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Abstract

The random forest algorithm is popular because it can deal with high-

dimensional data, complex interactions and highly correlated covariates.

Another advantage is that it offers built-in variable importance measures

(VIM) that identify relevant variables, provide variable rankings and can

also be used for variable selection. The most well-known and popular VIM

is the permutation accuracy importance, but it has no straightforward way

to be applied to data with missing values, which motivated Hapfelmeier

et al. (2014) to introduce a new VIM. The idea of this new approach is to

break the association between a covariate and the response by randomly

assigning observations to nodes at all splits that depend on the variable

of interest instead of permuting the values of the variable of interest. It

could be shown that this new approach provides sensible results while

being well able to deal with missing values.

The aim of this thesis is to compare by means of a simulation study

the performance of both methods, the original permutation importance

and the new approach, in situations with no missing data. Both VIMs

are evaluated by the correlation strength between importance values and

effect sizes, or in the case of constant effect sizes, by measuring the ability

to discriminate between relevant and irrelevant covariates with the AUC.

Different effect sizes and parameter settings are considered for a binary

response and normally distributed covariates.

The results of the simulation study show that both methods achieve a

very similar performance in all considered simulation settings. For most

settings, no significant difference between the performances could be de-

tected. Of the few significant differences that could be found, however,

almost all are in favour of the new approach, but the differences between

the performances of both measures are in all cases very small.
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1 Introduction

Random Forest, introduced by Leo Breiman in 2001, is a nonparametric en-

semble method for classification or regression that is based on the concept of

decision trees. Random forests are popular and widely used because they show

high prediction accuracy and are able to handle high-dimensional data, complex

interactions and highly correlated covariates. Since they use bootstrapping or

subsampling to construct the trees of the ensemble, there is a so-called out-of-

bag (OOB) sample for each tree, i.e. the part of the original data that was

not used to build the tree, which can be used as test data. Moreover, with

built-in variable importance measures, they can identify influential covariates,

considering not only the individual influence of a covariate, but also its impact

in multivariate interactions with other covariates. (cf. Strobl et al., 2008)

Such a variable importance measure ranks the covariates according to their

relevance and can also be used for variable selection. The most popular and well-

established variable importance measure is the permutation variable importance.

It evaluates the impact of a covariate by assessing how much the OOB-accuracy

decreases when the association between that covariate and the response is broken

by permuting the values of that covariate in the OOB-sample. Random forests

themselves can handle missing data very easily by the use of surrogate splits,

but the permutation importance has no straightforward way to handle missing

values, which means you have to resort to either imputation methods or to

the exclusion of observations (complete case analysis). This shortcoming of the

permutation importance prompted Hapfelmeier et al. (2014) to introduce a

new variable importance measure that solves this issue. This new approach is

actually very similar to the permutation importance, but instead of permuting

the values of the covariate, it breaks its association to the response by randomly

assigning observations to nodes in splits that depend on the covariate of interest,

in the same proportion in which the observations were originally sorted into the

nodes. In doing that, the assignment of observations to nodes is detached from

the raw values of the covariate, so that computing importance values in the

presence of missing values is no longer a problem.

The new approach has been shown to be superior to the permutation im-

portance in terms of being able to deal with missing data, but the question is

whether is has further advantages or disadvantages over the permutation im-

portance. To learn more about possible differences and similarities between the

methods, their performance is compared in this thesis by means of a simulation

study with no missing values in the simulated data. First, Section 2 gives a
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brief overview about the random forest algorithm and the methods on which it

is based before introducing the conditional inference framework developed by

Hothorn et al. (2006). This framework is the basis of the R package party,

which is used in this thesis to construct random forests and compute variable

importances. Section 3 outlines the concepts of both the permutation accuracy

importance and the new variable importance measure introduced by Hapfelmeier

et al. (2014) and gives information about differences between both methods. In

Section 4, the design of the simulation study is explained, including the data

generating process and the parameter settings, and the way in which the per-

formance of the importance measures is evaluated is explicated. The last part

of the section contains an overview over all scenarios of the simulation study. In

Section 5 the results of the simulation study are presented. The performance of

both methods is analysed first for the scenarios with variating effect sizes, and

then for the scenarios with constant effect sizes, before the variable importance

values themselves are compared for both importance measures. In the last part

of Section 5, the results are briefly summarized, before Section 6 concludes the

thesis.
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2 Random Forest

2.1 The Random Forest algorithm

Random forest is a machine learning algorithm that can be used both for classi-

fication and regression tasks. It uses a collection of decision trees that are built

from bootstrap samples and makes predictions by taking the average of the pre-

dictions of the individual trees in case of a regression task, or the majority vote

of the predictions of the trees in case of a classification task.

The decision trees themselves are based on the principle of recursive parti-

tioning: the data is split into binary subsets (nodes), which are again repeatedly

split into binary subsets. In that way, the data, and more generally the feature

space, is again and again partitioned into increasingly smaller nodes until some

stopping criterion is met, for example a minimal node size. For each terminal

node, a constant response can be estimated from the data within this node by

taking simply the average of the response values (for a continuous response) or

the category with the highest proportion (for a categorical response). The aim in

splitting a node is to reduce the ‘impurity’ within nodes, i.e. child nodes should

have within themselves less variability concerning the response than their parent

node had. The split is conducted by selecting one of the covariates, called then

the split variable, and a split point for that covariate that separates the values

of that covariates into two disjunct subsets. All observations are then sorted

into one of either child node, dependent on their value of the split variable. (cf.

Breiman et al., 1984)

A random forest usually employs the principle of bagging (cf. Breiman, 1996),

which is short for ‘bootstrap aggregating’ and means in general that bootstrap

samples are used to create an ensemble of models, whose predictions are then

aggregated. In case of a random forest, each tree of the ensemble is built from a

bootstrap sample from the original data, i.e. if we have training data of size n, for

each tree we randomly draw with replacement a sample of size n from that data.

It is also possible to use subsampling instead of bootstrapping, which means that

the samples for the individual trees are drawn without replacement and their

size is just a fraction of the original training data. A typical fraction used is

0.632, as this corresponds approximately to the fraction of unique observations

that are on average drawn into a bootstrap sample (cf. Strobl et al., 2007),

though of course other fractions can be used.

Due to the use of bootstrap sampling or subsampling, there are for each

tree in a random forest some observations from the original data that were not

drawn into the sample that was used to construct this tree. These observations
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are called out-of-bag (OOB) observations. They serve as an built-in test set

for the respective tree, and by averaging the out-of-bag predictions of the in-

dividual trees, the error of these predictions can be used as an estimate of the

generalization error of the forest. (cf. Cutler et al., 2011)

Trees are approximately unbiased, but unstable due to their hierarchical

structure, where one small change in one of the top splits effects all splits below

and therefore the complete tree structure and prediction. That makes them ideal

candidates for bagging, which brings the most improvement in performance for

methods with a high variance and a low bias. However, simple tree bagging

has the disadvantage that the individual trees of the ensemble are correlated

since they all come from very similar data. In order to reduce that correlation,

random forests add another idea to the procedure of bagging: for each split only

a subset of covariates of size mtry < p (p being the total number of covariates) is

randomly chosen to be considered for the split. In consequence, though all trees

of the ensemble are still built from very similar data, they differ much more in

their choices of splits and are therefore less correlated to each other. Reducing

the correlation between trees reduces the variance of the average prediction of

all trees, as shown in chapter 15.2 of Hastie et al. (2009).

Moreover, with the random restriction of the set of potential split variables,

weaker covariates may be selected that would not have been chosen if all p co-

variates had been available for the split. That does not seem to be an advantage

at first glance, but splits that may not be locally optimal in the sense that they

lead to less reduction of impurity than other splits can still improve the overall

performance of a tree, since the algorithm for growing a tree is greedy in the

way that it always chooses the locally best split without taking into account

the effects which that split has on following splits. Through the selection of

a weaker covariate, interaction effects may be detected that would have been

missed otherwise. (cf. Strobl et al., 2008, Strobl et al., 2009)

Common default values for mtry are b√pc for classification and bp
3
c for re-

gression, but dependent of the individual data situation using other values might

improve the performance of a random forest. In general, random forests are not

very sensitive to changes in their parameter settings, they mostly offer a good

performance “off the shelf”and benefit less from hyperparameter tuning than

other machine learning algorithms. Among the hyperparameters of a random

forest, however, mtry is usually the one that is the most tunable. (cf. Cutler et

al., 2011; Probst et al., 2018)

Like other tree-based models, random forests have a very intuitive way to

handle missing values: while observations containing missing values in a poten-
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tial split variable are simply ignored for the computation of the impurity reduc-

tion, so-called surrogate splits are used to decide which child node observations

are assigned to when they have a missing value in the selected split variable.

Surrogate splits mean that another covariate and corresponding split point is

used, that partitions the data in a very similar way to that of the selected split

variable. Several surrogate splits can be computed and ranked according to how

good they mimic the original split. Whenever there is a missing value in the

split variable, the first-ranked surrogate split can be used, and if it also has a

missing value in that observation, the second-ranked surrogate split can be used,

and so forth. (cf. Strobl et al., 2009; chapter 9.2.4 in Hastie et al., 2009)

2.2 Selection bias and Conditional Inference Forests

The original random forest algorithm, as it was introduced by Leo Breiman

in 2001, consists of trees that are constructed with the CART algorithm (cf.

Breiman et al., 1984), which means all possible splits over all covariates are

considered and that one is chosen which leads to the highest decrease in impurity,

measured by the Gini index in case of a categorical response, and by the mean

squared error in case of a continuous response. It has been shown though, that if

splits are selected based on the decrease in Gini impurity, continuous covariates

and those with many categories are more likely to be chosen than covariates with

few categories. Moreover, this splitting method is also biased towards selecting

variables with lots of missing values. (cf. Strobl et al., 2007)

Several ideas have been introduced to prevent that selection bias in trees (cf.

e.g. White and Liu, 1994; Loh and Shih, 1997; Dobra and Gehrke, 2001), among

which is the concept of conditional inference trees (cf. Hothorn et al., 2006). In

the conditional inference algorithm, the selection of the covariate used for the

split is separated from the selection of the split point of the already selected split

variable: instead of searching through all possible splits in all covariates, only

the covariate for splitting is chosen in a first step, and then in a second step,

the best split for that covariate is selected. The algorithm is implemented both

for single trees and for ensembles of trees, which are called conditional inference

forests (CIFs), in the R package party, which is used for all analyses in this

thesis.

In a CIF, for training data with n observations, every node of a tree is

represented by a vector of case weights www = (w1, w2, . . . , wn), in which all

observations that are elements of the node are represented by a non-zero weight

wi and the case weights of all observations that are not in the node are set to
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zero. In the first step of the algorithm, the global null hypothesis of independence

between any of the mtry covariates and the response is tested for the weight

vector www using a permutation test. If the null hypothesis cannot be rejected on

a pre-specified significance level α, the node will not be divided, which means

that the parameter α is also a hyperparameter determining the tree size. If the

null hypothesis is rejected, the covariate with the strongest association to the

response (measured by test statistics or p-values) is selected for the split. (cf.

Hothorn et al., 2006)

In the second step, all possible binary partitions for the split variable selected

in step one are considered to find the optimal split point. The response values

of the observations with case weights > 0 (i.e. those within the node that is

supposed to be split) are, for each possible binary partition, separated into two

samples according to whether the corresponding values of the selected covariate

are in one or the other of the binary subsets. The discrepancy between these

two samples is measured with a linear statistic, and the split is chosen for which

a test statistic based on this two-sample linear statistic is maximal. Hothorn et

al. (2006) also state that alternatively any other splitting rule, e.g. that of the

CART-algorithm, or even one that allows multiway splits, could be applied to

establish the split after having selected the split variable in step one.
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3 Variable importance measures

3.1 Variable importance in random forests

One of the advantages of random forests is that they also offer a way to measure

the variable importance (VI), i.e. the impact each individual covariate has on the

response. A random forest therefore does not only provide reliable predictions

but it is also able to give information about which variables contribute the most

to the algorithm, so that the random forest algorithm is not a complete black-

box model but more interpretable. Besides, such a variable importance measure

(VIM) can also be used for variable selection, which is especially helpful in

high-dimensional data settings.

One way to measure the variable importance of a variable Xj is to simply

sum up in each tree the decrease in Gini impurity in the splits where this variable

was used, and average this decrease in impurity over all trees. A variable that

is never chosen for any split in any of the trees consequently has a variable

importance of zero, while variables tend to get higher importance scores the

more often they are selected for splits. Being based on the Gini index, this Gini

importance also suffers from the selection bias mentioned in Section 2.2, and

though it is often available in random forest implementations, for example in

the R packages randomForest and ranger, it is not considered further in this

thesis.

3.2 Permutation variable importance

A very popular variable importance measure is the permutation accuracy impor-

tance. The idea is to asses how much worse the prediction accuracy is, evaluated

on the OOB observations, if the (potential) association between the covariate of

interest and the response is destroyed by permuting the values of the covariate

of interest in the OOB sample. The more relevant the covariate is, the higher

difference between the original prediction accuracy and the prediction accuracy

after the permutation can be expected. The procedure is simple: for each tree,

the OOB accuracy is computed both before and after permuting the values of the

covariate of interest, Xj, in the OOB sample, then the difference between these

accuracies is calculated. This difference can be interpreted as the importance of

the covariate Xj in this tree. The average of all these tree variable importances

of Xj over the whole ensemble constitutes the final variable importance score of

the covariate Xj. (cf. Hapfelmeier et al., 2014)
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More precisely, the calculation of the permutation importance can be for-

malized as follows: Let Bt denote the OOB sample for a bootstrap sample Bt

for a tree t, with t ∈ {1, . . . , ntree} (ntree being the total number of trees in

the ensemble). Then the importance of a covariate Xj in tree t is

V It(Xj) =

∑
i∈Bt

I(yi = f̂ t(xxxi))

|Bt|
−

∑
i∈Bt

I(yi = f̂ t(xxx
permj
i ))

|Bt|
, (1)

where f̂ t(xxxi) denotes the prediction made by tree t for the i-th observation with

the original, unpermuted covariate Xj, while f̂ t(xxx
permj
i ) denotes the prediction

made by tree t for the i-th observation after the permutation of the values of the

covariate Xj, and I(·) denotes the indicator function. The variable importance

for covariate Xj is then computed by taking the average importance over all

trees:

V I(Xj) =
1

ntree

ntree∑
t=1

V It(Xj) (2)

(this formalization, slightly changed, is borrowed from Strobl et al., (2008))

Obviously, V It(Xj) = 0 by definition if the covariate Xj is not selected for

any split in tree t. For covariates that are not associated with the response

and were nevertheless by chance selected for a split, V It, and therefore also

the overall variable importance, can even take (small) negative values, if the

permuted covariate values accidentally lead to an increase in prediction accuracy

(cf. Strobl et al., 2009). Of course, in the same way the permutation importance

of a completely irrelevant covariate can also take small positive values when the

permuted covariate values by chance lead to a slight improvement in prediction

accuracy. So, variable importance values near zero signify that the covariate

has no influence on the response, while large values indicate a strong association

between the covariate and the response. Since there is no clear rule, it can be

difficult though to decide where to set the boundary to discriminate between

relevant and irrelevant covariates. This issue has been approached for example

by Janitza et al. (2018).

3.3 A new approach by Hapfelmeier et al.

Hapfelmeier et al. (2014) state that one drawback of the permutation importance

is that its computation and interpretation is not clear when the data contains

missing values, and especially when surrogate splits are used to compute the

OOB accuracy. This is their main motivation to suggest a new approach for
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assessing the variable importance in a random forest. It follows the main idea of

the permutation importance, namely to calculate the OOB prediction accuracy

after breaking the (potential) association between covariate and response and to

compare it to the original OOB prediction accuracy. The difference, however,

lies in how the association is broken: instead of permuting the values of the

split variable, the observations are randomly assigned to one of the child nodes

in the same proportions as they were in the original split. In consequence, the

decision which observation goes into what node no longer depends on the raw

values of the split variable, which means that handling missing values and the

use of surrogate splits is no longer a problem. (cf. Hapfelmeier et al., 2014)

The procedure can be formalized in the following way: Let D be a binary

random variable that indicates whether an observation goes into the left (D = 0)

or right (D = 1) child node. For a node k, the probability of sending an

observation to one of the child nodes is denoted by Pk(D = 0) and Pk(D =

1) = 1 − Pk(D = 0), respectively. Under the null hypothesis that it does not

depend on a covariate Xj which observations go into which child node, it holds

that Pk(D|Xj) = Pk(D), so whether there are any missing values in Xj is of no

consequence for the decision how an observation is processed down the tree. (cf.

Hapfelmeier et al., 2014)

To compute the OOB accuracy, the relative frequency p̂k(D = 0) = nk,left/nk

replaces the probability Pk(D = 0), where nk is the number of observations in

the parent node k and nk,left is the number of observations in the left child node

of node k. The only difference to the original permutation importance is that

at each split at a node k where Xj is the split variable, the observations are

each randomly assigned with p̂k(D = 0) to the child nodes of node k, instead

of processing the observations down the trees with permuted values of the co-

variate Xj. (cf. Hapfelmeier et al., 2014) In the following, the new procedure

by Hapfelmeier et al. will be denoted by PropRandom, short for proportional

randomisation, referring to Hornung and Boulesteix (2021), who coined that

term.

3.4 Possible advantages of the new approach

Hapfelmeier et al. (2014) show, with a simulation study and an application to

real data, that their new approach is indeed well suited to deal with missing

values and does not artificially inflate the importance values of covariates with

missing values. Since the permutation importance cannot be computed for data

with missing values, common strategies are to either conduct a complete case
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analysis, i.e. to exclude all observations that contain missing values, or to use

imputation. A complete case analysis, however, often means a substantial loss

of information, and it may induce biased inference when values are not missing

completely at random. According to the results of Hapfelmeier et al. (2012),

a complete case analysis arbitrarily decreases the importance of covariates that

were completely observed. These disadvantages of complete case analyses in-

dicate that using PropRandom for data with missing values possibly provides

a more reliable and meaningful variable ranking. As for imputation methods,

most notably multiple imputation by chained equations (MICE, cf. White et al.,

2011), they take another approach to the issue of missing values: imputation

methods aim at restoring the information that is missing, i.e. they try to sim-

ulate a complete data set, while “the rationale of [PropRandom] is not to undo

the influence missing values have on the information carried by a variable [...]

but to reflect the remaining information that the variable has with the respective

values missing.” (Hapfelmeier et al., 2014, p. 33)

Besides the straightforward handling of missing values, PropRandom might

also discriminate better between relevant and less relevant covariates than the

permutation variable importance. The explanation, as outlined by Hornung and

Boulesteix (2021, Supplementary Material 1/C) is as follows: The covariate vari-

able spaces of the nodes become less and less general in the lower layers of the

trees, as the observations are again and again split into ever smaller subsets. In

the root node, a covariate follows an unconditional distribution, while in nodes

further down the tree, the distribution of a covariate is conditional on all the

splits made before in that branch of the tree. With the permutation impor-

tance, however, the values of the variable of interest of the whole OOB-sample

are permuted, which means that the permuted values follow the unconditional

distribution of the variable in the root node, which is not the same as the con-

ditional distributions in the lower layers of the tree. In consequence, when the

permuted values are used for a split in the lower layers of a tree, they have pos-

sibly a very different range from the values of the unpermuted variable at this

split point, and in that case most of the observations or even all are assigned

to one child node, so that the sizes of the two child nodes differ widely from

the sizes they have when using the unpermuted variable. (cf. Hornung and

Boulesteix, 2021, Supp. Mat. 1/C)

This problem becomes the more pronounced the further down the tree we

move, while in the upper layers the ranges of the original values and the permuted

values are still quite similar so that the observations with the permuted covariate

values will be assigned to the respective child nodes in similar proportions as
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the observations before the permutation. Accordingly, permuting the values of

a covariate brings a smaller decrease in accuracy when that covariate is selected

as split variable in the upper layers of a tree than when it is selected in the

lower tree layers. Since stronger covariates are more likely to be selected as

split variables in the upper layers while weaker covariates are more likely to be

selected further down the tree, the permutation importance might attribute too

large values to weak covariates. In other words, the permutation accuracy might

tend to not separate weaker and stronger covariates well enough. (cf. Hornung

and Boulesteix, 2021, Supp. Mat. 1/C)

The PropRandom importance, on the other hand is not affected by the issue

described above, since the observations are always assigned to nodes in the same

proportions as when the original accuracy was computed and the assignment of

observations to nodes is detached from the values of the covariate. To assess

whether there is a relevant difference between the two variable importance mea-

sures because of the suspected weaker discriminative ability of the permutation

importance, Hornung and Boulesteix (2021, Supp. Mat. 1/C) compared the

skewness of the distributions of the importance values of both methods in 214

data sets, since a good separation between important and less important covari-

ates would lead to a large skewness value. For 71% of the data sets, the skewness

estimates were larger for the PropRandom-based importance values than for the

permutation importance values, and Wilcoxon signed-rank tests for paired data

showed that the differences were highly significant. To exclude the possibility

that the differences were caused by discrepancies in the variable ranking of the

two methods, correlations between the importance values of both methods were

computed and showed that the rankings were indeed very similar. (For more

details, cf. Hornung and Boulesteix, 2021, Supp. Mat. 1/C)
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4 Simulation study design

4.1 Data generating process

The simulated data sets consist of 80 covariates, of which only 30 are influential,

and a binary response Y , which was modeled by means of a logistic model:

P (Y = 1|X = xxx) =
exxx

ᵀβββ

1 + exxxᵀβββ
,

with effect vector βββ = (β1, β2, β3, . . . , β80)
ᵀ. Since 50 of the covariates should

be mere noise variables, the last 50 entries of the effect vector are set to zero:

β31 = β32 = · · · = β80 = 0.

To create the simulated data, n observations are drawn from a multivariate

normal distribution with mean vector µµµ = 000 and a covariance matrix

ΣΣΣ =



AAA 0 0 0 0 0 · · · 0

0 AAA 0 0 0 0

0 0 AAA 0 0 0

0 0 0 AAA 0 0
...

0 0 0 0 AAA 0

0 0 0 0 0 1
...

. . .

0 . . . 1


,

with

AAA =



1 0 ρ 0 ρ 0

0 1 0 ρ 0 ρ

ρ 0 1 0 ρ 0

0 ρ 0 1 0 ρ

ρ 0 ρ 0 1 0

0 ρ 0 ρ 0 1


,

so that all covariates have the same variance of 1, which means the covariance

matrix is the same as the correlation matrix, and ρ is not only the covariance

but also the correlation between covariates. All 30 influential covariates are

correlated in blocks of three with a constant correlation of strength ρ, while the

50 noise variables are not correlated to any other variables. The structure of the

covariance matrix is as depicted above with an interlocked blockwise correlation

(i.e. covariates X1, X3, X5 are correlated to each other and covariates X2,
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X4, X6 are correlated to each other, etc.), because the effects are alternatingly

positive and negative and it does not make sense to have a positive correlation

between a positive and a negative effect. ρ was set to 0 and 0.5, respectively,

meaning that in the first case there is no correlation at all between covariates.

For the size of the data sets, n = n1 = 200 and n = n2 = 1000 was chosen, so

that both small and moderate-sized data sets are considered in the simulation

study.

Four alternative choices of effects are considered in the simulation study.

These variations of βββ are denoted in the following as βββI = (β1,I , . . . , β80,I)
ᵀ,

βββII = (β1,II , . . . , β80,II)
ᵀ, βββIII = (β1,III , . . . , β80,III)

ᵀ and βββIV = (β1,IV , . . . , β80,IV )ᵀ.

The idea for the first choice was to take equidistant effect sizes in the range from

0.1 to 3 with alternating signs, i.e.

βββI = (0.1, −0.2, 0.3, −0.4, . . . , 2.9, −3, 0, . . . , 0)ᵀ.

For βββII , the exponential of the values 0.1, 0.2, 0.3, . . . is taken and then again

the effects get alternating signs for increasing absolute values, so that

βββII = (exp(0.1), −exp(−0.2), exp(0.3), . . . , exp(2.9), −exp(3), 0, . . . , 0)ᵀ.

The third variation of the effect vector βββ consists of constant effect sizes that

again have alternating signs. Accordingly,

βββIII = (c, −c, c, −c, . . . , 0, . . . , 0)ᵀ,

where c is set to 0.9 for uncorrelated covariates, i.e. for ρ = 0, and to 0.3 for

correlated covariates, i.e. for ρ = 0.5.

The first 30 entries of βββIV were set to an equidistance sequence from 0.2 to 3

with an increment of 0.2. and every value occurring twice, once with a positive

and once with a negative sign:

βββIV = (0.2, −0.2, 0.4, −0.4, . . . , 2.8, −2.8, 3, −3, 0, . . . , 0)ᵀ.

In this case the effects were chosen to be not linear effects, but breakpoint

effects, meaning that they are only unequal to zero whenever the values of the

respective covariate are above a breakpoint. Since the covariates are all normally

distributed with mean µ = 0, the breakpoint was set at zero. In that case, we

can write that

P (Y = 1|X = xxx) =
exxx

ᵀβββ∗
IV

1 + exxx
ᵀβββ∗
IV

,
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with β
∗(i)
j,IV = βj,IV I(x(i)j > 0), where β

∗(i)
j,IV denotes the j-th entry of βββ∗IV for

the i-th observation, x
(i)
j denotes the value of the j-th covariate for the i-th

observation and I(·) denotes the indicator function.

The values of the βββ vectors were chosen under the precondition that for all

simulation settings the performance of a random forest measured by the AUC

should be sufficiently good, more precisely, that the AUC should be at least 0.75

or higher. The AUC, short for area under the curve, is a performance measure

for data with a binary response. For a sample of size n with predicted responses

ŷk for an observation k, k ∈ {1, . . . , n}, S(ŷi, ŷj) is summed up for all possible

pairs of observations (i, j) with yi = 1 and yj = 0. S(a, b) is either 1, if a > b,

i.e. in the present case if the predicted responses in the pair are the same as the

true responses, or 0.5 if a = b, or zero if a < b, i.e. if the predicted responses

are reversed with respect to the true response values. The sum of S(ŷi, ŷj) over

all such pairs is divided by the total number of such pairs, which is N (1) times

N (0), with N (1) and N (0) being the number of observations in the sample with

response 1 and 0, respectively. (cf. Hanley and McNeil, 1982)

Generally, when the AUC is used to evaluate the performance of a classifier,

it can be interpreted as the probability that the classifier ranks a randomly

chosen pair of observations (i, j) with yi = 1, yj = 0 correctly. Technically,

the AUC can take any value between 0 and 1, but a value of below 0.5 would

mean that the classifier performs worse than random guessing and taking the

exact opposite of what the classifier predicts would bring better results, so any

reasonable classifier should have an AUC of more than 0.5. (cf. Fawcett, 2006)

To ascertain that this condition is fulfilled, the performance of a random

forest carried out by the function cforest() from the R package party was

evaluated by tenfold cross-validation, averaged over 100 simulated data sets per

setting in the case of n = 200 to get sufficiently stable results. In the case

of n = 1000, results of a tenfold cross-validation were averaged over twenty

simulated data sets per settings, as there is less variation in the AUC for larger

sample sizes and the computation time is considerably greater. The averaged

results of this evaluation can be seen in Table 4 in Appendix A.1; they all meet

the condition.

For βββIII , different values c were selected for the correlated and the uncor-

related setting because the performance of the forests built from data with no

correlation between covariates is rather weak for a lower c, while for a higher

c the permutation variable importance measure discriminates nearly perfectly

between the influential and non-influential covariates in some settings, so that a

comparison with the new VIM is hardly possible (cf. Section 5.2). Accordingly,
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c was set to 0.9 for the simulated data with ρ = 0 to ensure a sufficiently good

performance, and to 0.3 for the correlated case to mitigate the problem of the

almost perfectly discriminating permutation importance.

In addition to the performance, the condition that the data should be fairly

balanced was also taken into account when choosing the values for the effect

vectors. For the linear effects, the exact values for the effects are of no conse-

quence. Since the covariates are all normally distributed with mean µ = 0, the

linear predictor xxxᵀβββ is also normally distributed with mean 0, independent of

the values of βββ. In consequence, a random variable Z = exxx
ᵀβββ

1+exxx
ᵀβββ is logit-normally

distributed, and more precisely, with E(xxxᵀβββ) = 0, Z is symmetrically distributed

on the interval [0, 1], so that E(Z) = 0.5 and therefore the response values of

the simulated data will be on average perfectly balanced (cf. Frederic and Lad,

2003; Wutzler, 2021).

In the case of the breakpoint effects, it is more complicated, since xxxᵀβββ∗IV
is not normally distributed. Intuitively, setting the values of βββIV in such a

way that there are exactly the same effect sizes for the negative and the positive

effects will lead to more balanced data than effect sizes like the ones in βββI , where

the absolute values of the negative effects are slightly higher than those of the

positive effects. To assess whether data generated with breakpoint effects as

described above does indeed lead to balanced data sets, the average proportion

of the response values in 10000 data sets were observed for each combination of

ρ = 0 or ρ = 0.5 and sample sizes of n1 = 200 or n2 = 1000, respectively. The

results can be seen in Table 5 in Appendix A.2 and show that data generated

in that way seem to be indeed well balanced on average.

4.2 Fixed and variating parameters

All random forests in this simulation study are generated with the function

cforest() from the package party (Hothorn et al., 2021). Most of the hyper-

parameters are kept fixed, only the parameters mtry, which defines the number

of covariates considered for splitting, and maxdepth, which defines the depth

to which the trees are maximally grown by specifying the number of maximal

layers, are variated in the simulation settings.

Most of the fixed parameters are set to their default values. For the pa-

rameter teststat, which defines the type of test statistic used, the default is

“max”, meaning that the maximum of the absolute values of the standardized

linear statistic is used (opposed to “quad”, i.e. using a quadratic form). The

parameter testtype determines whether the value of the test statistic (which is
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the default) or the p-value (and what kind of adjustment) is used for the selec-

tion of the split variable. The parameter mincriterion defines, dependent on

the setting of testtype, either the value of the test statistic or 1 - p-value that

must be exceeded for a split. Its default (for cforest(); note that the default

settings for ctree() are different) is set to qnorm(0.9), which corresponds to a

significance level α of 0.1 (cf. Section 2.2; for further details, cf. Hothorn et al.,

2006, and Hothorn et al., 2021).

For the parameters minsplit and minbucket, the default values of 20 and 7,

respectively, are maintained in all simulation settings. Both of these parameters

determine the tree depth by defining how much observations at least have to be

in a node to be considered for splitting and the minimum number of observations

in a terminal node, respectively. The number of trees per forest, determined by

the parameter ntree, is set to 1000 in all simulation settings, which is twice

as high as the default value of 500, as a higher number of trees ensures more

stable variance importance estimates (cf. Genuer et al., 2008). The parameter

replace was set to TRUE, its default, which means that bootstrap sampling was

used for constructing the trees.

The default value of mtry is independently from the number of covariates

5, but for the simulation study, two other values are chosen for this parameter:

firstly, the value is set to 0.257·p, which rounded amounts to 21 for p = 80 covari-

ates. This value is based on Probst et al., (2018), where 0.257 ·p was the optimal

value according to hyperparameter tuning evaluated with the AUC. The second

choice of mtry is the value which has generally been recommended as default for

classification (cf. Section 2.1) and is indeed the default value for classification

in other R packages dealing with random forests, namely randomForest and

ranger.

Next to mincriterion, minsplit and minbucket, the parameter maxdepth

may also be employed as stopping criterion. It controls the maximal depth of

the trees by specifying the amount of layers that the trees must not exceed. For

the simulation study, maxdepth was set either to its default value 0, which means

that no restrictions are applied, or to 3, meaning that the trees must contain

no more than three layers of splits. In that way, both forests with full trees and

forests with rather small trees are considered in the simulation study.

4.3 Simulation structure

In summary, there are four choices of effects (defined by the four different βββ-

vectors), two covariance matrices, two variations of sample sizes, two different
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values for the parameter mtry and two different tree depths controlled by the

parameter maxdepth, summing up to 64 different simulation settings. Each set-

ting was repeated nsim = 100 times, and for each iteration, variable importances

were computed using both the new method by Hapfelmeier et al. (2014), and the

standard permutation VIM. Both methods are implemented in party, controlled

by the parameter pre1.0 0 in the function varimp().

mtry = 21 mtry = 8
effects corr. n full trees 3 layers full trees 3 layers

βββI ρ = 0 200 scenario 1 scenario 2 scenario 3 scenario 4
βββI ρ = 0 1000 scenario 5 scenario 6 scenario 7 scenario 8
βββI ρ = 0.5 200 scenario 9 scenario 10 scenario 11 scenario 12
βββI ρ = 0.5 1000 scenario 13 scenario 14 scenario 15 scenario 16

βββII ρ = 0 200 scenario 17 scenario 18 scenario 19 scenario 20
βββII ρ = 0 1000 scenario 21 scenario 22 scenario 23 scenario 24
βββII ρ = 0.5 200 scenario 25 scenario 26 scenario 27 scenario 28
βββII ρ = 0.5 1000 scenario 29 scenario 30 scenario 31 scenario 32

βββIII ρ = 0 200 scenario 33 scenario 34 scenario 35 scenario 36
βββIII ρ = 0 1000 scenario 37 scenario 38 scenario 39 scenario 40
βββIII ρ = 0.5 200 scenario 41 scenario 42 scenario 43 scenario 44
βββIII ρ = 0.5 1000 scenario 45 scenario 46 scenario 47 scenario 48

βββIV ρ = 0 200 scenario 49 scenario 50 scenario 51 scenario 52
βββIV ρ = 0 1000 scenario 53 scenario 54 scenario 55 scenario 56
βββIV ρ = 0.5 200 scenario 57 scenario 58 scenario 59 scenario 60
βββIV ρ = 0.5 1000 scenario 61 scenario 62 scenario 63 scenario 64

Table 1: Overview of simulation scenarios. “full trees” refers here and in the
following to trees that are not restricted by a maximal number of layers, i.e.
maxdepth = 0; “3 layers” refers to trees with maxdepth = 3.

Table 1 shows a overview of all 64 scenarios. They are sorted by effect

vectors, and within the groups of effects by correlation structure, and then by

sample size. The order of the numbering is not completely adhered to in Section

5 as the results for the scenarios with effects βββIV are discussed before those with

βββIII . This is done because the variable importance measures are evaluated with

correlation coefficients in scenarios with effects βββIV , in the same way as with
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effects βββI and βββII , while the importance measures are evaluated differently for

scenarios with constant effects, as described in the following section.

4.4 Evaluation of results

Variable importance measures rank covariates according to their association to

the response. Accordingly, the importance score of a covariate should be the

higher the larger the effect size of this covariate is. To evaluate and compare

both variable importance measures, correlations between the effect sizes and the

variable importance values were calculated in the cases of variating effect sizes,

i.e. for all simulation settings with βββI , βββII , and βββIV .

The variable importance scores cannot be assumed to be normally distributed,

as their distribution is much too right-skewed. That can be seen in Figure 1,

where boxplots of the variable importance scores of all 80 covariates from the

first five iterations of three different simulation settings are shown, one for each

βββ vector with variating effect sizes (scenario 1, with effects βββI ; scenario 17, with

effects βββII ; scenario 49, eith effects βββIV ; all three scenarios have n = 200, ρ = 0,

mtry = 21 and maxdepth = 0; cf. Table 1 in Section 4.3). For that reason,

Spearman’s rank correlation coefficient was used, since it is a nonparametric

measure that does not require normally distributed variables.

In the case of βββIII , all effects have the same size, which means that the influ-

ential covariates should all have similar variable importance scores that should

be distinctly higher than the scores of the noise variables, which should be ap-

proximately zero. In order to evaluate the ability of a VIM to differentiate

between influential and irrelevant covariates, the AUC was computed as it is

done in Janitza et al. (2013), meaning that for each pair of an influential and an

irrelevant covariate, the corresponding VI values were evaluated with S(·) as de-

scribed in Section 4.1. The AUC can be interpreted here as the probability that

a randomly drawn influential covariate has a higher variable importance than a

randomly drawn noise variable. Possible AUC values range from 0.5 to 1, with

0.5 meaning that the variable importance measure is not able to discriminate

between relevant and irrelevant covariates better than one would by random

guessing. A value of 1 on the other hand indicates a perfect discrimination, i.e.

the variable importance score of each influential covariate is higher than that

of any noise variable. (cf. Janitza et al., 2013) For computing the AUC, the

function AUC() from the R package MLmetrics (Yan, 2016) was used.

Correlation coefficients or AUCs were computed for each iteration of each

simulation setting both for the new PropRandom importance and for the per-
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mutation importance, resulting in two times 100 values per setting. In all cases,

the correlations/AUCs for both variable importances were very similar. To as-

sess whether the small differences are statistically significant, Wilcoxon signed-

rank tests were conducted on the pairs of correlations/AUCs for all simulation

settings.
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Figure 1: Variable importance values (measured with PropRandom) for all 80
covariates, shown for the first five iterations of three scenarios. For clarity,
outliers above 0.015 were omitted, which concerns 2 values for scenario 1, 11
values for scenario 17 and one value for scenario 49.
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The Wilcoxon signed-rank test is a non-parametrical test that uses the ranks

of observations instead of the raw values. It can be applied to one sample, or

to two samples of paired data, and basically tests if the null hypothesis can

be rejected that the median of the one sample, or the median difference in

case of two matched samples, is zero. (cf. Hollander and Wolfe, 1973) In its

functionality it serves the same purpose as a (paired) Student’s t-test, but it

does not assume a normal distribution. Since the correlation and AUC values

cannot be assumed to be normally distributed in all settings (cf. Figures 4 -

11; at least some of the boxplots show considerable skewness), the Wilcoxon

signed-rank test was preferred here to the t-test.
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5 Results

5.1 Comparison of the correlations between effect sizes

and variable importance values

Figures 4 - 9 show the correlations between the effect sizes and the variable

importance scores for all scenarios with variating effect sizes. For each scenario

each boxplot shows 100 correlations for the 100 iterations; the blue boxplots

contain the correlations between the PropRandom importance values and the

effect sizes, and the pink boxplots show the correlations between the permutation

importance values and the effect sizes. Each figure displays either eight scenarios

with no correlation between covariates (ρ = 0) or eight scenarios with blockwise

correlation between covariates (ρ = 0.5). The plot in the first row of each figure

shows the correlations for scenarios with a sample size of n1 = 200, and the

second row shows the correlation values for scenarios with sample size n2 = 1000.

Note that the scales of correlation values in each figure differs considerably

between the two rows, as the different sample sizes affect the correlation strength.

Both the influence of the sample size and the variability of variable impor-

tance values for the simulated data sets is exemplified in Figure 2 by scenario 1

and 5, which have, apart from the sample size, exactly the same parameter set-

tings (ρ = 0, mtry = 21, maxdepth = 0). The effect sizes are in both scenarios

the absolute values of βββI , which are monotonously and equidistantly increasing

for the first 30 covariates. For the sake of clarity, only the 32 first covariates are

considered in the plots, i.e. all influential covariates plus two noise variables.

The left plot shows the PropRandom variable importance values averaged over

all 100 iterations, and in the right plot the variable importances of only the first

iteration are depicted. While the averaged variable importance values are, corre-

sponding to the effect sizes, for the most part monotonously increasing over the

first 30 variables, the variable importance values of only one simulation itera-

tion do not reflect the pattern of the increasing effect sizes very well. Obviously,

the variable importance measures on average provide a sensible variable rank-

ing while for a single data set the importance values may deviate notably from

the pattern of the effect sizes. It is not surprising that this deviation is more

pronounced for small-sized data sets (n = 200) than for data sets of moderate

size (n = 1000), since a larger amount of data can be expected to provide more

stable variable importance estimates.
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Figure 2: VI values (PropRandom) of the first 32 covariates, for scenario 1 and
scenario 5. On the left, the values are averaged over all 100 iterations; on the
right, only the values of the first iteration are shown.
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Figure 3: VI values (permutation importance) of the first 32 covariates, for
scenario 1 and scenario 5. On the left, the values are averaged over all 100
iterations; on the right, only the values of the first iteration are shown.

When comparing Figure 2 and 3, which show the PropRandom and the

permutation importance values, respectively, for exactly the same settings, one

can see that both measures lead in these scenarios to extremely similar rankings,

both on average and for the single simulation iteration. In fact, for the averaged

values the ranking is exactly the same for all influential covariates in the case
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of n = 1000 (scenario 5), and for the 23 highest ranked covariates in the case of

n = 200 (scenario 1), and even the differences between the importance values

of the individual covariates seem to be almost identical. For the example of the

single iterations, the rankings are also very similar, and though there are some

differences in the order of the ranking, the pattern of importance values looks

extremely similar for both methods.

In Figure 4 and 5 the correlations between the effect sizes and the variable

importance scores for the first sixteen scenarios can be seen, which means for

the simulation settings with the effect sizes of βββI ; in Figure 4 for simulated data

without correlation between covariates (ρ = 0), and in Figure 5 for simulated

data with blockwise correlation between covariates (ρ = 0.5) as described in

section 4.1. There are only small differences visible between the correlation

values for the PropRandom importance (shown in blue) and the correlations for

the permutation importance (shown in pink). For most of the eight scenarios

in Figure 4, the median of the correlations is a bit higher for the PropRandom

importance, only for scenario 3 (n = 200, mtry = 8, full trees) the medians are

approximately the same, and for scenario 4 (n = 200, mtry = 8, maxdepth =

3) the median is a bit higher for the permutation importance. Both quartiles,

represented by the lower and upper edges of a boxplots, are in six of the eight

scenarios higher for the PropRandom importance. Only for the two scenarios

with a small sample size and tree sizes restricted to three layers, the upper

quartile is higher for the permutation importance. In regard to the variance

of the correlation values, there seems to be only very little difference between

the box sizes when comparing the PropRandom boxplots to the permutation

boxplots.

For the four scenarios with n = 1000, the differences between the medians

and the location of the boxes appear to be more pronounced than for the sce-

narios with a small sample size. This becomes also apparent in the results of

two-sided paired Wilcoxon tests: there are no significant differences between the

correlations for the first four scenarios with n = 200. In contrast to that, for

three of the moderate size scenarios, namely scenario 5, 6 and 8, the Wilcoxon

test yields p-values lower than 0.05, and in the case of scenario 5 and 8 even

lower than 0.01 and 0.001, respectively. From the four scenarios with n = 1000,

scenario 7 with mtry = 21 and maxdepth = 0 is the only one without a signif-

icant difference between the two importance measures. The p-values from the

Wilcoxon tests for all scenarios are listed in Tables 2 and 3 in Section 5.4.
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Effects: βββI, no correlation between covariates
(Scenarios 1 - 8)
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Figure 4: Correlation between effects βββI and VIs, for data with no correlation
between covariates (scenarios 1 - 8). Each boxplot represents 100 correlation
coefficients, computed in each iteration of the simulation both for PropRandom
importance values (blue) and permutation importance values (pink).

Apart from the sample size, there is no clear pattern recognizable in these

eight scenarios of how the different simulation settings affect the differences

between the importance measures. Neither changes in mtry nor in maxdepth

seem to influence the difference between PropRandom and the permutation im-

portance much. What can be seen though is that three-layered trees for both

importance measures lead to smaller correlation strengths than fully grown trees.

It is not surprising that this influence of the tree depth is stronger for the larger

sample sizes; because of the parameters minsplit and minbucket, which restrict
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the tree size depending on the size of nodes, most trees grown from a n = 200

data set will not have much more layers than three anyway.

Effects: βββI, blockwise correlation between covariates
(Scenarios 9 - 16)
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Figure 5: Correlation between effects βββI and VIs, for data with blockwise cor-
relation between covariates (scenarios 9 - 16). Each boxplot represents 100 cor-
relation coefficients, computed in each iteration of the simulation both for Pro-
pRandom importance values (blue) and permutation importance values (pink).

For scenarios 9 - 16, which are shown in Figure 5, there seem to be even

less differences between the correlation boxplots for both measures than for the

scenarios with ρ = 0. For scenarios 9, 10 and 15, the medians appear to be

the same for both measures, while for scenario 13, 14 and 16 the median is

minimally higher in the PropRandom boxplots. The largest differences, both

with a greater median correlation for the PropRandom procedure, can be seen
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in scenarios 11 and 12, which represent simulation settings with n = 200 and

mtry = 8. Among these two, the difference between boxplots is wider in scenario

12, which is also the only scenario of these eight in Figure 5 where the Wilcoxon

test yields a significant result for an alpha level of 0.05, with a p-value of 0.04823.

So here we have a significant difference only in one scenario with a sample size

of 200, while for the first eight scenarios with no correlation between covariates

only scenarios based on moderate-sized data sets showed significant differences

between the variable importance measures.

What stands out a bit in Figure 5 is that in scenario 16 the boxplot of

correlations for the permutation importance values has a visibly larger box,

i.e. a larger interquartile range, than that of correlations for the PropRandom

importance, while in the other scenarios each two boxes have approximately the

same size. A similar effect but to a lesser extent could be seen in Figure 4, where

the permutation boxes were visibly larger in scenarios 4 and 2, which have both,

like scenario 16, settings with maxdepth = 3. The sample size, however is 1000

for scenario 16 and 200 for the other two scenarios, and besides in all three cases

no significant differences between the correlations can be detected.

Figures 6 and 7 show the sixteen scenarios with the effects of βββII , i.e. where

the effect sizes are also monotonously increasing, but exponentially increasing

and not linearly like it is the case for βββI . Again, the differences between the

correlations for the two importance measures are very small. In most pairs

of correlation boxplots in Figure 6, the median is higher for the PropRandom

importance, only in the last two scenarios, 23 and 24, with n = 1000 and

mtry = 8, the median is a bit higher for the permutation importance. Regarding

the results of the Wilcoxon signed-rank tests, scenario 18 (n = 200, mtry = 21),

shows a significant difference between correlations with a p-value lower than

0.01, and for scenario 20 (with the same parameters as scenario 18, except that

here mtry = 8) the test result is significant for α = 0.1, while the p-values are

well above 0.1 for the other six scenarios (cf. Table 2 in Section 5.4).

When comparing the interquartile ranges between the pairs of correlations,

i.e. the sizes of the boxes, the most noticeable difference can be seen in scenario

18, where the range of the permutation correlations is greater than that of the

PropRandom correlations. This is also the case for scenarios 19 and 22, but

much less marked. For the other five scenarios, hardly any difference in the size

of the boxes is discernible. In general, the variance of the correlation is always

greater for the scenarios with n = 200 than for the scenarios with n = 1000

what is disguised a bit in Figures 4 to 11 by the fact that the plots for different
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sample sizes have different scales and larger ranges are covered in the plots with

n = 200 than in the plots with sample sizes of 1000.

Effects: βββII, no correlation between covariates
(Scenarios 17 - 24)
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Figure 6: Correlation between effects βββII and VIs, for data with no correlation
between covariates (scenarios 17 - 24). Each boxplot represents 100 correlation
coefficients, computed in each iteration of the simulation both for PropRandom
importance values (blue) and permutation importance values (pink).

The scenarios which are shown in Figure 7 have all simulation settings with

the effects of βββII and blockwise correlation between covariates. For most of

these scenarios, the medians of the PropRandom and the permutation correla-

tions are very close together or even approximately equal. The widest differences

can be seen in scenarios 26 and 30, which have both the same parameter settings

(mtry = 8 and maxdepth = 3) except for the sample size. In both cases, the
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median correlation is higher for PropRandom than for the permutation impor-

tance, but the result of the Wilcoxon test is not significant for either of these

scenarios.

Effects: βββII, blockwise correlation between covariates
(Scenarios 25 - 32)
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Figure 7: Correlation between effects βββII and VIs, for data with blockwise cor-
relation between covariates (scenarios 25 - 32). Each boxplot represents 100 cor-
relation coefficients, computed in each iteration of the simulation both for Pro-
pRandom importance values (blue) and permutation importance values (pink).

There are some visible differences in the box sizes for all scenarios with

sample size 200, but while for the first three, namely scenario 25, 26 and 27

the box is a bit larger for the permutation importance, in scenario 28 the box

is larger for the PropRandom importance, and this is also the widest difference
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among these four scenarios. For the scenarios with n = 1000, the box sizes are

more even between the two variable importance measures.

There is also some variation regarding the box sizes between the pairs of

boxplots, for both sample sizes, in scenarios 49 - 56 (shown in Figure 8), which

are the scenarios with the breakpoint effects βββ∗IV (cf. Section 4.1) and data with

no correlation between covariates. The medians are almost the same for half of

these eight scenarios. For scenarios 49 and 53, which both have the parameter

settings mtry = 21 and maxdepth = 0, the median is higher for the

Effects: βββIV , no correlation between covariates
(Scenarios 49 - 56)
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Figure 8: Correlation between effects βββIV and VIs, for data with no correlation
between covariates (scenarios 49 - 56). Each boxplot represents 100 correlation
coefficients, computed in each iteration of the simulation both for PropRandom
importance values (blue) and permutation importance values (pink).
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PropRandom correlations, while for scenarios 54 and 56, which both correspond

to a sample size of 1000 and trees with maximally three layers, the median is

higher for the permutation importance. In the case of scenario 54, also both

quartiles are higher for the permutation importance, and it is the only scenario

among the eight shown in this figure, where the Wilcoxon test yields a significant

result, with a p-value of 0.035. Moreover, it is the only scenario among all 64

scenarios, where the permutation correlation is significantly higher than the

PropRandom correlation.

Effects: βββIV , blockwise correlation between covariates
(Scenarios 57 - 64)
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Figure 9: Correlation between effects βββIV and VIs, for data with blockwise
correlation between covariates (scen. 57 - 64). Each boxplot represents 100 cor-
relation coefficients, computed in each iteration of the simulation both for Pro-
pRandom importance values (blue) and permutation importance values (pink).
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In Figure 9, scenarios with the same settings as in Figure 8 are shown, with

the only difference that here the covariates in the simulated data sets are block-

wise correlated with ρ = 0.5. The medians appear to be approximatively the

same in the boxplot pairs of all scenarios except for scenarios 58 and 62, both

with parameter settings mtry = 21 and maxdepth = 3, where the median is

higher for the correlation between effect sizes and PropRandom variable im-

portances. However, in both cases the median differences are not significant

according to the results of the Wilcoxon test (cf. Table 3, Section 5.4).

The lowest p-value among these eight scenarios can actually be found in

scenario 60 (n = 200, mtry = 8, maxdepth = 3), where the Wilcoxon test

result is significant for α = 0.1. As mentioned before, the medians are here

almost the same for both importance measures. More precisely, the median is

0.616 when considering the correlation between effect sizes and PropRandom

importance values, and 0.615 in the case of the permutation importance, so that

the difference between the medians is about 0.001. Both quartiles, however,

are higher for the PropRandom importance, and the median difference between

both correlations, i.e. the median of all 100 differences between the correlation

coefficients for both importance measures, is almost 0.01, which is nearly ten

times higher than the difference between medians. This is a good example of how

the difference between medians is not the same as the median difference, and

while we can assess the former directly by looking at the boxplots in Figures 4 -

11, the latter is what is actually tested with the Wilcoxon test for being unequal

to zero.

5.2 Comparison of the AUCs for constant effect sizes

Figures 10 and 11 show all scenarios with constant effect sizes c. The constant

effect size c is 0.9 in scenarios 33 - 40, where ρ = 0 and 0.3 in scenarios 41 -

48, where ρ = 0.5 (cf. Section 4.1). The AUCs are relatively high for both

importance measures in all scenarios. In the scenarios with a sample size of

1000, the median AUCs are close to 1 for data with ρ = 0 and equal to 1

for data with correlations between covariates (for both importance measures),

which means that for scenarios 61 - 64 at least in half of the cases both variable

importance measures manage to discriminate perfectly between relevant and

irrelevant covariates.

When comparing the AUCs for the PropRandom importance and the per-

mutation importance in Figure 10, one can see that the median AUC is for all

eight scenarios either approximately the same or a little bit higher for the Pro-
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pRandom importance. Scenario 38 has a much larger variance than the other

scenarios with n = 1000. That makes it harder to visually assess differences

between the other three boxplots, but by calculating the difference in medians,

one can see that it is very small in all four scenarios. Among the small size

scenarios, scenario 36, with n = 200, mtry = 8 and maxdepth = 3, has the most

pronounced difference between AUCs, and the Wilcoxon test yields a p-value of

0.014. This is the only significant result among the eight scenarios in Figure 10.

Effects: βββIII, no correlation between covariates
(Scenarios 33 - 40)
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Figure 10: AUCs evaluating the discriminative ability of VIMs, for constant
effects βββIII and data with no correlation between covariates (scenarios 33 - 40).
Each boxplot represents 100 AUCs, computed in each iteration of the simulation
both for PropRandom importance values (blue) and permutation importance
values (pink).
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Effects: βββIII, blockwise correlation between covariates
(Scenarios 41 - 48)
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Figure 11: AUCs evaluating the discriminative ability of VIMs, for constant
effects βββIII and data with blockwise correlation between covariates (scenarios
41 - 48). Each boxplot represents 100 AUCs, computed in each iteration of
the simulation both for PropRandom importance values (blue) and permutation
importance values (pink). For clarity, one outlier of the PropRandom AUC in
scenario 46 (n = 1000, mtry = 21, maxdepth = 3) with a value of 0.92333 was
omitted.

Regarding the scenarios with ρ = 0.5 and a small sample size of 200, the

medians are all higher for the PropRandom importance, though for scenario 43

the difference is so small that it can hardly be visually ascertained. Scenario 41

is the only scenario among these four where also the quartiles and both mini-

mum and maximum are higher for the PropRandom importance. The difference
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between the AUCs is significant, at least for a significance level of 0.1. There is

no significant difference between the AUCs for the other three scenarios.

In the scenarios with correlation between covariates and a sample size n =

1000, the AUC boxplots are extremely similar. As mentioned before, the median

is 1 for both importance measures in all four scenarios, and since 1 is the highest

possible value for the AUC, this means that also the upper quartile and the

maximum are the same for both importance measures in all scenarios. For

scenarios 45, 47 and 48 the lower quartile and the lower whisker seem to be

exactly the same for both importance measures, and computing the concrete

values shows that they are indeed identical for the PropRandom importance

and the permutation importance in these three scenarios. Only the outliers

differ between the importance measures, but they are mostly also in a similar

range.

In scenario 46 there is a visible difference: both the lower quartile and the

end of the lower whisker are higher for the PropRandom importance. The dif-

ferences are very small in absolute numbers, but in relation to the small range of

the boxplots in scenarios 45 - 48, they are not negligible. Indeed, the difference

between AUCs is significant in scenario 46, with a p-value of 0.0466. Just from

the boxplots, it is not absolutely clear in this case what the direction of the

difference is, especially since there is an extremely low outlier in the PropRan-

dom AUCs that was omitted in Figure 11 for the sake of clarity. The median

difference, computed for all 100 pairs of AUCs results in zero. Yet when all pairs

are excluded where the difference of the AUCs is zero, which are 49 of the 100,

and the median of the remaining 51 is taken (which is what wilcox.test in R

actually does), this median is positive. Since the test was taken for the differ-

ences of the PropRandom AUCs minus the permutation AUCs, we can conclude

that the discriminative ability, evaluated by means of the AUC, is significantly

higher for the PropRandom importance in that scenario.

5.3 Comparison of the variable importance values

Not only the correlations between variable importance values and effect sizes

are very similar between the two importance measures, but also the variable

values themselves, as was already shown for the example of scenarios 1 and

5 in the beginning of Section 5.1. Another example for the closeness of the

importance values from both measures can be seen in Figure 12. Since both

variable importance measures compute the importance values in almost the same

manner, more precisely, in both cases the importance values correspond to the
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differences between two OOB-accuracies, the absolute values of the two measures

can be directly compared.

Figure 12 shows for the example of scenarios 21 and 29 the importance values

of each variable computed by both measures, for all 100 iterations condensed

in one boxplot, respectively. The scenarios have the same settings except for

ρ, which is 0 in scenario 21 and 0.5 in scenario 29. The effects in these scenar-

ios are those of βββII , the sample size is 200, mtry is 21 and the trees are not

restricted in regard to their number of layers. As the noise variables all have

very similar importance values, only the first two are included in the figure. The

importance values of the PropRandom procedure are shown in blue and those

of the permutation importance in pink.

0.00

0.01

0.02

0.03

0.04

0.05

V1 V3 V5 V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 V27 V29 V31
V2 V4 V6 V8 V10 V12 V14 V16 V18 V20 V22 V24 V26 V28 V30 V32

vi
s

scenario 21

0.00

0.02

0.04

0.06

V1 V3 V5 V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 V27 V29 V31
V2 V4 V6 V8 V10 V12 V14 V16 V18 V20 V22 V24 V26 V28 V30 V32

vi
s

scenario 29

Figure 12: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 21 and 29. Each boxplot comprises 100 values for the cor-
responding variable. Variables 33 - 80 are excluded for clarity.
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One can see that though the importance measures apparently do not separate

the smaller effect sizes very well from each other and from the noise variables,

at least for the larger effect sizes the increasing structure is reflected quite well

by the importance values, though the variable importances in scenario 29 are

apparently influenced by the correlation structure as well. The blocks of inter-

locked correlation between two times three covariates, as described in Section

4.1, can be observed very clearly for the larger effect sizes, i.e. for covariates V19

to V24 and V25 to V30. The effect that both variable importance measures tend

to attribute higher importance values to covariates that are correlated to more

influential covariates has also been remarked upon in Hapfelmeier et al. (2014).

Here, we can see for example how the importance of covariate V25 is markedly

higher than that of V24 because of its correlation to covariates V27 and V29.

The variable importances of covariates V20 and V22 are even a bit higher than

those of covariates V21 and V23, respectively, because of their correlation to

V24.

Something else can be seen when comparing the importance values for sce-

nario 21 and scenario 29: in the former, the PropRandom importances tend to

be a bit higher than the permutation importances, while in the latter it seems

to be the other way round. When the paired importance values for all the other

scenarios (cf. Figures 16 - 31 in Appendix A.3) are scrutinized under that aspect,

one can see that in most cases the variable importance values seem to be on av-

erage higher for the PropRandom importance measure than for the permutation

importance measure. Only in those scenarios which have a variating effect size,

i.e. βββI , βββII or βββIV , correlation between covariates and a sample size of 1000,

the permutation importance tends to attribute higher importance values than

PropRandom does. Apparently, the different settings of mtry and maxdepth

have no influence on this pattern, and neither correlation between covariates in

combination with a small sample size nor a sample size of 1000 in combination

with ρ = 0 leads to higher permutation importance values.

A higher importance value could be interpreted as a better ability to discrim-

inate between relevant and irrelevant covariates of the respective importance

measure. Looking at the importance values for the noise variables in detail,

however, shows that the PropRandom importance also seems to attribute higher

importance values to the noise variables than the permutation importance does.

The question now is, in the cases where the PropRandom importance values are

higher for the influential covariates than the corresponding permutation impor-

tance values, are they also further from the average PropRandom importance

value of a noise variable than the corresponding permutation importance value
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is from the average permutation importance value of a noise variable? In or-

der to assess whether this is the case, the mean importance value minus the

mean importance value of all noise variables over all simulation iterations of the

respective scenario were computed with both importance measures for each influ-

ential covariate. For these mean importance values that are scaled in relation to

how far they are from the mean noise variable importance value, the differences

were computed, by subtracting the permutation importance value from the Pro-

pRandom importance value, so that a positive result means that PropRandom

discriminates better between relevant and irrelevant covariates and a negative

result means that the permutation importance is better able to discriminate.

These differences are shown for four scenarios in Figure 13. The scenarios

differ only in terms of sample size and correlation structure, and they confirm

the pattern described above: in the three scenarios where either n = 200, or

ρ = 0, or both, the PropRandom importance is, at least for the more influential

covariates, on average higher than the permutation importance, even though

the average noise variable importance value is subtracted out. Tendentially, the

difference is higher for covariates with larger effect sizes, while the difference is

near zero or has even a low negative value for covariates with a very weak effect.

In scenario 29, however, where n = 1000 and ρ = 0.5, the difference is near zero

for all covariates except the six most influential, and for them the difference is

negative, i.e. the average permutation importance is higher.
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Figure 13: Differences between average PropRandom and permutation VIs for
scenarios 17, 21, 25 and 29. All these scenarios have the effects βββII and the
parameter settings mtry = 21 and maxdepth = 0 but differ in terms of the
sample size and/or the correlation structure.
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Figures 32 - 39 in Appendix A.4 show that the average permutation impor-

tance is not only in the case of βββII higher for the most influential covariates

when the sample size is 1000 and the covariates are correlated, but that the

same pattern can be seen for βββI and βββIV . For βββIII , however, where all covari-

ates have an equally strong influence, this effect can not be observed, in these

scenarios the PropRandom importance tends to be higher than the permutation

importance for all settings, regardless of the sample size or correlation structure.

There is no obvious reason for that pattern, but apparently for a large enough

sample size the permutation importance becomes more inflated for correlated

and highly relevant covariates than the PropRandom importance.
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Figure 14: Mean permutation VIs for the influential covariates in scenario 17 are
shown in pink. The differences between mean PropRandom VIs and permutation
VIs are shown in dark blue.

Of course, it is important to consider that these differences are either way

in all cases very small. The absolute values of these differences are all smaller

than 0.001, most even considerably smaller. How small the differences actually

are is illustrated in Figure 14 by the example of scenario 17. It shows the

mean permutation importance values in pink and their difference to the mean

PropRandom importance values in blue, so that for a positive difference the

pink and blue parts of the bars sum up to the mean PropRandom VIs. For the

weaker covariates, both the variable importances and the differences are so small

that they can hardly be discerned in this figure.
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5.4 Summary of results

The main result of the simulation study is that the two variable importance

measures that were analysed perform very similar in all simulation settings. Not

only the rankings of variables but even the variable importance values themselves

are very close to each other for the two methods. There are small differences

in the performance, evaluated by correlation in the case of variating effect sizes

and by AUC in the case of constant effect sizes, between the measures, mostly in

favour of the new PropRandom approach, but only very few of these differences

could be shown to be significant. The p-values of the Wilcoxon tests for all

scenarios are listed in Tables 2 and 3.

mtry = 21 mtry = 8
effects corr. n full trees 3 layers full trees 3 layers

1 2 3 4
βββI ρ = 0 200 0.3096 0.8218 0.1833 0.8811

5 6 7 8
βββI ρ = 0 1000 0.0089 0.0173 0.1197 0.0003

9 10 11 12
βββI ρ = 0.5 200 0.9370 0.6217 0.2735 0.0482

13 14 15 16
βββI ρ = 0.5 1000 0.4682 0.6611 0.9507 0.6536

17 18 19 20
βββII ρ = 0 200 0.4608 0.0031 0.4734 0.0792

21 22 23 24
βββII ρ = 0 1000 0.8514 0.6711 0.9630 0.1352

25 26 27 28
βββII ρ = 0.5 200 0.8865 0.4993 0.4777 0.9739

29 30 31 32
βββII ρ = 0.5 1000 0.7219 0.1028 0.5787 0.2631

Table 2: p-values for comparing the correlation between effect sizes and VIs
measured by PropRandom and the permutation importance, respectively, with
a two-sided Wilcoxon signed-rank test. The number above each p-value indicates
the respective scenario. p-values lower than 0.05 are coloured in blue, p-values
lower than 0.1 are coloured in dark green.
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In summary, it can be said that for only eleven out of all 64 scenarios the p-

value is lower than 0.1, of which only eight p-values are lower than 0.05. Only one

of these p-values indicates a significantly higher performance of the permutation

importance while in all other cases with significant p-values the correlation/AUC

is higher for the PropRandom importance measure. The significantly higher

performance of the permutation importance occurs in scenario 54, i.e. effects

= βββ∗IV , no correlation between covariates, sample size of 1000, mtry = 21 and

maxdepth = 3, but since it is the only significant difference in that direction,

there can hardly be anything concluded from it.

mtry = 21 mtry = 8
effects corr. n full trees 3 layers full trees 3 layers

33 34 35 36
βββIII ρ = 0 200 0.4483 0.4734 0.9819 0.0140

37 38 39 40
βββIII ρ = 0 1000 0.2881 0.8547 0.2288 0.4413

41 42 43 44
βββIII ρ = 0.5 200 0.0768 0.3967 0.3297 0.3993

45 46 47 48
βββIII ρ = 0.5 1000 0.3531 0.0466 0.6887 0.7505

49 50 51 52
βββIV ρ = 0 200 0.1468 0.5103 0.1416 0.7478

53 54 55 56
βββIV ρ = 0 1000 0.9616 0.0354 0.8460 0.6799

57 58 59 60
βββIV ρ = 0.5 200 0.4311 0.4809 0.6938 0.0944

61 62 63 64
βββIV ρ = 0.5 1000 0.5348 0.2544 0.5191 0.4650

Table 3: p-values for comparing the correlation between effect sizes and VIs
measured by PropRandom and the permutation importance, respectively, with
a two-sided Wilcoxon signed-rank test. The number above each p-value indicates
the respective scenario. p-values lower than 0.05 are coloured in blue, p-values
lower than 0.1 are coloured in dark green.
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As for the instances of a significantly higher performance of the PropRandom

procedure, they are spread relatively evenly over the different settings. Four out

of ten instances occur for the effects of βββI , but for either of the other effects

at least one significant result can be found as well. For mtry, the sample size

and the correlation structure, the significant results occur almost equally often in

both alternatives. Formaxdepth, eight out of ten significant differences belong to

a scenario with a restriction of tree layers, yet the significant difference in favour

of the permutation importance also occurred in a setting with a restricted tree

size. All in all, there is no clear pattern visible that either PropRandom or the

permutation importance are distinctly better performing in a specific parameter

setting.

Regarding the kind of pattern that was detected in Section 5.3, that the

importance values of the most influential covariates are distinctly higher for

the permutation importance only in scenarios combining a sample size of 1000

and correlated covariates, it can not be said that this pattern is in any way

reflected by the results of the comparison of correlations or AUCs. Neither

does this pattern seem to be reflected in the median differences between correla-

tions/AUCs, which are depicted in Figure 15, where the combination of n = 1000

and rho = 0.5 does not indicate particularly high or low differences in either

direction.
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Figure 15: Median differences in correlations/AUCs for all scenarios. Differences
where taken in the form of PropRandom - permutation, so that a positive value
indicates higher correlations/AUCs for the PropRandom importance. Numbers
above bars indicate scenario.

The median differences between correlations or AUCs were calculated by

taking only those pairs into account where the difference is unequal to zero, as
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already explained in the end of Section 5.2. This modification plays only a role

in the scenarios that have constant effect sizes as well as correlation between

covariates as well as a sample size of 1000, in all other scenarios the differences

of all 100 pairs of correlations/AUCs are unequal to zero. The differences were

taken by subtracting the permutation importance correlation/AUC from the

PropRandom correlation/AUC, which means a positive median difference indi-

cates that the PropRandom correlations/AUCs are higher. The colour scheme

in the figure is supposed to give some orientation as to what bars belong to

which parameter settings. Green bars belong to scenarios with effects βββI , blue

bars to scenarios with effects βββII , red bars to scenarios with effects βββIII , and

purple bars to scenarios with effects βββIV . For each colour, the darker shade rep-

resents scenarios with no correlation between covariates and the lighter shade

represents scenarios with ρ = 0.5.

What can be seen in Figure 15 quite clearly is that there are distinctly more

median differences which are positive (44 of 64) and that the largest absolute

values of the positive differences are much larger than those of the negative dif-

ferences. This tendency, that in most cases the performance of the PropRandom

importance measure is slightly better than that of the permutation importance

measure, could already be seen in the analyses of the correlations and AUCs

in Sections 5.1 and 5.2 and is here condensed into one figure. Yet there is

no pattern recognizable that any parameter setting or combination of settings

decisively influences the difference in the performances of the both variable im-

portance measures.
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6 Conclusion and outlook

Hapfelmeier et al. (2014) stipulate several requirements that their new variable

importance measure should meet. The first of these requirements is: “When

there are no missing values, the measure should provide the same variable im-

portance ranking as the original permutation importance measure.” (p. 25) This

condition is satisfied in the simulation study they conduct, and the results of

this thesis confirm this assessment. How small the actual differences between

the importance values of the two measures are in the simulation study done in

this thesis is illustrated by Figures 2 and 3 in the beginning of Section 5.1 as

well as in Figure 14 in Section 5.3. Given the similarity in the procedure of

computing variable importance values for both methods, very similar results for

the use of either measure could be expected.

It is therefore not surprising that the performance of both measures is also

extremely similar, as can be seen in Figures 4 - 11 in Sections 5.1 and 5.2.

Even though a few of the differences between correlations/AUCs could be shown

to be significant, it is questionable whether this differences can be considered

as relevant, since they are so small. However, the performance of the new

PropRandom variable importance is in most cases evaluated as (if only very

slightly) higher than that of the original permutation importance, and in the

fewer cases where the performance of the permutation importance is the stronger

one, the differences are on average even smaller (cf. Figure 15 in Section 5.4).

So what can be concluded from the results of the simulation study is that the

PropRandom procedure evidently is at least not inferior to the permutation

importance in the considered simulation settings. If there is no great advantage

in choosing the PropRandom importance over the permutation importance in the

absence of missing values, there is also apparently no disadvantage in doing so.

Consequently, since the new method additionally has the upside of being able to

deal easily with missing data, which the permutation importance lacks, there is

no reason why the PropRandom importance should not replace the permutation

importance as the default variable importance measure, as it already does in the

R package party.

Of course, it can not be ruled out that there may be other data situations

where either of both methods may more distinctly outperform the other. The

performance of the two measures could for example also be examined in data

situations with a more complex correlation structure, or covariates that are non-

normally distributed or categorical, and lots of other settings can be thought of.

Moreover the PropRandom procedure might be combined with other adapta-
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tions of the original permutation importance. Hapfelmeier et al. (2014) already

state that they plan to extend their approach to the conditional permutation

importance developed by Strobl et al. (2008), where the covariate values are not

permuted within the whole OOB-sample but within a grid of the covariate space

that is defined by other covariates that are correlated to the covariate of inter-

est. It is also easy to imagine how the PropRandom procedure may be combined

with the AUC-based variable importance that was introduced by Janitza et al.

(2013) and was shown to be better suited to strongly imbalanced data situations

than the original permutation importance. Such extensions of the PropRandom

measure to other importance measures would then also have to be evaluated in

different data situations.
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Appendix

A Additional figures and tables

A.1 Performance evaluation of all simulation settings

mtry = 21 mtry = 8
effects corr. n full trees 3 layers full trees 3 layers

βββI ρ = 0 200 0.824 0.805 0.835 0.830
βββI ρ = 0 1000 0.893 0.847 0.916 0.895
βββI ρ = 0.5 200 0.895 0.885 0.916 0.912
βββI ρ = 0.5 1000 0.939 0.895 0.955 0.936

βββII ρ = 0 200 0.855 0.850 0.867 0.870
βββII ρ = 0 1000 0.911 0.880 0.937 0.921
βββII ρ = 0.5 200 0.917 0.916 0.939 0.931
βββII ρ = 0.5 1000 0.951 0.920 0.966 0.952

βββIII ρ = 0 200 0.772 0.759 0.784 0.792
βββIII ρ = 0 1000 0.863 0.808 0.887 0.852
βββIII ρ = 0.5 200 0.783 0.770 0.794 0.795
βββIII ρ = 0.5 1000 0.838 0.804 0.849 0.829

βββIV ρ = 0 200 0.776 0.769 0.790 0.788
βββIV ρ = 0 1000 0.871 0.837 0.894 0.882
βββIV ρ = 0.5 200 0.870 0.862 0.880 0.882
βββIV ρ = 0.5 1000 0.927 0.893 0.940 0.928

Table 4: Performance for all 64 simulation settings, measured with the AUC.
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A.2 Proportions of the response classes in data simulated

with effects βββ∗IV

corr. n proportion of y = 1 in data

ρ = 0 200 0.49932

ρ = 0 1000 0.49970

ρ = 0.5 200 0.50004

ρ = 0.5 1000 0.49996

Table 5: Proportions of the response classes in data simulated with effects βββ∗IV .
Proportions are averaged over 10000 simulated data sets.
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A.3 Figures of the variable importance values of all sce-

narios

Effects: βββI, no correlation between covariates, n = 200
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Figure 16: PropRandom (blue) and permutation (pink) variable importance val-
ues for scenarios 1 - 4. Each boxplot comprises 100 values for the corresponding
variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββI, no correlation between covariates, n = 1000
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Figure 17: PropRandom (blue) and permutation (pink) variable importance val-
ues for scenarios 5 - 8. Each boxplot comprises 100 values for the corresponding
variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββI, blockwise correlation between covariates, n = 200
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Figure 18: PropRandom (blue) and permutation (pink) variable importance val-
ues for scenarios 9 - 12. Each boxplot comprises 100 values for the corresponding
variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββI, blockwise correlation between covariates, n = 1000
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Figure 19: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 13 - 16. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββII, no correlation between covariates, n = 200
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Figure 20: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 17 - 20. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββII, no correlation between covariates, n = 1000
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Figure 21: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 21 - 24. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββII, blockwise correlation between covariates, n = 200
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Figure 22: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 25 - 28. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββII, blockwise correlation between covariates, n = 1000
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Figure 23: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 29 - 32. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββIII, no correlation between covariates, n = 200
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Figure 24: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 33 - 36. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββIII, no correlation between covariates, n = 1000
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Figure 25: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 37 - 40. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββIII, blockwise correlation between covariates, n = 200
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Figure 26: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 41 - 44. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββIII, blockwise correlation between covariates, n = 1000
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Figure 27: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 45 - 48. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββIV , no correlation between covariates, n = 200
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Figure 28: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 49 - 52. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββIV , no correlation between covariates, n = 1000
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Figure 29: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 53 - 56. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββIV , blockwise correlation between covariates, n = 200
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Figure 30: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 57 - 60. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.
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Effects: βββIV , blockwise correlation between covariates, n = 1000
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Figure 31: PropRandom (blue) and permutation (pink) variable importance
values for scenarios 61 - 64. Each boxplot comprises 100 values for the corre-
sponding variable. Variables 33 - 80 are excluded for clarity.

65



A.4 Differences between the avaraged VIs of the influen-

tial covariates

Effects: βββI, no correlation between covariates
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Figure 32: Differences between average PropRandom and permutation VIs for
scenarios 1 - 8. Scenarios in the upper half have a sample size of 200, scenarios
in the lower half have a sample size of 1000. maxdepth = 0 for scenarios on the
left side and 3 for scenarios on the right side. Scenarios in the same row share
the same value for mtry, alternating 21 and 8.
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Effects: βββI, blockwise correlation between covariates
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Figure 33: Differences between average PropRandom and permutation VIs for
scenarios 9 - 16. Scenarios in the upper half have a sample size of 200, scenarios
in the lower half have a sample size of 1000. maxdepth = 0 for scenarios on the
left side and 3 for scenarios on the right side. Scenarios in the same row share
the same value for mtry, alternating 21 and 8.
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Effects: βββII, no correlation between covariates
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Figure 34: Differences between average PropRandom and permutation VIs for
scenarios 17 - 24. Scenarios in the upper half have a sample size of 200, scenarios
in the lower half have a sample size of 1000. maxdepth = 0 for scenarios on the
left side and 3 for scenarios on the right side. Scenarios in the same row share
the same value for mtry, alternating 21 and 8.

68



Effects: βββII, blockwise correlation between covariates
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Figure 35: Differences between average PropRandom and permutation VIs for
scenarios 25 - 32. Scenarios in the upper half have a sample size of 200, scenarios
in the lower half have a sample size of 1000. maxdepth = 0 for scenarios on the
left side and 3 for scenarios on the right side. Scenarios in the same row share
the same value for mtry, alternating 21 and 8.
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Effects: βββIII , no correlation between covariates
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Figure 36: Differences between average PropRandom and permutation VIs for
scenarios 33 - 40. Scenarios in the upper half have a sample size of 200, scenarios
in the lower half have a sample size of 1000. maxdepth = 0 for scenarios on the
left side and 3 for scenarios on the right side. Scenarios in the same row share
the same value for mtry, alternating 21 and 8.
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Effects: βββIII, blockwise correlation between covariates
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Figure 37: Differences between average PropRandom and permutation VIs for
scenarios 41 - 48. Scenarios in the upper half have a sample size of 200, scenarios
in the lower half have a sample size of 1000. maxdepth = 0 for scenarios on the
left side and 3 for scenarios on the right side. Scenarios in the same row share
the same value for mtry, alternating 21 and 8.
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Effects: βββIV , no correlation between covariates
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Figure 38: Differences between average PropRandom and permutation VIs for
scenarios 49 - 56. Scenarios in the upper half have a sample size of 200, scenarios
in the lower half have a sample size of 1000. maxdepth = 0 for scenarios on the
left side and 3 for scenarios on the right side. Scenarios in the same row share
the same value for mtry, alternating 21 and 8.
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Effects: βββIV , blockwise correlation between covariates

0e+00

1e−04

2e−04

V1 V3 V5 V7 V9 V11V13V15V17V19V21V23V25V27V29
V2 V4 V6 V8 V10V12V14V16V18V20V22V24V26V28V30

di
ffe

re
nc

e 
in

 V
I

scenario 57

0.00000

0.00005

0.00010

0.00015

0.00020

V1 V3 V5 V7 V9 V11V13V15V17V19V21V23V25V27V29
V2 V4 V6 V8 V10V12V14V16V18V20V22V24V26V28V30

scenario 58

0e+00

1e−04

2e−04

3e−04

V1 V3 V5 V7 V9 V11V13V15V17V19V21V23V25V27V29
V2 V4 V6 V8 V10V12V14V16V18V20V22V24V26V28V30

di
ffe

re
nc

e 
in

 V
I

scenario 59

0.00000

0.00005

0.00010

0.00015

V1 V3 V5 V7 V9 V11V13V15V17V19V21V23V25V27V29
V2 V4 V6 V8 V10V12V14V16V18V20V22V24V26V28V30

scenario 60

−6e−04

−4e−04

−2e−04

0e+00

V1 V3 V5 V7 V9 V11V13V15V17V19V21V23V25V27V29
V2 V4 V6 V8 V10V12V14V16V18V20V22V24V26V28V30

di
ffe

re
nc

e 
in

 V
I

scenario 61

−8e−05

−6e−05

−4e−05

−2e−05

0e+00

2e−05

V1 V3 V5 V7 V9 V11V13V15V17V19V21V23V25V27V29
V2 V4 V6 V8 V10V12V14V16V18V20V22V24V26V28V30

scenario 62

−2e−04

−1e−04

0e+00

V1 V3 V5 V7 V9 V11V13V15V17V19V21V23V25V27V29
V2 V4 V6 V8 V10V12V14V16V18V20V22V24V26V28V30

di
ffe

re
nc

e 
in

 V
I

scenario 63

−4e−05

−2e−05

0e+00

2e−05

V1 V3 V5 V7 V9 V11V13V15V17V19V21V23V25V27V29
V2 V4 V6 V8 V10V12V14V16V18V20V22V24V26V28V30

scenario 64

Figure 39: Differences between average PropRandom and permutation VIs for
scenarios 57 - 64. Scenarios in the upper half have a sample size of 200, scenarios
in the lower half have a sample size of 1000. maxdepth = 0 for scenarios on the
left side and 3 for scenarios on the right side. Scenarios in the same row share
the same value for mtry, alternating 21 and 8.
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B Electronic appendix

The electronic appendix contains:

� A pdf version of this thesis

� The folder results contains the VIs and correlations of each scenario in

.RData files and the file load results.R to load the results.

Each .RData file corresponds to one scenario and is a list containing

- $vis: an 100x80 array with the variable importance values of this

scenario computed with PropRandom

- $ca: a vector with 100 rank correlation coefficients between the effect

sizes and the PropRandom importance values (or 100 AUCs evaluat-

ing the PropRandom importance values)

- $vis old: an 100x80 array with the variable importance values of this

scenario computed with the permutation importance

- $ca old: a vector with 100 rank correlation coefficients between the

effect sizes and the permutation importance values (or 100 AUCs

evaluating the permutation importance values)

� The folder R code contains

- params and functions.R, which contains the parameters for the sim-

ulation and functions used in the files of this folder

- simulation.R, which contains the code to simulate all scenarios

- .R files for the values in the tables in the thesis (proportion of response

classes, AUCs for evaluating the performance of the RFs, p-values of

the Wilcoxon tests)

� The folder figures pdf contains all figures as pdfs that are used in the thesis

(sorted into subfolders that are named according to the sections in which

the figures are used)

� The folder figures code contains R files to produce all figures that are

named of according to the section in which the figures are used

The following packages have to be installed to run the code:

- party

- mvtnorm
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- MLmetrics

- tidyverse

- ggplot2

- patchwork
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I declare that I have developed and written the enclosed Master’s Thesis com-

pletely by myself, and have not used sources or means without declaration in the

text. Any thoughts from others or literal quotations are clearly marked. The

Master’s Thesis was not used in the same or in a similar version to achieve an

academic grading or is being published elsewhere.

München, 15.12.2021

Katrin Racic-Rachinsky
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