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Abstract

Positive Unlabeled (PU) Learning is a binary classification problem where only
positive and unlabeled data are available. Most methods are designed for balanced
datasets, but in many applications there exist fewer samples in the positive class,
such as in medical diagnosis. Self-supervised representation learning can create
embeddings of unlabeled data using pre-text tasks and achieved promising results
in imbalanced learning and semi-supervised learning. In this work, we investigate
to what extent PU learning on imbalanced data can benefit from self-supervised
learning. We apply a two-step approach with decoupled contrastive self-supervised
representation learning followed by classifier training adjusted for imbalanced PU
data and evaluate them on different image datasets. In addition, we develop a
novel contrastive PU loss for imbalanced data that incorporates information about
the PU labels already in representation learning. We empirically show that the
performance of PU learning can be increased under certain circumstances, especially
by self-supervised pre-training without label information.
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Chapter 1

Introduction

Positive-unlabeled (PU) learning is a special case of binary classification, in which
only positive and unlabeled samples are available [Jaskie and Spanias, 2019]. For
negative observations there is no class information accessible, e.g. due to high costs
or missing information in the survey. This differs from semi-supervised learning,
where some positive and negative samples are known and the rest of the samples
are unlabeled [Ouali et al., 2020]. Typical real world applications of PU data occur
in the areas of medical diagnosis [Claesen et al., 2015], fraud detection [Jiang et al.,
2020] and knowledge base completion [Arora, 2020], among others. Especially in
these areas the classes are often highly imbalanced, with only a few observations
in the positive class. While many articles and methods address the problem of PU
learning in a balanced setting [Bekker and Davis, 2020], only few explicitly address
its application to imbalanced data [Su et al., 2021], Jiang et al. [2020].

Self-supervised Learning can extract information from an unlabeled dataset by
applying auxiliary tasks and create helpful representations of the data without re-
quiring the labels of the actual classification task of interest Jing and Tian [2020].
These representations can then be used for training the model on the actual clas-
sification task of interest. Contrastive self-supervised learning proved to be a very
successful method in this area by applying two data augmentations of one sample
and trying to minimize the distance in latent space between related samples while
maximizing the distance to the other samples [Chen et al., 2020b], [Jaiswal et al.,
2020].

Self-supervised pre-training has proven to be very effective for classification on
imbalanced data [Liu et al., 2021], [Yang and Xu, 2020]. In addition, self-supervised
learning has been very successful in the area of semi-supervised learning by incorpo-
rating information about unlabeled samples into the classification model [Zhai et al.,
2019]. Based on this, we want to investigate whether contrastive self-supervised
learning can achieve similar success in the related problem of PU learning by using
information in unlabeled samples more effectively, especially on imbalanced data,
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CHAPTER 1. INTRODUCTION

with only a few observations in the positive class.

1.1 Main Contribution

The main contribution of this work can be divided into two parts:
1. We investigate the extent to which positive-unlabeled learning on imbal-

anced data can benefit from contrastive self-supervised learning using different image
datasets. To do so, we develop a two-step framework based on the idea of decoupling
representation learning and classification [Kang et al., 2019]. In the first step, repre-
sentations of the images are learned independently of the label information through
contrastive learning. In the second step, we use these representations as input to a
simple classification model that is trained with a loss adjusted for imbalanced and
PU data [Su et al., 2021]. For this purpose, we compare our method with a compa-
rable model without pre-training and with current state-of-the-art approaches from
PU learning.

2. Based on the supervised contrastive loss [Khosla et al., 2020] and the imbal-
anced non-negative PU loss Su et al. [2021], we develop connPU , a contrastive loss
for imbalanced PU data that allows to incorporate the label information of the PU
problem already during the contrastive learning of the representations. We compare
the results of connPU with those of our first approach.

To the best of our knowledge, we are the first to investigate the applicability of
self-supervised learning for imbalanced positive-unlabeled data in more detail.

1.2 Thesis Structure

At the beginning, in chapter 2, we explain the basics and methods for the three
different areas positive-unlabeled learning (2.1), imbalanced learning (2.2) and self-
supervised representation learning (2.3), as well as their overlaps (2.4). In chapter
3, we describe, apply, and evaluate the approach of self-supervised pre-training for
imbalanced PU classification. Then, in chapter 4, we elaborate on the development
and application of the novel contrastive loss for imbalanced PU data. In chapter 5,
we summarize the insights gained from the aforementioned approaches and provide
an outlook on possible future research directions based on them.
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Chapter 2

Representation Learning from
Imbalanced Positive-Unlabeled
Data

2.1 Positive-Unlabeled Learning

In a common supervised binary classification problem in machine learning, the data
can be divided into two classes, defined as positives and negatives. Here, the labels
of the complete training data are known, so each sample can be uniquely assigned
to either the positive class or the negative class. Positive-Unlabeled (PU) learning
is a special form of binary classification and is characterized by the fact that some
samples from the training data set are labeled as positive, but no labels are available
for the remaining samples [Liu et al., 2003], [Ouali et al., 2020]. Consequently, these
unlabeled samples can belong to either the negative class or the positive class.

2.1.1 Occurrence of Positive-Unlabeled Data

PU data can be found in various application areas in the real world, where a binary
classification problem is to be solved, and there are different reasons why only pos-
itive labels but no reliable negative labels are collected. Especially in medical data
PU learning plays an important role. One example is the identification of genes
responsible for diseases [Yang et al., 2012], where it is difficult and costly to identify
genes that are definitely not related to the disease. In general, when classifying
diseases based on patient data, PU data are often available because patients are
not appropriately screened either due to lack of resources or mild or asymptomatic
progresses despite having the disease. This is the case, for example, with diabetes
[Claesen et al., 2015] which often is not diagnosed, but also with the current issue
of Covid-19, where individuals not tested or tested negative by rapid tests due to
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POSITIVE-UNLABELED DATA

insufficient sensitivity in some rapid tests [Scheiblauer et al., 2021] should not neces-
sarily be considered negative, but unlabeled. Chen et al. [2020d] show that disease
progression, such as Alzheimer’s, can also be considered a PU problem, as often
early stages of the disease with mild symptoms are incorrectly labeled as healthy in
standard binary classification approaches. At the same time, this means that PU
learning approaches in this field can be extremely useful for early disease detection
without requiring observations at multiple time points for a patient.

Another very current use case of PU learning is recommendation systems [Zhou
et al., 2021], which are used primarily by large tech companies and can have a high
impact on customer loyalty and sales. In this case, suitable suggestions for future
interactions are to be determined and presented to the customer on the basis of
previous user data. For example, streaming services generate suggestions for pro-
ductions that are also interesting for the user on the basis of films and series already
seen, or online shopping recommends suitable products on the basis of previous pur-
chasing behavior. Often, only positive samples in the form of purchases and clicks
are available, and no negative samples, which means that the rest of the range can
be regarded as unlabeled samples[Bekker and Davis, 2020].

Methods from PU learning can also be applied to related classification problems
under certain assumptions, such as inlier-based outlier detection [Hido et al., 2008].
Here, verified samples can be considered as labeled positives, whereas the remain-
ing observations are considered unlabeled and the unknown outliers represent the
negative class. A very similar problem to which PU learning can be applied is one-
class classification [Khan and Madden, 2014]. Here, the classification of a particular
group (positives) with only some known samples is of interest and all other groups
are considered negative, which at the same time often leads to high heterogeneity in
the negative class. Examples of use cases in these areas are the defect detection of
machines using only data of correctly functioning systems [Fujimaki et al., 2005], or
the detection of malicious users in social networks or knowledge bases [Zheng et al.,
2019].

2.1.2 Problem Formulation

PU learning is a large field in machine learning with many different sub-fields, each
of which can be described using different assumptions and solved using different
methods. In this subsection, we will primarily focus on the concepts that are im-
portant for this work. If not stated otherwise, we will follow the contents of Bekker
and Davis [2020], which provide an exhaustive overview of the topic.

In the usual binary classification, each observation in the training dataset can
be described by the tuple (x, y), where x represents the features and y ∈ {0, 1} rep-
resents the label. In PU learning, however, the labels are not known for all samples,
which is why Elkan and Noto [2008] add the binary variable s ∈ {0, 1} to get the
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CHAPTER 2. REPRESENTATION LEARNING FROM IMBALANCED
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triplet (x, y, s), where s = 1 if the sample is labeled as positive and s = 0 if the sam-
ple is unlabeled. By the nature of PU learning, the probability p(y = 1|s = 1) = 1
and p(s = 1|y = 0) = 0.

Labeling Process
Since no direct information about y is available for the training dataset, the auxiliary
variable s must be used to determine a suitable classifier via dependencies between
s and y. To do this, some distributional assumptions must be made for the labeling
mechanism and the data in general. Elkan and Noto [2008] distinguish between
two scenarios for the occurrence of PU data. In the single-training-set-scenario, the
entire training data is assumed to be an i.i.d sample from the true, data-generating
distribution p(x, y, s) where y is not collected. In the case-control-scenario, however,
the labeled positive data come from their own independent distribution and only
the unlabeled data p(x|s = 0) come from the true distribution. Most algorithms
can be applied to both scenarios under certain assumptions, but in this paper we
will focus further on the single-training-set-scenario, which has also received more
attention in previous literature.

At next it is important to understand how the labeling mechanism works, i.e.
how the labeled samples are determined from the positive samples. Each sample is
selected from the positive samples with the probability e(x) = p(s = 1|y = 1,x),
called propensity score. It is noticeable that e(x) depends on x. This is the case
if a probabilistic gap is assumed [He et al., 2018], which is given as ∆p(x) = p(y =
1|x) − p(y = 0|x). This means that positive samples that are less distinct from
negative samples based on the features x are less likely to be labeled as positive,
which is often the case in disease diagnosis.

With the Selected At Random (SAR) assumption, the propensity score depends
entirely on the features x, but there is no probabilistic gap. The most commonly
used assumption is the Selected Completely At Random (SCAR) assumption, where
the propensity score is independent of x and thus can be given by

e(x) = p(s = 1|y = 1,x) = p(s = 1|y = 1) = c (2.1)

as a constant label probability. c thus simultaneously corresponds to the proportion
of labeled data in the positive data. In the remainder of this thesis, we will make
this assumption, in particular for all algorithms described below.

Class Prior
An important aspect in PU learning is the class prior π = p(y = 1), which represents
the proportion of the positive class in the entire distribution. The prior has a direct
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relationship with the label probability c, which can be represented as follows:

c = p(s = 1|y = 1) =
p(s = 1, y = 1)

p(y = 1)

=
p(s = 1)

p(y = 1)
=

p(s = 1)

π

⇐⇒ π =
p(s = 1)

c

(2.2)

where p(s = 1) can be seen as the proportion of the labeled examples in the whole
data.

The prior can be used in several ways to train a suitable classifier. In some
applications, however, neither π nor c are known, so π must be estimated from the
data. Methods for this are for example approaches via partial matching [Du Plessis
and Sugiyama, 2014], decision tree induction [Bekker and Davis, 2018], receiver
operating characteristic approaches [Blanchard et al., 2010] or kernel embeddings
[Ramaswamy et al., 2016]. In this thesis, however, π is assumed to be known, which
is why the estimation of the prior is not discussed in more detail.

Additional Assumptions
For most PU learning algorithms, some additional assumptions about the data are
helpful to train a good classifier. Here we address the two most important ones for
the later experiments.

The Seperability assumption states that there exists a function f and a threshold
τ such that for all xi holds:

f(xi) ≥ t, if yi = 1

f(xi) < t, if yi = 0
(2.3)

This property allows to train good classifiers by classifying all positive labeled ex-
amples and at the same time as few unlabeled examples as possible as positives [Liu
et al., 2002], [Blanchard et al., 2010], or prior knowledge about π can be used to
determine the decision boundary in order to optimize the estimation.

Another important assumption for the applications in this thesis is the Smooth-
ness assumption. This states that the similarity of two data points xi and xj also
indicates similar probabilities regarding their true classes p(y|xi) and p(y|xj). This
is a necessary condition to take advantage of metric learning, in particular self-
supervised representation learning, which is described in more detail in section 2.3.

2.1.3 Methods for Positive-Unlabeled Learning

Bekker and Davis [2020] divide the methods for PU learning into 3 or 4. different
categories, respectively:
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1. Two-Step Techniques attempt to determine reliable negative samples (and
in some cases further positive observations [Fung et al., 2005]) in the first step,
and then in the second step use these to apply traditional semi-supervised learning
approaches to the generated positive, negative, and unlabeled observations.

2. Biased Learning approaches consider PU learning as a binary classification
problem with the unlabeled samples as noisy observations of the negative class. For
this, normal binary classifiers are modified such that mis-classifications of positives
are penalized harder than those of negatives or hyperparameters of learners are
tuned to optimize appropriate PU metrics in the validation dataset.

3. Class Prior Incorporation uses direct knowledge about the class prior π to
generate a good classifier. A distinction can be made between pre-processing and
post-processing. In pre-processing a modified dataset is created by rebalancing,
incorporation of label probabilities or empirical risk-minimization methods, and di-
rectly integrated into the learning process. In post-processing the decision function
or the predicted probabilities are adjusted after training.

4. Other methods summarize approaches, which cannot be assigned to the upper
categories, like e.g. modeling of the densities of the two classes by generative adver-
sarial networks adapted on PU data [Hou et al., 2017], [Guo et al., 2020], [Chiaroni
et al., 2018].

In this thesis, we will go into more detail about the use of techniques based
on class prior incorporation, in particular the use of cost-sensitive empirical risk-
minimization methods, which can be applied very well to unstructured data in the
field of deep learning, such as image data.

In the binary classification case, the mis-classification risk
R(g) = E(X,Y )∼p(x,y)[ℓ(g(X), Y )] can be represented as

Rpn(g) = πEP (x|y=1)[ℓ(g(x), 1)] + (1− π)EP (x|y=0)[ℓ(g(x), 0)] (2.4)

where the function g : Rd → (0, 1) models P (y|x) and ℓ(·, ·) is the zero-one loss
l01(g(x), y) = (1− ⌊2g(x)⌋).

Since there is no direct access to the true label y for the unlabeled data in PU
learning, Du Plessis et al. [2014] and Kiryo et al. [2017] show that this risk can be
reformulated to be independent from knowledge about true negatives as

Rpu(g) = πEP (x|Y=1)[ℓ(g(x), 1)] +
(
EP (x)[ℓ(g(x), 0)]− πEP (x|Y=1)[ℓ(g(x), 0)]

)
(2.5)

Derived from this equation, Kiryo et al. [2017] developed the following non-
negative PU loss:
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Lnnpu(g) =
π

ns=1

∑
xi∈X|s=1

ℓ (g (xi) , 1)+

max

(
0,

1

ns=0

∑
xi∈X|s=0

ℓ(g(xi), 0)−
π

ns=1

∑
xi∈X|s=1

ℓ (g (xi) , 0)

 (2.6)

where ns=1 is the number of positive labeled and ns=0 the number of unlabeled
samples in the train data.

For training the model ℓ01(g(x), s) can be replaced by a surrogate loss for better
optimization, e.g. the sigmoid loss

ℓsig(g(x), s) =
1

1− exp(2(s− 0.5)g(x))
(2.7)

The max(0, ·) in equation (2.6) was not implemented in the first version of
Du Plessis et al. [2014] and was only added by Kiryo et al. [2017] because the
second part of equation (2.6) estimates the second part of 2.4, which cannot become
negative, in theory. However, since very flexible models like deep neural networks
are able to model the empirical risk smaller than 0 for this term, this limit was
added to the loss function.

2.1.4 Related Fields

PU learning is usually described as a binary classification problem. This problem
can be generalized to Multi-Positive-Unlabeled Learning, where the positive class
consists of several subclasses that are also to be distinguished. Applications for this
are, for example, access permissions to buildings based on face recognition, where
several persons have access and the training data consists of several images per
person. Approaches for this are described by Xu et al. [2017] and Shu et al. [2020].

The further above mentioned One-Class Classification [Perera et al., 2021] differs
in the point that not the positive class but the negative class consists of several
individual classes. However, since no labels of the negative class are known in PU
learning, no trivial subdivision into these subclasses is possible, and it is usually
treated as a binary classification problem with adjustment for higher heterogeneity
in the negative class, or methods from outlier detection are used [Seliya et al., 2021].

If some negative labels are known, methods from Semi-supervised Learning can
be applied instead of PU learning. In the field of deep learning often compositions
of a supervised loss for the observations with known labels and an unsupervised loss
for the unlabeled data [Zhai et al., 2019], [Yang et al., 2021], and/or pseudo-labeling
approaches [Rizve et al., 2021] are used. The latter are used in PU learning slightly
modified also in the two-step techniques, sometimes also in combination with the
help of class prior incorporation [Chen et al., 2020d], [Dorigatti et al., 2022].
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2.2 Imbalanced Learning

In supervised machine learning for classification problems, many methods naively
assume an approximate balanced distribution of observations per class. In many
real world scenarios, however, the classes are strongly imbalanced, with sometimes
only extremely few samples in the tail classes. Typical scenarios are object detection
in autonomous driving [Carranza-Garćıa et al., 2021] or few-shot detection [Ochal
et al., 2021]. Imbalanced data does not only occur in multi-class problems, but also
in the binary setting, with often only a few samples in the positive minority class.
The applications of binary imbalanced data largely overlap with the applications of
PU data described in subsection 2.1.1, e.g. in medical diagnosis [Rahman and Davis,
2013] or fraud detection [Makki et al., 2019]. If traditional classification models are
not adapted accordingly, the majority class is often wrongly predicted due to its
high number of observations in the training of the model, and the minority class is
neglected.

2.2.1 Performance Metrics

The confusion matrix for binary classification is displayed in table 2.1. A typical
metric for the prediction quality of machine learning models for classification is
the accuracy (TP + TN)/(TP + FP + TN + FN). For binary imbalanced data,
this method is usually not suitable, since it does not adjust for the different class
sizes. Thus, for example, with a high imbalance ratio of 1:19 positives:negatives,
a classifier can achieve an accuracy of 95% even if it only ever predicts negative
as class. This can lead to problems in applications that put a lot of emphasis on
correct prediction of the minority class, such as medical diagnosis. As an alterna-
tive measure for imbalanced data, the F1-score, the harmonic mean between recall
and precision, is often used: F1 = 2(recall · precision)/(recall + precision). Here
recall = TP/(TP +FN) is the proportion of correctly predicted positives out of the
positives and precision = TP/(TP + FP ) is the proportion of correctly predicted
positives out of all positive predictions.

Truth
Prediction

Positive Negative
Positve True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 2.1: Confusion matrix of binary classification.
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2.2.2 Methods for Imbalanced Learning

Johnson and Khoshgoftaar [2019] divide the approaches for imbalanced learning into
2 categories:

1. Data-level Methods try to solve the challenge of imbalanced learning with tar-
geted changes of the data distribution and subsequent training of a traditional classi-
fier, mostly by resampling. Typical applications are simple random under-sampling
of the majority class or random over-sampling of the minority class [Van Hulse et al.,
2007]. More advanced methods are based on Synthetic Minority Over-sampling
Technique (SMOTE) [Chawla et al., 2002], where additional artificial samples of the
minority class are generated by interpolation between the nearest neighbors of the
samples in the minority class.

2. Algorithm-level Methods do not change the data structure, but adapt the
classification algorithm directly to imbalanced data. Often samples from minority
classes are penalized more or the decision threshold is adjusted accordingly. For
the latter e.g., Khan et al. [2019] use Bayesian uncertainty estimates, since these
correlate directly with the rarity of the classes. As in PU learning (subsection
2.1.3), cost-sensitive learning can use re-weighting to increase the importance of
samples from the minority class in classifier training. A method that adjusts for
both positive-unlabeled and imbalanced data is described in subsection 2.4.3.

2.3 Self-Supervised visual Representation Learn-

ing

2.3.1 Representation Learning

The idea behind Representation Learning is to generate mostly low-dimensional rep-
resentations of data that map information about the latent data structure and are
helpful for downstream tasks, such as classification or regression [Bengio et al., 2013].
Especially for unstructured, high-dimensional data and features that cannot be in-
terpreted directly, such as text, audio, or image data, Deep Representation Learning
has high importance. Use cases with extreme success and progress in recent years
include speech recognition and signal processing [Amiriparian, 2019], natural lan-
guage processing [Mikolov et al., 2013] or object detection [Xie et al., 2021].

Metric Learning
Metric Learning is a subsection of representation learning that attempts to learn
good representations in latent space by learning distances between observations [Bel-
let et al., 2013]. The idea follows the principle of smoothness addressed in subsection
2.1.2. The representations of semantically similar samples should be close to each
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other and thus have a lower learned distance or a higher similarity score than dif-
ferent observations. In contrast to e.g. unsupervised generative approaches, metric
learning, in a supervised manner, requires information indicating the similarity of
observations, such as class labels, link connections or known distances.

2.3.2 Self-Supervised Learning

Compared to some other unsupervised representation learning approaches, deep
self-supervised learning does not necessarily focus on the properties of the learned
representations, such as their interpretability, but primarily on good performance
in downstream tasks. For this, it uses the idea from Transfer Learning [Zhuang
et al., 2020] that neural networks trained on certain data or tasks in a supervised
manner can be very useful for similar data or tasks because the trained weights in
the network already model semantic or syntactic representations of the underlying
data structure.

In many use cases of representation learning, there exists a large amount of data,
but there are no tasks or collected labels available for training supervised learning
models. In order to still take advantage of these supervised learning architectures,
pretext tasks are used, which can easily be generated automatically from the data.
The final performance of the models on these pretext tasks is not important, but
only the quality of the representations that are created in the trained weights of the
networks.

Typical applications are autoregressive models, i.e. time series data, since the
prediction of future or past observations is an auxiliary task, without the need for
further tasks or labels through manual annotations by humans or transformations of
data. This approach can be found in the field of natural language processing at e.g.
next sentence prediction [Devlin et al., 2018], tracking and frame sequence prediction
on video data [Wang and Gupta, 2015], or in general in the field of reinforcement
learning [Gelada et al., 2019].

In the application to image data, usually pretext tasks are created by different
modifications of images, where the type of modification is to be recognized and
predicted by the network as a classification task. An example is cutting images
into patches, and then predicting the relative position of two patches of the same
image [Doersch et al., 2015], or predicting the position of all patches as in a puzzle
[Noroozi and Favaro, 2016]. This enables learning the spatial context of the objects
in the image. In another method, colored images are transformed to grayscale and
the model is trained to reconstruct the original color structure [Zhang et al., 2016].

In general, approaches of Generative Modeling can also be seen as self-supervised
learning, where the pretext task is the reconstruction of the original sample. Thus,
for image datasets, mainly pixel-level contexts are modeled and stored in the rep-
resentations. Relevant methods are for example the context encoder [Pathak et al.,
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2016] or bidirectional generative adversarial networks [Donahue et al., 2016].
A broad overview of these and other methods and more detailed insights into

self-supervised learning in general can be found at Weng [2019] and Jing and Tian
[2020].

2.3.3 Contrastive Learning

Approaches from generative modeling can involve high computational costs, require
many samples and often have problems in convergence [Jaiswal et al., 2020], and
for many downstream tasks the representations learned at the pixel level may not
be optimal. The other pretext tasks described above are quite specific in terms of
what information of the data should be stored in the representations, which can
harm their generalizability. Accordingly, they must be carefully chosen to contain
appropriate added value to the data and downstream tasks of interest [Chen et al.,
2020b], [Yamaguchi et al., 2021]. Contrastive Learning, as another method of self-
supervised learning, has made many advances in the last few years and achieved
state-of-the-art performance in many tasks and datasets.

Contrastive learning is a part of the above mentioned metric learning and tries to
cluster the representations of similar samples in the embedding space close together,
whereas the distance to more different samples should be larger. For this, contrastive
learning needs information about which observations belong together, i.e. requiring
a class label. The first contrastive loss was described by Chopra et al. [2005] and
can be summarized as:

Lcon (xi,xj, g) =1[yi=yj ] ∥g (xi)− g (xj)∥22+
1[yi ̸=yj ] max

(
0, ϵ− ∥g (xi)− g (xj)∥22

) (2.8)

where xi ∈ X represents the input observations, yi ∈ {1, ..., L} represents the re-
spective class label, and g(·) : X → Rd represents the function or trainable neural
network that maps the observations to the corresponding representations [Weng,
2021]. Hence, the objective of this loss is to minimize the distance of samples from
the same class and maximize the distance to samples from the other classes with
the lower bound ϵ so that there’s no focus on too easy negative samples.

It is noticeable, that for contrastive learning class labels are needed. These labels
can be generated automatically in a self-supervised manner via pretext tasks, too.

The most common technique, especially on image data, uses Data Augmentation
to generate k noisy versions of each observation. The original N observations are
considered to belong each to an own class, and the respective augmentations belong
to the same class as their original sample, resulting in N classes with k observations
each. Theoretically, one could simply use supervised classification approaches like
cross-entropy loss on the augmented data. However, having so many classes with so
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few samples, these approaches often yield poor results, whereas contrastive learning
approaches usually yield way better results [Chen et al., 2020b].

Similar to the selection of pretext tasks in non-contrastive self supervised learn-
ing, the selection of suitable augmentations is very important to generate good
representations. Typical augmentations used for image embeddings include ran-
dom cropping and resizing the image, random color distortions, random color jitter-
ing, random Gaussian blur, random horizontal flip, or random grayscale conversion
[Weng, 2021]. There are even custom frameworks to develop good data augmenta-
tion strategies, such as AutoAugment [Cubuk et al., 2018] or RandAugment [Cubuk
et al., 2020].

A common strategy for training models in contrastive self-supervised learning is
guided by the idea of Siamese Neural Networks [Bromley et al., 1993]. Two differ-
ent input samples are sent through a neural network with the same weights so that
they have the same forward pass to generate the representations and calculate a
distance. Specifically in this application, two different versions of each observation
are generated by data augmentation and then passed through a model to get the
embeddings, in which the distance is to be minimized or their similarity maximized,
respectively.

SimCLR
SimCLR by Chen et al. [2020b] is a framework for visual representation learning that
follows this strategy. Figure 2.1 shows the process of the framework. It consists of
a data augmentation module that produces two random augmentation transforma-
tions t ∼ T and t′ ∼ T per image observation in the training batch, a base encoder
neural network f(·) generating the representation vectors and a projection head g(·)
connected to the representations, which consists of a further simple non-linear neural
network on which the contrastive loss function LNTXent(zi, zj) is computed.

The Normalized Temperature-scaled Cross Entropy loss (NT-Xent) is a version
of the InfoNCE loss already used by Oord et al. [2018], to which the temperature
parameter τ was added. For each observation, only the two augmented samples
whose distance is to be minimized are considered a positive pair, and all other
augmented samples of the other observations in the batch are considered negative,
to which the distance is to be maximized.

LNTXent(zi, zj) = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
(2.9)

with zi, zj are the projections g(f(xi)), g(f(xj)) of the augmented samples x̃i =
t(x), x̃j = t′(x) of the observation x, and sim(zi, zj) = zTi zj/(||zi|| · ||zj||) being the
cosine similarity of the two vectors.

Figure 2.2 explains the training process in detail. For the final downstream
tasks, such as fine-tuning or linear evaluation, not the projections z are used but
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Figure 2.1: Flowchart of SimCLR by Chen et al. [2020b].Two randomly sampled
data augmentations t and t′ are applied to each observation x to obtain x̃i and
x̃j. The encoder f(·) and the projection head g(·) are trained on a the NT-Xent
loss to maximize agreement between the outputs zi and zj. After training, we pass
the original x through f(·) to get the representations h, which can be applied to
downstream tasks.

the representations h = f(x). Here, the encoder f(·) is a complex model with many
parameters, in this case ResNet-50 [He et al., 2016], which can learn the represen-
tations well. The projector head g(·) is only a 1-hidden-layer network with ReLU
non-linearity and is used because it improves the performance of the representations
h in the downstream tasks by mitigating the risk of information loss coming from
the NT-Xent loss [Chen et al., 2020b]. Chen et al. [2020c] examine the implications
for different projection heads in more detail.

In the field of visual self-supervised learning, this twin augmentation strategy
is generally a frequently used and very successful technique that achieves excellent
results. The applied network architectures, loss functions and training procedures
vary. Other well-known and successful methods include BYOL [Grill et al., 2020],
Barlow Twins [Zbontar et al., 2021], SimSiam [Chen and He, 2021] or MoCo [He
et al., 2020], [Chen et al., 2020e].

Supervised Contrastive Learning
The described contrastive learning algorithms are based on the principle of self-
supervised learning and define their own class by observation as a pseudo-label.
In some use cases of representation learning, however, information about the class
labels of the data is available. In Supervised Contrastive Learning [Khosla et al.,
2020], a new objective takes advantage of contrastive self-supervised learning and
extends it by incorporating knowledge about the class labels. Thereby a higher
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Figure 2.2: Algorithm of SimCLR by Chen et al. [2020b]. Formal description of the
training procedure of SimCLR visualized in figure 2.1.

stability in the model training concerning the selection of hyperparameters as well
as the robustness of the representations against natural perturbations in the image
data is achieved.

For this purpose, the loss function from equation (2.9) is extended as follows:

LsupCon =
2N∑
i=1

1

|J(i)|
∑
j∈J(i)

− log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
(2.10)

where J(i) = {j ∈ (2N \ {i}) : ỹi = ỹj} is the set of observations with the same
label as the sample i , ỹ is the label of the augmented sample x̃ being the same as
the label y of the origin sample x.

This means that not all other images except the augmentation from the same
original sample x in the batch are considered as negative, but the images with the
same original label y are also considered as positive samples. Thus, the distance
to them should also be minimized in the embeddings, while the distance would be
maximized in the self-supervised setting. Figure 2.3 shows the difference between
the two approaches.
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Figure 2.3: Self-supervised contrastive learning vs. supervised contrastive learning
by Khosla et al. [2020]. The self-supervised loss treats only the two augmentations
of the same original image as positives and minimizes the distance of their repre-
sentations while maximizing the distance to all other samples in the batch. If there
are multiple observations of the same original class in the same batch, the distance
to them is also maximized. The supervised contrastive loss, on the other hand, uses
class information and minimizes the distance of all observations of the same class.

Supervised and self-supervised contrastive learning is not limited to image data,
but is also used in other areas, such as natural language processing or reinforcement
learning. An overview of current methods in contrastive learning can be found e.g.
at Weng [2021].

2.4 Combination of Approaches

In this thesis, we investigate the benefits of self-supervised learning on PU learning
with imbalanced data in more detail. So far, we have explained the problems and ap-
proaches to solving its three individual components. In this subsection, we describe
previous approaches that combine ideas from each component to solve overlaps in
the different challenges.

2.4.1 Self-supervised Learning on Imbalanced Data

Yang and Xu [2020] and Liu et al. [2021] show that architectures leveraging self-
supervised pre-training are more robust to class imbalance and achieve better per-
formance than comparable fully-supervised models. One reason for this is that
self-supervised pre-training learns general features of the data structure that are
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independent of the labels and can be transferred from the majority classes to the
minority classes. The supervised models, on the other hand, only learn features
that are useful for direct classification. This probably leads to an increased risk of
overfitting the learned features of the minority class due to lower sample size, which
self-supervised learning minimizes by its cross-class feature learning.

There are approaches to further strengthen the robustness of self-supervised
learnig for imbalanced data. Liu et al. [2021] introduce rwSAM, a reweighting strat-
egy that penalizes loss sharpness to achieve better generealization of representations.
Jiang et al. [2021] develop a sampling strategy using additional out-of-distribution
data for re-balancing long-tail distributions.

2.4.2 Contrastive Self-supervised Learning and Positive-
Unlabeled Learning

As already described in subsection 2.3.3, a limitation in contrastive self-supervised
learning like SimCLR is, that all other samples in the batch are considered negative
to which the distance should be maximized, although among these negative samples
there are usually samples belonging to the same class which should possibly be
considered positive. In supervised contrastive learning this is solved by including
the known class labels. The basic idea can also be applied to the self-supervised
case.

In debiased contrastive learning [Chuang et al., 2020] the principle from PU
learning is combined with contrastive learning by considering the other samples in
the batch not as negatives but as unlabeled. Thus smaller distances in the represen-
tations of very similar samples from the batch are enabled, i.e. a better clustering
of classes. Chuang et al. [2020] reformulate the loss from equation (2.9) using the
approach from equation (2.5) as follows:

With hyperparameter τ+ simulating the prior of the classes, i.e. the fraction of
class size compared to the whole sample size, the augmented samplesM coming from
the same original observation as zi, the other augmented samples U , lower bound
exp(−1/t), and the notation of (2.9), the debiasing term du(zi) can be described as

du(zi) = max

{
exp(−1/t),

1

1− τ+

(
1

|U |
∑
u∈U

exp (sim (zi, zu) /τ)− τ+
1

|M |
∑
m∈M

exp (sim (zi, zm) /τ)

)}
(2.11)

with |M | = 1 in most methods like SimCLR, because only two augmentations are
generated per sample. This debiasing term can be plugged into the term for negatives
in the denominator of equation (2.9), resulting in the debiased contrastive loss:
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Figure 2.4: Debiased contrastive learning by Chuang et al. [2020]. Self-supervised
learning falsely treats the augmentations of the other images in the batch as negative,
even if they belong to the same class. Unlike supervised contrastive loss, debiased
loss does not need class labels to treat other images of the same class as positives as
well, but tries to reduce the erroneous maximization to similar images by debiasing
the loss function without using class labels. Treating only samples from different
classes as negatives (unbiased) achieves better performance than the standard setting
(biased).

Ldeb(zi, zj) = − log
exp (sim (zi, zj) /τ)

exp (sim (zi, zj) /τ) + |U | · du(zi)
(2.12)

The idea of debiasing the contrastive loss is visualized in figure 2.4.
Thus, it was shown how self-supervised representation learning can benefit from

approaches of PU learning. On the other hand, we are not aware of any application
that explicitly investigates the effect of self-supervised learning for solving a PU
problem. We apply this approach in this thesis in chapter 3.

2.4.3 Positive-Unlabeled Learning on Imbalanced Data

In many of the application areas of PU learning mentioned in subsection 2.1.1, there
is a high class imbalance with usually little data belonging to the positive class, such
as in disease diagnosis or fraud detection. However, the usually successful approaches
using the nnPU loss from equation (2.6) by Kiryo et al. [2017] are not adjusted for
class imbalance.

One possible approach would be to oversample the minority positive class y = 1,
but since only the labeled positives s = 1 are known and there could be other
positives (y = 1|s = 0) in the unlabeled class, such strategies cannot be applied
directly to PU data (figure 2.5). Su et al. [2021] develop a reweighting strategy for
imbalanced PU learning for this purpose, which simulates oversampling of the true
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Figure 2.5: Data generating process of imbalanced PU data the imbalanced nnPU
loss is trying to exploit for training a fair PU classifier Su et al. [2021]. The true
underlying imbalanced PN data, from which the imbalanced PU data is sampled,
could generate a balanced PN dataset using oversampling, from which balanced PU
data could be sampled. However, only imbalanced PU data is available.

minority positive class and thus outperforms other approaches on evaluation metrics
for imbalanced data, like the F1-score. The new loss results as

LImbnnPU(g) =
π

ns=1

∑
xi∈X|s=1

ℓ (g (xi) , 1) + max

(
0,

1− π′

ns=0(1− π)

∑
xi∈X|s=0

ℓ(g(xi), 0)−
(1− π′)π

ns=1(1− π)

∑
xi∈X|s=1

ℓ (g (xi) , 0)


(2.13)

where the parameter π′ =̂ Pbalanced(Y = 1) represents the proportion of the true
positive samples in the distribution of the simulated balanced dataset and, hence,
is set to 0.5 by the authors. The other components correspond to those of equation
(2.6).

Approaches that attempt to solve the problem of imbalanced PU learning in
other ways include ProbTagging [Jiang et al., 2020], an aggregation method using
probabilities calculated based on the similarity to nearest neighbours, or an AUC
optimization method adjusted for PU data [Sakai et al., 2018].
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Chapter 3

Novel Self-supervised Approach
for Imbalanced PU Learning

3.1 Background

As discussed in subsection 2.4.1, contrastive self-supervised pre-training is very ef-
fective for classification on imbalanced data and does not require prior knowledge
of class labels. Kang et al. [2019] showed that decoupling a representation learn-
ing network f(·) and then training a linear classifier g(·) can yield excellent results
in this context. In particular, this is the case even if only g(·) is adjusted on the
imbalanced setting, for example by reweighting or resampling, and f(·) is not ad-
justed with respect to class imbalance. Some promising methods for classification on
long-tailed data are based on this two-step approach [Chen et al., 2022], [Marrakchi
et al., 2021], [Li et al., 2021], using variations of supervised contrastive learning for
the representation training of f(·).

The method of Su et al. [2021] described in subsection 2.4.3 improves the per-
formance of nnPU of Kiryo et al. [2017] (subsection 2.1.3) in a PU scenario with a
low proportion of positive samples. However, it does not solve some challenges of
imbalanced PU learning with deep neural networks, such as sufficient feature learn-
ing of the underrepresented positive class, stable and convergent learning of the PU
classifier, or robustness to mis-specification of the class prior π, which is often not
known exactly in real-world use cases.

Since most of the data is unlabeled in this setting with only a few positive
labeled samples, a contrastive self-supervised objective could help to extract useful
additional information for a good classifier. In the following, we develop a novel
framework to investigate to what extent PU learning on imbalanced data can benefit
from self-supervised pre-training. To the best of our current knowledge, there are no
published articles for this use case and we are the first to investigate this approach
in more detail.
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3.2 Methodology

In our method, we follow the idea of Kang et al. [2019] to train a feature extractor
f(·) in the first step and then train a simple classifier g(·) on the encoded features
for class prediction of the PU data in the second step.

The training process of our following two-step framework is shown in Figure
3.1. For training f(·), we use the backbone of the SimCLR method discussed in
subsection 2.3.3 [Chen et al., 2020b], which creates two noisy versions xi and xj

for the observations x via an augmentation module T . Their representations hi

and hj are created by f(·). From these, a simple shallow projector network p(·) is
used to create the projections zi and zj. On top of that, the debiased contrastive
loss Ldeb(zi, zj) by Chuang et al. [2020] (see equation (2.12) and subsection 2.4.2) is
computed.

After f(·) is trained, the representations h = f(x) of the original data x are
generated and given as input to the classifier g(·). Here, g(·) is just a linear layer
that produces the 1-dimensional output g(h). On this, the loss LimbnnPU(g(h), s) is
computed for the PU classification problem, where s is the label of the PU prob-
lem, with s = 1 if x is positive and labeled, and s = 0 if x is unlabeled. For
LimbnnPU(g(h), s), the imbalanced nnPU loss [Su et al., 2021] from equation (2.13)
is used which proved to be successful on imbalanced PU data, with the sigmoid loss
from equation (2.7) used as the surrogate loss l(·, ·). In this second step, only g(·) is
trained, in the encoder f(·) the weights are frozen and it is only used in the forward
pass to compute h.

3.3 Experiments

3.3.1 Image Augmentation

For the image augmentation module T , we use augmentations with the same pa-
rameters as SimCLR [Chen et al., 2020b], which have proven to be most successful
for good representation learning: 1. random cropping and resizing of the crop to
the original image size [Szegedy et al., 2015] with random flip. 2. color distortion,
consisting of color dropping, where the image is turned to grayscale with a selected
probability, and color jittering, doing random changes of brightness, contrast, satu-
ration and hue in the images [Howard, 2013].

3.3.2 Deep Representation Network Architecture

As feature extractor f(·) we use ResNet-50 [He et al., 2016], as in the default Sim-
CLR. ResNet-50 is a 50-layer deep residual convolutional neural network for image
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Figure 3.1: Training procedure of self-supervised representation learning for im-
balanced PU learning. Step 1: Pre-training (blue). From the observations x, the
augmentations x̃i and x̃j are generated and sent through an encoder f(·) and a
projector p(·). On the outputs zi and zj, the debiased loss is applied for clustering
of similar observations, independent of the PU label s. Step 2: Classifier training
(orange). After pre-training, the weigths of f(·) are frozen and the representations
h of the original observations x are generated (dotted). On h, the linear classifier
g(·) is trained using the imbalanced nnPU loss.

recognition, which has achieved state of the art results in many different challenges
in classification and object detection, among others.

Also like in SimCLR, for representation learning in pre-training the default lin-
ear classification head of ResNet-50 with 2048 −→ 1000 dimensions is replaced by
the 1-hidden-layer network projection head p(·) with 2048 −→ 2048 −→ ReLU −→ 128
dimensions with non-linear ReLU activation function [Nair and Hinton, 2010], to
calculate the projections z. As explained in subsection 2.3.3, the performance of
representations h on downstream tasks improves by introducing this non-linear pro-
jection head p(·) before computing the contrastive loss.

3.3.3 Optimization

For self-supervised pre-training we use a batch size of 128, which leads to 256 dif-
ferent samples in the batch due to the random twin augmentations from 3.3.1. As
hyperparameters of the debiased loss, we choose τ+ = 0.1 and τ = 0.5 after Chuang
et al. [2020]. As optimizer we use the base Adam optimizer [Kingma and Ba, 2014]
with a learning rate γ = 3e−4. We train f(·) for 100 epochs.
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We then train the linear classifier g(·) for 100 epochs as well, with a batchsize
of 256, the optimizer is set to Adam with γ = 3e−4. As hyperparameters of the
imbalanced nnPU loss LimbnnPU(g(h), s) (2.13) we follow [Su et al., 2021] and set
π′ = 0.5 and π = p(y = 1|s = 0) by proportion of positives in the unlabeled samples
per dataset.

3.3.4 Datasets and Tasks

We want to investigate how well our framework performs on classifying imbal-
anced positive unlabeled image data. For this we use the well-studied open source
datasets CIFAR-10 and CIFAR-1001. We also explore the application to a medical
image dataset for glaucoma classification, following Diaz-Pinto et al. [2019].

CIFAR-10
The train dataset of CIFAR-10 consists of 50,000 images from 10 different classes
with 5,000 images per class, the test dataset consists of 10,000 images, also class
balanced. In previous studies for PU learning [Kiryo et al., 2017], [Chen et al.,
2020d], [Chen et al., 2020a], [Dorigatti et al., 2022], the 10 classes were divided into
the 2 super classes “vehicles” (4 classes) and “animals” (6 classes), and one of the
two super classes was defined as positive. Of the positive class, a fraction c was con-
sidered positively labeled s = 1 to mimic the label probability c = p(s = 1|y = 1),
and the remainder was considered unlabeled s = 0.

However, this setting produces an approximately balanced data set between posi-
tives and negatives (2:3), whereas we want to investigate the approach to imbalanced
data. Consequently, we define the “vehicles” (4 classes) as the positive class and
downsample the positives in the train dataset to only 3,000 samples, resulting in a
1:10 positives : negatives ratio. Like Su et al. [2021] we set c to 0.2, so that we have a
total of 600 labeled positives and 32,400 unlabeled observations in the train dataset.
In the test dataset, we continue to use the nearly balanced distribution of the two
classes, so that evaluation via naive performance metrics such as the accuracy is
still possible.

CIFAR-100
CIFAR-100 consists of a train dataset with 50,000 images and a test dataset with
10,000 images which can be divided into 100 balanced classes. These classes can be
grouped into 20 balanced super classes containing 5 classes each. We define the two
similar super classes “vehicles 1” and “vehicles 2” as positive and the remaining 18
super classes as negative. Thus we achieve a positives : negatives ratio of 1:9 and
no downsampling has to be done. We set c to 0.2 again, so in total there are 1,000
labeled positives and 49,000 unlabeled samples in the train dataset. In this case,

1available at: https://www.cs.toronto.edu/~kriz/cifar.html

25

https://www.cs.toronto.edu/~kriz/cifar.html


CHAPTER 3. NOVEL SELF-SUPERVISED APPROACH FOR IMBALANCED PU
LEARNING

the imbalanced ratio also exists in the test dataset, so that metrics suitable for an
imbalanced scenario must be used for evaluation, such as the F1-score.

GLAUCOMA
Glaucoma is an eye disease that can lead to blindness. In fundus images showing
the retina of patients, in addition to arteries and veins, the optic disc is visible.
The optic disc can be divided into optic cup, a bright center, and neuro-retinal rim,
a slightly darker area around the center. Here, an abnormal size of the optic cup
compared to the optic disc is an indication of glaucoma disease, which should be
detected [Diaz-Pinto et al., 2019].

As dataset, we use the labeled observations of the dataset used by Diaz-Pinto
et al. [2019]. This merges several glaucoma datasets [Zhang et al., 2010], [Sivaswamy
et al., 2014], [Medina-Mesa et al., 2016] [Köhler et al., 2013] into one, since the indi-
vidual datasets contain relatively few observations. In total there are 2,357 samples,
956 with glaucoma (positive) and 1401 without glaucoma (negative). In the absence
of a test dataset, we randomly select 85% of the samples as the train dataset and
15% as the test dataset, and again label c = 0.2 of the positive samples. The final
result is 163 labeled positive and 1,840 unlabeled observations in the train dataset.

For the evaluation, we use the same procedure as most other papers in PU learn-
ing, such as Kiryo et al. [2017][Chen et al., 2020d], [Chen et al., 2020a], [Dorigatti
et al., 2022]. Here, the classifier is trained on the positive and unlabeled data from
the train dataset and the performance is reported on the fully labeled test dataset,
exclusively. The artificially generated unlabeled samples from the train dataset and
their actually known labels are not included in the evaluation.

3.4 Results

In the following, we describe the performance of our framework under different
scenarios, hereafter referred to as debiased+imbnnPU. As a comparison method, in
the following called imbnnPU, we use the loss LimbnnPU of Su et al. [2021] directly for
training a model in a 1-step-manner, without pre-training and without decoupling
feature extractor and classifier, as usual before. For good comparability, we also use
ResNet-50 as the backbone for this model, which means that in both methods the
final model has the same number of parameters. For optimization we also use the
settings from subsection 3.3.3.

3.4.1 Classification Performance

Table 3.1 shows the results of our method debiased+imbnnPU on the test datasets.
For our artificially generated imbalanced PU datasets CIFAR-10 and CIFAR-100,
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our method clearly achieves better results in terms of accuracy, F1-score and AUC
of the test dataset compared to the simple ResNet-50 model with imbnnPU loss
without pre-training. For CIFAR-10 there are performance improvements of 8.8%,
11.0% and 5.4%, for CIFAR-100 2.4%, 18.5% and 12.7%. For CIFAR-100, the test
data set is imbalanced, so the accuracy and the minor improvement of only 2.4%
should not be overvalued because it does not adjust for the different number of
samples per class.

In addition, for CIFAR-10 we performed the pre-training with the original NT-
Xent loss (2.9) used in SimCLR instead of the debiased loss, with the same settings.
In comparison to NT-Xent, the debiased loss achieves an improvement of 1-1.5% in
the metrics.

For Glaucoma, we obtain hardly any differences in performance between models
with and without pre-training. This suggests that in the self-supervised pre-training
no additional information helpful for classification was stored in the representations,
but at the same time decoupling does not degrade performance. It should be noted
that the used self-supervised architecture of Chen et al. [2020b] with choice of image
augmentations was optimized for typical benchmark datasets like CIFAR-10 and
CIFAR-100, while the transferability to other datasets with different underlying
structures, like in medical imaging, is not ensured.

method Accuracy F1 AUC

CIFAR-10
imbnnPU 86.5 83.0 93.6

NT-Xent + imbnnPU 94.3 92.5 97.9
debiased + imbnnPU 95.3 94.0 99.0

CIFAR-100
imbnnPU 86.7 44.1 82.9

debiased + imbnnPU 89.1 62.6 95.6

Glaucoma
imbnnPU 75.0 67.0 77.7

NT-Xent + imbnnPU 74.6 67.3 77.8
debiased + imbnnPU 74.2 68.3 77.3

Table 3.1: Results of self-supervised pre-training for imbalanced PU learning vs.
imbalanced PU learning without pre-training. Best performances per dataset and
measure are bold.

Competitors
In PU learning, there are only few approaches so far that focus on the application
to imbalanced data with few positive samples. Su et al. [2021] have shown that
the imbalanced nnPU loss outperforms many other methods in this setting, such
as nnPU [Kiryo et al., 2017], self-PU [Chen et al., 2020d], SMOTE [Chawla et al.,
2002], or SSImbalance [Yang and Xu, 2020].
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For the usual balanced scenario, there are some state-of-the-art methods that
report their results for CIFAR-10 trained on the full train dataset with the approx-
imately balanced split “vehicles” : “animals” with ratio 2 : 3, but they are not
explicitly suitable for imbalanced learning. Since our debiased+imbnnPU method,
as described above, far outperformed the simple ResNet-50 with imbnnPU method,
we want to check whether this two-step architecture with pre-training and a sepa-
rate classifier can achieve similar performances to current SOTA-PU methods even
when training on less data overall and with class imbalance.

As comparison methods, we select VPU [Chen et al., 2020a], PAN [Hu et al.,
2021], Self-PU [Chen et al., 2020d] and PUUPL [Dorigatti et al., 2022] and use the
performance reported in the articles for CIFAR-10 on the same class split “vehicles”
vs. “animals”. Here, all 20,000 samples of the positive “vehicles” class are used for
training or validation, of which 3,000 (or 1,000) are known to be labeled, whereas
we use only 3,000 positive samples with 600 labeled. The test dataset remains the
same in both scenarios.

Table 3.2 shows the accuracy of the competitors. Our method clearly surpasses
the other baselines, and can improve the accuracy by 3.9% compared to the previous
best method PUUPL. Moreover, we only need 66% of the train samples, 15% of the
positive samples, and 20% of the labeled samples that PUUPL uses.

Method Train Samples Positives Labeled Accuracy
VPU 50,000 3,000 89.5
PAN 50,000 1,000 89.7

Self-PU 50,000 3,000 90.8
PUUPL 50,000 3,000 91.4
imbnnPU 33,000 600 86.5

debiased+imbnnPU 33,000 600 95.3

Table 3.2: Performance of SOTA-competitors trained on balanced PU CIFAR-10.
Best performance and fewest resources needed are bold.

Comparison to supervised baseline
The loss LimbnnU (2.13) we use for our experiments actually tries to minimize the
empirical risk (2.4) on the underlying true binary classification problem with the
true label y by reweighting and reformulating the loss l(·, ·) on the PU scenario
using the PU label s and adjusting for imbalance. Consequently, the performance
of a model with the same architecture trained on the actually unknown y can be
viewed as the upper bound we are trying to achieve.

To investigate how close our framework comes to this upper bound and whether
pre-training can be helpful to reduce the gap between PU and fully supervised
performance, we train both models in a supervised setting on the true labels y using
a weighted binary cross-entropy (wBCE) loss on the output g(·)
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ℓwCE(gi, yi) = −wposyi · log σ (gi) + (1− yi) · log (1− σ (gi)) (3.1)

where σ(gi) =
1

1+exp(−gi)
and wpos = |positves|/|negatives| per dataset. In 3.3 the

performances of the supervised models on both methods are displayed.
As expected, also in the imbalanced supervised setting the debiased+wBCE vari-

ant achieves better results than the simple training of the weighted BCE. However,
it is also noticeable that the difference in the evaluation metrics within the same
architecture between PU setting and binary setting is smaller for the methods with
debiased pre-training than for the single model methods. For example, the differ-
ence in F1-score and AUC for CIFAR-10 (CIFAR-100) in the two-step setting is
0.9% and 0.4% (4.2% and 1.5%), whereas in the simple training it is 5.3% and 3.2%
(9.2% and 5.3%). This shows that self-supervised pre-training is not only useful for
the problem of class imbalance, but additionally applied to PU learning, it helps to
reduce the gap in performance to supervised learning approaches.

data method Accuracy F1 AUC

CIFAR-10
PU

imbnnPU 86.5 83.0 93.6
debiased + imbnnPU 95.3 94.0 99.0

supervised
weighted BCE 91.0 88.3 96.8

debiased + wBCE 95.9 94.9 99.4

CIFAR-100
PU

imbnnPU 86.7 44.1 82.9
debiased + imbnnPU 89.1 62.6 95.6

supervised
weighted BCE 91.0 53.3 88.2

debiased + wBCE 91.7 68.8 97.1

Table 3.3: Performance with and without debiased pre-training for PU vs. super-
vised data.

3.4.2 Quality of Learned Representations

The main feature of our debiased+imbnnPU method compared to the competitors
is the representation learning that is decoupled from the actual classification task
in the first step. In the second step, it even uses the same architecture in the
forward pass as our implementation of imbnnPU, except that only the weights in
the last linear layer are updated, whereas imbnnPU trains the complete ResNet-50
architecture. Since our method achieves much better results in the evaluation, the
quality of the representation before the last linear layer is obviously significant for
the quality of the classifier.

Accordingly, the representations for the two models are examined in more detail
below. Figure 3.2 shows the t-SNE [Van der Maaten and Hinton, 2008] visualizations
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of the 2048-dimensional representations of the test dataset of CIFAR-10 of both
models, trained on the imbalanced PU CIFAR-10 train dataset. t-SNE is a method
for visualizing high-dimensional data that clusters similar observations together.

On the right side, one can see the observations color-coded according to their bi-
nary classes. It can be seen that there is slightly less overlap between the two classes
in debiased pre-training than in imbnnPU. This is the case even though debiased
pre-training has no information about the class labels. One reason for this may be
the lack of ability to generalize in the low-labeled positive class. ImbnnPU is driven
in updating the weights of its network only by its loss function, which depends only
on the label information. This can limit the ability to create good representations
even in normal imbalanced binary settings, which is why a decoupling between rep-
resentation learning and classifer learning can be helpful [Kang et al., 2019]. This
effect can be amplified in the PU setting, where the lack of generalization of the
representations makes it harder to recognize unlabeled positives as positives despite
adjusting the loss function, which further complicates to achieve separability be-
tween the two classes. Better discriminance of the representations before the linear
classifier is helpful to determine a good classifier, as stated in subsection 2.1.2.

In contrast, the robustness of contrastive self-supervised pre-training on imbal-
anced data has been well studied [Yang and Xu, 2020], [Liu et al., 2021]. In our
application, the debiased contrastive loss using randomly augmented inputs generate
robust representations on sample level, but also allow clustering of similar samples
without requiring label information. Our method also detects similar features of
substructures within the two classes, which is not directly incentivized by the label-
based imbnnPU loss function. On the left side the same representations are shown
as on the right side, but this time color-coded by their original 10 subclasses. You
can see that with imbnnPU there are hardly any clusters within the two classes
with respect to the labels of the subclasses. In debiased contrastive pre-training,
on the other hand, clusters form around the 10 subclasses, even if the 4 positive
vehicle-classes having less training samples have slightly worse boundaries than the
6 negative animal-classes.

These substructures in the representations could help to identify the correct pos-
itives in the unlabeled ones, even with only a few labeled positive samples. This
principle is also found, among others, in few-shot learning [Wang et al., 2020], where
a classifier is also trained using representation learning and few labeled data. More-
over, in our framework, decoupling the feature extractor from the classifier training
prevents the representations from being altered by the imbnnPU loss and thus be-
coming less intra-class distinguishable between the subclasses.
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Figure 3.2: t-SNE visualization of representations on test dataset of CIFAR-10. Top:
ResNet-50 trained on imbalanced nnPU loss without pre-training. Bottom: After
pre-training on debiased contrastive loss. Color-coded for underlying 10 subclasses
(left) and binary classes (right).

3.4.3 Robustness Against Mis-specification of the Class Prior

In the previous analyses, we always assumed the class prior π to be known, and in the
imbnnPU loss for each dataset to be set to the proportion of positive samples in the
unlabeled samples, following Su et al. [2021] and Kiryo et al. [2017] . In real-world
applications, however, this proportion is often not known and must be estimated
using domain knowledge or other methods, as discussed earlier in subsection 2.1.2.
This can often result in erroneous estimates that can degrade the performance of
the model. In the following, we investigate how mis-specification of π in LimbnnPU

changes the goodness of the model.
The accuracy and F1-score depend strongly on the chosen decision boundary
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deciding when an output of a classifier g(·) is predicted to be positive or negative.
By using an incorrect class prior, the outputs of the model can be shifted and yield
worse results in these metrics, even if the monotony of the score g(·) is further
preserved, and thus the model could still be suitable as a ranking model. To be able
to evaluate the goodness of the models under different false priors independently of
the decision boundary, the AUC is used as a metric.

In figure 3.3, for the two models imbnnPU and debiased+imbnnPU the course
of the AUC on the test dataset of CIFAR-10 is displayed over the 100 training
epochs of the classifier, using distorted priors. In the figure there is one run for each
distortion factor bdis of the true prior π, so that in each case in LimbnnPU the prior π
was replaced by the distorted prior πdis = bdis · π. Here, bdis varies from 0.1 to 10.0,
with 1.0 yielding the model with the unbiased π.

In general, it is noticeable that our method clearly has a higher AUC than the
model without self-supervised pre-training, even under different mis-specified pri-
ors. The variance is also clearly smaller and the course is more stable, since only the
weights of the classifier and not the entire ResNet-50 parameters are trained. For
both models, no deterioration of the performance can be observed for an underes-
timation of π with bdis < 1. For an overestimation with bdis > 1, a deterioration is
visible for bdis ≥ 5 for both models, although the deterioration of the performance is
still clearly lower for our method. At an extreme overestimation of bdis = 10, strong
deviations in stability are shown and the AUC of our model starts to decrease dur-
ing training. At the same time, the AUC at the beginning is above 95% due to
the previous representation learning and also in the remaining cases, hardly any
improvement is seen after a few epochs. Therefore, it can be summarized that in
our method debiased+imbnnPU, with sufficient representation learning in the first
step, the training of the classifier could be limited to a few epochs. So even with
strong mis-specification of the class prior, high stability and performance could be
observed.
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Figure 3.3: Robustness against prior mis-specification for different distortion factors
bdis of the prior. AUC of the test dataset of CIFAR-10 is plotted over 100 training
epochs for imbnnPU (left) and for the classifier of debiased+imbnnPU after finished
pre-training (right).
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Chapter 4

Novel Contrastive Method for
Learning Imbalanced PU
Distribution

4.1 Background

In the previous chapter we showed how PU learning on imbalanced data can benefit
from decoupled contrastive representation learning. This pre-training was done in
a self-supervised manner completely without label information, although for some
samples the positive class label is known. Khosla et al. [2020] showed that by in-
cluding label information in the pre-training, supervised contrastive learning can
further increase the quality of the representations compared to self-supervised pre-
training. Therefore, in other approaches that also use decoupled two-step archi-
tectures for classification on imbalanced data, the supervised contrastive loss from
equation (2.10) is used for feature learning in the first step [Marrakchi et al., 2021],
[Chen et al., 2022]. Thus, at the same time, in pre-training the class labels can
already be used to further improve the representations of the minority classes, e.g.,
via random oversampling, reweighting, or other adjustments of the supervised con-
trastive loss [Kang et al., 2020], [Wang et al., 2021], [Cui et al., 2021], [Li et al.,
2021].

In the case of PU data, a naive application of the supervised contrastive loss does
not make sense or is not directly possible, since the true class y is not known for the
unlabeled data. If one naively considers the unlabeled observations as negatives, the
supervised contrastive loss erroneously minimizes the distance of the representations
of the unlabeled positives to the negatives, making a subsequent classification of the
two classes difficult. Accordingly, in the following we want to investigate to what
extent the supervised contrastive loss can be adjusted for imbalanced PU data to
enable a more discriminative representation learning.
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4.2 Methodology

Novel contrastive imbalanced nnPU loss
In supervised loss (2.10), the loss for an observation xi or its projection zi can be
represented as:

LsupCon(zi, s) =
1

|J |
∑
j∈J

− log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
(4.1)

where J = J(i, s) = {j ∈ (2N \ {i}) : sj = s} and usually, the class label s is set to
be the class label si of observation xi, so the distance of projection zi of observation
xi to all samples with the same class is minimized. For s, however, a different class
can also be selected, so that the distance of zi to observations of a different class
zj, j ∈ J(i, s) is minimized.

For our representation learning method, we would like to take advantage of
LimbnnPU (2.13) as it adjusts for PU data and class imbalance at the same time.
LimbnnPU uses a surrogate loss ℓ(g(xi), s), which is usually the loss between the
predicted probability of classifier g(xi) for input x and PU label s, e.g. the sig-
moid loss (2.7). ℓ(g(xi), s) and LsupCon(zi, s) follow a similar behavior, because
ℓ(g(xi), si) minimizes the prediction error between prediction g(xi) and label s,
whereas LsupCon(zi, s) minimizes the distance of projection zi to projections zj, j ∈
J(i, s) of class s. Hence, we plug LsupCon(zi, s) as surrogate loss l(·, ·) into LimbnnPU

in equation (2.13).
With positive samples P = {j ∈ 2N : sj = 1}, unlabeled samples U = {j ∈ 2N :

sj = 0}, np = |P |, nu = |U |, we thus obtain the novel contrastive imbalanced nnPU
(connPU) loss

LconnPU =
π

′

np(np − 1)

∑
i∈P

∑
j∈P,i̸=j

l(zi, zj) +max
(
0,

(1− π
′
)

nu(nu − 1)(1− π)

∑
i∈U

∑
j∈U,i̸=j

l(zi, zj)−
(1− π

′
)π

npnu(1− π)

∑
i∈P

∑
j∈U

l(zi, zj)
) (4.2)

with

l(zi, zj) = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)

and sim(zi, zj) = zTi zj/(||zi|| · ||zj||) being the cosine similarity of the two vectors.
In theory, LconnPU thus tries to cluster the labeled positives together, as in su-

pervised contrastive loss, but instead of clustering all unlabeled samples together,
it also tries to shift unlabeled observations that are similar to the positive class
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Figure 4.1: Training procedure of connPU for imbalanced PU learning. Most of the
training procedure remains as shown in Figure 3.1. Instead of debiased loss, connPU
loss is substituted for representation learning. Here, the knowledge about the PU
lables s is already included in the pre-training of f(·) (blue). There are no changes
in the training of g(·) in the second step (orange).

towards the positive class. In addition, the reweighting gives more weight to the
minority positive class to form better representations.

Training Procedure
For the training procedure we stick to the same two-step setup with decoupled fea-
ture extractor f(·) and classifier g(·) as for the self-supervised approach described
in subsection 3.2. Here, only when training f(·), the debiased loss Ldeb is replaced
by our new contrastive imbalanced nnPU loss LconnPU . Accordingly, knowledge
about the PU label s is already included in the pre-training loss and hence the
learning of the representations. The slight modification of the training procedure
is shown in Figure 4.1. In the following, our new approach will be referred to as
connPU+imbnnPU.

4.3 Experiments

For image augmentation and the architecture of f(·) and g(·) we choose the same
settings as described in the self-supervised framework in subsections 3.3.1 and 3.3.2.

For optimization of LconnPU , we also set π′ = 0.5 and π to the fraction of posi-
tives in the unlabeled samples per dataset. In addition, we train the classifier g(·)
for only 5 epochs after pre-training, based on the findings from the previous chap-
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ter that the maximum classifier performance is reached already after a few epochs.
Furthermore, label information is already leveraged in pre-training, which should in-
centivize a direct subdivision into the two classes in the representations. We choose
the remaining settings and hyperparameters as described in the self-supervised set-
ting in subsection 3.3.3.

Datasets
We use the same datasets from subsection 3.3.4 as for the previous models. As
another dataset, we introduce CIFAR-2, an artificially created imbalanced subset
of CIFAR-10, consisting of only 2 of the original 10 classes. Here, all 5000 images
of the class “bird” are defined as true negatives (unlabeled), and 750 images of the
class “plane” are defined as positives, of which 150 are considered labeled. The idea
behind this is that in the splits of CIFAR-10 and CIFAR-100 used above, different
subclasses are combined into positives and negatives, making the classes heteroge-
neous. We additionally want to investigate how connPU+immbnnPU performs on a
dataset with higher homogeneity within the two classes and at the same time using
clearly less training samples (5,750 with only 150 labeled compared to 33,000 with
600 labeled). The test dataset used is the 1,000 samples from each of the two classes
from the balanced test dataset of CIFAR-10. To adjust for the lower number of
samples, we train f(·) for 500 epochs for this dataset to ensure a similar number of
update steps as in the other scenarios.

4.4 Results

4.4.1 Classfication Performance

Table 4.1 shows the performance of our method connPU+imbnnPU against the
two methods imbnnPU and debiased+imbnnPU from the previous chapter. Debi-
ased+imbnnPU still achieves the best results for the CIFAR-X datasets, with a huge
performance boost of over 13% in all three metrics in the CIFAR-2 dataset compared
to imbnnPU. For CIFAR-10 and CIFAR-2, also connPU+imbnnPU clearly outper-
forms imbnnPU with improvements in accuracy, F1-score and AUC for CIFAR-2
(CIFAR-10) of 9.3% (3.5%), 7.8% (4.2%) and 12.3% (2.3%), respectively. However,
compared to debiased+imbnnPU, connPU+imbnnPU performs 4-7% worse in each
of these data sets.

What stands out is the low performance of connpu+imbnnPU on the CIFAR-100
dataset, where it itself is far below imbnnPU. The problem with our pre-train loss
LconnPU for this dataset might be that our loss tries to divide the representations
into two clusters and to minimize the distances of the samples within them. In
CIFAR-100, with 100 distinct subclasses, and 80 of them in the negative class, there
is a high intra-class heterogeneity, especially in the negative class, which can lead
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to problems in representation learning and consequently to difficulties in classifier
training for this method.

For Glaucoma, connPU+imbnnPU also achieves the lowest performance com-
pared to the other methods. One reason for this may be that when even debi-
ased+imbnnPU already has difficulties learning helpful representations at the sam-
ple level, clustering the representations into the two classes and trying to identify
positives in the unlabeled observations further weakens the discriminance.

With a difference of about 5% in the three metrics, connPU+imbnnPU comes
closest to the performance of debiased+imbnnPU in CIFAR-2, with only one sub-
class within positives and negatives. This supports the assumption that connPU+
imbnnPU particularly benefits from high homogeneity within the positive and neg-
ative classes.

Accuracy F1 AUC

CIFAR-10
imbnnPU 86.5 83.0 93.6

debiased + imbnnPU 95.3 94.0 99.0
connPU + imbnnPU 90.0 87.2 95.9

CIFAR-100
imbnnPU 86.7 44.1 82.9

debiased + imbnnPU 89.1 62.6 95.6
connPU + imbnnPU 66.0 32.4 78.5

Glaucoma
imbnnPU 75.0 67.0 77.7

debiased + imbnnPU 74.2 68.3 77.3
connPU + imbnnPU 63.7 60.4 65.8

CIFAR-2
imbnnPU 76.8 78.2 80.8

debiased + imbnnPU 91.4 91.2 97.5
connPU + imbnnPU 86.1 86.0 93.1

Table 4.1: Results for connPU pre-training vs. debiased pre-training and no pre-
training on different datasets.

4.4.2 Quality of Learned Representations

As already mentioned, in the first step our framework connPU+imbnnPU tries to
maximize the distances of the representations between both classes and to minimize
them within the true binary classes by using the loss LconnPU , which does not explic-
itly promote the separability of the representations on sample level and with respect
to substructures within the class. This pattern is also evident in the visualization
of the learned features. Figure 4.2 shows the t-SNE projection of the representa-
tions from pre-training with connPU for the test dataset of CIFAR-10. Compared
to the debiased pre-training, there are no major differences in the discriminance of
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the represented features on the binary labels. However, if we look at the underlying
10 subclasses, we notice that the clusters of the subclasses are much weaker with
connPU than with debiased representation learning. However, these structures can
be helpful in training the classifier.

Another problem may be that when clustering the observations within the two
classes is difficult, the focus of the model is more on minimization of the represen-
tations within classes (while additionally trying to minimize the distance to some
unlabeled positives) than on maximization of the distance between classes. This can
further diminish the discriminance of the representations, especially regarding the
binary classes. This problem arises when there is large heterogeneity of observations
in at least one of both classes, such as in CIFAR-100 or more generally when PU
learning is applied to one-class-classification scenarios 2.1.1, with high variance in
the negative class.
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Figure 4.2: t-SNE visualization of representations on test dataset of CIFAR-10. Top:
ResNet-50 trained on imbalanced nnPU loss without pre-training. Middle: After
pre-training on debiased contrastive loss. Bottom: After pre-training on connPU
loss. Color-coded for underlying 10 subclasses (left) and binary classes (right).
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Conclusion

In this thesis we investigated the application of self-supervised learning to the prob-
lem of positive-unlabeled learning on imbalanced data. We could show that by
decoupling representation learning using contrastive learning in the first step and
subsequent PU learning with re-weighting on a linear classifier in the second step, the
performance on two image datasets could be clearly improved compared to training
a simple model. Furthermore, we could show that the performance gap between PU
learning and supervised learning could be further closed by this method and that
the classifier is more stable in the training process and more robust against mis-
specification of the class prior. We were even able to outperform state-of-the-art PU
frameworks on balanced data with our method for imbalanced data, requiring less
training data and fewer labeled samples.

As another contribution, we developed and evaluated the connPU loss, an exten-
sion of the supervised contrastive loss for the scenario of imbalanced PU data. In
our experiments, we were able to show that connPU benefits from high intra-class
homogeneity during representation learning and runs into problems when intra-class
heterogeneity is high.

Overall, the application of connPU could not achieve the results of self-supervised
learning. Thus, we conclude that PU learning on imbalanced data can benefit from
representation learning without incorporating label knowledge in the first step, and
training a simple PU classifier in the second step.

However, as a limitation of our method, suitable objectives for self-supervised
learning and the selection of data pre-processing and data augmentation methods are
extremely important for good representation learning and consequently for a good
classification result. By applying the default procedure and settings of SimCLR
to a medical image dataset for glaucoma classification, we could not achieve any
improvement over the model without pre-training.
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5.1 Future Direction

One advantage of our work is the simple two-step methodology. In the pre-training
step, our implementation of SimCLR with debiased contrastive loss can be replaced
by any representation learning method. Thus, the method can also be applied to the
problem of PU learning in other application domains with different data structures,
such as in the fields of 3D imaging, video, natural language processing, or signal
processing.

Another promising direction may be the study of the classification head. Since
representation learning compresses unstructured data into a smaller vector format,
more classical PU methods, such as bagging support vector machines [Mordelet and
Vert, 2010], can be applied to it. Moreover, we adopted the SCAR assumption in
our work for the labeling mechanism. An interesting research approach would be to
investigate the applicability of our method in scenarios with more realistic labeling
mechanisms, such as under the probabilistic gap assumption.
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T. Köhler, A. Budai, M. F. Kraus, J. Odstrčilik, G. Michelson, and J. Hornegger. Au-
tomatic no-reference quality assessment for retinal fundus images using vessel segmen-
tation. In Proceedings of the 26th IEEE international symposium on computer-based
medical systems, pages 95–100. IEEE, 2013.

T. Li, P. Cao, Y. Yuan, L. Fan, Y. Yang, R. Feris, P. Indyk, and D. Katabi. Targeted super-
vised contrastive learning for long-tailed recognition. arXiv preprint arXiv:2111.13998,
2021.

B. Liu, W. S. Lee, P. S. Yu, and X. Li. Partially supervised classification of text documents.
In ICML, volume 2, pages 387–394. Sydney, NSW, 2002.

B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu. Building text classifiers using positive
and unlabeled examples. In Third IEEE international conference on data mining, pages
179–186. IEEE, 2003.

H. Liu, J. Z. HaoChen, A. Gaidon, and T. Ma. Self-supervised learning is more robust to
dataset imbalance. arXiv preprint arXiv:2110.05025, 2021.

S. Makki, Z. Assaghir, Y. Taher, R. Haque, M.-S. Hacid, and H. Zeineddine. An experi-
mental study with imbalanced classification approaches for credit card fraud detection.
IEEE Access, 7:93010–93022, 2019.

49



BIBLIOGRAPHY

Y. Marrakchi, O. Makansi, and T. Brox. Fighting class imbalance with contrastive learn-
ing. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 466–476. Springer, 2021.

E. Medina-Mesa, M. Gonzalez-Hernandez, J. Sigut, F. Fumero-Batista, C. Pena-Betancor,
S. Alayon, and M. Gonzalez de la Rosa. Estimating the amount of hemoglobin in the
neuroretinal rim using color images and oct. Current Eye Research, 41(6):798–805,
2016.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representa-
tions of words and phrases and their compositionality. Advances in neural information
processing systems, 26, 2013.

F. Mordelet and J.-P. Vert. A bagging svm to learn from positive and unlabeled examples.
arXiv preprint arXiv:1010.0772, 2010.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines.
In Icml, 2010.

M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving
jigsaw puzzles. In European conference on computer vision, pages 69–84. Springer,
2016.

M. Ochal, M. Patacchiola, A. Storkey, J. Vazquez, and S. Wang. Few-shot learning with
class imbalance. arXiv preprint arXiv:2101.02523, 2021.

A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Y. Ouali, C. Hudelot, and M. Tami. An overview of deep semi-supervised learning. arXiv
preprint arXiv:2006.05278, 2020.

D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders:
Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2536–2544, 2016.

P. Perera, P. Oza, and V. M. Patel. One-class classification: A survey. arXiv preprint
arXiv:2101.03064, 2021.

M. M. Rahman and D. N. Davis. Addressing the class imbalance problem in medical
datasets. International Journal of Machine Learning and Computing, 3(2):224, 2013.

H. Ramaswamy, C. Scott, and A. Tewari. Mixture proportion estimation via kernel em-
beddings of distributions. In International conference on machine learning, pages 2052–
2060. PMLR, 2016.

50



BIBLIOGRAPHY

M. N. Rizve, K. Duarte, Y. S. Rawat, and M. Shah. In defense of pseudo-labeling: An
uncertainty-aware pseudo-label selection framework for semi-supervised learning. arXiv
preprint arXiv:2101.06329, 2021.

T. Sakai, G. Niu, and M. Sugiyama. Semi-supervised auc optimization based on positive-
unlabeled learning. Machine Learning, 107(4):767–794, 2018.

H. Scheiblauer, A. Filomena, A. Nitsche, A. Puyskens, V. M. Corman, C. Drosten,
K. Zwirglmaier, C. Lange, P. Emmerich, M. Müller, et al. Comparative sensitivity
evaluation for 122 ce-marked rapid diagnostic tests for sars-cov-2 antigen, germany,
september 2020 to april 2021. Eurosurveillance, 26(44):2100441, 2021.

N. Seliya, A. Abdollah Zadeh, and T. M. Khoshgoftaar. A literature review on one-class
classification and its potential applications in big data. Journal of Big Data, 8(1):1–31,
2021.

S. Shu, Z. Lin, Y. Yan, and L. Li. Learning from multi-class positive and unlabeled data.
In 2020 IEEE International Conference on Data Mining (ICDM), pages 1256–1261.
IEEE, 2020.

J. Sivaswamy, S. Krishnadas, G. D. Joshi, M. Jain, and A. U. S. Tabish. Drishti-gs:
Retinal image dataset for optic nerve head (onh) segmentation. In 2014 IEEE 11th
international symposium on biomedical imaging (ISBI), pages 53–56. IEEE, 2014.

G. Su, W. Chen, and M. Xu. Positive-unlabeled learning from imbalanced data. In
Proceedings of the 30th International Joint Conference on Artificial Intelligence, Virtual
Event, 2021.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 1–9, 2015.

L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano. Experimental perspectives on
learning from imbalanced data. In Proceedings of the 24th international conference on
Machine learning, pages 935–942, 2007.

P. Wang, K. Han, X.-S. Wei, L. Zhang, and L. Wang. Contrastive learning based hy-
brid networks for long-tailed image classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 943–952, 2021.

X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In
Proceedings of the IEEE international conference on computer vision, pages 2794–2802,
2015.

51



BIBLIOGRAPHY

Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. Generalizing from a few examples: A survey
on few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020.

L. Weng. Self-supervised representation learning. lilianweng.github.io, 2019. URL https:

//lilianweng.github.io/posts/2019-11-10-self-supervised/.

L. Weng. Contrastive representation learning. lilianweng.github.io, 2021. URL https:

//lilianweng.github.io/posts/2021-05-31-contrastive/.

J. Xie, X. Zhan, Z. Liu, Y. S. Ong, and C. C. Loy. Unsupervised object-level representation
learning from scene images. Advances in Neural Information Processing Systems, 34:
28864–28876, 2021.

Y. Xu, C. Xu, C. Xu, and D. Tao. Multi-positive and unlabeled learning. In IJCAI, pages
3182–3188, 2017.

S. Yamaguchi, S. Kanai, T. Shioda, and S. Takeda. Image enhanced rotation prediction for
self-supervised learning. In 2021 IEEE International Conference on Image Processing
(ICIP), pages 489–493. IEEE, 2021.

P. Yang, X.-L. Li, J.-P. Mei, C.-K. Kwoh, and S.-K. Ng. Positive-unlabeled learning for
disease gene identification. Bioinformatics, 28(20):2640–2647, 2012.

X. Yang, Z. Song, I. King, and Z. Xu. A survey on deep semi-supervised learning. arXiv
preprint arXiv:2103.00550, 2021.

Y. Yang and Z. Xu. Rethinking the value of labels for improving class-imbalanced learning.
Advances in Neural Information Processing Systems, 33:19290–19301, 2020.

J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In International Conference on Machine Learning,
pages 12310–12320. PMLR, 2021.

X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer. S4l: Self-supervised semi-supervised
learning. In Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion, pages 1476–1485, 2019.

R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In European conference
on computer vision, pages 649–666. Springer, 2016.

Z. Zhang, F. S. Yin, J. Liu, W. K. Wong, N. M. Tan, B. H. Lee, J. Cheng, and T. Y.
Wong. Origa-light: An online retinal fundus image database for glaucoma analysis
and research. In 2010 Annual International Conference of the IEEE Engineering in
Medicine and Biology, pages 3065–3068. IEEE, 2010.

P. Zheng, S. Yuan, X. Wu, J. Li, and A. Lu. One-class adversarial nets for fraud detection.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
1286–1293, 2019.

52

https://lilianweng.github.io/posts/2019-11-10-self-supervised/
https://lilianweng.github.io/posts/2019-11-10-self-supervised/
https://lilianweng.github.io/posts/2021-05-31-contrastive/
https://lilianweng.github.io/posts/2021-05-31-contrastive/


BIBLIOGRAPHY

Y. Zhou, J. Xu, J. Wu, Z. Taghavi, E. Korpeoglu, K. Achan, and J. He. Pure: Positive-
unlabeled recommendation with generative adversarial network. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 2409–
2419, 2021.

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A comprehensive
survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2020.

53


	Introduction
	Main Contribution
	Thesis Structure

	Representation Learning from Imbalanced Positive-Unlabeled Data
	Positive-Unlabeled Learning
	Occurrence of Positive-Unlabeled Data
	Problem Formulation
	Methods for Positive-Unlabeled Learning
	Related Fields

	Imbalanced Learning
	Performance Metrics
	Methods for Imbalanced Learning

	Self-Supervised visual Representation Learning
	Representation Learning
	Self-Supervised Learning
	Contrastive Learning

	Combination of Approaches
	Self-supervised Learning on Imbalanced Data
	Contrastive Self-supervised Learning and Positive-  Unlabeled Learning
	Positive-Unlabeled Learning on Imbalanced Data


	Novel Self-supervised Approach for Imbalanced PU Learning
	Background
	Methodology
	Experiments
	Image Augmentation
	Deep Representation Network Architecture
	Optimization
	Datasets and Tasks

	Results
	Classification Performance
	Quality of Learned Representations
	Robustness Against Mis-specification of the Class Prior


	Novel Contrastive Method for Learning Imbalanced PU Distribution
	Background
	Methodology
	Experiments
	Results
	Classfication Performance
	Quality of Learned Representations


	Conclusion
	Future Direction

	List of Figures
	List of Tables
	Bibliography

