is not directly applied to the data but
included in the pipeline as well.

An important assumption of the ARIMA model is that the underlying time series is station-
ary. One possible way of handling non-stationary series is to apply the differencing operation
to stationarize them. The differencing operation is integrated into the ARIMA algorithm
and therefore directly applied to the data by the model. The order of the differencing
operator is handled as a hyperparameter and optimized over a time series cross-validation
sample. More on this procedure can be found in Chapter 4.3.

Creation of supervised learning dataset

We are interested in forecasting ICU bed occupancy of COVID-19 patients h-step into the
future. For modelling via ARIMA, only the time series of the target variable is required and
no further manipulation is needed. However, supervised learning approaches need labeled
data to learn from. One-step forecasting can be tackled as a problem of supervised learning.
For that, the target variable is shifted by h-steps. Multi-step forecasting is conducted by
training h individual models, each trained to predict 1, .., h steps into the future. An
overview of this procedure can be found in Chapter 2.3.1.
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3.3 Data Exploration

Interactive visualization of key COVID-19 metrics

To enable a comprehensive overview of different key metrics for the progression of the
COVID-19 pandemic, we have created an interactive visualization tool, which gives insights
into the dynamics of the pandemic for each German district. The following examples
illustrate the provided charts and are based on district ’SK Hamburg’.

COVID-19 bed occupancy in German ICUs

Figures 3.1 and 3.2 illustrate the development of reported COVID-19 cases treated in in-
tensive care units over the course of the pandemic, as well as the proportion of COVID-19
cases to all occupied and free beds in intensive care units over time.

Figure 3.1: Number of reported COVID-19 cases treated in intensive care units at the
respective observation day. Example based on district ’SK Hamburg’.

Figure 3.2: Stacked area diagram of number of reported intensive care beds. The 2 main
areas (green and grey) each show the number of occupied and free, operable intensive care
beds at the respective observation day. The dark green area shows the number of beds,
occupied by COVID-19 patients. The capacities are "stacked" on top of each other and
illustrate the reported total potential capacity. Example based on district ’SK Hamburg’.
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Figure 3.2 shows that the total bed capacities are not constant over time. Since the begin-
ning of the pandemic, bed capacities in many districts have been reduced. One reason for
the reduction is the shortage of personnel in hospitals. Furthermore, only operable intensive
care beds appear in the statistics, i.e., beds for which rooms, equipment, and personnel are
available. Due to the inconsistency of total bed capacities over time, the target variable
in our benchmark experiment is the absolute number of occupied ICU beds by COVID-19
patients. The proportion of occupied ICU beds by COVID-19 patients to total ICU bed
capacity can be calculated subsequently after prediction.
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Incidence of reported COVID-19 infections

Figure 3.3 illustrates the development of weekly reported new infections in the selected
district, compared to the average development in Germany. Figure 3.4 represents the
development in total and among different age groups. Values are represented per 100.000
inhabitants and are based on data for the year 2021.

Figure 3.3: Number of reported COVID-19 cases last 7 days per 100.000 inhabitants over
the course of year 2021. Example based on district ’SK Hamburg’.

Figure 3.4: Number of reported COVID-19 cases in different age groups last 7 days per
100.000 inhabitants over the course of year 2021. Example based on district ’SK Hamburg’.

Following COVID-19 incidence rates by age over time, there is a visible shift of infection
from the older to the younger population. As testing expands, it becomes evident that all
age groups are affected by COVID-19 infection and predominantly the most socially active,
least likely to be symptomatic younger population. As the illustration shows, a persistently
high percentage of current infections exist among the age 5–14 and 15–34 population who
may also be at the highest risk of contracting and spreading the virus but not at high risk of
hospitalization or mortality. It is crucial to account for such developments and incorporate
them in modeling the risk for admission in intensive care units.
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Incidence of reported COVID-19 deaths

Figure 3.5 illustrates the development of weekly reported deaths in the selected district,
compared to the average development in Germany. Figure 3.6 represents the development
in total and among different age groups. Values are represented per 100.000 inhabitants
and are based on data for the year 2021.

Figure 3.5: Number of reported COVID-19 deaths last 7 days per 100.000 inhabitants over
the course of year 2021. Example based on district ’SK Hamburg’.

Figure 3.6: Number of reported COVID-19 deaths in different age groups last 7 days per
100.000 inhabitants over the course of year 2021. Example based on district ’SK Hamburg’.

Unsurprisingly, among all age groups, the older population, age 80 or above, are at a
greater risk of hospitalization or dying with COVID-19 infection due to age-related decline
in immune function and potential pre-existing medical conditions. However, due to the
advanced stage of vaccination, there is a significant decrease in mortality, especially among
the older population groups.
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COVID-19 vaccination coverage

Figure 3.7 illustrates the vaccination coverage until a certain point in time. The vaccination
coverage signifies the proportion of the population, which is vaccinated against COVID-
19. The figure depicts both, the percentage of the fully vaccinated population and the
percentage of the population, which has been re-vaccinated with a booster vaccination.
Figure 3.8 represents the vaccination development among different age groups. Here, only
fully vaccinated population is illustrated.

Figure 3.7: Vaccination coverage (%) of fully vaccinated and re-vaccinated population.
Example based on district ’SK Hamburg’.

Figure 3.8: Vaccination coverage (%) of fully vaccinated population in different age groups.
Example based on district ’SK Hamburg’.
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Changes in the dynamics of the pandemic

All discussed key indicators represent different aspects of the pandemic. They are all related
and could contribute to explaining the development of COVID-19 cases in intensive care
units. A correlations heatmap, which measures the average correlation between features
and the target over the course year 2021 can be found in the Appendix. This representa-
tion gives insights into the average magnitude of the relationship between each feature and
the admission in intensive care units. However, the respective importance of key metrics
constantly changes over time in response to new conditions. It is crucial to choose an appro-
priate modeling strategy, which accounts for changes in the association between variables.
The modeling strategy of the applied benchmark experiment in this thesis is presented and
motivated in Chapter 4.

One example of the varying association between key metric is the tendency of decoupling
between the reported new COVID-19 infections and the number of COVID-19 patients in
intensive care units, which is illustrated in Figure 3.9. The figure depicts the development
of the 7-day incidence of infections and the number of ICU beds, occupied by COVID-
19 patients over the course of year 2021 for district ’SK Hamburg’. It is visible how in
time, both metrics drift further apart. Despite the significantly higher number of cases
by the end of the year, there is no notable increase in the number of particularly serious
infections requiring treatment in intensive care units. This development can be explained
by the advanced stage of vaccination, which significantly decreases the risk for serious
infections. Moreover, there is an observable shift of the pandemic to younger age groups,
which generally exhibit a lower risk of severe courses of infection.

Figure 3.9: Comparison of reported COVID-19 cases last 7 days per 100.000 inhabitants
(green) with the number of COVID-19 patients in intensive care units (grey) over the course
of year 2021.
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4. Benchmark Experiment

To evaluate prediction performances of selected machine learning methods - random for-
est and gradient boosting, and compare them to a classical statistical forecasting model -
ARIMA, a benchmark experiment is conducted. This chapter discusses major aspects of
the experimental design - the experimental setup, the choice of model implementations, the
evaluations strategies and metrics, and hyperparameter tuning. We discuss time series spe-
cific evaluation and tuning strategies, which respect the chronological order of the data and
support capturing dynamic changes. In addition, main hyperparameters and their impact
on prediction performance are examined and different hyperparameter tuning strategies are
discussed. The results and findings are presented in Chapter 5.

4.1 Benchmark Setup

4.1.1 Environment

The benchmark experiment is performed via Python 3.8. The conducted benchmark exper-
iment is based on a unified framework for machine learning, based on the Python package
scikit-learn (Pedregosa et al., 2011), which makes them easily extendable and repro-
ducible. A model configuration is further addressed as "learner".

For the ARIMA method, we use the time series analysis model class from the statsmodels
package (Seabold and Perktold, 2010). For the random forest method, the experiment fo-
cuses on the implementations skranger, which provides compatible Python bindings to the
C++ random forest implementation ranger (Wright and Ziegler, 2017). For the gradient
boosting method, the implementation from the package XGBoost (Chen and Guestrin, 2016)
is chosen. Hyperparameter procedures for random search are implemented via scikit-learn.
The required splitting methods for the walk-forward validation and hyperparameter tuning
have been implemented by us additionally and integrated as customized evaluation meth-
ods into the scikit-learn built-in functions. The produced splitting methods have been
designed to handle repeated measurements, since splitting in the machine learning methods
is conducted simultaneously for all districts.

Visualizations are mostly made using the plotnine implementation of a grammar of graph-
ics in Python, which is based on the R package ggplot2 (Wickham, 2016). Additionally
plotly (Plotly Technologies Inc., 2015) and Matplotlib (Hunter, 2007) are used. The im-
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plemented interactive vizualisation tools in this thesis are programmed via the interactive
visualization library Bokeh (Bokeh Development Team, 2018).

4.1.2 General Strategy and Data

Benchmark Strategy and Data

The current benchmark experiment focuses on comparing performances of ARIMA, random
forest and gradient boosting. Table 4.1 demonstrates the examined learners, including
an overview of the considered comparison strategy. A full specification of the applied
resampling strategy and performance measures is available in Chapter 4.2.

method learner package evaluation evaluation
measure method

ARIMA ARIMA statsmodels RMSE Rolling Window CV
RF RangerForestRegressor skranger RMSE Rolling Window CV
GB XGBRegressor XGBoost RMSE Rolling Window CV

Table 4.1: Summary of algorithm implementations used for the benchmark experiment,
incl. evaluation measures and evaluation methods.

In the scope of this benchmark experiment, we compare candidate algorithms, based on
a single main performance criterion, e.g., the RMSE metric. However, we want to point
out that it is advisable to evaluate model performance, based on multiple criteria, e.g., as
a trade-off between predictive power, computational resources and the number of features
used (Bischl et al., 2013).

Model comparison is conducted on the complete dataset of one year, from 01.01.2021 to
31.12.2021, to examine generalizability across different stages of the pandemic. For ARIMA,
training, prediction, resampling and hyperparameter tuning are conducted individually for
each district. Meanwhile, since machine learning models can deal with repeated measure-
ments, procedures are performed on all provided districts simultaneously. This strategy
supplies the models with more data and enables the incorporation of potential interactions
between districts.

Hyperparameter Tnung Strategy and Data

Prior to benchmarking prediction performances of gradient boosting and random forest
against ARIMA, hyperparameter tuning for each model is performed. A detailed description
of the hyperparameter strategy, as well as relevant hyperparameters and their contribution
to the models, is available in Chapter 4.3. Here we give a brief overview of the procedure
and the underlying data.

Classical machine learning algorithms are not designed to handle time series data by default.
To adapt machine learning models to the specifics of time series data, different adjustments
are applied: e.g., addition of lagged variables of the target and training the models on a
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subset of most recent data, also referred to as rolling window. In this experiment, we handle
the number of lags and the length of the rolling window as hyperparameters. We denote this
hyperparameters as time-series-specific hyperparameter. The build-in hyperparameters of
the selected algorithms are then referred to as algorithm-specific hyperparameter. Generally,
different hyperparameters are often related to each other. Consequently, an appropriate hy-
perparameter tuning procedure takes possible interaction effects between hyperparameters
into account. On that note, it would be advisable to apply a tuning procedure, which
is optimizing both hyperparameter sets (time-series-specific and algorithm-specific) simul-
taneously. However, this process would require additional technical implementation and
computational capacity, which goes beyond the scope of this experiment. Therefore, we
consider both sets individually. First, tuning for the time-series-specific hyperparameter
is performed. Consequently, algorithm-specific hyperparameter tuning is conducted with
the best hyperparameter from the first step. Since the hyperparameter of ARIMA already
incorporates the specifics of time series data, for ARIMA only algorithm-specific tuning is
required.

Hyperparameter tuning can be very computationally and memory expensive. To keep the
computational complexity in a reasonable range, tuning is performed on a time frame of
approximately 4 months, from 01.08.2021 to 30.11.2021. The selected time frame incorpo-
rates data with very low to very high COVID-19 bed occupancy rates and reflects important
structural differences of the time series over time. ARIMA hyperparameter tuning is con-
ducted individually for each district. Machine learning hyperparameter tuning is conducted
on all districts simultaneously. ARIMA tuning is conducted only for a prediction horizon
of 14 days. Due to the recursive multi-horizon prediction strategy of ARIMA (see Chapter
2.2.1), tuning on the longest prediction horizon and applying the same model to all previous
horizons is a reasonable strategy. Meanwhile, the constructed machine learning models use
a direct strategy for multi-step forecasting, where h independent models are built for each
prediction horizon. Therefore, corresponding hyperparameter tuning is performed for each
of the investigated prediction horizons individually.

To ensure generalization of the selected hyperparameters across the full dataset for year
2021, we carry out a performance comparison of default against tuned models on two
different datasets: on the tuning dataset, from 01.08.2021 to 30.11.2021, as well as on a
validation dataset, from 01.01.2021 to 31.07.2021. The main idea of this comparison is to
ensure that no overfitting on the tuning dataset has occurred.
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4.2 Performance Evaluation

4.2.1 Resampling Strategy

Cross-validation (CV) is one of the most widely used methods to assess the generalizability
of algorithms in regression (Hastie et al., 2009). In k-fold cross-validation, the data is
randomly divided into k equally-sized folds. Each fold is a subset of the data comprising
n/k randomly assigned observations, where n is the number of observations. Iteratively
the model is trained on k− 1 folds and performance is estimated on the left-out fold. This
procedure is repeated k times and a summary measure is calculated.

However, there is evidence in the literature that classical k-fold cross-validation does not
apply to time series forecasting. To reflect real-world forecasting, in which we stand in
the present and forecast the future, the chronological order of the data must be preserved.
Observed data cannot be randomly split in training and testing samples, due to the temporal
relationships in the data (Tashman, 2000). In addition, classical cross-validation assumes
independence and identical distribution of the observations. Not meeting this assumption
might lead to overly optimistic estimations and consequently, poor generalization ability of
predictive models on new observations (Roberts et al., 2017).

The above considerations can be incorporated into cross-validation methods, adapted to
time series data. To consider temporal relationships in the data, a rolling window (also
called walk-forward validation or rolling out-of-sample validation) strategy can be employed
(Hyndman and Athanasopoulos, 2018). In rolling out-of-sample forecasting, one produces
a sequence of pseudo out-of-sample forecasts using a fixed number of the most recent data
at each point of time. The selected data is called a fixed-sized training window of length l,
which slides over the entire history of time series and is repeatedly tested against a future
observation. The model is trained on the train set, train = {ti, ..., ti+l}, validated on the
subsequent h-th period, test = {ti+l+h}, guaranteeing that the train set temporally precedes
the test set. Stepwise moving through the entire data, forecasting error is recorded at each
step and prediction accuracy is computed by averaging over the test sets. This approach is
illustrated in Figure 4.1, where the dark green observations form the training sets, and the
light green observations form the test sets. The illustrated example is based on a 4-steps
ahead prediction.

Figure 4.1: Illustration of the time series walk-forward validation. Example, based on
prediction horizon of 4 steps. Train sets (dark green), test set (light green).
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For hyperparameter tuning, a nested resampling strategy is required to ensure reliable
performance estimation. An outer loop is performed to provide a performance estimate for
the model. An inner loop is required for evaluating different hyperparameter configurations.
This strategy ensures that the test data in each iteration of the outer resampling has not
been used to optimize the performance of the model (Bischl et al., 2012).

Nested cross-validation can be adapted to time series data as well. This can be achieved
by splitting the data into a train, validation, and test split. The train/validation split is
constructed analogously to the rolling window validation process, e.g., train = {ti, ..., ti+l}
and val = {ti+l+h}. The test set is the subsequent h-th period, test = {ti+l+2h}. In
an inner loop, different hyperparameter combinations are evaluated, by training on the
train splits and evaluation on the validation split. Consequently, the model with the best
hyperparameter is trained again on the whole inner loop data and evaluated with the test
set. This approach is illustrated in Figure 4.2. The illustrated example is based on a 2-steps
ahead prediction.

Figure 4.2: Illustration of the nested time series walk-forward validation. Example, based
on prediction horizon of 2 steps.

A crucial aspect of the rolling-window evaluation is the choice of the window length or
how much of the most recent observations should be used in the estimation. To enable
learning of complex structures in the data, enough data must be fed into the machine
learning models. However, in time series data, especially in our case, the association between
variables changes over time, due to the dynamic nature of the pandemic (see Chapter 3.3).
For regression tasks, instability can be handled by forecasting based on a subset of the
data. There is enough evidence in the literature, that forecasting, based on only the most
recent observations, produces a reasonably good and robust forecasting performance (Inoue
et al., 2017). Consequently, the optimal window length must provide a reasonable trade-off
between efficiency and accuracy of the model. Within the framework of this thesis, window
length is handled as a hyperparameter. The choice of the optimal length is based on the
lowest average out-of-sample loss over a cross-validation sample. More on this procedure
can be found in Chapter 4.3.
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4.2.2 Performance Measures

The most commonly used error measures for regression models are the mean absolute
error (MAE) and the root mean squared error (RMSE). Appropriate performance measures
depend strongly on the intended application. The mean absolute error is obtained by
measuring the average of the absolute differences between prediction and actual observation,
where all individual differences have equal weight:

MAE =
1

n

n∑
t=1

|yt − ŷt| ∈ [0;∞)

with ŷt being the forecasted value for period t and yt being the actual value at the respective
period.

An advantage of the MAE measure is that it gives more insight into the average magnitude
of the errors over the entire dataset. Additionally, MAE is less sensitive to an outlier in
the data. However, the RMSE can be a preferred metric for evaluating COVID-19 bed
occupancy errors, since it intrinsically places more weight on larger error terms. Large
deviations can have additional pressure on the healthcare systems. Penalizing and reducing
big errors as much as possible is essential to facilitate the planning of COVID-19 and other
activities in hospitals. Therefore, prediction performance in the conducted benchmark
experiment is assessed via the RMSE metric:

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2 ∈ [0;∞)

To produce results independent of district sizes and bed capacities and enable comparison
of prediction performance across different districts, the RMSE measure can be normalized
by the total ICU bed capacity. The normalized RMSE is then given by:

nRMSE =

√√√√ 1

n

n∑
t=1

(
yt
ct
− ŷt

ct

)2

∈ [0;∞)

with ct the total ICU bed capacity (total number of available beds) at time t.
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Prediction intervals

Model selection in the conducted benchmark experiment is based exclusively on the RMSE
metric. However, alongside minimizing the prediction error and producing reliable point
forecasts, we are interested in uncertainty estimates associated with the forecasts. Incor-
porating prediction uncertainty into deterministic forecasts helps to enhance the reliability
and credibility of the model outputs.

In Chapter 2.2.2 we introduce how uncertainty quantification, i.e., the calculation of predic-
tion intervals is handled in ARIMA. One of the drawbacks of the machine learning approach
is that it does not have any built-in capability to calculate prediction intervals, while most
statistical time series forecasting implementations, such as ARIMA, have it. However, there
are different methods for the calculation of prediction intervals for machine learning models,
which we discuss in Chapter 2.3.5. In the current experiment, our fist attempt for produc-
ing prediction intervals for random forest and gradient boosting has been via the quantile
regression approach (see Meinshausen, 2006, Kriegler and Berk, 2007). Both algorithm im-
plementations skranger and XGBoost have optional loss functions for quantile regression.
However, in our opinion, the produced results have been rather unreliable. Producing cus-
tomized loss functions for quantile regression or conducting further research on alternative
approaches and existing implementations is out of the scope of this thesis.

Therefore, within this thesis, we employ an analytical approach to producing prediction
intervals for random forest and gradient boosting. Assuming normally distributed errors, a
95% prediction interval is acquired by exploiting the RMSE metric, calculated on the last
50 days:

ŷt+h ± 1.96× RMSE(t) with RMSE(t) =

√√√√ 1

50

t−1∑
i=t−51

(yi − ŷi)2 ∈ [0;∞)

Despite the build-in ability of ARIMA for prediction intervals calculation, we apply this an-
alytical approach to ARIMA as well. This ensures consistency and allows for comparability
of prediction uncertainty across ARIMA, random forest and gradient boosting.
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4.3 Hyperparameter Tuning

Forecasting and machine learning algorithms involve a number of hyperparameters that
have to be configured before running. In contrast to first-level model parameters, which are
estimated during training, these second-level tuning parameters often have to be carefully
optimized to achieve maximal performance. In order to select an appropriate hyperparam-
eter configuration, a user can rely on default values of hyperparameters that are specified in
implementation software packages (Probst et al., 2019). However, noticeable performance
improvements can be achieved with hyperparameter tuning in some cases (Weerts et al.,
2020). For that hyperparameter tuning strategies can be used, which try to minimize the
expected generalization error of the algorithm over a hyperparameter search space of con-
sidered candidate configurations. There is evidence in the literature, that hyperparameter
tuning of some algorithms holds higher potential of performance improvements than other.
Random forest is well known to be relatively robust against hyperparameter configurations
(Probst et al., 2019). Meanwhile, gradient boosting can have high variability in accuracy
dependent on their hyperparameter settings (Probst et al., 2019).

4.3.1 ARIMA

This section presents the central hyperparameters of the ARIMA algorithm, by shorty
discussing their influence on prediction performance. Additionally, the choice of the hyper-
parameter search space, on which the tuning is executed in this experiment, is motivated.
Moreover, the selected hyperparameter tuning strategy is presented and motivated.

ARIMA hyperparameter and tuning search spaces

Table 4.2 displays the general ARIMA hyperparameter with description.

hyperparameter description
p number of autoregressive terms
d number of nonseasonal differences needed for stationarity
q number of lagged forecast errors in the prediction equation

Table 4.2: Overview of ARIMA hyperparameter.

p captures the autoregressive nature of ARIMA and reflects the number of lag observations
in the model, also known as the lag order. The autoregressive part shows how the variable
is impacted by its values on the previous observations. For the current experiment the
range between 1 and 15 lags is explored.

d represents the number of times the data has to be differenced to produce a stationary
signal, also known as the degree of differencing. Working with differences rather than with
the original data means that we deal with changes and rates of changes, not with just values.
For the current experiment, the differencing order between 0 and 2 is explored.

p captures the moving average component, explaining how the previous white noise impacts
the variable. For the current experiment, the range between 0 and 2 lags is explored.
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ARIMA hyperparameter tuning strategy

A classical way of determining ARIMA hyperparameters is by using the ACF plot and the
closely related PACF plot to determine appropriate values for p and q, as well as applying
some statistical tests, e.g., the Augmented Dickey-Fuller test (Dickey and Fuller, 1979) to
check for stationarity and the need for differencing. However, for the scope of this thesis,
we need to fit approximately 400 ARIMA models (one for each district), which requires
a rather automatic approach to hyperparameter determination. Moreover, applying the
same hyperparameter tuning approach to all models of the benchmark experiment creates
consistency and better comparability across models. Therefore, hyperparameter tuning
is conducted by optimizing the RMSE via the rolling window cross-validation process.
Hyperparameter tuning for ARIMA is executed with the discussed parameter and defined
search spaces above. Table 4.3 displays an overview of the performed strategy.

hyperparameter search space tuning evaluation evaluation
strategy metric method

ARIMA
p [1, 15]
d [0, 2] grid search RMSE rolling window CV
q [0, 2]

Table 4.3: Overview of the hyperparameter tuning strategy for ARIMA: selected hyperpa-
rameter, hyperparameter search spaces and evaluation method.

The procedure is performed automatically via grid search. Grid search (GS) can be thought
of as an exhaustive search for selecting a model. In this approach, every combination of
hyperparameter values is tried which can be very inefficient. Since this process can be
extremely costly in both, computing power and time, it is only applied in cases of small
parameter spaces (Ghawi and Pfeffer, 2019). One alternative to grid search is random
search (RS). Random search (RS) is a naive, model-free, automated strategy for hyper-
parameter tuning, in which hyperparameter values are drawn randomly from the defined
hyperparameter space and performance is compared (Bergstra and Bengio, 2012). This
allows to explicitly control the number of parameter combinations that are attempted. The
random search procedure is easy to implement and the number of trials is easily extendible.
Additionally, trials can be carried out asynchronously. The random search method over-
steps some disadvantages of grid search such as high time resources but meanwhile brings
a major disadvantage with its inability to converge to the global optimum (Andradóttir,
2015).

As already discussed, the hyperparameter tuning strategy for ARIMA is applied for each
Geman district individually and only for a prediction horizon of 14 days (see Chapter
4.1.2).
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4.3.2 Random Forest and Gradient Boosting

As discussed in Chapter 4.1.2, hyperparameter tuning for random forest and gradient
boosting consists of two steps: tuning of time-series-specific hyperparameter and tuning
of algorithm-specific hyperparameter. This section presents the central time-series-specific
hyperparameter, as well as the algorithm-specific hyperparameter of the random forest
and gradient boosting algorithms, by shorty discussing their influence on prediction perfor-
mance. Additionally, the choice of the hyperparameter search space, on which the tuning is
executed in this experiment, is motivated. Moreover, the selected hyperparameter tuning
strategy is presented and motivated.

Time-series-specific hyperparameter

The discussed hyperparameters in this section are not related to a specific algorithm and
are the product of the time-series-specific machine learning strategy implemented in this
thesis. These hyperparameters include the length of the test sets, defined by the sliding
window length, as well as the number of lags of selected variables. Table 4.4 displays the
relevant time-series-specific hyperparameters for this experiment.

hyperparameter description selected default
values

window_length Number of most recent time periods, 50
used for parameter estimation.

num_lags Number of past observation of an endogenous or 5
exogenous variable, included in the model.

Table 4.4: Overview of time-series-specific hyperparameter.

The parameter window_length denotes the number of most recent time periods, used for
parameter estimation. This parameter controls an important trade-off between stability and
accuracy of the models. To enable the learning of complex structures in the data, enough
data must be fed into the machine learning models. On the other hand, structural changes
and instability of the series can be incorporated by training on a smaller set, including only
the most recent observations. As a default value, we consider the length of 50 days. Within
the scope of the hyperparameter tuning procedure, we explore window lengths between 10
and 200 days.

Another critical step for time-series forecasting is the right determination of the number of
past observations (lags). This is controlled by the num_lags parameter. Lagged variables
can be added for the target, as well as for other important exogenous features of the
model. The proper selection of the time-lag value becomes important to find the section
of data where values of independent variables are highly correlated, which would positively
contribute to the forecasting accuracy. Here, we consider lagged variables of the target
- number of ICU beds, occupied by COVID-19 patients. In order to consider the time
between the occurrence of symptoms, worsening of symptoms, and admission in the ICU,
we add lagged observations of the 7-day reporting incidence as well. As default values, we
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consider 5 lags of the target and 5 lags of the 7-day reporting incidence. Within the scope
of the hyperparameter tuning procedure, we explore lag numbers between 1 and 30 for both
selected variables.

Random forest hyperparameter

Table 4.5 displays the main random forest hyperparameter with description and their com-
mon default values as implemented in the skranger package, used in this experiment.

hyperparameter description common
default values

n_estimators Number of trees that constitute forest. 100, 500, 1000
mtry Number randomly drawn candidate variables √

p
in each split.

sample_fraction Number of observations drawn for each tree. n
replace Draw observations with (bootstrapping) TRUE (with)

or without replacement.
min_node_size Minimum number of observations in a terminal node. 5
max_depth Maximum depth of the tree. unlimited
split_rule The rule by which each split is considered in a tree. variance

Table 4.5: Overview of main hyperparameter of random forest and common default values.
n: number of observations, p: number of features in the dataset.

The parameter n_estimator denotes the number of trees that constitute the forest. This
parameter does not necessarily require tuning but should be set sufficiently high to stabilize
the error rate. More trees provide more robust and stable error estimates. In general, the
higher the number of trees the more reliable is the prediction. However, the impact on
computation time increases linearly with the number of trees. After evaluating performance
with a different number of trees, the default value of 100 trees shows sufficient results.
Therefore, no future tuning of this parameter is conducted.

mtry is one of the central RF hyperparameters, defining the number of variables, which are
randomly selected as candidate variables at each split. A low value of mtry leads to less
correlated trees, which improves the stability of the model when aggregating. Moreover,
a low value increases the chance of selecting features with moderate effect, which may
contribute to prediction performance improvement. On the other hand, a high value of
mtry reduces the risk of disregarding important features. To ensure a feasible trade-off
between stability and accuracy of the model, the search space for mtry incorporates from
one to up to all available features.

The sample size reflects the number of observations drawn for each tree. Similar to mtry
the sample_fraction parameter maintains a trade-off between stability and accuracy of the
model. Smaller sample sizes lead to a lower correlation between trees. On the contrary,
decreasing the sample size implicates less information available for each tree. For the cur-
rent experiment, a fraction range between 0.1 and 1 is explored. Additionally, sampling
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is available with and without replacement. Both options are considered in parameter tun-
ing.

The parameters min_node_size and max_depth control the complexity of individual trees.
min_node_size represents the minimum number of observations in a terminal node. Larger
values lead to smaller trees. max_depth represents the depth of the tree. Respectively
smaller values produce smaller, less complex trees. Meanwhile, computational time de-
creases approximately exponentially with increasing node size and decreasing tree depth.
Node sizes between 1 and 50, and tree depth between 2 and 30 are explored in the tuning
process. As suggested by Segal (2004), a higher node size than the default value decreases
runtime substantially, often without contributing to a considerable loss of accuracy.

Gradient Boosting hyperparameter

Table 4.6 displays the main gradient boosting hyperparameter with description and their
common default values as implemented in the XGBoost package, used in this experiment.

hyperparameter description common
default values

n_estimators Number of trees in the sequence. 100, 500, 1000
learning_rate Boosting learning rate. 0.3
colsample_by_level Fraction of randomly drawn candidate variables 1

in each split.
colsample_by_tree Fraction of randomly drawn candidate variables 1

in each tree.
subsample Subsample ratio drawn for each iteration 1
min_child_weight Minimum number of observations 1

in a terminal node.
max_depth Maximum depth of the tree. 6
reg_alpha L1 regularization term on weights 0
reg_lampda L2 regularization term on weights 1

Table 4.6: Overview of main hyperparameter of gradient boosting and common default
values.

Similar to the random forest, the parameter n_estimator denotes the number of trees of the
ensemble. Unlike random forest, where averaging of many independently grown trees makes
it very difficult to overfit the model, each tree in gradient boosting is grown in sequence to
fix up the error of the previous tree. Although the gradient boosting algorithm often needs
a lot of trees, it can easily lead to overfitting. For this benchmark experiment, we keep the
default value of 100 trees to maintain stability.

The shrinkage parameter, learning_rate, is used to prevent overfitting and makes the boost-
ing process more conservative by reducing the impact of each additionally fitted base-
learner. It reduces the size of incremental steps and thus penalizes the importance of each
consecutive iteration. Generally, it is better to improve a model by taking many small
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steps than by taking fewer large steps. Smaller values make the model robust to the spe-
cific characteristics of each individual tree, which allows better generalization and mitigates
overfitting. However, a smaller learning rate increases the risk of not reaching the optimum
with a fixed number of trees and comes with a high computational cost. Learning rates
between 0.1 and 1 are explored in the tuning process.

A further technique used to prevent overfitting in the gradient boosting model is the sub-
sample technique. Similar to the random forest, subsampling techniques introduce some
randomness onto the fitting procedure. Additionally to fitting the consecutive tree only
to a random part of the training (subsample), XGBoost introduces additional subsampling
on column level - subsampling columns before creating each tree (colsample_by_tree) and
subsampling columns before considering each split (colsample_by_level). According to user
feedback, Chen and Guestrin (2016) state that using column subsampling prevents overfit-
ting even more than the traditional row subsampling. For all 3 randomization parameters,
a range between 0.1 and 1 is explored in the tuning process.

Analogously to random forest, the parameters min_node_size and max_depth control the
complexity of individual trees. Smaller depth trees or trees with larger terminal nodes are
computationally efficient and help with mitigating overfitting. Higher depth trees help the
algorithm to capture unique interactions but increase the risk of overfitting. Hence, both
parameters are set to maintain a trade-off between the stability and accuracy of the model.
Node sizes between 1 and 50 and tree depth between 2 and 30 are explored in the tuning
process.

Finally, two more traditional regularization parameters alpha and lambda are included. The
L1 regularization (alpha), also called lasso penalty, combats overfitting by shrinking the
parameters towards 0. The L2 regularization (lambda), also called ridge penalty, controls
the estimated coefficients by pushing them to approximately, but not equal zero. Generally,
these regularization parameters limit how extreme the weights of the leaves in a tree can
become. In our experiment, we explore the whole possibility range between 0 and 1 for
both parameters.

Random forest and gradient boosting tuning strategy

Hyperparameter tuning for random forest and gradient boosting is executed in two steps
with the discussed parameter and defined search spaces above. First, tuning for the time-
series-specific hyperparameter is performed. Consequently, algorithm-specific hyperparam-
eter tuning is conducted with the best hyperparameter from the first step. Table 4.7 displays
an overview of the performed strategy.

The tuning procedure is performed automatically via grid search for the time-series-specific
hyperparameters and via random search for the algorithm-specific hyperparameter with 100
to 200 evaluations. Hyperparameter tuning is performed for all districts simultaneously
and for each prediction horizon individually, which results in 14 optimal hyperparameter
combinations (see Chapter 4.1.2).
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hyperparameter search space tuning evaluation evaluation
strategy metric method

Time-series-specific
window_length [10,200] (step 10)
num_lags [1,15]
(target) grid search RMSE rolling window
num_lags [1,15] CV
(7-day incidence)

Algorithm-specific
Random Forest
mtry [1, p]
sample_fraction [0.1, 1] random search rolling window
replacement [TRUE, FALSE] with 100 RMSE CV
min_node_size [1, 50] evaluations (outer and inner)
max_depth [2, 30]
Gradient Boosting
learning_rate [0.1, 1]
colsample_by_level [0.1, 1]
colsample_by_tree [0.1, 1] random search rolling window
subsample [0.1, 1] with 200 RMSE CV
min_child_weight [1, 50] evaluations (outer and inner)
max_depth [2, 30]
reg_alpha [0, 1]
reg_lampda [0, 1]

Table 4.7: Overview of the hyperparameter tuning strategy for random forest and gradient
boosting: selected hyperparameter, hyperparameter search spaces and evaluation method.
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5. Results

This chapter comprises the results of the conducted benchmark experiment. First, we
take a look into the results from the hyperparameter tuning procedure and evaluate how
well the selected hyperparameter configurations generalize on previously unseen data. After
appropriate hyperparameter setting, prediction performances of random forest and gradient
boosting are benchmarked against the ARIMA model. We take a look into the average
prediction results, as well as into the geographical distribution of prediction accuracy across
all German districts. Moreover, to provide an overview of the prediction curves we have
developed an interactive visualization tool, which retrospectively compares predicted and
observed time series for each district and forecast horizon. Here we provide an example
visualization of a selected district over different prediction horizons. Finally, this chapter
summarizes the insights obtained by the variable importance measures of the models.

5.1 Hyperparameter Tuning

Prior to benchmarking prediction performances of gradient boosting and random forest
against ARIMA, hyperparameter tuning for each model is performed. Hyperparameter
tuning is conducted on data for 4 months, from 01.08.2021 to 30.11.2021. To ensure gener-
alization of the selected hyperparameters across the full dataset for the year 2021, we carry
out a performance comparison of default against tuned models on two different datasets: on
the tuning dataset, from 01.08.2021 to 30.11.2021, as well as on a validation dataset, from
01.01.2021 to 31.07.2021. The main idea of this comparison is to ensure that no overfitting
on the tuning dataset has occurred.

The hyperparameters of ARIMA already incorporate the specifics of time series data.
Therefore, for ARIMA only algorithm-specific tuning is required. ARIMA hyperparameters
are tuned for each district individually. To keep computational complexity in a reasonable
range, tuning is performed only for a prediction horizon of 14 days. For random forest
and gradient boosting, we perform a 2-step tuning process. Step 1 includes tuning of time-
series-specific hyperparameter, e.g., window length, number of lags. Step 2 includes tuning
of the algorithm-specific hyperparameter. Here, hyperparameter tuning is performed for
each prediction horizon individually and for all districts simultaneously.
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ARIMA tuning

We compare tuned ARIMA models to a simpler ARIMA(1,0,0) as a benchmark, to evaluate
the contribution of the hyperparameter tuning procedure. Figure 5.1 and Table 5.1 summa-
rize the performance differences between the investigated models. We denote the compared
algorithms as arima(1,0,0) for the model prior tuning and arima tuned for the model af-
ter algorithm-specific hyperparameter tuning. The given performances are obtained by
averaging the RMSE metric over all German districts and all prediction horizons.

The comparison results show prediction performance improvement in both datasets after
the appropriate configuration of hyperparameters. This result implies that the selected
hyperparameter configurations generalize well on previously unseen data. When comparing
both datasets, we observe an overall average forecasting error increase in the validation
dataset, compared to the tuning dataset. The observed differences are due to the different
ICU bed occupancy in the selected time frames. Therefore, models comparison within each
dataset should be regarded individually. On average across both datasets, hyperparameter
tuning leads to a notable reduction of the RMSE by 0.224. The tuned models for each
German district are selected as final models for our benchmark experiment and further
denoted as arima tuned.

Figure 5.1: Boxplot of performance differences of ARIMA(1,0,0) (grey) against ARIMA
with tuned hyperparameter configurations (orange), evaluated on different datasets. Per-
formances are based on the average RMSE metric over all German districts and all predic-
tion horizons.

data arima(1,0,0) arima tuned
Tuning dataset 2.023 1.810
Validation dataset 2.765 2.530

Table 5.1: Benchmark performance results of ARIMA(1,0,0) against ARIMA with tuned
hyperparameter configurations, evaluated on different datasets. Performances are based on
the average RMSE metric over all German districts and all prediction horizons.
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Random forest tuning

We compare the prediction performance of models with default hyperparameter config-
urations to the models after each step of the hyperparameter tuning procedure. Figure
5.2 and Table 5.2 summarize the performance differences between the investigated models
for random forest. We denote the compared algorithms as rf baseline for the model prior
tuning, rf tuned step 1 for the model after time-series-specific hyperparameter tuning and
rf tuned step 2 after algorithm-specific hyperparameter tuning. The given performances
are obtained by averaging the RMSE metric over all German districts and all prediction
horizons. It is visible that both hyperparameter tuning steps lead to a small reduction of
the forecasting error. Improvement is achieved for both datasets: the dataset, on which
hyperparameter tuning is performed (left), as well as on the external validation dataset
(right). This implies that the selected hyperparameter configurations generalize well on
previously unseen data.

On average across both datasets, time-series-specific hyperparameter tuning leads to a re-
duction of the RMSE by 0.05. This result suggests that the forecasting performance of
random forest is relatively insensitive to the window length and number of lagged features.
Even smaller is the improvement achieved after the algorithm-specific hyperparameter tun-
ing - RMSE reduction by 0.018. In total across both sets, the RMSE is merely reduced by
0.068 after both tuning steps. The small difference between default and tuned algorithm-
specific hyperparameter of random forest is not very surprising as the results by Probst
et al. (2019) suggest that random forest hyperparameters are less tunable compared to
other machine learning algorithms. The tuned models for each prediction horizon are se-
lected as final models for our benchmark experiment and further denoted as random forest
tuned.

Figure 5.2: Boxplot of performance differences of random forest with default (grey) against
tuned hyperparameter configurations, evaluated on different datasets. Tuning step 1
(green) includes time-series-specific hyperparameters. Tuning step 2 (dark green) includes
algorithm-specific hyperparameters. Performances are based on the average RMSE metric
over all German districts and all prediction horizons.
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data random forest random forest tuned random forest tuned
baseline step 1 step 2

Tuning dataset 2.116 2.051 2.041
Validation dataset 2.520 2.484 2.459

Table 5.2: Benchmark performance results of random forest with default against tuned
hyperparameter configurations, evaluated on different datasets. Tuning step 1 includes
time-series-specific hyperparameter. Tuning step 2 includes algorithm-specific hyperpa-
rameter. Performances are based on the average RMSE metric over all German districts
and all prediction horizons.

50



CHAPTER 5. RESULTS

Gradient boosting tuning

Figure 5.3 and Table 5.3 summarize the performance differences between the investigated
models for gradient boosting. We denote the compared algorithms as gb baseline for the
model prior tuning, gb tuned step 1 for the model after time-series-specific hyperparameter
tuning and gb tuned step 2 after algorithm-specific hyperparameter tuning. The given
performances are based on the average RMSE metric over all German districts and all
prediction horizon.

Similar to random forest, both tuning steps lead only to a small improvement in predic-
tion performance. On average across both datasets, time-series-specific hyperparameter
tuning reduces the RMSE by 0.044. In accordance with the results of random forest, it
becomes visible that appropriate adjustment of window length and number of lags holds
only a limited potential for prediction performance improvement. Further forecasting error
reduction by 0.036 is achieved for the tuning dataset, by setting optimal algorithm-specific
hyperparameters. However, the selected hyperparameter configuration fails to generalize on
previously unseen data. Gradient boosting performs an extensive loss minimization, which
can lead to noticeable overfitting. In terms of time series data, it is difficult to find a set
of algorithm-specific hyperparameters, which generalize well across the full dataset of one
year. The default gradient boosting hyperparameters generalize better on the provided data
and are therefore kept in the final models. The best models for each prediction horizon
after the tuning procedure are selected as final models and denoted as gradient boosting
tuned.

Figure 5.3: Boxplot of performance differences of gradient boosting with default (grey)
against tuned hyperparameter configurations, evaluated on different datasets. Tuning step
1 (green) includes time-series-specific hyperparameters. Tuning step 2 (dark green) includes
algorithm-specific hyperparameters. Performances are based on the average RMSE metric
over all German districts and all prediction horizons.
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data gradient boosting gradient boosting tuned gradient boosting tuned
baseline step 1 step 2

Tuning dataset 2.209 2.166 2.130
Validation dataset 2.459 2.414 2.430

Table 5.3: Benchmark performance results of gradient boosting with default against tuned
hyperparameter configurations, evaluated on different datasets. Tuning step 1 includes
time-series-specific hyperparameter. Tuning step 2 includes algorithm-specific hyperpa-
rameter. Performances are based on the average RMSE metric over all German districts
and all prediction horizons.
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5.2 Benchmark Evaluation

Prediction performance comparison

After setting optimal hyperparameter configurations for each investigated algorithm, the
prediction performance of random forest and gradient boosting is benchmarked against
ARIMA. Validation is based on the complete dataset for the year 2021. Training and
prediction for gradient boosting and random forest are executed simultaneously for all
German districts. For ARIMA, predictions are made for each district individually.

Figure 5.4 provides an overview of the algorithm performances. The illustrated boxplots
depict the distribution of the RMSE metric over all German districts and all prediction
horizons. Here, the RMSE metrics are not normalized. Therefore, higher RMSE values
mostly signify districts with higher ICU bed capacities. Table 5.4 presents the summary
learner performances via the mean and the median of the RMSE metric over all German
districts and all prediction horizons. On average, all models perform comparably well with
an RMSE mean of 2.277 for ARIMA, 2.277 for gradient boosting, and 2.276 for random
forest. When comparing the RMSE median, the investigated machine learning models
exhibit a slightly smaller prediction error in comparison to ARIMA. However, considering
the small differences between the prediction performances of all models, we can conclude
that, on average, all models perform comparably well.

Figure 5.4: Boxplot of performance differences between ARIMA (orange), random forest
(green) and gradient boosting (dark green) models. Performances are based on average
learner performances, obtained by averaging the RMSE metric over all German districts
and all prediction horizon.

53



CHAPTER 5. RESULTS

arima tuned gradient boosting tuned random forest tuned
RMSE mean 2.277 2.277 2.276
RMSE median 1.793 1.762 1.762

Table 5.4: Benchmark performance results of tuned ARIMA, random forest and gradient
boosting models. Performances are based on summary algorithm performances via the
mean and the median of the RMSE metric over all German districts and all prediction
horizon.

Prediction performance comparison with respect to the prediction horizon

A more detailed prediction performance summary for each prediction horizon is illustrated
in Figure 5.5 and Table 5.5. Outlier values are excluded in the provided boxplot represen-
tation. Unsurprisingly, for all models, prediction performance decreases with a declining
forecast time horizon. While 1-day ahead forecasts exhibit an average error of 1.152 RMSE,
14-day ahead prediction shows an average of 3.165 RMSE over all models. It is visible, that
ARIMA exhibits the best prediction performance in the shorter term (h = 1 to h = 3).
This result is not surprising, since ARIMA has proved to be an excellent short-term fore-
casting model for a wide variety of time series (O’Donovan, 1983). While ARIMA exhibits
better prediction performance in the short-term prediction horizons, gradient boosting and
random forest moderately overpower ARIMA in the more distant lookout periods. When
comparing random forest with gradient boosting, it is visible that both models show very
similar results in terms of their average RMSE over all German districts. Gradient boosting
exhibits a slightly lower average prediction error in the furthest forecast horizon.

The increasing difference in prediction performance between ARIMA and the machine learn-
ing models with increasing horizons can be explained by the different multi-step horizon
prediction strategies used in both approaches. The constructed machine learning models
use a direct strategy for multi-step forecasting, where h independent models are built for
each prediction horizon. Since the direct strategy does not use any approximated values to
compute the forecasts, it is not prone to any accumulation of errors. Meanwhile, in ARIMA
each prediction is based on previous records. Therefore, this method can propagate the er-
ror committed in earlier forecasts to the future which might render the quality of long-term
forecasts unreliable. Another reason for the lower prediction error of random forest and
gradient boosting can be the potential benefiting by the additional information added from
the exogenous features. Moreover, the selected machine learning models are known for
their ability to uncover interactions between features, which could have a contribution to
the exhibited prediction performance.
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Figure 5.5: Boxplot of performance differences between ARIMA (orange), random forest
(green) and gradient boosting (dark green) models for each prediction horizon. Perfor-
mances are based on average learner performances, obtained by averaging the RMSE metric
over all German districts.

prediction horizon arima tuned gradient boosting tuned random forest tuned
1 1.017 1.242 1.196
2 1.357 1.523 1.458
3 1.602 1.702 1.655
4 1.802 1.842 1.817
5 1.982 1.999 1.968
6 2.142 2.119 2.096
7 2.291 2.279 2.216
8 2.432 2.365 2.363
9 2.568 2.466 2.498
10 2.694 2.589 2.642
11 2.819 2.709 2.787
12 2.940 2.867 2.942
13 3.059 3.035 3.051
14 3.176 3.138 3.181

Table 5.5: Benchmark performance results of tuned ARIMA, random forest and gradient
boosting models for each prediction horizon. Performances are based on average learner
performances, obtained by averaging the RMSE metric over all German districts.
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Prediction performance comparison across German districts

The uneven spread of the disease across the country, as well as the uneven distribution of
ICU bed occupancy and capacities, imply the need for accurate forecasts of ICU demand
not only at a national but also at a regional level. Therefore, within the framework of
the conducted benchmark experiment, we focus on producing ICU bed occupancy forecasts
on district level. Producing forecasts on this spatial granularity supports decision-makers
in healthcare and politics to make informed and data-driven decisions, such as resource
management to allocate resources such as specialized nurses, physicians, or medical devices
between districts. Moreover, patient transfer and admission policies can be adjusted in
response to the occupancy forecasts.

The presented benchmark results above reflect the average prediction performance over
all German districts. However, due to the varying dynamics of the pandemic, as well
as the different ICU capacities and demand across different German regions, we expect
prediction performance differences between regions and districts in Germany. To obtain
a brief overview of prediction performances across German districts, we take a look into
the geographical distribution of the RMSE metric over all evaluated districts. To enable
comparison between regions, here we use a normalized RMSE metric. The RMSE metric
is normalized by the total capacity (free and occupied) of ICU beds for each district. The
exact calculation of the nRMSE metric is explained in Chapter 4.2.2.

Figure 5.6 depicts the geographical distribution of the nRMSE metric for ARIMA, random
forest, and gradient boosting for a prediction horizon of h = 7 days. The presented nRMSE
metric is based on the full data for the year 2021. This illustration allows a comparison
between districts within one model, as well as a comparison between models. Light green
signifies better prediction performance, while darker green implies higher forecasting errors.
The grey districts (districts: Rhein-Pfalz-Kreis, Neustadt an der Waldnaab, Coburg, Fürth)
are missing, due to unavailable ICU data. Generally, we can see that there are overall dif-
ferences between districts. As an example, there is a visible smaller average forecasting
error in some federal states, such as Mecklenburg-Vorpommern, Nordrhein-Westfalen, and
Hessen, while other federal states exhibit multiple districts with rather higher forecast-
ing error, such as Thüringen, Bayern and Baden Württemberg. This observation can be
possibly explained by an overall higher relative occupancy in the states with higher error.
However, a detailed analysis of the factors of the varying distribution of prediction perfor-
mance across districts and federal states is not in the scope of this thesis. When comparing
the geographical performance distribution between ARIMA, random forest, and gradient
boosting, we do not observe a noticeable difference.
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Figure 5.6: Geographical distribution of prediction performance across German districts
(left) and states (right) for A: ARIMA, B: random forest and C: gradient boosting. Exam-
ple, based on prediction horizon of 7 steps. Performances, based on a normalized RMSE
metric.
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Retrospective one-step forecasting incl. prediction intervals

The benchmark experiment results show that the selected classical statistical approach,
as well as the evaluated machine learning models, show comparable results in terms of
prediction performance, measured via the RMSE metric. Random forest and gradient
boosting moderately dominate ARIMA, especially in the distant lookout periods.

In time series forecasting, we are not only interested in a summary measure of average
prediction performance, but also in the course and characteristics of the prediction curves,
as well as the uncertainty associated with the prediction. Therefore, we have created
an interactive visualization tool, which gives insights into the dynamics of the prediction
curves. The interactive visualization tool is created via the interactive data visualization
framework for Python Bokeh (Bokeh Development Team, 2018) and provides a comparison
of model forecasts against the actual occupancy of intensive care capacity beds by COVID-
19 patients for each German district and for each prediction horizon. Alongside point
forecast, prediction intervals are included in the visualization. More information on the
exact calculation of the presented prediction intervals can be found in Chapter 4.2.2. All
prediction intervals are calculated based on the same analytical approach, which ensures
comparability of prediction uncertainty across models.

The following examples in Figures 5.7, 5.8 and 5.9 illustrate the provided visualizations and
are based on district ’SK München’ for the lookout periods of h = 4, h = 8 and h = 14.
The provided RMSE values are based on the RMSE metric, calculated on the total data
for 2021. It is overall visible, how prediction accuracy declines and uncertainty increases
with an increasing forecast horizon. In accordance with the results from the benchmark
experiment, in district ’SK München’ ARIMA exhibits better prediction performance in the
short-term forecast periods, while random forest and gradient boosting show better results
in further lookout periods. The gradient boosting algorithm exhibits the best performance
for prediction horizons h = 8 and h = 14.

Generally, all models are successful in predicting the correct trend of the time series. How-
ever, with increasing forecast horizons, the course of the prediction curves seems to run a
couple of steps behind for all models. A classical limitation of AR-models is their inability
to identify radical shifts in trend since forecasts are determined only by the past behavior of
the variable. The additional information from exogenous variables in the machine learning
models and the ability of these models to incorporate the underlying structure and inter-
actions in the data possibly have a contribution to the exhibited prediction performance.
These aspects are investigated in section 5.3. Moreover, gradient boosting and random
forest do not use any estimated values to forecast future values. In ARIMA, the recursive
multi-step forecast strategy leads to even higher error rates after each step. This tendency
is demonstrated in Figure 5.10, which illustrates an example of multi-step forecasting of
14 days into the future for each model. Once again, it can be observed how the predic-
tion uncertainty in ARIMA grows bigger within the higher horizons, compared to gradient
boosting and random forest.
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4-day forecast comparison

Figure 5.7: Retrospective comparison of observed (orange) and forecasted (green) reported
intensive care beds, occupied by COVID-19 patients in ’SK München’ over the course of
year 2021 incl. 95% prediction interval. Example, based on prediction horizon of 4 days.
A: ARIMA, B: random forest, C: gradient boosting.
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8-day forecast comparison

Figure 5.8: Retrospective comparison of observed (orange) and forecasted (green) reported
intensive care beds, occupied by COVID-19 patients in ’SK München’ over the course of
year 2021 incl. 95% prediction interval. Example, based on prediction horizon of 8 days.
A: ARIMA, B: random forest, C: gradient boosting.
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14-day forecast comparison

Figure 5.9: Retrospective comparison of observed (orange) and forecasted (green) reported
intensive care beds, occupied by COVID-19 patients in ’SK München’ over the course of
year 2021 incl. 95% prediction interval. Example, based on prediction horizon of 14 days.
A: ARIMA, B: random forest, C: gradient boosting.
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Multi-step forecasting

Figure 5.10: Example of multi-step prediction of A: ARIMA, B: random forest and C:
gradient boosting for the next 14 days incl. 95% prediction interval. Example based on
’SK München’.
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5.3 Variable Importance

The primary goal of the benchmark experiment is to measure and improve prediction ac-
curacy for intensive care unit bed occupancy by COVID-19 patients. However, in the
context of machine learning, we are often not only interested in accurate prediction, but
in valuable insights into the complex process, e.g., understanding the relationship between
features and target and quantifying their impact. While ARIMA is a purely autoregressive
model, which explicitly relies on past observations of the series, machine learning models
have shown to be successful in incorporating various exogenous variables into the modeling
procedure. To exploit this advantage of machine learning models and better reflect the
dynamic development of the pandemic situation, we have incorporated not only data on
occupied ICU beds, but additional publicly available COVID-19 related data, such as data
on the reported number of new cases and deaths in different age groups, as well as data on
vaccination rates. We aim to investigate the contribution of additional key metrics of the
pandemic. For that, different variable importance techniques are explored. Both algorithm
implementations skranger for random forest and XGBoost for gradient boosting provide
embedded variable importance metrics.

For both machine learning models, we measure variable importance via both metrics, per-
mutation importance, and impurity-based importance. As already discussed in Chapter
2.3.6, different metrics can not be rated and should be understood as mutual complements
that enable interpretability from different angles. Figure 5.11 illustrates the measured
feature importance by gradient boosting via both measurement methods. The provided
metrics reflect an average variable importance measure across all German districts and
forecast horizon. Variable importances are obtained by averaging variable importance met-
rics over the walk-forward validation iterations and are based on the complete dataset for
the year 2021, which results in 365 iterations. Due to the direct strategy for multi-step
prediction of the machine learning models, here we deal with 14 individual models, one
for each prediction horizon. Therefore, each of the 14 models has an individual optimal
number of lagged variables of the target. For consistency across all forecast horizons, we
have included 10 lags of the target in the dataset for each prediction horizon.

The provided figures illustrate the top 20 features, based on the corresponding metric. It
is visible for both metrics, that the first lag of the target is by far the most important
feature in the dataset, followed by the subsequent lagged features of the target. Further
included exogenous features, such as incidence rates and vaccination coverage, have very
little to no contribution to the models. An exception is the number of COVID-19 patients in
intensive care units, receiving invasive ventilation treatment, which is a subset of the target,
therefore strongly correlated to it. When interpreting the results, the possible shortcoming
of the measurements should be taken into consideration. Since the endogenous features
are strongly correlated, interpretation of variable importance outputs must be extremely
cautious, to not overstate the meaningfulness of results.
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Figure 5.11: Top 20 features, based on the variable importance in the gradient boosting
model, calculated via A: the permutation-based measure, B: the impurity-based measure.
Average variable importance metrics across all German districts and prediction horizons,
obtained by averaging over the walk-forward validation iterations on total data for 2021.
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The main focus of this thesis lies on investigating the potential of various machine learn-
ing methods for producing reliable forecasts on German intensive care units occupancy by
COVID-19 patients and on providing a comparison with a classical statistical time series
model as a benchmark. Moreover, to exploit the numerous advantages of machine learning
models and to better reflect the complex dynamics of the pandemic situation over time, var-
ious exogenous variables are included in the modeling procedure. In this context, alongside
prediction, the explanatory aspect of determining the importance of different exogenous
variables for prediction accuracy is explored.

The results of the conducted benchmark experiment suggest that random forest and gra-
dient boosting provide a powerful alternative to the classical statistical foresting model
ARIMA. However, the overall observed differences in prediction performance between the
investigated models are not substantial. Despite the moderately better predicting per-
formance of the ML models, especially in the more distant prediction horizon, there are
multiple aspects of these more elaborate methods that need to be considered. Random for-
est and gradient boosting show reliable prediction performance, but at the expense of longer
times for training and hyperparameter tuning, as well as very high computational resources.
Meanwhile, ARIMA offers more simplicity and rapidity of the forecasting procedure. These
findings strongly encourage the use of classical methods, such as ARIMA as a baseline to
more elaborate methods in order to justify their usage. However, in this context, it is worth
mentioning, that compared to ARIMA, where models are built for each German district
individually, random forest and gradient boosting enable training, tuning and forecasting
for all German districts simultaneously, which has contributed to some computational time
reduction.

As discussed in the results of the benchmark experiment, ARIMA exhibits the best predic-
tion performance in the short-term. With increasing horizons, gradient boosting and ran-
dom forest outperform ARIMA. As a possible reason for these results, we have discussed
the different multi-step horizon prediction strategies used in both approaches. ARIMA
uses a recursive multi-step prediction strategy, in which each prediction is based on previ-
ous records. Therefore, this method can propagate the error committed in earlier forecasts
to the future which might render the quality of long-term forecasts unreliable. Meanwhile,
the constructed machine learning models use a direct strategy for multi-step forecasting,
where h independent models are built for each prediction horizon. Since the direct strategy
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does not use any approximated values to compute the forecasts, it is not prone to any accu-
mulation of errors. Notwithstanding, it has some weaknesses. First, since the h models are
learned independently inducing conditional independence of the h forecasts, no statistical
dependencies between the predictions of different steps are considered (Ben Taieb et al.,
2012). Also, this strategy requires larger computational resources since there are as many
models to learn as the size of the horizon.

As another reason for the lower prediction error of random forest and gradient boosting, we
have discussed the potential benefit of additional information included from the exogenous
features. Random forest and gradient boosting are known to generally work well with high-
dimensional problems and can identify strong predictors of a specified outcome without
making assumptions about an underlying model (see Breiman, 2001; Bühlmann and Yu,
2003). However, based on the results from the variable importance measures, the first lag
of the target has shown to be by far the most important feature in the dataset, followed
by the subsequent lagged features of the target. Further incorporated exogenous features
have shown very little to no contribution to the models. Nonetheless, since the endogenous
features are strongly correlated, the applied variable importance methods can be strongly
misleading. In the literature there are some suggestions on how to deal with collinearity with
respect to feature importance. One suggestion is to perform permutation feature importance
measurement by permuting correlated features together instead of individually (Parr et al.,
2018). Other alternative measures are based on the Conditional Feature Importance (Strobl
et al., 2018), which focus on the idea of permuting new values of a feature by taking the
distribution conditional on the remaining features into consideration. Applying these newer
metrics and comparing them to their classical counterparts may provide better insights into
the relationship between features and target.

The wide range of exogenous variables added in the models has the potential to enhance
prediction performance but could also lead to overfitting. Variable importance measure-
ments can be used for improving prediction performance by identifying and eliminating
redundant or noise variables. One commonly used feature selection method is the recursive
feature elimination (RFE) method (Guyon et al., 2002). Recursive feature elimination is
a backward selection of the predictors. This technique begins by building a model on the
entire set of predictors and computing an importance score for each predictor. The least
important predictor(s) is then removed, the model is re-built, and importance scores are
computed again. Iteratively, the least important feature is removed, until an optimal subset
of features is achieved. Alongside overcoming problems, such as overfitting, reducing the
dimensionality supports reducing computational times of the models.

ARIMA modeling in this experiment is conducted for each district individually. Meanwhile,
training, hyperparameter tuning, and prediction for random forest and gradient boosting
are performed for all German districts simultaneously. This procedure can have many bene-
fits, including improved prediction accuracy by adding more data and modeling interactions
between districts, increased data efficiency and reduced training times. However, the devel-
opment and dynamics of the pandemic, as well as the capacities and demand for ICU beds
can strongly differ across different German districts. Therefore, considering all districts
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as a joint task can have a negative impact on prediction performance. Investigating the
potential of building individual models for each district, can be an area for improving the
forecasting accuracy of the ML models.

We see a further limitation of the conducted experiment related to hyperparameter tuning.
We have resorted to standard techniques hyperparameter tuning, such as random search.
The random search method oversteps some disadvantages of grid search, such as high time
resources, but has a major disadvantage with its inability to converge to the global op-
timum (Andradóttir, 2015). The randomly selected hyperparameter combinations cannot
guarantee a steady and competitive result. In the conducted experiment, only little im-
provement was achieved by the appropriate hyperparameter setting. Moreover, for gradient
boosting, the selected hyperparameter configurations have failed to generalize on previously
unseen data. Instead of resorting to standard techniques like grid search, random search or
manual tuning, more advanced methods, such as bayesian optimization (BO) offer a useful
alternative in which information from previous tuning iterations is considered to quickly
find optimal ranges of parameter settings (Snoek et al., 2012). Bayesian optimization seeks
to balance the exploration of well-known optimal configurations with the exploitation of
high-uncertainty regions in the parameter space. There is a lot of evidence in the literature,
that BO is superior to RS for machine learning hyperparameter tuning (Turner et al., 2021).
Furthermore, to reduce computational complexity, we have based hyperparameter tuning
on data for the time span of approximately four months. In this regard, it is advisable to
experiment with the data volume to find an appropriate trade-off between computational
efficiency and the accuracy of the model.

Another limitation is the applied method for prediction intervals calculation. Our original
aim has been to calculate prediction intervals for random forest and gradient boosting via
the quantile regression approach (see Meinshausen, 2006, Kriegler and Berk, 2007). Due
to implementation difficulties, we have limited the calculation to an analytical approach,
approximating prediction intervals via the RMSE metric. Moreover, to enable compari-
son between models, we have applied the same approach to ARIMA, regardless it’s well-
established build-in method. Therefore, further examination of uncertainty quantification
for random forest and gradient boosting, including existing technical implementations, is
required.

Within the scope of this project, we investigate only two machine learning approaches
- random forest and gradient boosting. The conducted benchmark experiment can be
extended to the use of further machine learning and deep learning methods. Despite being
relatively new, the field of deep learning has attracted a lot of interest in the past few years.
Current research of time series forecasting sets a strong emphasis on the successful prediction
performance and robustness of artificial neural network models (Gamboa, 2017).

Another possible extension of the benchmark experiment would be to conduct further ex-
amination into the performance differences across different districts. By visualizing the ge-
ographical distribution of the normalized RMSE metric across districts and federal states,
we have seen how strong the metric can differ. A detailed analysis of the factors for these
differences can be valuable for improving the forecasting accuracy of the models.
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Containing and mitigating the spread and infection rate of the Coronavirus is essential.
Moreover, strengthening the capacity of health systems to respond swiftly and effectively
is inevitable. The daily updated recording of ICU beds, occupied by COVID-19 patients,
together with further key metrics of the pandemic, such as the hospitalization rate and
reporting incidence, enable a regionally and temporally resolved real-time analysis of the
current and expected situation. Reliable forecasts of key pandemic indicators enable timely
data-driven decision-making, which is crucial for healthcare and politics.

The conducted project pursues the goal of evaluating different machine learning approaches
for forecasting occupancy of COVID-19 patients in German ICUs and comparing them
to a classical statistical forecasting approach. This investigation is done by conducting
a benchmark experiment, which compares prediction performance of random forest and
gradient boosting to ARIMA. Within the framework of this thesis, forecasting is based on
a time horizon for up to two weeks. Additionally, to reflect the uneven spread of the disease
across the country, forecasting is conducted on German district level. Alongside comparison
of the forecasting accuracy, we examine the contribution of exogenous variables - further
key measures of the pandemic.

Three main findings can be highlighted. On average across all districts and prediction
horizons, all three models perform comparably well. Based on this finding, it is strongly
recommended to use classical statistical methods as a baseline to more elaborate machine
learning methods in order to justify their usage. Secondly, ARIMA exhibits the best predic-
tion performance in the short-term, while random forest and gradient boosting moderately
outperform ARIMA in the more distant periods. These results suggest that random forest
and gradient boosting provide a powerful alternative to ARIMA for medium-term forecast-
ing. Finally, based on the variable importance measurements, it can be concluded that
further exogenous features have no substantial contribution to a prediction performance
improvement. The first lag of the target has shown to be by far the most important feature
in the dataset, followed by the subsequent lagged features of the target. However, this
conclusion is limited, due to autocorrelation between observations of the target.
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To Chapter 3:
Correlation matrix heatmap

Figure A.1: Correlation coefficient heatmap of final data features, based on data for 2021.
The marked area represents the association of each feature with the target - number of
COVID-19 cases in intensive care units one week ahead (prediction horizon of 7 days).

Figure A.1 represents the correlation matrix between all variables of the final data set, based
on the Pearson correlation coefficient. The example is based on the target variable - number
of COVID-19 cases in intensive care units 7 days in the future. Correlation coefficients are
calculated for all districts simultaneously on the total data set for year 2021. While +1.0
(dark green) indicates a perfect positive correlation, 1.0 (light green) signifies a perfect
inverse correlation and 0 means no correlation. Here we have included only 5 lags of the
target for illustration purposes.
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Contents

• An electronic form of this thesis.

• Repository containing the Python-Code of this project:
https://gitlab.com/master-thesis-stat/intensive-care-capacity-forecasting

Python Project Structure

• Data folder: Contains examples of the raw data, as well as pre-processed interim and
final data, ready for modeling.

• SRC folder: Main code for the analysis: functions for data loading and pre-processing,
functions for data engineering, e.g., for creation of lagged variables and a supervised
learning set, functions for evaluating, benchmarking, tuning, backtesting ARIMA and
ML models, as well as multi-step forecasting, variable importance and calculation of
prediction intervals, functions for data visualization.

• Operations folder: Concrete example runs of the source code, e.g. executed hyper-
parameter tuning, benchmarking and backtesting for each model.

• Docs folder: Contains output summaries from the analysis, mainly used for results
visualization.

• Interactive Visualization Apps folder: Contains the following interactive visual-
ization tool:

– Interactive visualization of ICU bed capacities and COVID-19 occupancy for
each German district.

– Interactive visualization of reported COVID-19 infections and deaths in total
and per age groups for each German district.

– Interactive visualization of vaccination rates in total and per age group for each
German district.

– Interactive visualization of the forecasting results. Retrospective comparison of
predicted and observed values of best arima, random forest, gradient boosting
models, incl. prediction intervals, for each district and each prediction horizon.
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Figure B.1: Overview of the Python project directory structure.
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