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Abstract

In order to achieve reliable results via statistical methodology, one important
goal is to account for potential uncertainty. Shige Peng introduced an un-
certainty counterpart of Kolmogorov’s probabilistic setting: the G-Framework.
While this framework is well-known in mathematical finance, work within the
G-Framework in statistics is limited. This thesis motivates nonlinear expecta-
tions for decision-making under uncertainty in dynamic and non-dynamic situ-
ations. Switching the viewpoint from probability spaces to expectation spaces,
we discuss the theoretical foundations of the G-Framework, emphasizing com-
prehensibility. We motivate nonlinear expectations for subsequent application in
statistics by notions that emerged in various academic communities and are like-
wise concerned with decision-making under uncertainty: Choquet expectations
express probabilistic uncertainty from the viewpoint of non-additive measures
and g-expectations, which represent a nonlinear class of expectations based on
backward stochastic differential equations (BSDE). For explicit understanding,
we provide the required foundations of stochastic calculus in a self-contained
form. The applicability of the G-Framework in statistics is particularly evident
from the respective Law of Large Numbers and Central Limit Theorem. To em-
phasize the applicability, this thesis motivates a notion of sublinear regression.
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Frequently used notation
Here we provide a list of some frequently used mathematical notation. However, rather
specific notation will, in general, not be listed here.

Abbreviations

a.a. Almost all
a.s. Almost sure
a.e. Almost everywhere
Number sets

C Complex numbers
N Natural numbers
R,R≥0 Real numbers, non-negative real numbers
Spaces of functions

C[0, T ] Space of continuous, real-valued functions on [0, T ]

Ck([0, T ]) Space of k-times differentiable, continuous, real-valued func-
tions on [0, T ]

LpF Lp(Ω,F , P )

LpF Lp(Ω,F , P )

L2(λ⊗ P ) L2 ([0, T ]× Ω,B([0, T ])⊗F , λ⊗ P )

L2
ad([0, T ]) Space of measurable, F-adapted and square integrable pro-

cesses
L2
0,ad([0, T ]) Space of measurable, F-adapted and square integrable step

processes
Cl.lip(Rn) Space of functions ψ satisyfing

|ψ(x)− ψ(y)| ≤ C(1 + |x|m + |y|m)|x− y|

with x, y ∈ Rn,m ∈ N and C > 0.
Miscellaneous

〈·, ·〉 Inner product
d∼ Identically distributed under sublinear expectation
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‖ · ‖ Norm
λ Lebesgue measure
λ⊗ P Product measure
B(Rn) Borel σ-algebra on Rn

N {A ⊆ Ω : ∃B ∈ F , B ⊂ A,P (B) = 0}, collection of P -null
sets

F Filtration, usually augmented Brownian filtration
T Stopping time
E Linear expectation
E Nonlinear expectation
Ec Choquet expectation
Eg g-expectation
X+ max{0, X}, positive part of X
X− max{0,−X}, negative part of X
4(Ω) Set of all probability measures on the measurable space (Ω,F)
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1 Introduction

1.1 Risk, uncertainty and probability

O False and treacherous Probability,
Enemy of truth, and friend to wickednesse;
With those bleare eyes Opinion learns to see
Truth’s feeble party here, and barennesse.

Keynes (1921, p. 166)

This first introductory chapter, intentionally named similarly to Frank H. Knight’s 1921
work (Knight, 1921) and ironically starting with a poetic quote by John M. Keynes,
should sensibilize the reader on the (proper) meaning of uncertainty, especially when
it comes to statistics. For this purpose, we will revisit and discuss Knight’s most fa-
mous work in a pretty philosophical fashion and contrast it with statistical elements, to
enhance the importance of dealing with uncertainty in statistical applications. Further-
more, since this thesis is highly concerned with a formal decision-theoretic build-up, the
introduction should also allow the familiarization with fundamental decision-theoretic
notions, by briefly reviewing the respective development in decision-making under risk
and particularly under uncertainty. While Knight’s work is mainly engaged with eco-
nomic theory and how profit can emerge under conditions of market competition, our
primary goal is to clarify the notion of uncertainty and derive a possible taxonomy for
concepts of uncertainty within the broader frame of statistics. For this quite difficult
objective, it is also essential to consider, albeit only partially, the development of prob-
ability theory, since the notion of risk, uncertainty, and probability have been entangled
in different ways throughout history.
Pierre-Simon Laplace’ remarks on probability theory (and uncertainty):

On voit par cet Essai, que la théorie des probabilités n’est au fond, que le bon
sens réduit au calcul : elle fait apprécier avec exactitude ce que les esprits justes
sentent par une sorte d’instinct, sans qu’ils puissent souvent s’en rendre compte.
Elle ne laisse rien d’arbitraire dans le choix des opinions et des partis à prendre,
toutes les fois que l’on peut, à son moyen, déterminer le choix le plus avantageux.
Par là, elle devient le supplément le plus heureux à l’ignorance et à la faiblesse de
l’esprit humain1 (Laplace, 1829, p. 273 ff.).

Laplace’s viewpoint is a striclty classical one: “probability theory is only common sense
1It is seen in this essay that the theory of probabilities is at bottom only common sense reduced

to calculus; it makes us appreciate with exactitude that which exact minds feel by a sort of instinct
without being able ofttimes to give a reason for it. It leaves no arbitrariness in the choice of opinions
and sides to be taken; and by its use can always be determined the most advantageous choice. Thereby
it supllements most happily the ignorance and the weakness of the human mind (Laplace, 2007, p.
196).
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reduced to calculus”. He points out that one could always determine the most advan-
tageous choice by its means, i.e., the calculations. This nearly 200-year-old viewpoint
will lead to a curious contrast with the later development of probability theory (resp.
decision-theory). However, at this point, one could ask whether it is always possible to
determine the most advantageous choice solely through probabilistic “calculations”.
Laplace continues:

[. . .] si l’on observe ensuite que dans les choses mêmes qui ne peuvent être soumises
au calcul, elle donne les aperçus les plus sûrs qui puissent nous guider dans nos
jugemens, et qu’elle apprend à se garantir des illusions qui souvent nous égarent,
on verra qu’il n’est point de science plus digne de nos méditations, et qu’il soit
plus utile de faire entrer dans le système de l’instruction publique2 (Laplace, 1829,
p. 274).

Although concepts and theories of uncertainty were far from Laplace’s lifetime, he
gave a crucial hint by remarking that probability theory (in the sense of Laplace) “[. . .]
teaches us to avoid the illusions which offtimes confuse us”. From a modern standpoint
of thinking about uncertainties, we would reformulate and ask where these confusing
“illusions” come from and how to deal with them. This should also demonstrate that
it is not possible to think in terms of uncertainty without considering probability. A
few decades earlier, Daniel Bernoulli had already dealt with determining the “most
advantageous choice”. In his Specimen Theoriae novae de Mensura Sortis3 1738, the
Swiss mathematician formulates the so-called St. Petersburg Paradox and a proposed
solution that is of particular importance for the further development of modern decision-
theory. In the St. Petersburg Paradox, a fair coin is tossed until tails fall for the first
time. If tails fall on the kth toss, you receive 2k−1 euros. Now, the important question
arises as to what entry fee one is willing to pay. Since the expected value is infinite,
one would expect to be willing to pay fairly high entry fees. However, this is opposed
to reality. Daniel Bernoulli suggested a possible way out of this contradictory situation:
Instead of striving to maximize the amount of profit, one looks at the benefit an
individual achieves through the respective utility. In this context, this is also referred to
as the expected utility model. Axiomatization did not occur until 1944 with John von
Neumann and Oskar Morgenstern’s fundamental work (von Neumann and Morgenstern,
1947) on game theory. Since von Neumann and Morgenstern’s axiomatization relies on
known, objective probabilities, it cannot deal with situations in which probabilities are

2If we consider again that, even in the things which cannot be submitted to calculus, it gives the
surest hints which can guide us in our judgments, and that it teaches us to avoid the illusions which
ofttimes confuse us, then we shall see that there is no science more worthy of our meditations, and
that no more useful one could be incorporated in the system of public instruction (Laplace, 2007, p.
196).

3(Bernoulli, 1896) is a version translated from Latin. It should also be remarked that Nicolaus
Bernoulli already mentioned the paradox in 1713 (de Montmort, 1708, p. 402).
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not known (exactly). So as to deal with these situations, Leonard J. Savage axiomatized
a subjective counterpart in 1954 (Savage, 1972). Savage’s work builds heavily on the
von Neumann-Morgenstern expected utility model yet it no longer regards probabilities
as given. Instead, the so-called subjective expected utility model uses a subjective
notion of probability that Bruno de Finetti already treated in 1937 (de Finetti, 1937).
Perhaps de Finetti’s point of view on probability is best signified in his own words:

My thesis, paradoxically, and a little provocatively, but nonetheless genuinely, is
simple this:

PROBABILITY DOES NOT EXIST.
The abandonment of superstitious beliefs about the existence of Phlogiston, the
Cosmic Ether, Absolute Space and Time, . . . , or Fairies and Witches, was an
essential step along the road to scientific thinking. Probability, too, if regarded
as something endowed with some kind of objective existence, is no less a mis-
leading misconception, an illusory attempt to exteriorize or materialize our true
probababilisitc beliefs (de Finetti, 1990, p. x).

It is important to note that, while Laplace speaks of the avoidance of illusions through
probability theory, de Finetti sees the objective conception of probabilities as the illusion
itself. Thus, while objective, unknown probabilities can be replaced with subjective
ones in a subjective approach, the concepts of uncertainty and risk per se must be
distinguished strictly. Knight was the first, motivated by economic observations, to
prominently introduce this distinction:

But Uncertainty must be taken in a sense radically distinct from the familiar notion
of Risk, from which it has never been properly separated. [. . .] The essential fact
is that “risk” means in some cases a quantity susceptible of measurement, while
at other times it is something distinctly not of this character; and there are far-
reaching and crucial differences in the bearings of the phenomenon depending on
which of the two is really present and operating. (Knight, 1921, p. 19 f.)

Knight postulates to distinguish between uncertainty in the proper sense and risk, that
is at bottom explainable with means of probability theory (also compare Laplace’s
viewpoint) and statistics, such that is no uncertainty at all:

It will appear that a measurable uncertainty, or “risk” proper, as we shall use
the term, is so far different from an unmeasurable one that it is not in effect an
uncertainty at all. (Knight, 1921, p. 20)

Later on, we will go a step further, especially in terms of statistical applications, and
define a taxonomy of uncertainty. Concerning the theory of profit in an economic
setting, Knight continues with the following important observation:

It is this “true” uncertainty, and not risk, as has been argued, which forms the
basis of a valid theory of profit and accounts for the divergence between actual
and theoretical competition. (Knight, 1921, p. 20)
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As statisticians, we could look at the above quote differently: Is not the actual profit of
statistics hidden in the uncertain, rather than in the certain? Knight’s uncertainty-risk
distinction is also well-explained by another economic pioneer, John M. Keynes:

By “uncertain” knowledge, let me explain, I do not mean merely to distinguish
what is known for certain from what is only possible. The game of roulette is
not subject, in this sense, to uncertainty; nor is the prospect of a Victory bond
being drawn. Or, again, the expectation of life is only slightly uncertain. Even the
weather is only moderately uncertain. The sense in which I am using the term is
that in which the prospect of a European war is uncertain, or the price of copper
and the rate of interest twenty years hence, or the absolescence of a new invention,
or the position of private wealth-owners in the social system in 1970. About these
matters there is no scientific basis on which to form any calculable probability
whatever. We simply do not know. (Keynes, 1937, p. 213 ff.)

In a decision-theoretic approach, we tend to refer to these situations of proper uncer-
tainty as ambiguity. So far, not a word has been said about statistics itself. Before doing
so and deriving in detail a taxonomy of uncertainty concerning statistical applications,
we will briefly introduce the so-called Ellsberg experiment (and the respective para-
dox) as a famous example of a situation under ambiguity. Thereafter, we will discuss
probable solutions.
Ellsberg experiment:
There are 90 balls in an urn. Of these, 30 are red and the remaining 60 can be black
or yellow (the proportions are unknown!). Now, consider the following two bets:

1. A ball is drawn at random. You can bet on {red} or {black} and win 100e if
you are right.

2. A ball is drawn at random. You can bet on {red, yellow} or {black, yellow} and
win 100e if you are right.

Formalized:

Action {r} {y} {b}

f1 : Bet on {r} 100 0 0

f2 : Bet on {b} 0 0 100

f3 : Bet on {r, y} 100 100 0

f4 : Bet on {b, y} 0 100 100

Table 1: Setting of the Ellsberg experiment.
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As a result of this experiment (Ellsberg, 1961), Daniel Ellsberg observes that, very
often, f1 is preferred over f2 and f4 is preferred over f3, i.e., f1 � f2 and f4 � f3 (at
this point, we only consider “�” as a formalization of the linguistic “is preferred over”
and do not take into consideration the proper mathematical structure of the preference
relation). We will demonstrate why these preferences lead to a contradiction (= the
so-called Ellsberg paradox).
In the sense of expected utility theory, we define, for reasons of simplicity, the following
utility function:

u : {0; 100} → R : x 7→ u(x) =


1, if x = 100

0, if x = 0
(1.1.1)

In order to be consistent with expected utility theory, we expect from above (experi-
mentally) observed preferences

f1 � f2 ⇔ E[u ◦ f1] > E[u ◦ f2]
⇔ P ({r}) > P ({b}) (1.1.2)

f4 � f3 ⇔ E[u ◦ f4] > E[u ◦ f3]
⇔ P ({b}) > P ({r}) , (1.1.3)

where P is a (subjective) probability measure on the state space S = {r, b, y}. Clearly
(1.1.2) and (1.1.3) are contradictory. Hence, it is not possible to find any (subjective)
probability measure P to represent the observed preferences. According to Machina
and Schmeidler (1992), one speaks of probabilistic sophistication if the uncertainty of
events can always be described by (classical) probability measures. The outcome of
the Ellsberg experiment is that the decision-maker (DM) is not always probabilistically
sophisticated. The ambiguity experienced by the DM is due to the unknown proportion
c ∈ [0, 2/3] of black balls in the urn. David Schmeidler, among others, famously dealt
with this problem and proposed an expected utility model that does not entail the use of
classical probabilities, and considers expected utility in terms of non-additive measures
(Schmeidler, 1989). In a later section, Choquet expectations will be discussed in more
detail. In addition, we show how the above problem can be solved using this new notion
of expected utility.
Based on Lo and Mueller (2010), a detailed taxonomy of uncertainty is presented
and the degree of uncertainty which this work is mainly concerned is highlighted.
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The following table summarizes the different levels of uncertainty, which will now be
described in detail and contrasted with previous observations. For an intuitive example
from physics, consider Lo and Mueller (2010, p. 14 ff.).

Level Description Theoretical framework

1 Complete certainty Physics: Newton’s laws
2 Risk without uncertainty Kolmogorov’s axiomatic setting
3 Fully reducible uncertainty Statistical inference
4 Partially reducible uncertainty Partially: Bayesian statistics, ?
5 Irreducible uncertainty ?

Table 2: Taxonomy of uncertainty.

Level 1: Complete certainty

Complete certainty refers to situations in which everything is deterministic, and there
is nothing to worry about. This level of uncertainty is suited best for the setting of
classical physics with Newton’s idealized laws of motion (Lo and Mueller, 2010, p. 10).
Generally, we do not encounter such situations of complete certainty in statistics.

Level 2: Risk without uncertainty

We are now in Kolmogorov’s axiomatic setting (Kolmogorov, 1933), where uncertainty
can be described by way of the respective probabilistic foundations. This level corre-
sponds precisley to Knights’ definition of risk. Now, let Xt : (Ω,A) → (Ω′,A′) be
a random variable for all t ∈ I, where I can be interpreted as a time-index. At this
level, we would expect the random variables Xt to be identically and independently
distributed (abbreviated as i.i.d), e.g.,

Xt
i.i.d∼ N (0, σ2)

where σ2 is assumed to be known.

Level 3: Fully reducible uncertainty

At this level, the methodology of statistical inference comes into play. With sufficiently
large amounts of data, one can reduce this type of uncertainty arbitrarily close to Level
2 uncertainty; hence, one speaks of fully reducible uncertainty. This would mean that
we now have
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Xt
i.i.d∼ N (0, σ2).

Here, we do not know σ2 exactly, such that we now have to estimate this parameter
with tools of statistical inference. It is also crucial that this level requires unknown
parameters to be stationary, e.g., it is not possible that σ2 changes over time.

Level 4: Partially reducible uncertainty

Partially reducible uncertainty refers to situations in which “uncertainty regarding the
underlying structures generating the data cannot be reduced to Level 2 uncertainty,
even with an infinite amount of data” (Lo and Mueller, 2010, p. 12). Some examples
relevant to statistics are (Lo and Mueller, 2010, p. 11):

i) Stochastic or time-varying parameters vary too frequently to be estimated accu-
rately.

ii) Nonlinearities are too complex to be captured by existing models, techniques,
and datasets.

iii) Non-stationarities and non-ergocities that render useless the Law of Large Num-
bers, Central Limit Theorem, and other methods of statistical inference and
approximation.

iv) Dependence on relevant but unknown and unknowable conditioning information.
In light of the previous case, this translates to

Xt ∼ T ∈ {set of probability measures on (Ω′,A′)}

namely, Xt could be distributed arbitarly for t ∈ I within a set of probability measures
on (Ω′,A′). This applies also in the sense that there could be more than one model
generating the data.

Level 5: Irreducible uncertainty

This is the final level of uncertainty, where we “simply do not know”. No meaningful
probabilistic reasoning or statistical inference techniques could deal with this kind
of uncertainty. “This type of uncertainty is the domain of philosophers and religious
leaders, who focus on not only the unknown but the unknowable” (Lo and Mueller,
2010, p. 13).
Our work will focus mainly on Level 4 uncertainty and discuss a more suitable framework
to cope with uncertainties regarding underlying structures generating the data. For this
framework, one considers nonlinear expectation spaces instead of linear ones.
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1.2 Towards a statistical theory under uncertainty
The realm of statistics is to “teach us to avoid illusions”, to reduce uncertainty, and
discover the unseen. It seems inappropriate to believe that uncertainty, as it appears in
different degrees, is simply to be ignored. For this reason, we will discuss methodology
allowing us to deal with respective uncertainty. In the case of the Ellsberg experiment,
we already saw that by a nonlinear notion of expectation, we were able to model the
occurring uncertainty appropriately. In particular, the nonlinearity of the Choquet ex-
pectation is induced by a non-additive measure. Choquet expected utility (Schmeidler,
1986, 1989) and the related notion of multiple prior utility (Gilboa and Schmeidler,
1989) are mainly concerned with non-dynamic situations. However, to deal with uncer-
tainty occurring in dynamic situations, recursive multiple priors utilities, representing an
intertemporal counterpart to multiple prior utility, were considered in Chen and Epstein
(2002). This approach to dynamic modeling is based on a particular class of nonlinear
expectations, so-called g-expectations (Peng, 1997). Since g-expectations are defined
via particular backward stochastic differential equations (BSDE), before discussing g-
expectations in more detail, we first elaborate on the underlying stochastic calculus.
In dynamic as well as non-dynamic situations under uncertainty the aforementioned
nonlinear expectations motivate a generalization of Kolmogorov’s classical framework
(Ω,F , P ) to nonlinear expectation spaces (Ω,H, E) providing an unified way of dealing
with uncertainty. We will mainly be concerned with sublinear expectation spaces. This
framework, based on Peng (2004, 2007a, 2008) amongst further work by the same
author, is called G-Framework. Albeit not always in the classical sense, we can state
elementary notions such as independence and distribution of a random variable in this
nonlinear framework. Since the Law of Large Numbers (LLN) and the Central Limit
Theorem (CLT) play a crucial role in statistics, it is essential that analogous theorems
can be stated in this new framework. Peng (2007b) and Peng (2008) proved versions of
the LLN and CLT within the G-Framework. This work aims to illustrate fundamental
concepts in this nonlinear framework and to motivate theoretical foundations in more
detail. Possible applications in the area of regression models are discussed based on
regressions models considered in Lin et al. (2013). Before introducing the basics of
stochastic calculus for a more comprehensive understanding of g-expectations, we first
consider how Choquet expectations can be used to model the observed preferences
in the Ellsberg experiment. These considerations also motivate how concepts from
imprecise probabilities may relate here.
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2 Choquet expectation
Based on the results of the Ellsberg experiment, the previous section gave way to
the observation that classical probability measures are not sufficient to model the
underlying uncertainty in some situations. Therefore, this section will motivate non-
additive measures, i.e., capacities4, and revisit Choquet expectation using a notion of
integration with respect to non-additive measures, first discussed by Choquet (1954).
This nonlinear expectation can be seen as a generalization of the classical linear case.
In particular, Choquet expectations will be quite interesting for later comparisons in
a broader setting, once we derive so-called g-expectations, which are in turn highly
motivated through BSDE.
Definition 2.1 (Capacity)
Let (Ω,F) be a measurable space. The set-function

µ : F → [0,∞[

is called capacity, if
C1) µ(∅) = 0, µ(Ω) = 1

C2) ∀A,B ∈ F : A ⊆ B ⇒ µ(A) ≤ µ(B)

Moreover, the set function

µd : F → [0,∞[: A 7→ 1− µ(Ac)

is called µ-dual capacity. Then (Ω,F , µ) is referred to as capacity space and respectively
(Ω,F , µd) is called µ-dual capacity space.
Now we call a capacity µ
(i) 2-alternating, if for all A,B ∈ F we have

µ(A ∪B) + µ(A ∩B) ≤ µ(A) + µ(B).

(ii) 2-monotone, if for all A,B ∈ F we have

µ(A ∪B) + µ(A ∩B) ≥ µ(A) + µ(B).

Integration with respect to capacities requires a new notion of integration, since the
usual integral in the Lebesgue sense is not suitable due to the lack of additivity. The

4The notion capacity dates back to Choquet (1954). In addition, be warned, as the terms capacity
and non-additive measure are not always used consistently. Nevertheless, these two terms should be
treated as synonyms for our purposes.
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standard reference for integration with respect to non-additive measures is Denneberg
(2013). At this point, we will only formulate the results necessary to motivate Choquet
expectations. For some earlier work on Choquet Integration and the role in expected
utility theory, consider Sale (2021) and the references therein.
Definition 2.2 (Choquet expectation)
Let (Ω,F , µ) be a capacity space and X : Ω → R a bounded, measurable function.
Then, the Choquet expectation of X with respect to the capacity µ is defined by

Ec[X] :=
∫ ∞

0
X+dµ−

∫
X−dµd (2.0.1)

=
∫ ∞

0
µ(X ≥ x) dx+

∫ 0

−∞
(µ(X ≥ x)− 1) dx, (2.0.2)

where we have X+ = max{0, X} and X− = max{0,−X}. The integrals involved in
(2.0.1) are called Choquet Integrals.

In particular, the form of (2.0.1) illustrates the relationship between the notions of
expectation and capacity. This relationship also holds true for classical probability
measures and linear expectations:
Proposition 2.1
Let X be a random variable on the probability space (Ω,F , P ). Thus, the (linear)
expectation can be represented by

E[X] =
∫ ∞

0
P (X ≥ x) dx+

∫ 0

−∞
(P (X ≥ x)− 1) dx. (2.0.3)

Proof. First, we note that any non-negative random variable can be written in integral
form (also referred to as layer-cake representation5) by

X =
∫ ∞

0
1{X>x}dx. (2.0.4)

Taking the expectation and changing the order of integration (by applying Fubini-
Tonelli) yields

E[X] =
∫

Ω

∫ ∞
0

1{X>x} dx dP

=
∫ ∞

0

∫
Ω
1{X>x} dP dx

=
∫ ∞

0
P (X ≥ x)dx.

5See Lieb and Loss (2001) for the layer-cake representation.
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Since we can write any random variable as X = X+ −X− we get

E[X] = E[X+]− E[X−]

=
∫ ∞

0
P (X+ ≥ x)dx−

∫ ∞
0

P (X− > x)dx

=
∫ ∞

0
P (X ≥ x)dx−

∫ 0

−∞
P (X < x)dx

=
∫ ∞

0
P (X ≥ x)dx+

∫ 0

−∞
(P (X ≥ x)− 1) dx.

This completes the proof.

Theorem 2.1 (Properties of Choquet expectation)
Let X, Y be two bounded, measurable functions and (Ω,F , µ) a capacity space. Then,
the Choquet expectation has the following properties:

1.) ∀A ∈ F : Ec[1A] = µ(A)

2.) ∀α > 0 : Ec[αX] = α Ec[X]

3.) X ≤ Y ⇒ Ec[X] ≤ Ec[Y ]

4.) If µ is a 2-alternating capacity then the respective Choquet expectation is sub-
additive, i.e.

Ec[X + Y ] ≤ Ec[X] + Ec[Y ].

5.) If µ is a 2-monotone capacity then the respective Choquet expectation is super-
additive, i.e.

Ec[X + Y ] ≥ Ec[X] + Ec[Y ].

The proof and further properties of the Choquet expectation can be found in Denneberg
(2013, p. 64 ff.). Given the properties, it is easy to see that the Choquet expectation
is a nonlinear functional. In particular, we will consider functionals satisfying positive
homegeneity and subadditvity in later sections. The following theorem shows how
subadditivity resp. superadditivity depends on the properties of the underlying capacity.
Theorem 2.2
Let X, Y be two random variables on the a capacity space (Ω, 2Ω, µ). Then we have:

i.) µ is 2-alternating, if and only if

Ec[X + Y ] ≤ Ec[X] + Ec[Y ].
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ii.) µ is 2-monotone, if and only if

Ec[X + Y ] ≥ Ec[X] + Ec[Y ].

See Denneberg (2013, p. 71) for proof of the above, so-called Subadditivity- resp.
Superadditivity theorem. Note that this theorem was proven many times under different
assumptions.
Remark 2.1
From (2.0.2), it should be clear that the Choquet expectation can not be additive
until the underlying capacity is additive (in this case the Choquet expectation simply
reduces to the classical expectation w.r.t. a probability measure), e.g., let (Ω,F , µ) be
a capacity space, thus for all A,B ⊆ Ω with A ∩B = ∅ we have

Ec[1A + 1B] = Ec[1A∪B] = µ(A ∪B) 6= µ(A) + µ(B) = Ec[1A] + Ec[1B].

Furthermore, it is noteworthy that the Choquet expectation is comonoton additive,
which is an important feature for application in mathematical finance. We will not
elaborate on this point, hence the reader may refer to the above references.

Ellsberg experiment revisited:
We now revist the Ellsberg experiment and consider the following capacity, instead of
a classical probability measure to model the observed preferences:

Event E {r} {y} {b} {r, y} {r, b} {y, b} {r, b, y}

µ(E) 1
3 0 0 1

3
1
3

2
3 1

Table 3: Capacity µ

Calculating the resp. Choquet expectations yields

f1 � f2 ⇔ Ec[u ◦ f1] > Ec[u ◦ f2]
⇔ µ({r}) > µ({b})

⇔ 1
3 > 0

f4 � f3 ⇔ Ec[u ◦ f4] > Ec[u ◦ f3]
⇔ µ({y, b}) > µ({r, y})

⇔ 2
3 >

1
3
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Thus, with a suitable capacity specification, it is possible to model the observed pref-
erences in the Ellsberg experiment in terms of expected utility. The so-called Choquet-
expected utility was axiomatized by Schmeidler (1989), Gilboa (1987) and Sarin and
Wakker (1992). A helpful overview can be found in Gilboa (2009) and references
therein. Having established Choquet expectations as a valuable tool for decision-making
under uncertainty, we will now present a related approach, maximin-expected utlity,
also called multiple prior utility (Gilboa and Schmeidler, 1989). To do so, we revisit
the setting of the Ellsberg experiment and consider a different approach to circumvent
the observed contradiction by considering the following set of probability measures

Cµ := {P ∈ 4(S) : P ({r}) = 1/3} , (2.0.5)

where4(S) denotes the set of all probability measures on the state space S = {r, b, y}.
The set of probability measures (2.0.5) is also called Credal-set. Instead of evaluat-
ing acts w.r.t. the classical expectation or Choquet expectation, this approach makes
possible the use of lower expectation to model uncertainty appropriately.
Definition 2.3 (Lower and upper expectation)
LetM⊆4(S) be a closed, and convex credal set on the state space S. Thus,

E
¯ P [f ] = min

P∈M

∫
f dP (2.0.6)

ĒP [f ] = max
P∈M

∫
f dP (2.0.7)

is called lower resp. upper expectation of (suitable) f .

Assuming the “worst case” (acting ambiguity averse), we now consider the following
calculations:

E
¯

[u(f1)] = min
P∈Cµ

∫
(u ◦ f1)dP = 1

3 (2.0.8)

E
¯

[u(f2)] = min
P∈Cµ

∫
(u ◦ f2)dP = min

c∈[0,2/3]
c = 0 (2.0.9)

E
¯

[u(f3)] = min
P∈Cµ

∫
(u ◦ f3)dP = min

c∈[0,2/3]
(1− c) = 1

3 (2.0.10)

E
¯

[u(f4)] = min
P∈Cµ

∫
(u ◦ f4)dP = 2

3 (2.0.11)

Hence, this allows for appropriate modeling of the observed preferences in the Ellsberg
experiment. In particular, note that both approaches coincide here, although this is
generally not true. See also the remark at the end of this section. The following theorem
shows the conditions under which the two approaches coincide.
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Theorem 2.3
Let (Ω,F , µ) be a capacity space and

Cµ = {P ∈ 4(Ω) : P (E) ≥ µ(E) for all E ∈ F}

the anti-core6 of the capacity µ. Hence, for all µ- and µd-integrable functions f , the
following statements are equivalent:

i) µ is 2-monoton and continuous from below.

ii) Ec[f ] = min
P∈Cµ

∫
f dP.

This theorem was proven under different conditions in Huber and Strassen (1973) or
Schmeidler (1986). Further details and a complete proof can be found in Dyckerhoff
(1994, p. 55 ff.).
Remark 2.2
Note that we have µ(E) = infP∈Cµ P (E) for all events E, where µ is the capacity
defined in Table 3. Since µ is 2-monoton, the preceding theorem tells us that we have
the equality

Ec[u ◦ f ] = min
P∈Cµ

∫
u ◦ f dP

for all acts f and utility functions u. Hence, Choquet expectation and the lower ex-
pectation coincide in this case.

In order not to cause a deceptive impression, the next example shows that, in general
the lower envelope of a credal set is not 2-monotone.
Example 2.1
Let Ω = {1, 2, 3, 4}. Then P = (0.5, 0.2, 0.2, 0.1) and Q = (0.6, 0.1, 0.1, 0.2) are two
probability measures on (Ω, 2Ω). Now, we define C to be the convex hull of P0 and P1.
Hence, by taking the lower envelope of this credal set, we define a capacity µ, i.e.,

∀A ∈ 2Ω : µ(A) = inf
P∈C

P (A). (2.0.12)

With A = {1, 2} and B = {1, 3} we get

µ(A ∪B) + µ(A ∩B) = 0.8 + 0.5 < 0.7 + 0.7 = µ(A) + µ(B).

Thus, µ is not 2-monotone and therefore Theorem 2.3 no longer holds true.

Furthermore, even if the capacity µ is 2-montone, it may happen that the underlying
credal set is not the anticore of the capacity. Consider the following example:

6(Anti-)core is a game-theoretic term, but appears in the literature under many different names.
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Example 2.2
Let Ω = {1, 2, 3}. Then P = (0.5, 0.5, 0) and Q =

(
4
6 ,

1
6 ,

1
6

)
are two probability

measures on (Ω, 2Ω). Now, we define C to be the convex hull of P0 and P1, i.e.,

C =
{(

3 + λ

6 ,
3− 2λ

6 ,
λ

6

) ∣∣∣λ ∈ [0, 1]
}
.

If we now define a capacity analogous to (2.0.12), it is easy to see that in this case µ
is 2-monotone. However, we see that only C ( Cµ applies, where

Cµ =
{(3 + t

6 ,
3− s− t

6 ,
s

6

) ∣∣∣ s, t ∈ [0, 1]
}
.

denotes the anti-core of the capacity µ.

Example 2.1 and Example 2.2 can be found in Huber and Strassen (1973, p. 254) or
Dyckerhoff (1994, p. 56 ).
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3 Backward SDE and related g-expectation
One first step to the broader framework of the G-Framework is to revisit Peng’s so-
called g-expectation, first discussed in Peng (1997). In particular, we note that this
nonlinear, filter-consistent expectation is a solution to backward stochastic differen-
tial equations (BSDE). For this purpose, we will introduce the corresponding basics
of stochastic differential equations (SDE) and the respective Itô’s calculus before dis-
cussing g-expectations in detail. For a more detailed introduction into stochastic cal-
culus, the reader may refer to Oksendal (2013), Steele (2001) or Karatzas and Shreve
(2012). Since this procedure requires some prior knowledge on probability theory and
stochastic processes, the reader not familiar with these foundations may refer to the
respective Appendix.

3.1 (Backward) stochastic differential equations
To familiarize with the notion and conceptual idea of SDE, we will define ordinary
differential equations (ODE) first. An ordinary differential equation relates a (real- or
complex-valued) function and its derivatives.
Definition 3.1 (Differential equation)
For U ⊂ R× Rd(k+1) and F : U → Rd the equation

F
(
t, x, x(1), ..., x(k)

)
= 0 (3.1.1)

with d, k ∈ N is called real-valued, d-dimensional implicit differential equation of order
k.
A function λ : I → Rd is called solution of the differential equation (3.1.1), if the
following holds:

1. I ⊂ R has non-empty interior.

2. λ ∈ Ck(I), where Ck(I) denotes the space of k-times differentiable, continuous,
real-valued functions on I.

3. ∀t ∈ I :

i.)
(
t, λ(t), λ(1)(t), . . . , λ(k)(t)

)
∈ U

ii.) F
(
t, λ(t), λ(1)(t), . . . , λ(k)(t)

)
= 0

Furthermore, for V ⊂ R× Rdk and F : U → Rd the equation

x(k) = f
(
t, x, x(1), ..., x(k−1)

)
(3.1.2)
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with d, k ∈ N is called real-valued, d-dimensional explicit differential equation of order
k.
Notation:

x(1)(t) = dx

dt
(t), . . . , x(d)(t) = ddx

dtd
(t)

A differential equation is called

(i) scalar, if d = 1.

(ii) autonom, if F
(
t, x, x(1), ..., x(k)

)
= F

(
x, x(1), ..., x(k)

)
.

(iii) linear, if the mapping

Rd(k+1) → Rd : X 7→ F (t,X)

is linear.

Example 3.1 (Population growth model)
Consider the population growth model

dNt

dt
= αNt (3.1.3)

with Nt := N(t) and N0 := N(0) = constant, where Nt denotes the population size
at time t, and α a constant growth rate. It is easy to verify that the function

Nt = N0e
αt

solves the linear differential equation (3.1.3).
Given the definition of a differential equation, we introduce a stochastic version by
allowing randomness for some of the coefficients of the differential equation. With
the aid of the population growth model, we will now motivate stochastic differential
equations by formulating a stochastic counterpart of (3.1.3). Given previous considera-
tions in the introductory chapter, we now add a stochastic component to the constant
growth rate, i.e., we define

αt := rt + αVt,

where Vt denotes, some noise term, yet to be specified. Hence, we call
dNt

dt
= rtNt + αNtVt (3.1.4)

stochastic differential equation. Since the way in which to derive a solution for such
SDEs is not apparent, the rest of this introductory is concerned mainly with answering
the following important questions:
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1.) How can the noise term be specified appropriately?
2.) How can we solve such SDEs, or more, generally speaking, equations of the form

dXt

dt
= b(t,Xt) + σ(t,Xt)Vt (3.1.5)

adequately?
To answer the first question, it would be intuitive to find a stochastic process {Vt}t∈I
with some parameter set I yet to be specified, representing the noise term in (3.1.5)
with some suitable properties:
(i) ∀ti, tj ∈ I, i 6= j : Vti and Vtj are independent.
(ii) {Vt}t∈I is stationary.
(iii) ∀t ∈ I : E(Vt) = 0.

For I at most countable, any sequence of independent and identically distributed,
centered random variables will satisfy the properties (i) - (iii). In case where I is
uncountable, usually, we assume in the following, I = R≥0 there does not exist a
stochastic process satisfying the above properties, since such a stochastic process can
not have continuous paths:
Theorem 3.1
Let (Ω,F , P, {Vt}t∈I) be a non-trivial stochastic process7 with state space (R,B(R))
satisyfing the above properties, where B(R) denotes the Borel σ-algebra on R. Con-
sequently, {Vt}t∈I does not have continuous paths.

Proof. Consider a non-trivial stochastic process (Ω,F , P, {Vt}t∈I) with state space
(R,B(R)) satisyfing the above properties. Assume that {Vt} has continuous paths,
i.e.,

∀ω ∈ Ω : t 7→ Vt(ω)

is a continuous mapping. For allN ∈ N we now define V (N)
t := max {−N,min {N, Vt}} .

From the assumed continuity we know lims→t
(
V

(N)
t − V (N)

s

)2
= 0 for fixed t ∈ I.

Since, by definition, we also have ∀t ∈ I :
(
V

(N)
t − V (N)

s

)2
≤ 4N2 for fixed N ∈ N,

applying the dominated convegence theorem yields

lim
s→t

E
[(
V

(N)
t − V (N)

s

)2
]

= lim
s→t

∫ (
V

(N)
t − V (N)

s

)2
dP

7In the following we will denote a stochastic process by {V }t∈I and omit the quadruple
(Ω,F , P, {Vt}t∈I) notation. If there is no possibility of confusion, we also drop the parameter set I
in our notation.
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=
∫

lim
s→t

(
V

(N)
t − V (N)

s

)2
dP

= 0.

On the other hand we derive by independence and stationarity

E
[(
V

(N)
t − V (N)

s

)2
]

= E
[
V

(N)
t

2
]
− 2E

[
V

(N)
t

]
· E

[
V (N)
s

]
+ E

[
V (N)
s

2]
= 2E

[
V

(N)
t

2
]

= 2 Var
[
V

(N)
t

]
.

Since Var
[
V

(N)
t

]
= 0 if, and only if E

[
V

(N)
t

]
= V

(N)
t a.s., we conclude V (N)

t is
degenerate, i.e., Vt is degenerate. By assumption (iii) we get Vt ≡ 0. This contradicts
the non-triviality assumption.

Actually, a much stronger statement holds: If we assume mutual independence and
E [V 2

t ] = 1, there is no measurable stochastic process that satisfies the above prop-
erties. For the precise statement and proof, we refer to Kallianpur (2013, p. 10 ff.).
Nevertheless, it is possible to construct a stochastic process satisfying the above prop-
erties, called “white noise process”, by introducing generalized functions in terms of
Distribution Theory. However, since this approach is not within the scope of this thesis,
we will primarily deal with formally replacing the noise term with a suitable stochastic
process, as suggested in Oksendal (2013).
To answer the second question, we will now introduce the basics of the related Itô’s
calculus8. Here, we primarily follow Oksendal (2013) and Steele (2001). So as to avoid
notational difficulties, we further define Xk := Xtk and ∆tk = tk+1− tk, where we set
0 = t0 < t1 < t2 < · · · < tm = t. If we now consider a discrete version of (3.1.5), we
get

Xk −Xk+1 = b(tk, Xk) ·∆tk + σ(tk, Xk)Vk ·∆tk. (3.1.6)

From Xk = X0 +∑k−1
j=0(Xk+1 −Xk) and (3.1.6), we obtain

Xk = X0 +
k−1∑
j=0

b(tj, Xj) ·∆tj +
k−1∑
j=0

σ(tj, Xj) ·∆Bj, (3.1.7)

where, based on previous considerations, we set Vj · ∆tj = ∆Bj with Bj denoting
standard Brownian motion.

8Note: Since access to general stochastic integrals via Semimartingales is technically quite chal-
lenging, only Itô’s approach is discussed in this thesis. For a mathematically rigorous approach via
Semimartingales consider Karatzas and Shreve (2012).
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Remark 3.1
Since the Brownian motion has almost surely nowhere differentiable paths, the above
replacement would not make much sense. Therefore, the expression dB

dt
should be un-

derstood as the distributional derivative of the Brownian motion in the aforementioned
sense of Distribution Theory.

Thus (3.1.7) suggests for ∆tj → 0:

Xk = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs︸ ︷︷ ︸

(1)

(3.1.8)

Since the unbounded variation of Brownian motion makes it unfeasible to treat integrals
of the form (1) as ordinary Stieltjes Integrals, we will now focus on the existence
and calculation of stochastic integrals. However, before defining a suitable class of
integrands to define the Itô Integral, we fix some notation for later convenience:
Let (Ω,F , P ) be a measure space, then we define for 1 ≤ p <∞:

• LpF := Lp(Ω,F , P ) = {f : Ω→ R is measurable, ∫Ω |f |pdP <∞} and

‖ · ‖Lp : LpF → R : f 7→ ‖f‖Lp :=
(∫

Ω
|f |pdP

)1/p
,

where ‖f‖Lp is a seminorm on LpF .
• LpF := Lp(Ω,F , P ) = Lp/N with N := {f : f = 0P − a.e.}, where ‖f‖Lp :=
‖f‖Lp is a norm on LpF . Henceforth, f ∈ LpF shall refer to the respective repre-
sentant in LpF than the whole equivalence class.

• L2
F equipped with the inner product

〈f, g〉 :=
∫

Ω
f · g dP

is a Hilbert space.
Definition 3.2
Let {Bt}t≥0 be a Brownian motion on the probability space (Ω,F , P ) and F :=
{Ft}t∈[0,T ] the respective augmented filtration with F t := σ{Bs ∪ N : 0 ≤ s ≤ t},
where N := {A ⊆ Ω| ∃B ∈ F , B ⊂ A,P (B) = 0} denotes the collection of P -null
sets. Define L2

ad([0, T ]) to be the class of functions

f(t, ω) : [0,∞)× Ω→ R

such that
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(i) (t, ω)→ f(t, ω) is B([0,∞))×F -measurable.

(ii) f(t, ω) is F-adapted, i.e., ∀t ∈ [0, T ] : f(t, ·) is F t-measurable.

(iii) E
[∫ T

0
|f(t, ω)|2dt

]
<∞.

Further denote by L2
0,ad([0, T ]) the subset of L2

ad([0, T ]) consisting of all functions of
the form

f(t, ω) =
n−1∑
j=0

ej(ω)1[tj ,tj+1](t). (3.1.9)

Functions of the form (3.1.9) are called step processes.

Remark 3.2
Conditions (i) and (iii) can also be expressed by

f ∈ L2 ([0, T ]× Ω,B([0, T ])⊗F , λ⊗ P ) =: L2(λ⊗ P ).

Hence

‖f‖L2(λ⊗P ) =
(∫

Ω

∫ T

0
|f(t, ω)|2dt dP

) 1
2

defines a norm on L2(λ ⊗ P ) induced by the respective inner product. This remark
also emphasizes that L2

0,ad([0, T ]) is a closed linear subspace of L2(λ⊗ P ).

With these prerequisites in place, we can define the Itô Integral for step processes:
Definition 3.3 (Itô Integral for f ∈ L2

0,ad([0, T ]))
Let f ∈ L2

0,ad ([0, T ]) and 0 = t0 < t1 < · · · < tn−1 < tn = T , then the functional

I : L2
0,ad ([0, T ])→ L2

F : I(f)(ω) =
n−1∑
j=0

ej(ω)(Btj+1 −Btj) (3.1.10)

is called Itô Integral. Note that this functional is a random variable itself.

The next step is to extend the functional I from L2
0,ad ([0, T ]) to L2

ad([0, T ]). In order
to do so, we state the following two important lemmata:
Lemma 3.1 (Itô Isometry on L2

0,ad([0, T ]))
For f ∈ L2

0,ad ([0, T ]) we have

‖I(f)‖L2 = ‖f‖L2(λ⊗P ). (3.1.11)
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Proof. Let f ∈ L2
0,ad[0, T ], then we have

‖I(f)‖2
L2 = E

n−1∑
j=0

e2
j(ω)(Btj+1 −Btj)2


=

n−1∑
j=0

E
[
e2
j · (Btj+1 −Btj)2

]

=
n−1∑
j=0

E
[
e2
j

]
E
[
(Btj+1 −Btj)2

]

=
n−1∑
j=0

E[e2
j ] · (tj+1 − tj)

and

‖f‖2
L2(λ⊗P ) = E

[∫ T

0
f 2(t, ω)dt

]

= E

n−1∑
j=0

e2
j(ω)1[tj ,tj+1](t)


=

n−1∑
j=0

E[e2
j ] · (tj+1 − tj)

This yields ‖I(f)‖L2 = ‖f‖L2(λ⊗P ).

Lemma 3.2 (L2
0,ad([0, T ]) is dense in L2

ad([0, T ]))
For any f ∈ L2

ad([0, T ]) there exists a sequence {fn} with fn ∈ L2
0,ad([0, T ]) such that

‖fn − f‖L2(λ⊗P ) → 0 for n→∞.

See Steele (2001, p. 90 ff.) for the proof of a more general statement. With these
prerequisites, it becomes easy to extend the functional I from L2

0,ad[0, T ] to L2
ad([0, T ])

by defining

I(f) := lim
n→∞

I(fn) (3.1.12)

for all f ∈ L2
ad([0, T ]). It remains to show that the expression (3.1.12) is actually

well-defined. This follows immediately since:
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(i) Let {fn} ⊂ L2
ad([0, T ]) such that fn → f in L2(λ ⊗ P ) for n → ∞. Since

the space L2(λ ⊗ P ) is complete, this implies that {fn} is a Cauchy-sequence.
By Lemma 3.1, we know that {I(fn)} is also a Cauchy-sequence in L2, hence
converges to some I(f).

(ii) Let {f ′n} ⊂ L2
ad([0, T ]) be another sequence, such that f ′n → f in L2(λ ⊗ P )

for n→∞. The triangle-inequality

‖fn − fn‖L2(λ⊗P ) ≤ ‖f − fn‖L2(λ⊗P ) + ‖f − fn‖L2(λ⊗P ),

and the application of Lemma 3.1 yields ‖I(fn)− I(f ′n)‖L2 → 0.
Since the Itô Isometry is a technically important instrument, we show that the state-
ment also holds true for functions in L2

ad([0, T ]).
Lemma 3.3 (Itô Isometry on L2

ad([0, T ]))
For f ∈ L2

ad([0, T ]) we have

‖I(f)‖L2 = ‖f‖L2(λ⊗P ). (3.1.13)

Proof. Let f ∈ L2
ad([0, T ]). By Lemma 3.2 we can choose {fn} ⊂ L2

0,ad([0, T ]) such
that ‖fn − f‖L2(λ⊗P ) → 0 for n→∞. Applying the reverse triangle-inequality yields

0 ≤
∣∣∣ ‖fn‖L2(λ⊗P ) − ‖f‖L2(λ⊗P )

∣∣∣ ≤ ‖fn − f‖L2(λ⊗P )
n→∞→ 0.

Hence, ‖fn‖L2(λ⊗P ) → ‖f‖L2(λ⊗P ) for n → ∞. With similar reasoning, we also get
‖ I(fn)‖L2 → ‖I(f)‖L2 . The Itô Isometry on L2

0,ad([0, T ]) tells us now

‖ I(fn)‖L2 = ‖fn‖L2(λ⊗P ).

Taking limits completes the proof.

Since it is essential to understand such integrals as stochastic processes, the following
theorem strongly connects Itô Integrals and martingales.
Theorem 3.2
Let f ∈ L2

ad([0, T ]). Then there exists a t-continuous stochastic process {Mt} on
(Ω,F , P ) that is a martingale with respect to the filtration of the Brownian motion F
such that

∀t ∈ [0, T ] : P [Mt = I(mtf)] = 1,

where

mt(ω, s) := 1[0,1](ω, s) =

1, for s ∈ [0, t]
0, else.
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Proof. Let f ∈ L2
ad([0, T ]). Thus, according to Lemma 3.2, there exists a sequence

{fn}n∈N ⊆ L2
0,ad([0, T ]) such that ‖f − fn‖L2(λ⊗P ) → 0 for n → ∞. Since we also

have {mtfn}n∈N ⊆ L2
0,ad([0, T ]), we can define

In(t, ω) := I(mtfn). (3.1.14)
From the explicit formulation (3.1.10) of the Itô Integral for step processes, it follows
immediately that In(·, ω) is t-continuous for all n ∈ N. Now, we show that In(t, ω)
is a martingale with respect to F for all n ∈ N, i.e., for all t, s ∈ [0, T ] with s ≤ t we
have E[In(t, ω)|Fs] = In(s, ω):
Let t, s ∈ [0, T ] with s ≤ t , then we have

E [In(t, ω)| F s] = E [(In(s, ω) + In(t, ω)− In(s, ω)) | F s]

= E [In(s, ω)| F s] + E [In(t, ω)− In(s, ω)| F s]

= In(s, ω) + E

 ∑
s≤t(n)

j ≤t
(n)
j+1≤t

e
(n)
j (Bj+1 −Bj)| F s


= In(s, ω) +

∑
s≤t(n)

j ≤t
(n)
j+1≤t

E
[
E
[
e

(n)
j (Bj+1 −Bj)| F t(n)

j

]
| F s

]

= In(s, ω) +
∑

s≤t(n)
j ≤t

(n)
j+1≤t

E
[
e

(n)
j E

[
(Bj+1 −Bj)| F t(n)

j

]
| F s

]

= In(s, ω).

Hence, In is a martingale for all n ∈ N. Note that the last equality holds, since
(Bj+1 − Bj) is independent of F

t
(n)
j

and E [(Bj+1 −Bj)] = 0. By applying Doob’s
maximal inequality on the submartingale In − Im for n ≥ m we get

P

(
sup

0≤t≤T
| In(t, ω)− Im(t, ω)| > ε

)
≤ 1
ε2
· E

[
| In(T, ω)− Im(T, ω)|2

]
≤ 1
ε2
‖fn − fm‖2

L2(λ⊗P ).

We know that ‖f − fn‖L2(λ⊗P ) → 0 for n → ∞, yielding an increasing subsequence
{fnk} such that

max
n≥nk
‖fn − fm‖2

L2(λ⊗P ) ≤ 2−3k.

By fixing ε = 2−k we get

P

(
sup

0≤t≤T
| Ink+1(t, ω)− Ink(t, ω)| > 2−k

)
≤ 2−k.
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Finally the Borel-Cantelli lemma provides us with

P

(
sup

0≤t≤T
| Ink+1(t, ω)− Ink(t, ω)| > 2−k for infinitely many k

)
= 0.

Thus, for almost all ω ∈ Ω there is a k̃(ω) such that

∀k ≥ k̃(ω) : sup
0≤t≤T

| Ink+1(t, ω)− Ink(t, ω)| ≤ 2−k.

Consequently, {Ink} is a Cauchy sequence in C([0, T ]), and since this space is complete,
this sequence has, in particular, a limit, which we denote by Mt. To sum up, Mt is a
t-continuous martingale. Since we already know that Ink converges to It := I(mtf)
in L2 we immediately deduce by unqiueness of limits

∀t ∈ [0, T ] : It = Mt a.s.

This completes the proof.

Remark 3.3
Let f ∈ L2

ad([0, T ]). If the requirements of Theorem 3.2 are fulfilled, we henceforth
also write

Mt(ω) =
∫ t

0
f(s, ω) dBs for all 0 ≤ t ≤ T.

The final step in deriving the Itô Integral is to relax the integrability constraints in Def-
inition 3.2 sufficiently enough. For this purpose, efforts will now be made to achieve
what is known as localization in Stochastics. Although the formalization is quite ab-
stract, one will quickly realize that this new space naturally fits as a proper domain of
the Itô Integral. In this case, the reader may also refer to Steele (2001, p. 96 ff.). We
now consider the following class of functions:
Definition 3.4
Let {Bt}t≥0 be a Brownian motion on the probability space (Ω,F , P ) and F :=
{Ft}t∈[0,T ] the respective augmented filtration. Define L2

loc ([0, T ]) to be the class
of functions

f(t, ω) : [0,∞)× Ω→ R

such that

(i) (t, ω)→ f(t, ω) is B([0,∞))×F -measurable.

(ii) f(t, ω) is F-adapted, i.e., ∀t ∈ [0, T ] : f(t, ·) is F t-measurable.

(iii) P
(∫ T

0
|f(t, ω)|2dt <∞

)
= 1.
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Note that in contrast to Definition 3.2, we weakened condition (iii) here.
Definition 3.5 (Stopping time)
Let (Ω,F) be a measurable space endowed with a filtration {F t}t≥0. Then we call the
mapping

T : Ω→ R ∪ {∞} (3.1.15)

stopping time w.r.t. {F t}t≥0, if we have {T ≤ t} = {ω ∈ Ω : T (ω) ≤ t} ∈ F t for all
t ≥ 0.

Example 3.2 (Hitting time)
Let {Bt}t≥0 be a Brownian motion. Then the so-called hitting-time

Ta(ω) := inf{t ∈ R≥0 | Bt(ω) = a}, a ∈ R

is a stopping time. For an exemplary visualization, consider Figure 1.

Before we begin the localization procedure, we briefly state a theorem concerned with
the persistence of identity under integration. This theorem will be helpful for later
proofs.
Theorem 3.3 (Persistence of identity)
Let f, g ∈ L2

ad([0, T ]) and T a stopping time, such that f(s, ω) = g(s, ω) for almost
all ω ∈ {ω : s ≤ T (ω)}. Then the integrals

Xt(ω) =
∫ t

0
f(s, ω)dBs and Yt(ω) =

∫ t

0
g(s, ω)dBs

are for a.a. ω ∈ {ω : s ≤ T (ω)} equal.

See Steele (2001, p. 89) for the proof of Theorem 3.3.
Definition 3.6 (L2

ad([0, T ]) localizing sequence)
Let f ∈ L2

loc ([0, T ]). An increasing sequence of stopping times {Tn} ⊂ L2
ad([0, T ]) is

called a L2
ad([0, T ])-localizing sequence if we have

∀n ∈ N : fn(ω, t) = f(ω, t)1{t≤Tn} ∈ L2
ad([0, T ])

and

P

( ∞⋃
n=1
{ω ∈ Ω : Tn(ω) = T}

)
= 1.

For simplicity, we will henceforth speak of localizing sequences rather than L2
ad([0, T ])

localizing sequence, since there is no possibility of confusion.
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Figure 1: Hitting time T1 of Brownian motion sample paths.

Proposition 3.1
Let f ∈ L2

loc ([0, T ]). Consequently, the sequence defined by

Tn = inf
{
s ∈ [0, T ] :

∫ s

0
|f(ω, t)|2dt ≥ n or s ≥ T

}
is a localizing sequence.

Proof. We have
∞⋃
n=1
{ω : Tn = T} =

{
ω :

∫ T

0
|f(ω, t)|2dt <∞

}

for f ∈ L2
loc ([0, T ]), where the second set has by Definition 3.4 probability one. Since

we also have

‖fn‖2
L2(λ⊗P ) = E

[∫ T

0
f 2
n(ω, t)1{t≤Tn}dt

]
= E

[∫ Tn
0

f 2
n(ω, t)1{t≤Tn}dt

]
≤ E [n] = n,

hence, fn ∈ L2
ad([0, T ]). Therefore, we conclude that {Tn} is a localizing sequence.

31



With these prerequisites in place, we can now start extending the Itô Integral to func-
tions defined on L2

loc ([0, T ]). We will proceed as follows:
1.) Proposition 3.1 tells us that, for any f ∈ L2

loc ([0, T ]) there is a localizing se-
quence {Tn} such that fn(ω, s) = f(ω, s)1{s≤Tn} ∈ L2

ad([0, T ]). Hence, we know
from previous results9 that there exists a unique t-continuous stochastic process
{Mt,n} such that Mt,n = I(mtfn).

2.) According to the preceding point, we define the Itô Integral for f ∈ L2
loc ([0, T ])

as the limit of {Mt,n} for n→∞. Thus, we have to show that {Mt,n} converges
to some unique t-continuous stochastic process {Mt} such that

∀t ∈ [0, T ] : P
(
Mt = lim

n→∞
Mt,n

)
= 1.

3.) The final step consists of checking that the above construction is independent
of the specific choice of the localizing sequence Tn.

Proposition 3.2
Let f ∈ L2

loc ([0, T ]) and {Tn} any localizing sequence. If {Mt,n} is the continuous
martingale version of the Itô Integral I

(
mtf(ω, s)1{s≤Tn}

)
, then we have

∀t ∈ [0, T ] ∀n ≥ m : Mt,n = Mt,m for a.a. {ω : t ≤ Tm}.

Proof. By definition of localizing sequences, we have Tm ≤ Tn for m ≤ n, and hence
the functions

fm(ω, t) = f(ω, t)1{t≤Tm} and fn(ω, t) = f(ω, t)1{t≤Tn}

are equal on the set {ω : t ≤ Tn}. The application of Theorem 3.3 completes the
proof.

According to point 2.) from our preliminary considerations, we show that such {Mt,n}
has a unique, t-continuous limit, denoted by {Mt}. The proof of the following state-
ment clarifies that, with Proposition 3.2, the desired convergence follows immediately.
Proposition 3.3
There exists a t-continuous process {Mt} such that

∀t ∈ [0, T ] : P
(

lim
n→∞

Mt,n = Mt

)
= 1.

9Specifically, here we refer to Theorem 3.2.
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Proof. First, define N := min{n ∈ N : Tn = T}. By way of Definition 3.6, we
already know that P ({ω ∈ Ω : N(ω) <∞}) = 1. In addition, let Ω̃ denote the set
with probability one such that all functions t 7→ Xt(ω) are t-continuous. For any
ω ∈ Ω̃ ∩ {ω ∈ Ω : N(ω) <∞}, we now fix Mt(ω) = Mt,N(ω). Thus, {Mt} is a
t-continuous process. By means of the previous proposition, we have

∀t ∈ [0, T ] : P
(

lim
n→∞

Mt,n = Mt,N

)
= 1,

since the equality Mt,n = Mt,N holds for all t ∈ [0, T ] and n ≥ N on the sets
{ω ∈ Ω : t ≤ TN(ω)}.

To complete our derivation of the Itô Integral for L2
loc ([0, T ]) functions, we finally

check that the construction is independent of the choice of the localizing sequence
{Tn}, namely:
Proposition 3.4
Let Tn and T̃n be two localizing sequences for f ∈ L2

loc ([0, T ]). Then the respective
t-continuous martingale versions Mt,n and M̃t,n satisfy

lim
n→∞

Mt,n = lim
n→∞

M̃t,n

with probability one for each t ∈ [0, T ].

Proof. Let f ∈ L2
loc ([0, T ]) and Tn and T̃n be two localizing sequences. Now, define

τn := min{Tn, T̃n}. By Theorem 3.3, it holds for all n ≥ m that

M̃t,n = Mt,n a.e. on {t ≤ τm}. (3.1.16)

Since Proposition 3.3 yields convergence of Mt,n and M̃t,n to a unique limit a.s., we
have with (3.1.16)

lim
n→∞

M̃t,n = lim
n→∞

Mt,n a.e. on {t ≤ τm}.

By definition of a localizing sequence, the proof is complete.

This completes the derivation of the Itô Integral. Although we have a well-defined
stochastic integral notion for a sufficiently large class of functions, it seems pretty
cumbersome to calculate integrals of the form∫ t

0
σ(s,Xs)dBs

strictly via the above-derived definition. Bear in mind that the elegance of the “usual”
integral calculus bears witness to its direct link to differential calculus. In particular, the
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fundamental theorem of calculus contributes to the remarkable simplicity of calculating
integrals. The aim now is to formulate a suitable formula to calculate Itô Integrals,
namely Itô’s formula. We will only develop the most general version of Itô’s formula.
For other versions, see the references above.
Definition 3.7 (Itô process)
An Itô process is a stochastic process {Xt} of the form

Xt = X0 +
∫ t

0
f(ω, s)ds+

∫ t

0
g(ω, s)dBs for 0 ≤ t ≤ T, (3.1.17)

where we assume g(·, ·) ∈ L2
loc ([0, T ]) and f(·, ·) ∈ L1

loc ([0, T ]), where L1
loc ([0, T ])

denotes the space of all measurable, F-adapted processes satisying

P

(∫ T

0
|f(t, ω)|dt <∞

)
= 1.

Remark 3.4
We note that the above assumptions on g(·, ·) and f(·, ·) guarantee that all integrals in-
volved in (3.1.17) are well-defined. Furthermore, we often use the following “shorthand
notation”

dXt = fdt+ gdBs

for (3.1.17).

Theorem 3.4
Let {Xt} be an Itô process given by

dXt = fdt+ gdBs,

and g(t, x) ∈ C2(R≥0×R). Then the process denoted by Yt = g(t,Xt) is again an Itô
process and we have

dYt = ∂g

∂t
(t,Xt)dt+ ∂g

∂x
(t,Xt)dXt + 1

2
∂2g

∂x2 (t,Xt)(dXt)2. (3.1.18)

For the formal “symbol multiplication”, we refer to the following table:

Remark 3.5
Some peculiarities explained in more detail:

1.) In Table 4, the formal multiplication (dBt)2 = dt is justified with the fact that
the quadratic variation of a Brownian motion is equal to t.
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· dt dBt

dt 0 0

dBt 0 dt

Table 4: Formal symbol multiplication.

2.) We can express (3.1.18) equivalently by

dYt = ∂g

∂t
(t,Xt)dt+ ∂g

∂x
(t,Xt)dXt + 1

2
∂2g

∂x2 (t,Xt)(dXt)2.

The substitution dXt = fdt+ gdBt and Table 4 justify the above equivalence.

See Steele (2001, Chap. 8) for the proof of Itô’s formula. Before we revisit the popu-
lation growth model and find a suitable solution to the stochastic differential equation
(3.1.4), we first consider a classic example to illustrate Itô’s formula.
Example 3.3
Let {Bt}t≥0 be a Brownian motion on the probability space (Ω,F , P ). We will demon-
strate Itô’s formula by solving the integral∫ t

0
Bs dBs.

With Xt = Bt and g(t, x) = 1
2x

2 we get Yt = g(t, Bt) = 1
2B

2
t and hence, applying

Itô’s formula

dYt = ∂g

∂t
(t, Bt)dt+ ∂g

∂x
(t, Bt)dBt + 1

2
∂2g

∂x2 (t, Bt)(dBt)2

yields

d
(1

2B
2
t

)
= BtdBt + 1

2dt.

Rearranging results in ∫ t

0
BsdBs = 1

2B
2
t −

1
2t.

Now, consider the SDE

dNt

dt
= rtNt + αNtVt,
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that we derived earlier as a stochastic version of the population growth model (3.1.3),
or equivalently stated

dNt

Nt

= rt dt + α dBt, (3.1.19)

where we set dBt = Vtdt. For the sake of simplicity, we also assume rt = r = constant.
It seems natural to chose g(t, x) = ln(x), which is clearly a twice differentiable function
such that applying Itô’s formula yields

d (lnNt) = 1
Nt

dNt + 1
2

(
− 1
N2
t

(dNt)2
)

= dNt

Nt

− 1
2α

2dt

⇔ dNt

Nt

= d(lnNt) + 1
2α

2dt.

By (3.1.19), we finally get

Nt = N0 exp
(

(r − 1
2α

2)t+ αBt

)
. (3.1.20)

In Figure 2, we visualized the solution of the population growth model with random
noise for different α values and r = 1 and an initial population size N0 = 50. This
simple illustration shows that different parameter values strongly influence the popula-
tion dynamics. Now, before we present the conceptual specificity of so-called Backward
stochastic differential equations (BSDE), we consider an essential theorem that makes
a statement about the existence and uniqueness of SDE. So far, we had silently as-
sumed existence and uniqueness.
Definition 3.8 (Strong solution of SDE)
Let b, σ : [0, T ]×R→ R be measurable functions. Then, the t-continuous, F-adapted
process {Yt} is called strong solution of the SDEdYt = b(t, Yt)dt+ σ(t, Yt)dBt, 0 ≤ t ≤ T,

Y0 = X,
(3.1.21)

if for all t ∈ [0, T ] the equation

Yt = X +
∫ t

0
b(s, Ys)ds+

∫ t

0
σ(s, Ys)dBs (3.1.22)

is a.s. true.
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Figure 2: Visualization of (3.1.20) with different α values, r = 1 and N0 = 50.

Note that, in the context of SDEs, one distinguishes between strong and weak solutions,
in which case, weak solutions are characterized by distributions, roughly speaking. For
this, consider the explanations in Oksendal (2013, p. 72 ff.).
Theorem 3.5 (Existence and uniqueness of SDE)
Let b, σ : [0, T ]× R→ R be measurable functions satisyfing the Lipschitz condition

∀x, y ∈ R ∀t ∈ [0, T ] : | b(t, x)− b(t, y)| + |σ(t, x)− σ(t, y)| ≤ D|x− y| (3.1.23)

for some constant D and additionally the growth condition

∀x ∈ R ∀t ∈ [0, T ] : |b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|) (3.1.24)

for some constant C. If X ∈ L2
FT is F0-measurable, then the SDE (3.1.21) has a

unique t-continuous, F-adapted solution.
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At this point, we will not prove the existence and uniqueness theorem, since this requires
some tedious preparation. For the respective proof, we refer to Oksendal (2013, p. 69
ff.).
Remark 3.6
Some technical remarks:

1.) In Definition 3.8, we implicity assume b(·, ·) ∈ L1
loc ([0, T ]) and σ(·, ·) ∈ L2

loc ([0, T ]).
Thus, all integrals involved in (3.1.22) are well-defined.

2.) The growth condition (3.1.24) ensures that the solution of (3.1.21) does not
explode, i.e., |Yt(ω)| does not tend to infinity in finite time, whereas the Lips-
chitz condition guarantess the uniqueness of the SDE. For intuitive (counter)-
examples, the reader may refer to Oksendal (2013, p. 68 ff.).

3.) Theorem 3.5 requires X ∈ L2
FT to be F0-measurable, where we denoted by

F := {F t}t∈[0,T ] the augmented Brownian filtration. Albeit slightly generalized,
one could consider X to be independent of {Ft}t∈[0,T ] and say that {Yt} is
adapted to the filtration FXt := σ(X,F s : s < t). This would allow for adapted
solutions without necessarily F0-measurable initial condition X.

Finally, we formulate the counterpart of Theorem 3.2. Theorem 3.2 states that the Itô
Integral of any function f ∈ L2

ad([0, T ]) is a martingale with respect to the augmented
filtration of the Brownian motion. Now, we will see that the converse direction is also
true, i.e., any martingale adapted with respect to the augmented Brownian filtration
can be represented as an Itô Integral. This theorem is considered particularly important.
Theorem 3.6 (Martingale representation)
Let {Mt} be a L2-martingale with respect to the augmented Brownian filtration F.
Then there exists a unique stochastic process g(s, ω) such that g(·, ·) ∈ L2

ad([0, T ]) for
all t ≥ 0 and

∀t ≥ 0 : Mt(ω) = X +
∫ t

0
g(s, ω)dBs a.s. (3.1.25)

where we have X := E[M0].

The Martingale representation theorem is proven in Oksendal (2013, p. 53 f.). From
(3.1.21), it should be clear that, in the context of SDEs, we are working with initial
conditions, i.e., Y0 = X. If we impose a terminal condition X := YT to the stochastic
differential equation instead of an initial condition, we work backward in time, hence
backward stochastic differential equations. While the theory of BSDE dates back in the
linear case to Bismut (1973), we will consider the more general formulation of Pardoux
and Peng (1990). For a brief introduction of BSDEs, we mainly consider El Karoui and
Mazliak (1997) and Zhang (2017).
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First, we adjust some further notation. As we did before, we denote by F t := σ{Bs∪N :
0 ≤ s ≤ t} the augmented Brownian filtration. Furthermore, we will mainly be engaged
with the following spaces of functions for t ∈ [0, T ]:

• L2
Ft := L2(Ω,F t, P ), space of all real-valued, F t-measurable and square inte-

grable random variables equipped with the L2-norm.
• L2

F([0, T ];Rn) space of all Rn-valued, {F t}t∈[0,T ]-adapted processes such that

E
[∫ T

0
|φ(s, ω)|2ds

]
<∞.

• L2
F([0, T ],R× Rn) := L2

F([0, T ],R)× L2
F([0, T ],Rn).

Before considering the general case, we will first motivate the idea behind BSDE. As
in the case of SDE, but now given a terminal condition, we would hope for an adapted
solution of the respective BSDE. An adapted solution is generally not accessible when
working backward in time in the case of SDEs, e.g., consider the following SDE

dYt = σ(t, Yt)dBt, 0 ≤ t ≤ T (3.1.26)

with terminal condition YT = X for some measurable function σ : [0, T ] × R → R.
Consider σ ≡ 0, then it is obvious that one solution of (3.1.26) is given by X = Yt
for all t ∈ [0, T ]. It should become clear that this solution is not adapted (can not be
measurable with respect to smaller σ-algebras). Hence, to hope for an adapted solution
for a given terminal condition, we must expect Yt to be a martingale. Let X ∈ L2

FT ,
then Yt := E[X| F t] is a martingale induced by X. By Theorem 3.6, there exists a
unique stochastic process Z(·, ·) ∈ H2[0, T ] such that

Yt = Y0 +
∫ t

0
ZsdBs. (3.1.27)

In particular, we have

YT = Y0 +
∫ T

0
ZsdBs (3.1.28)

⇔ YT = Yt +
∫ T

t
ZsdBs (3.1.29)

⇔ Yt = YT −
∫ T

t
ZsdBs. (3.1.30)
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We will now extend this to a more general setting, in which a nonlinear term is involved.
We consider the following general BSDE first introduced by Pardoux and Peng (1990)−dYt = g(t, Yt, Zt)dt− ZtdBt, 0 ≤ t ≤ T,

YT = X,
(3.1.31)

where the (nonlinear) function

g : Ω× [0, T ]× R× Rn → R : (ω, t, y, z) 7→ g(ω, t, y, z)

is called the generator of the BSDE (3.1.31). This function is of particular interest in
the context of decision making under uncertainty. As in the case of SDE, the BSDE
(3.1.31) can be written equivalently in the integral form

Yt = X +
∫ T

t
g(s, Ys, Zs)ds−

∫ T

t
ZsdBs.

Definition 3.9 (Strong solution of BSDE)
A pair (Yt, Zt)t∈[0,T ] ∈ L2

F([0, T ],R× Rn) solving the BSDE (3.1.31) is called strong
solution. Given that BSDEs generally just admit strong solutions, we can omit the
respective prefix here.

Note that the solution of a BSDE consists of a pair (Yt, Zt)t∈[0,T ]. As stated in the
motivation of BSDE, this is why the process is adapted. As before, in the case of SDEs,
we can now answer when unique solutions of BSDEs of the form (3.1.31) exist. We
will impose appropriate constraints on the function g.
Theorem 3.7 (Existence and uniqueness of BSDE)
If we assume that the function g satisfies the following conditions

(i) g(·, y, z) ∈ L2
Ft for each y ∈ R, z ∈ Rn,

(ii) ∃C > 0 such that for all y1, y2 ∈ R and z1, z2 ∈ Rn, we have

|g(t, y1, z1)− g(t, y2, z2)| ≤ C(|y1 − y2|+ |z1 − z2|),

then there exists a unique pair of processes (Yt, Zt)t∈[0,T ] ∈ L2
F([0, T ],R×Rn) solving

the BSDE (3.1.31).
For the detailed proof, we refer to Pardoux and Peng (1990). Before introducing g-
expectations, we will first state two fundamental theorems in BSDE theory without
proof.
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Theorem 3.8 (Continuous dependency)
Let X1, X2 ∈ L2

F and φ1
t , φ

2
t ∈ L2

F([0, T ];R). Now, let (Y i
t , Z

i
t)t∈[0,T ] ∈ L2

F([0, T ],R×
Rn) for i ∈ {1, 2} be solutions of the BSDE−dY i

t = f(t, Y i
t , Z

i
t)dt− Zi

tdBt, 0 ≤ t ≤ T,

Y i
T = Xi.

Additionally, we assume that the conditions of Theorem 3.7 hold true for the function
g. Then we have the following continuous dependence property

sup
0≤t≤T

E
[∣∣Y 1

t − Y 2
t

∣∣2]+ E
[∫ T

0

∣∣Z1
s − Z2

s

∣∣2ds] ≤ C E
[∣∣X1 −X2

∣∣2]+ C E
[∫ T

0

∣∣φ1
s − φ2

sds
∣∣]

The next theorem allows to compare solutions of BSDEs in terms of the terminal
conditions and the respective generators.
Theorem 3.9 (Comparison theorem)
Let assume that the assumptions of the previous theorem hold. If we have

Y 1
T ≥ Y 2

T a.s. φ1
t ≥ φ2

t a.s., a.e.

then for t ∈ [0, T ]

Y 1
t ≥ Y 2

t a.s.

Moreover, we have

Y 1
t = Y 2

t a.s. iff Y 1
T = Y 2

T a.s. φ1
t = φ2

t a.s., a.e.

Now that the most necessary results are formulated, we can frame g-expectations. The
theory subject to BSDE offers a theoretically very interesting, although mathematically
deep framework. Thus, we refer to corresponding works without going into technical
subtleties. For a good overview, consider El Karoui and Mazliak (1997) and references
therein, in particular, Peng (1991), Pardoux and Peng (1992), Peng et al. (1992), Peng
(1992), and Peng (1993).
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3.2 g-expectation
With these preparations, g-expectations can now be defined immediately. Furthermore,
we will also consider the basic properties of this dynamic nonlinear expectation. The
reader may also refer to Coquet et al. (2002).
Definition 3.10 (g-expectation)
Let (Yt, Zt)t∈[0,T ] ∈ L2

F([0, T ],R× Rn) be the unique solution of the BSDE−dYt = g(t, Yt, Zt)dt− ZtdBt, 0 ≤ t ≤ T,

YT = X,

where the function

g : Ω× [0, T ]× R× Rn → R : (ω, t, y, z) 7→ g(ω, t, y, z)

satisfies the conditions in Theorem 3.7 as well as

∀y ∈ R : g(·, y, 0) ≡ 0. (3.2.1)

Then the functional Eg : L2
F → R : X 7→ Eg[X] = Y0 is called g-expectation of X.

In the following, we often write g(t, y, z) instead of g(ω, t, y, z).

Theorem 3.10 (Properties of g-expectation)
Let Eg be the g-expectation functional and X, Y ∈ L2

FT , then we have:

(i) ∀c ∈ R : Eg[c] = c

(ii) ∀X ≤ Y a.s. : Eg[X] ≤ Eg[Y ] and Eg[X] = Eg[Y ] if and only if X = Y a.s.

(iii) For all T > 0, there exists a constant CT , such that, for all X1 and X2 in L2
FT

| Eg[X1]− Eg[X2]|2 ≤ CT E[|X1 −X2|2].

Proof. Since c ∈ R is deterministic we have Z = 0 and by assumption (3.2.1) the
solution of the respective BSDE is (c, 0), hence Eg[c] = c. This proves (i). Properties
(ii) and (iii) are immediate corollaries of Theorem 3.9 and Theorem 3.8.

Analogous to the classical notion of conditional expectation, we can also define a
conditional g-expectation that satisfies the classical conditions. At this point, the reader
may also refer to the corresponding section in the appendix regarding classical results
on conditional expectations.
Proposition 3.5
Let X ∈ L2

FT . Then there exists a a.s. unique η ∈ L2
FT satisfying
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(i) η is F t-measurable

(ii) ∀A ∈ F t : Eg[X1A] = Eg[η1A]

Proof. We will now show existence and uniqueness.
(i) Existence:

Let t ≥ 0 and X ∈ L2
FT , as well as (Yt, Zt)t∈[0,T ] ∈ L2

F([0, T ],R × Rn) be the
solution of the BSDE (3.1.31), then we have

Yu = X +
∫ T

u
g(s, Ys, Zs)ds−

∫ T

u
ZsdBs, 0 ≤ u ≤ T.

Because of the equality

g(·,1Ay,1Az) ≡ g(·, y,1Az) ≡ 1Ag(·, y, z)

we have for all A ∈ F t

1AYu = 1AX +
∫ T

u
g(s,1AYs,1AZs)ds−

∫ T

u
1AZsdBs, t ≤ u ≤ T.

Thus, it follows from Definition 3.10

Eg[1AX] = Eg[1AYt].

Since Yt is F t-measurable this completes the proof of existence.
(ii) Uniqueness:

Let η1, η2 ∈ L2
FT satisfying (i) and (ii). Then we have for all A ∈ F t

Eg[η11A] = Eg[η21A].

Define A1 := {η1 ≥ η2} and A2 := {η1 ≤ η2}. We know that in particular
A1, A2 ∈ F t and hence

Eg[η11{η1≥η2}] = Eg[η11{η2≥η2}]

Eg[η11{η1≤η2}] = Eg[η11{η2≤η2}].

Further we have

1{η1≥η2}η1 ≥ 1{η1≥η2}η2

1{η1≤η2}η1 ≥ 1{η1≤η2}η2.
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From these observations and with property (ii) in Theorem 3.10 we get

1{η1≥η2}η1 = 1{η1≥η2}η2 a.s.

1{η1≤η2}η1 = 1{η1≤η2}η2 a.s.

and hence η1 = η2 a.s..
This completes the proof.

Definition 3.11 (Conditional g-expectation)
A random variable η satisfying the conditions of Proposition 3.5 is called conditional
g-expectations and is often denoted by Eg[X| F t].

Lemma 3.4
Let 0 ≤ t ≤ T . The conditional g-expectation has following properties:

(i) If X is F t-measurable, then Eg[X| F t] ≡ X.

(ii) Let t > s, then
Eg[Eg[X| F t]| F s] = Eg[X| F s].

(iii) Let X1 ≤ X2, then
Eg[X1| F t] ≤ Eg[X2| F2].

(iv) For all A ∈ F t we have Eg[X1A| F t] = 1A Eg[X| F t].

Proof. Property (i) is an immediate consequence of Definition 3.11.
(ii) Let t > s, then we know F t ⊇ F s. Thus, this yields

Eg[Eg[Eg[X| F t]| F s]1A] = Eg[X| F s].

Hence, by definition

Eg[Eg[X| F t]| F s] = Eg[X| F s].

(iii) Define η1 := Eg[X| F t] and η2 := Eg[X2| F t]. Let A ∈ F t, then we have for
X1 ≥ X2 with Theorem 3.10 (ii) and Definition 3.11

Eg[η11A] = Eg[X1A]] ≤ Eg[Y 1A] = Eg[η21A].

If we define A := {η1 > η2} and assume P (A) > 0, then we get again by
monotonicity

Eg[η1A] > Eg[η21A].

These observations yield P (A) = 0. Thus, we have Eg[X1| F t] ≤ Eg[X2| F2].
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(iv) Let B ∈ F t, then we have by definition

Eg[Eg[X1A| F t]1B] = Eg[X1A1B]

= Eg[Eg[X| F t]1A∩B]

= Eg[[Eg[X| F t]1A]1B].

Hence, Eg[X1A| F t] = 1A Eg[X| F t].

Before concluding this section, we would like to clarify how the classical expectation
and the g-expectation are related. The reader may also consider the remarks in Chen
et al. (2005, p. 5).
Proposition 3.6
Let X ∈ L2

FT and Eg[X] the respective g-expectation according to Definition 3.10. If
g ≡ 0, then the classical expectation and the g-expectation of the random variable X
coincide, i.e., Eg[X] = E[X]. Hence, the classical expectation E[·] is a special case of
the g-expectation Eg[·].

Proof. Let X ∈ L2
FT and Eg[X] the respective g-expectation, where we set g ≡ 0.

This yields the following BSDEdYt = ZtdBt, 0 ≤ t ≤ T,

YT = X.
(3.2.2)

The we can equivalently state (3.2.2) by

Yt = YT︸︷︷︸
=X

−
∫ T

t
ZsdBs. (3.2.3)

Now, taking the conditional expectation on both sides of (3.2.3) implies

Yt = E [X| F t] = E[X| F t].

If we fix t = 0, and recall that F0 = {Ω, ∅}, then we conclude Y0 = Eg[X] = E[X],
where we trivally have E[X| F0] = E[X].

The most important terms regarding g-expectations being introduced, we immediately
see the relation to classical expectation. It is easy to see that, based on previous
observations, g-expectations are filtration consistent, which is a particularly desirable
property in expected-utility theory in dynamic situations. Such expectations are usually
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referred to as F -expectations. Before considering some applications of g-expectations,
we explore the aforementioned relationship between Choquet and g-expectations, where
we rely on results worked out in Chen et al. (2005). To avoid getting lost in the technical
details, we only explain the main result and refer to Chen et al. (2005) for the proof
and further technical details.
Theorem 3.11
Assume g satisfies the usual conditions (i.e., conditions stated in Definition 3.10). Then
there exists a Choquet expectation Ec restricted to L2

FT equal to a g-expectation Eg
if and only if g does not depend on y and is linear in z, i.e., there exists a continuous
function v(t) such that

g(y, z, t) = v(t)z.

Explicitly, this theorem states: Both expectations only coincide in the class of classical
linear expectation.

3.3 Applications
Finally, we consider possible applications of g-expectations. Especially in mathemati-
cal finance, g-expectations enjoy high popularity. For applications in finance consider
El Karoui et al. (1997). Further, Gianin (2006) defines risk measures via g-expectations.
The link between risk measures and robust methods in statistics and machine learn-
ing leads to an interesting research question. Chouzenoux et al. (2019) considers risk
measures developed in mathematical finance for robust machine learning. This ap-
proach illustrates that translating ideas from different academic communities can be of
particular interest for future research. From a decision-theoretic point of view, based
on g-expectations, an intertemporal counterpart to the multiple prior model can be
formulated, referred to as recursive multiple priors utility (Chen and Epstein, 2002).
Recursive multiple priors utilities represent a generalization of stochastic differential
utility (Duffie and Epstein, 1992) to dynamic situations under uncertainty. Moreover,
we note that g-expectations can be used for dynamic modeling in areas apart from
mathematical finance. For example, Shamarova et al. (2017) models stochastic gene
expression and protein level dynamics based on BSDEs. In this sense, employment in
biostatistics or epidemiology is also conceivable.
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4 Peng’s G-Framework

4.1 Nonlinear expectation spaces
So far, we have seen that nonlinear expectations, such as the Choquet expectation
or the g-expectation, are particularly suitable for modeling uncertainty. This section
presents basic notions within the so-called G-Framework, which can be seen as an un-
certainty counterpart of Kolmogorov’s axiomatic setting. In particular, this new frame-
work is based on Peng (2004, 2007a,b, 2008). We will rely on previously established
results to clarify the connection between different parts of this thesis. We first fix some
notations and elaborate on fundamental concepts. These are usually taken for granted.
Nevertheless, since we are mainly concerned with making this framework understand-
able to a broad audience, some additional preparations are inevitable.
Definition 4.1 (Vector lattice)
Let Ω be an arbitrary set. A vector space H of real-valued functions X : Ω → R
satisfying the conditions

(i) ∀X, Y ∈ H : X ∨ Y ∈ H

(ii) ∀X, Y ∈ H : X ∧ Y ∈ H

is called vector lattice, where X ∨ Y = max{X, Y } and resp. X ∧ Y = min{X, Y }.
Since we can equivalently write

X ∧ Y = X + Y − (X ∨ Y )

X ∨ Y = Y + (X − Y ) ∨ 0

for all X, Y ∈ H, a vector space of real-valued functions is a vector lattice, if for all
f ∈ H we also have X+ = X ∨ Y ∈ H (this was defined previously to be the positive
part of a real-valued function). Now, let H be the vector space of real-valued functions
such that X ∈ H ⇒ |H | ∈ H. Then H is a vector lattice, since we can write

X+ = 1
2 (X + |X|) .

Thus in the above definition, it is sufficient to impose X ∈ H ⇒ |X| ∈ H for all
X ∈ H.

Throughout this section, H denotes the vector space of real-valued functions satisfying
the conditions
(i) ∀c ∈ R : c ∈ H

(ii) X ∈ H ⇒ |X| ∈ H
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where condition (i) guarantees constant preserving. Furthermore Cl.lip(Rn) denotes the
space of functions ψ satisyfing

|ψ(x)− ψ(y)| ≤ C(1 + |x|m + |y|m)|x− y|

with x, y ∈ Rn,m ∈ N and C > 0. We further assume that if X1, . . . , Xn ∈ H then
we also have ψ(X1, . . . , Xn) ∈ H for all ψ ∈ Cl.lip(Rn). Technially Cl.lip(Rn) can be
replaced by other suitable spaces, compare Peng (2010, p. 5).
Definition 4.2 (Sublinear expectation)
A functional E : H → R satisfying

(i) Monotonicity:
∀X ≤ Y : E [X] ≤ E [Y ]

(ii) Constant preserving:
∀c ∈ R : E [c] = c

(iii) Subadditivity:
∀X, Y ∈ H : E [X + Y ] ≤ E [X] + E [Y ]

(iv) Positive homogeneity:
∀λ ≥ 0 : E [λX] = λE [X]

is called sublinear expectation. A functional satisfying only (i) + (ii) is called nonlinear
expectation. We will refer to (Ω,H, E) as sublinear (resp. nonlinear) expectation space.
Property (iii) is also known as the self-dominance property, since

E [X] = E [(X − Y ) + Y ] ≤ E [X − Y ] + E [Y ]

⇔ E [X]− E [Y ] ≤ E [X − Y ].

For instance, the Choquet expectation (with respect to a 2-alternating capacity) or the
g-expectation discussed in Section 3 is a nonlinear expectation (see also the discussion
in Section 2). From a purely probabilistic perspective, it may seem bizarre why we are
now devoting ourselves to expectation spaces instead of probability spaces. In the classic
linear case, we know that there is a one-to-one correspondence between expectation
and probability measure:
Theorem 4.1 (Daniell-Stone)
Let E : H → R be linear functional on H satisyfing following conditions

i.) ∀λ, c ∈ R : E[λX + c] = λE[X] + c.
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ii.) ∀X, Y ∈ H with X ≥ Y : E[X] ≥ E[Y ].

iii.) Let {Xn}n∈N ∈ HN with Xn ↓ 0⇒ E[Xn]→ 0 for n→∞.

Then there exists a unique probability measure P on (Ω,F) with F := σ(H) such
that P (A) = E[1A] for all A ∈ F .

The proof and other related notions regarding Daniell-Integration can be found in
Ash (2014). The reader may also find some helpful insights in Royden and Fitzpatrick
(1988). However, in the nonlinear case, such a one-to-one correspondence is no more
valid. Hence it is convenient to work with expectation spaces rather than probability
spaces. The following example taken from Coquet et al. (2002, p. 2) illustrates such a
failure of one-to-one correspondence.
Example 4.1
Let (Ω,F , P ) be a probability space and f a strictly increasing function on R such
that f(x) = x for 0 ≤ x ≤ 1.
Now, define

Ef [X] := f−1 (E[f(X)]) . (4.1.1)

Then (4.1.1) is a nonlinear expectation, unless f is linear. Any expectation of the
above form induces the same probability measure, i.e., P (A) = E[1A] = Ef [1A] for
any A ⊆ Ω. Hence, the one-to-one correspondence fails to hold.

As in the case of Choquet expectation, the question arises whether and under which
conditions sublinear expectations can be represented by linear expectations.
Theorem 4.2 (Representation of sublinear expectations)
Let (Ω,H, E) be a sublinear expectation space. Then there exists a family of linear
expectations {Eθ}θ∈Θ with Eθ : H → R, such that

E [X] = max
θ∈Θ

Eθ[X] for X ∈ H. (4.1.2)

Furthermore, for each X ∈ H there exists θX ∈ Θ such that E [X] = EθX [X].

Proof. Let X ∈ H and define L := {αX : α ∈ R}. Note, that L is clearly a
subspace of H, since 0 · X = 0 ∈ L, for all α ∈ R by definition αX ∈ L and
αX + βX = (α + β)X ∈ L. Then ` : L → R : αX 7→ αE [X] defines a linear
functional on L such that

∀x ∈ L : `(x) ≤ E(x).
Since E [·] is in particular subadditive and positive homogeneous we know by applying
the Hahn-Banach Theorem that there exists a linear functional E[·] on H extending
`[·] such that
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(i) E|Y = `

(ii) ∀X ∈ H : E[X] ≤ E [X]

Hence, this linear functional E is dominated by E . Thus we have E[X] = E [X]. Since
E is per definition monotone, we have for X ≥ 0

E[X] = −E[−X] ≥ −E [−X] ≥ 0.

And by the constant preserving property of E it follows that

−E[c] = E[−c] ≤ E [−c] and E[c] ≤ E [c] = c.

Hence, {Eθ}θ∈Θ is a family of linear expectations.

This result was first proved for finite Ω in Huber (1981). Since then, many authors
have established the theorem under different conditions.
Remark 4.1
The linear expectation in (4.1.2) is presumably with respect to a finitely additive
probability measure. To guarantee a σ-additive probability measure, we have to assume
E[Xn]→ 0 for n→∞ for {Xn}n∈N ∈ HN with Xn ↓ 0. For such representation w.r.t.
to σ-additive probability measure refer to Peng (2010, p. 7). See also later remarks on
uncertain probability measures associated with sublinear expectations.

Now that expectation spaces have been sufficiently motivated, elemental notions such
as distribution of random variables under sublinear expectations and independence must
be defined. Note that these terms are fundamentally different from the classical ones.
Definition 4.3 (Distribution under sublinear expectation)
Let (Ω,H, E) be a sublinear expectation space, andX ∈ H. Then we call the functional

FX : Cl.lip(Rn)→ R : φ 7→ FX [ψ] := E [ψ(X)]

distribution of X under the sublinear expectation E . Particularly (R, Cl.lip(R),FX) is
also a sublinear expectation space.
Let (Ω1,H1, E1) and (Ω2,H2, E2) be two sublinear expectation spaces. Two random
variables X, Y ∈ H are identically distributed, if

∀ψ ∈ Cl.lip(R) : E1[ψ(X1)] = E2[ψ(X2)],

denoted by X1
d∼ X2. More generally, we can replace sublinear with nonlinear in the

above definition. However, since we were mainly concerned with sublinear expectations,
this is always evident from the context.
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The distribution of a random variable X ∈ H under a sublinear expectation E is
typically characterized by the mean parameter µ

¯
:= −E [−X], µ̄ := E [X] and the

variance parameter σ
¯

2 := −E [−X2], σ̄2 := E [X2]. In fact, µ
¯
≤ µ̄ holds, since:

− E [X + (−X)] = −E [0] = 0 ≥ −E [−X]− E [X]

⇔ E [X] ≥ −E [−X]

⇔ µ̄ ≥ µ
¯
.

In the first inequality, we used the fact that −E [−(X + Y )] ≥ −E [−X] − E [−Y ],
which follows directly from the subadditivity property of sublinear expectations. Since
(R, Cl.lip(R),FX) is again a sublinear expectation space, the interesting question arises
whether probability measures can also represent the distribution of a random variable
under a sublinear expectation. The following two lemmas give an affirmative answer.
Lemma 4.1
Let (Ω,H, E) be a sublinear expectation space andX ∈ H. For any sequence {ψn}n∈N ⊂
Cl.lip(R) satisyfing ψn ↓ 0 for n→∞ we have E [ψn(X)] ↓ 0.

Proof. Let {ψn}n∈N ⊂ Cl.lip(R) be a sequence sucht that ψn ↓ 0 for n→∞. Define
kn,N := max|x|≤N for fixed N > 0. Then we have for all x ∈ R

ψn(x) ≤ kn,N + ψ1(x)1|x|>N ≤ kn,N + ψ1(x)|x|
N

.

This yields

E [ψn(X)] ≤ kn,N + 1
N
E [ψ1(X)|X|]

⇒ lim
n→∞

E [ψn(X)] ≤ 1
N
E [ψ1(X)|X|],

where the implication follows from ψn ↓ 0⇒ kn,N ↓ 0. For N large enough we get the
desired result. Thus, the proof is complete.

Lemma 4.2
Let (Ω,H, E) be a sublinear expectation space and FX [ψ] the distribution of X ∈ H.
Then there exists a family of probability measures {PX,θ}θ∈Θ defined on (R,B(R))
such that

FX [ψ] = sup
θ∈Θ

∫
R
ψ(x)dPX,θ(x), ψ ∈ Cl.lip(R). (4.1.3)
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Proof. From Lemma 4.1 we know that a sequence {ψn}n∈N ⊂ Cl.lip(R) satisyfing
ψn ↓ 0 for n → ∞ yields FX [ψn] ↓ 0. Hence, applying Theorem 4.1 completes the
proof.

Since sublinear distributions play a crucial role in this framework, we will elaborate on
the meaning of such distributions and relate this to associated uncertainty measures.
These considerations are also highly related to some considerations in the section on
Choquet expectations.
Remark 4.2
For simplicity of techniques and illustration purposes, we restrict ourselves to finite Ω
and a convex, closed set of prior distributions P ⊆ W , whereW denotes the family of
all probability measures on the measurable space (Ω,F). Now, define the functional
E1[X] = supP∈P

∫
X dP . Then, by results obtained in Huber (1981), we know that

such a set of prior distributions can be represented by

P = {P ∈M : EP [X] ≤ E1[X] for allX} , (4.1.4)

where EP [·] denotes the classical expectation with respect to the probability measure
P . Hence, P can be interpreted as the uncertainty sets of distributions associated
with the sublinear expectation E1[·]. Now, we consider a second prior distribution
set Q ⊆ W and define similarly a sublinear expectation E2[X] = supQ∈Q

∫
X dQ.

Analogous argumentation yields the representation

Q = {Q ∈M : EQ[X] ≤ E2[X] for allX} . (4.1.5)

Hence, Q denotes the uncertainty sets associated with the sublinear expectation E2[·].
Thus, clearly E1[X] ≤ E2[X] implies P ⊆ Q. A stronger sublinear expectation (hence
distribution) accounts for a larger associated uncertainty set in sublinear expectation
spaces, i.e., for ψ ∈ Cl.lip(R) we have

FX1 [ψ] ≤ FX2 [ψ]⇒ {PX1,θ}θ∈Θ1 ⊆ {PX2,θ}θ∈Θ2 .

From Definition 4.3, a notion of convergence can be derived directly, which should be
understood analogously to the classical notion of convergence in distribution.
Definition 4.4 (Convergence in distribution)
Let (Ω,H, E) be a sublinear expectation space and {Xn}n∈N ⊂ H a sequence of
random variables. Then {Xn}n∈N converges in distribution to X ∈ H if

∀ψ ∈ Cl.lip(R) : lim
n→∞

FXn [ψ] = FX [ψ].

Note that FX [ψ] is a sublinear expectation on (R, Cl.lip(R)).
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Now we turn to another important aspect, the independence of random variables. We
will motivate the notion of independent random variables under sublinear expectation
by starting with a result regarding the usual notion of independence.
Proposition 4.1
Let (Ω,F , P ) be a probability space and X, Y : Ω→ R two random variables. If X, Y
are independent and E[|ψ(X, Y )|] <∞ we have

E[ψ(X, Y )|X] = E[ψ(x, Y )]x=X , (4.1.6)

or equivalently stated

E[ψ(X, Y )] = E[E[ψ(x, Y )]x=X ]. (4.1.7)

The last equations follows from the tower property of conditional expectations (see
respective Appendix).

Proof. Let h(x) = E[ψ(x, Y )] and σ(X) = {X−1(B) : B ∈ B(R)}, where σ(X) is
the σ-algebra generated by X. Since h(X) is σ(h(X))-measurable by definition, and
σ(h(X)) ⊂ σ(X), we know that h(X) is also σ(X)-measurable. Further, we know
that for any A ∈ σ(X) there exists B ∈ B(R) such that A = X−1(B). Thus, this
yields ∫

ψ(X, Y )1AdP =
∫
ψ(x, y)1B(x)dPX,Y (x, y)

=
∫ (∫

ψ(x, y)dPY (y)
)
1B(x)dPX(x)

=
∫

E[ψ(X, Y )]1AdP.

Hence, we conclude that E[ψ(x, Y )]x=X is the conditional expectation of ψ(X, Y )
given X. In the second equality, we used the independence assumption.

This observation will serve us as the definition of independence in the sublinear expec-
tation framework. However, in the sublinear case, one needs to pay attention since X
independent of Y does no more imply that Y is also independent of X.
Definition 4.5 (Independence)
Let (Ω,H, E) be a sublinear expectation space and X, Y ∈ H two random variables.
Then Y is independent of X (under the sublinear expectation E) if we have

∀ψ ∈ Cl.lip(R2) : E[ψ(X, Y )] = E[E[ψ(x, Y )]x=X ]. (4.1.8)

Two random variables X, Y ∈ H are called identical and independent (i.i.d) if X d∼ Y
and Y is independent of X.
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For further perspective on the independence in the G-Framework, the reader may
also refer to Hu and Li (2014). The following example based on Peng (2010, p. 11
ff.) illustrates the aforementioned specificity of the notion of independence in this
framework
Example 4.2
Let (Ω,H, E) be a sublinear expectation space and X, Y ∈ H two identically dis-
tributed random variables with E [X] = −E [−X] = 0 and σ̄2 := E [X2] ≥ σ

¯
2 :=

−E [−X2]. Now, we assume E [|X|] = E [X+ + X−] > 0, where we used |X| =
X+ + X−. This implies E [X+] = 1

2 E [[X| + X] = 1
2 E [|X|] > 0, where we used

X+ = |X|+X
2 in the first equation. Define ψ(x, y) = xy2.

Now, consider the following cases:

1.) Y is independent of X:

E [ψ(X, Y )] = E [E [ψ(x, Y )]x=X ]
= E [E [xY 2]x=X ]
= E [X+σ̄2 −X−σ

¯
2]

= E [X+](σ̄2 − σ
¯

2)
> 0

2.) X is independent of Y :

E [ψ(X, Y )] = E [E [ψ(X, y)]y=Y ]
= E [E [Xy2]y=Y ]
= E [Y 2 E [X]]
= 0

Hence Y independent of X is not equivalent to the converse statement.

Now that the notion of independence has also been established, it is natural to consider
product spaces.
Definition 4.6 (Product space)
Let (Ω1,H1, E1) and (Ω2,H2, E2) be two sublinear expectation spaces. Then we call
the sublinear expectation space (Ω1×Ω2,H1⊗H2, E1⊗E2) product space, where we
define

H1 ⊗H2 := {Z(ω1, ω2) = ψ(X(ω1), Y (ω2)) : (ω1, ω2) ∈ Ω1 × Ω2,
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X ∈ H1, Y ∈ H2, ψ ∈ Cl.lip(R2)}

and for Z ∈ H1⊗H2

(E1 ⊗ E2) [Z] := E1[E2[φ(X, Y )]].

Analogously we define (
n∏
i=1

Ωi,
n⊗
i=1
Hi,

n⊗
i=1
Ei
)
, n ∈ N.

If we have (Ωi,Hi, E i) = (Ω1,H1, E1) for i ∈ {1, . . . , n}, then we write(
Ωn

1 ,H⊗n1 , E⊗n1

)
.

Now, let (Ω1,H1, E1) be a sublinear expectation space, and X, Y ∈ H two identically
distributed random variables, i.e. X d∼ Y .
Then

(X, Y ) : Ω→ R2 : ω 7→ (X(ω), Y (ω))
is a random vecotor, and (R2, Cl.lip(R2),FX,Y ) a sublinear expectation space, where
FX,Y denotes the joint distribution of X and Y . If Y is independent of X, then we
have in terms of Definition 4.6 for ψ ∈ Cl.lip(R2)

FX,Y [ψ] = E⊗2
1 [ψ(X, Y )]

= E1[E1[ψ(X, Y )]]

= sup
θ1∈Θ

∫
R

[
sup
θ2∈Θ

∫
R
ψ(x, y)dPθ2(y)

]
dPθ1(x).

Where the last equality is a consequence of Lemma 4.2 and the assumption that X
and Y are identically distributed. The next proposition illustrates how to construct
independent random variables defined on sublinear expectation spaces.
Proposition 4.2
Let Xi be random variables on sublinear expectation spaces (Ωi,Hi, E i) for i ∈
{1, . . . n}. Now, define projections by

Yi : Ω1 × · · · × Ωn → R : (ω1, . . . , ωn) 7→ Xi(ωi).

Then Yi
d∼ Xi and Yi+1 is independent of (Y1, . . . , Yi) for all i ∈ {1, . . . , n −

1}. Further, Yi is for all i ∈ {1, . . . , n} a random vector on the product space
(∏n

i=1 Ωi,
⊗n
i=1Hi,

⊗n
i=1 Ei).
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Moreover, the proposition is easy to interpret since an analogous construction of in-
dependent random variables on a product space is possible in the classical case. We
conclude this first section on theG-Framework with an example that illustrates previous
concepts. This example is based on Peng (2010, p. 15 ff.).
Example 4.3
There are 100 balls in an urn, which are either black b1 or white w1. Now, define the
following random variable

X1 : {b1, w1} → {1,−1} : ω 7→ X1(ω) = 1{b1}(ω)− 1{w1}(ω). (4.1.9)

Let c ∈ [µ
¯
, µ̄] with 0 ≤ µ

¯
< µ̄ ≤ 1 denote the unknown proportion of black balls in

the urn, then the we have the following law

PX =
X 1 −1
P 1− c c

 .
This game is repeated, where c can be changed in each round within the above range
[µ
¯
, µ̄]. In this way, we now construct a sequence of random variables {Xi}i∈N. We

consider now the sublinear expectation

E [ψ(Xi)] = max
c∈[µ

¯
,µ̄]

[cψ(1) + (1− c)ψ(−1)] , (4.1.10)

where ψ can be thought of as a suitable loss function. Since for all i, j = 1, 2, . . . we
have E [ψ(Xi)] = E [ψ(Xj)], the sequence of random variables is identically distributed.
Further, Xi+1 is independent of (X1, . . . , Xi), since by definition (4.1.10) we know that

E[ψ(X1, . . . , Xi, Xi+1)] = E[E[ψ(x1, . . . , xi, Xi+1)]xj=Xj ,1≤j≤i].

The above sequence is a Bernoulli sequence under distributional uncertainty.
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4.2 (Viscosity) solutions of parabolic PDE
This section deals with the (viscosity) solution of a particular partial differential equa-
tion (PDE), the G-heat equation. PDEs rarely appear in classical literature on prob-
ability theory. However, for our purposes, it is particularly worthwhile to look at the
classical heat equation since we will see later that in the nonlinear case, there is a close
connection with the so-called G-normal distribution and G-heat equation, which is a
core utensil in the G-Framework. Although this section goes an extra step, understand-
ing this connection is worth the effort. For this purpose, it is inevitable to make a few
preparations regarding PDEs. Our presentation is mainly based on Evans (2010, 2012).
At the beginning of this thesis, we stated that ordinary differential equations relate a
real- or complex-valued function with its derivatives. Partial differential equations link
an unknown function of two or more variables with their partial derivatives.
Definition 4.7 (Partial differential equation)
For U ⊂ Rd open and given function

F : Rnk × Rnk−1 × · · · × Rn × R× U → R

the equation

F
(
Dku(x), Dk−1u(x), . . . , Du(x), u(x), x

)
= 0, x ∈ U (4.2.1)

with u : U → R unknown is called k-th order partial differential equation. A solution
of the PDE (4.2.1) consists of all functions u satisfying this equation.

We proceed now as follows: First, we will formulate the so-called heat equation and
derive the fundamental solution10. Then we will consider how we can study the heat
equation and its respective solution from a probabilistic point of view. The (homoge-
neous) heat equation (also called the diffusion equation)

ut = αuxx, α > 0 (Diffiusion constant) (4.2.2)

is of great interest in physics and many related areas of applied mathematics. The
heat equation describes the distribution of some quantity (like heat) in a given body.
In (4.2.2) we apply following notation

ut = ∂u

∂t
, uxx = ∂2u

∂x2 ,

where u : U ×R≥0 : (x, t) 7→ u(x, t) denotes the unknown function. If we now assume
that a function u(x, t) satisfies the heat equation (4.2.2), then necessarily u(

√
λx, λt)

10We will be concerned for simplicity reasons with one spatial dimension. See Evans (2010, p. 44
ff.) for a more general solution.
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must be a solution to this PDE. Hence, we would expect solutions of the form u( x√
t
).

In particular, we are now looking for a function of the form

u(x, t) = 1
tβ
v

(
x√
t

)
, x ∈ R, t > 0. (4.2.3)

Rougly speaking, the extra term in (4.2.3) reduces the PDE to an ODE in later steps.
Now, we plug (4.2.3) in the heat equation (4.2.2) and get

∂

∂t

(
t−βv

(
xt−1/2

))
= α

∂2

∂x2

(
t−βv

(
xt−1/2

))
.

Applying the product rule and simplifying yields

βv

(
x√
t

)
+ x/

√
t

2 v(1)
(
x√
t

)
+ αv(2)

(
x√
t

)
= 0, (4.2.4)

where we denote with v(1) (resp. v(2)) the derivative with respect to x√
t
. Hence by

substituting y = x√
t
we get from (4.2.4)

βv (y) + y

2v
(1) (y) + αv(2) (y) = 0. (4.2.5)

Thus, we have transformed the original PDE into an ODE. Now, fix β = 1
2 . Then we

get

1
2
(
v (y) + yv(1) (y)

)
+ αv(2) (y) = 0

⇒ αv(2) (y) + 1
2 (yv (y))(1) = 0

⇒
(
αv(1) (y) + 1

2yv (y)
)(1)

= 0

⇒ αv(1) (y) + 1
2yv (y) = C,

where C = constant. Hence the last equation is now a first order ODE. We fix now
C = 0 and get

v(1) (y)
v(y) = − y

2α

⇒ ln (|v(y)|)(1) = − y

2α
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⇒ ln (|v(y)|) = − y
2

4α + C̃,

where C̃ = constant. Solving for v(y) yields

v(y) = Ĉ exp
(
− y

2

4α

)
, (4.2.6)

where Ĉ = constant. Now, fixing Ĉ = 1√
4πα

and plugging (4.2.6) in (4.2.3) yields

u(x, t) = 1√
4παt

exp
{
−x2

4αt

}
. (4.2.7)

Cleary, u(x, t) is for t > 0 and α = D
2 the density of the N (0, Dt) distribution.

Definition 4.8 (Fundamental solution)
The function

f(x, t) :=


1√

4παt exp
{
−x2

4αt

}
, for x ∈ R, t > 0

0, for x ∈ R, t < 0

is called the fundamental solution of the heat equation (4.2.2). Compare also Figure 3.

Before turning to the probabilistic interpretation, we clarify what is meant by an initial-
value problem or Cauchy problem in terms of the heat equation.
Intial-value problem:
Let f be the fundamental solution of the heat eqaution (4.2.2). Then we callut = αuxx, on x ∈ R× (0,∞)

u = g, on x ∈ R× {t = 0}.
(4.2.8)

the initial-value problem of the heat equation. Then, without proof, we claim that the
convolution

u(x, t) = f ? g(x) :=
∫
R
f(x− y, t)g(y) dy

solves the initial-value problem (4.2.8), where f(x− y, t) is defined according to Def-
inition 4.8. For a rigorous proof the reader may refer to Evans (2010, p. 47 ff.). Now
we turn to the probabilistic interpretation of the heat equation and try to motivate
a probabilistic derivation. This approach is closely related to Einstein et al. (1905)
and Bachelier (1900). Now, let the real line be divided in intervals of the length 4x
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Figure 3: Visualization of the fundamental solution for fixed D = 2 and different t.

and consider time increments 4t. Hence, this setting can be thought of as a two-
dimensional lattice with a space and time component (see Figure 4 for a visualization
of this idea). We start at the initial point (x0, t0) = (0, 0) and in each time step we do
a fair Bernoulli experiment, such that with probability 1

2 we move 4x to the left and
with the same probabilty an amount 4x to the right. Now let {Xi}i∈N be a family of
random variables such that

P (Xi = 0) = P (Xi = 1) = 1
2 .

Based on this family of random variables, we define the number of total moves to right
in 4t = n4t time increments, i.e.,

Sn :=
n∑
i=1

Xi.

Hence, Sn is a Binomial distributed random variable. By denoting X(t) the posiiton
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Figure 4: Visualization of time-space lattice and an examplary realization of random
walk with initial point (0, 0).

at time n4t, we get

X(t) = Sn4x︸ ︷︷ ︸
number of moves to the right times 4x

+ (n− Sn)(−4x)︸ ︷︷ ︸
number of moves to the left times −4x

= (2Sn − n)4x. (4.2.9)

By assuming the time-space scaling D = (4x)2

4t and plugging in (4.2.9) we get

X(t) = (2Sn − n)4x =
Sn − n

2√
n
4

√tD.
Finally, applying the Central-Limit Theorem yields

lim
n→∞

P (a ≤ X(t) ≤ b) = lim
n→∞

 a√
tD
≤
Sn − n

2√
n
4

≤ b√
tD
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= 1√
2πDt

∫ b

a
exp

{
− x2

2Dt

}
.

This again gives us a N (0, Dt) distribution, whose density again solves the heat equa-
tion (4.2.2), where we set α = D

2 .
Remark 4.3
At this point, we make some technical remarks clarifying any ambiguities about the
terms involved so far in this section:

(i) A linear, second-order PDE with constant coefficients is of the form

auxx + 2buxy + cuyy + dux + euy + f = 0.

If b2−4ac = 0, we call the respective equation parabolic. Thus, the heat equation
(4.2.2) is a parabolic PDE.

(ii) In the context of nonlinear PDEs we will use the notion of viscosity solution.
However, to avoid getting lost in technical details, these should be understood
as classical solutions.

Now that the relationship between the heat equation and the Normal distribution has
been clarified, we formulate a nonlinear version of the heat equation. However, first, we
formulate a classical result concerning Normal distributed random variables to clarify
the latter definition of so-called G-normal distributed random variables.
Proposition 4.3
Let (Ω,F , P ) be a probability space, and X, Y two i.i.d (in the classical sense) real-
valued random variables. Then, X ∼ N (0, σ2) if and only if aX + bY and

√
a2 + b2X

are identically distributed, for a, b ≥ 0.

See also Mathai and Pederzoli (1977) for related charaterizations of the Normal dis-
tirbution. Analogously, this proposition serves as a definition of G-normal distributed
random variables in the sublinear case, hence:
Definition 4.9 (G-normal distribution)
Let (Ω,H, E) be a sublinear expectation space and X ∈ H a random variable with

σ̄2 = E [X2], σ
¯

2 = −E [−X2].

Then, X is G-normal distributed, denoted by X d∼ N (0, [σ
¯

2, σ̄2]), if for all Y ∈ H
independent of X and Y d∼ X we have

∀a, b ≥ 0 : aX + bY
d∼
√
a2 + b2X. (4.2.10)

The random variable X has no mean-uncertainty since from (4.2.10) we know that
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(i)
√

2 E [X] = E [X + Y ] = 2 E [X]⇒ E [X] = 0.

(ii)
√

2 E [−X] = E [−X − Y ] = 2 E [−X]⇒ E [−X] = 0.

Hence, X has no mean uncertainty. However, in the following section, when we look
at the Law of Large Numbers and the Central Limit Theorem, we will also consider
distributions with mean uncertainty.
Consider the sublinear expectation space (Ω,H, E) and a random variable X ∈ H.
Then we call ut = G(uxx), on x ∈ R× (0,∞)

u = ψ, on x ∈ R× {t = 0}
(4.2.11)

initial-value problem of the G-heat equation, where we refer to the nonlinear function

G(α) := 1
2 E [αX2] = 1

2(σ̄2α+ − σ
¯

2α−), α ∈ R (4.2.12)

as the generating-function of the nonlinear heat-equation, e.g. see Figure 5. This PDE
generates the G-normal distribution N (0, [σ

¯
2, σ̄2]). “Generating” can be understood

as already in the classical case of the heat equation: The solution of the nonlinear heat
equation is the G-normal distribution. We will now show that this statement is indeed
true. This is one of the few results we actually prove in this section since previous
concepts are directly involved in the proof.

−10 −5 5 10

−10

−5

5

10

α

G(α)

Figure 5: Example of a generating function G.
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Definition 4.10 (Sub- and supersolution)
Consider a real-valued function u ∈ C([0, T ]× R).

(i) If for all ψ ∈ C1,3
b ((0,∞)× R) and all minima (t, x) ∈ (0,∞)× R of ψ − u we

have

ψt −G(ψxx) ≤ 0

then we call u subsolution of the G-heat equation (4.2.11).
(ii) If for all ψ ∈ C1,3

b ((0,∞)×R) and all maxima (t, x) ∈ (0,∞)×R of ψ − u we
have

ψt −G(ψxx) ≥ 0

then we call u supersolution of the G-heat equation (4.2.11).
(iii) If u is a sub- and supersolution, then we call u a viscosity solution of the G-heat

equation.

Theorem 4.3
Let (Ω,H, E) be a sublinear expectation space and X a G-normal distributed random
variable. For all ψ ∈ Cl.lip(R) we define

u : [0,∞)× R→ R : (t, x) 7→ u(t, x) := E [ψ(x,
√
tX)].

Then we have:

(i) ∀s ≥ 0 : u(t+ s, x) = E [u(t, x+
√
sX)].

(ii) For all T > 0, there exist constants C, k > 0 such that, for all t, s ∈ [0, T ] and
x, y ∈ R we have

|u(t, x)− u(t, y)| ≤ C(1 + |x|k + |y|k)|x− y| (4.2.13)

|u(t, x)− u(t+ s, x)| ≤ C(1 + |x|k)|s|1/2 (4.2.14)

(iii) u is the unique viscosity solution of the G-heat equation (4.2.11).

Proof. For T > 0 and s, t ∈ [0, T ] we have

u(t, x)− u(t, y) = E [ψ(x+
√
tX)]− E [ψ(x+

√
tX)]

≤ E [ψ(x+
√
tX)− ψ(y +

√
tX)]

≤ E [C̃(1 + |X|k + |x|k + |y|k)|x− y|]
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≤ C(1 + |x|k + |y|k)|x− y|,

where the third inequality follows by the assumption ψ ∈ Cl.lip(R). Thus, (4.2.13)
follows. Let Y be independent of X, such that we have

u(t+ s, x) = E [ψ(x+
√
t+ sX)]

= E [ψ(x+
√
sX +

√
tY )]

= E [E [ψ(x+
√
sz +

√
tY )]z=X ]

= E [u(t, x+
√
sX)],

where the second equality follows since X is G-Normal distributed, see Definition 4.9.
Hence, (i) follows. With (i) we get

u(t+ s, x)− u(t, x) = E [u(t, x+
√
sX)− u(t, x)]

≤ E [C̃(1 + |x|k + |X|k)|s|1/2|X|]

≤ C(1 + |x|k)|s|1/2.

This yields (4.2.14). We now prove that u is a subsolution of the G-heat equation
(4.2.11). Now, let ψ ∈ C1,3

b ([0,∞) × R) such that ψ ≥ u and u(t, x) = ψ(t, x) for
fixed minima (t, x) ∈ (0,∞)× R. Then, we have for δ ∈ (0, t)

ψ(t, x) = ψ((t− δ) + δ, x) = u((t− δ) + δ, x)

(i)= E [u(t− δ,
√
δX)]

≤ E [ψ(t− δ,
√
δX)].

Thus, rearranging yields

0 ≤ E [ψ(t− δ,
√
δX)]− ψ(t, x)

⇒ 0 ≤ E [ψ(t− δ,
√
δX)− ψ(t, x)].

By Taylor expansion we get

0 ≤ E [ψ(t− δ,
√
δX)− ψ(t, x)]

(1)
≤ −ψt(t, x)δ + E [ψx(t, x)

√
δX + 1

2ψxx(t, x)δX2] + C̃δ3/2

= −ψt(t, x)δ + E [12ψxx(t, x)δX2] + C̃δ3/2
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= −ψt(t, x)δ + δG(ψxx(t, x)) + C̃δ3/2.

Thus, we conclude

ψt −G(ψxx) ≤ 0.

Similarly one shows, that u is a supersolution of the G-heat equation (4.2.11). Hence,
u is a viscosity solution. This completes the proof.

Remark 4.4
We see that the G-normal distribution N (0, [σ

¯
2, σ̄2]) is a sublinear distribution defined

on (R, Cl.lip(R)). Let X d∼ N (0, [σ
¯

2, σ̄2]), then by Lemma 4.2 we know that there
exists a family of probability measures {PX,θ}θ∈Θ defined on (R,B(R)) such that

FX [ψ] = sup
θ∈Θ

∫
R
ψ(x)dPX,θ(x). (4.2.15)

Now we could carelessly conclude that the uncertainty set associated with the G-normal
distribution corresponds to {N (0, σ2)|σ2 ∈ [σ

¯
2, σ̄2]}. However, this is not true since

the uncertainty set of the G-normal distribution is much larger.

The following proposition shows that the classical normal distribution is a special case
of the G-normal distribution.
Proposition 4.4
If σ
¯

2 = σ̄2, then the G-normal distribution N (0, [σ
¯

2, σ̄2]) reduces to the classical
normal distribution N (0, σ̄2).

Proof. Let σ
¯

2 = σ̄2, then the G-heat equation (4.2.11) becomes

ut = G(uxx)⇔ ut = 1
2(σ̄2u+

xx − σ¯
2u−xx)

⇔ ut = 1
2(σ̄2(u+

xx − u−xx))

⇔ ut = σ̄2

2 uxx

With α = σ̄2

2 we get the classical heat equation (4.2.2). Hence, u(t, x) is again the
Normal distribution. More precisely, we get

E [ψ(X)] = u(1, x) = 1√
2πσ̄2

∫ ∞
−∞

ψ(y) exp
{
− y2

2σ̄2

}
dy.

Clearly, X ∼ N (0, σ̄2).
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Finally, we consider two special cases of the G-normal distribution that are very in-
teresting, especially for possible applications. Now, let X be a G-normal distributed
random variable, then we have:
(i) If ψ ∈ Cl.lip(R) is convex, then

E [ψ(X)] = 1√
2πσ̄2

∫ ∞
−∞

ψ(y) exp
{
− y2

2σ̄2

}
dy. (4.2.16)

(ii) If ψ ∈ Cl.lip(R) is concave, then

E [ψ(X)] = 1√
2πσ

¯
2

∫ ∞
−∞

ψ(y) exp
{
− y2

2σ
¯

2

}
dy. (4.2.17)

Since we can prove both cases analogous, we now consider a convex ψ ∈ Cl.lip(R).
Then, we have for λ ∈ [0, 1]

u(t, λx+ (1− λ)y) = E [ψ(λx+ (1− λ)y +
√
tX)]

= λ E [ψ(x+
√
tX)] + (1− λ) E [ψ(x+

√
tX)]

= λu(t, x) + (1− λ)u(t, y),

where the convexity of ψ yields the second equality. Hence, u(t, x) is a convex func-
tion. Since the second derivative of a convex function is always non-negative we have
(uxx)− = max{0,−uxx} = 0 and thus the G-heat equation (4.2.11) reduces to

ut = G(uxx)⇔ ut = 1
2(σ̄2u+

xx − σ¯
2u−xx)

⇔ ut = σ̄2

2 uxx.

This completes the proof. Since we know that concave functions always yield negative
second derivatives, we can prove (ii) by analogous reasoning. These results might be
important for later investigations, especially in the convex optimization context of
Machine Learning.
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4.3 CLT and LLN under sublinear expectation
Finally, we present a version of the Central Limit Theorem (CLT) and the Law of Large
Numbers (LLN) in this sublinear expectation framework. These results originate in
Peng (2007b) and can also be found in further work of the same author under different
conditions. Before framing these theorems, we consider another crucial distribution in
the sublinear framework, the so-called Maximal distribution.
Definition 4.11 (Maximal distribution)
Let (Ω,H, E) be a sublinear expectation space and X ∈ H a random variable with

µ
¯

:= E [X] < −E [−X] =: µ̄.

Then, X is Maximal distributed, if for all Y ∈ H independent of X and Y d∼ X, we
have

∀a, b ≥ 0 : aX + bY
d∼ (a+ b)X. (4.3.1)

The Maximal distribution can also be characterized equivalently by: If X is Maximal
distributed, we have for ψ ∈ Cl.lip(R)

FX [ψ] = E [ψ(X)] = sup
µ
¯
≤y≤µ̄

ψ(y).

Thus, the Maximal distribution can be interpreted as “worst-case distribution”. We
denote a Maximal distributed random variable by X d∼ N ([µ

¯
, µ̄]× {0}) or byM[µ

¯
,µ̄].

Theorem 4.4 (Law of Large Numbers)
Let (Ω,H, E) be a sublinear expectation space and {Xi}i∈N an i.i.d 11 sequence of
random variables. Further, assume that the uniform integrability condition

lim
λ→∞
E [(|X1| − λ)+] = 0. (4.3.2)

is satisfied. Now, define

X̄n := 1
n

n∑
i=1

Xi.

Then Sn converges in distribution12 to a Maximal distributed random variable X, i.e.

lim
n→∞

E [ψ(X̄n)] = E [ψ(X)], (4.3.3)

where E [ψ(X)] = supµ
¯
≤y≤µ̄ ψ(y) with µ

¯
= −E [−X] < E [X] = µ̄, for all ψ ∈ C(R)

satisyfing the linear growth condition |ψ(x)| ≤ C(1 + |x|).
11Recall: {Xi}i∈N i.i.d means that Xi+1

d∼ Xi and Xi+1 independent of {X1, . . . , Xi} for all
i ∈ {1, 2, . . . }. See also Proposition 4.2.

12See Definition 4.4.
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Theorem 4.5 (Central Limit Theorem)
Let (Ω,H, E) be a sublinear expectation space and {Xi}i∈N an i.i.d sequence of random
variables with mean-certainty, i.e., E [X1] = −E [−X1] = 0. Further, assume that the
condition

lim
λ→∞
E [(|X1|2 − λ)+] = 0.

is satisfied. Now, define

X̄n := 1√
n

n∑
i=1

Xi.

Then Sn converges in distribution to a G-normal distributed random variable X, i.e.

lim
n→∞

E [ψ(X̄n)] = E [ψ(X)], (4.3.4)

for all ψ ∈ C(R) satisyfing the linear growth condition |ψ(x)| ≤ C(1 + |x|).

Remark 4.5
Some remarks on the assumptions in Theorem 4.4 and Theorem 4.5: The uniform
integrability condition (4.3.2) can be equivalently written by

lim
n→∞

E [|X1|1|X1|>n] = 0. (4.3.5)

The LLN and CLT was proved under different conditions, we refer to the notes in Peng
(2010, p. 44) and references therein.

Before we conclude this chapter with some references regarding related research, we
present an unbiased estimator for the parameters of the Maximal distribution (Jin and
Peng, 2016). This is especially important from a statistical perspective since just a
few statistical tools have been provided so far in the sublinear framework. For the rest
of this section, let (Ω,H, E) be a sublinear expectation space and {Xi}i∈N an i.i.d
sequence of Maximal distributed random variables with respective parameters µ

¯
≤ µ̄.

Definition 4.12 (Unbiased estimator)
Let ψn ∈ C(Rn) and −∞ < µ

¯
≤ µ̄ < ∞, then the statistic Tn = ψn(X1, . . . , Xn) is

called an unbiased estimator of

(i) µ̄, if E [ψ(X1, . . . , Xn)] = µ̄.

(ii) µ
¯
, if E [ψ(X1, . . . , Xn)] = µ

¯
.

Lemma 4.3
Let ψn ∈ Cl.lip(Rn). If the estimator Tn = ψn(X1, . . . , Xn) is unbiased for µ̄, then for
all µ

¯
≤ µ̄ we have

max
(x1,...,xn)∈[µ

¯
,µ̄]n

ψn(x1, . . . , xn) = µ̄, (4.3.6)
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min
(x1,...,xn)∈[µ

¯
,µ̄]n

ψn(x1, . . . , xn) = µ
¯
. (4.3.7)

Consequently (4.3.6) and (4.3.7) imply

fn(x1, . . . , xn) ≤ µ̄, (4.3.8)

fn(x1, . . . , xn) ≥ µ
¯
. (4.3.9)

Proof. For reasons of clarity we just prove the case n = 2. Thus, we have for ψ2 ∈
Clip(R2)

E [ψ2(X1, X2)] i.i.d= E [E [ψ2(x1, X2)]x1=X2 ]

= E [E [ max
µ
¯
≤x2≤µ̄

ψ2(x1, x2)]x1=X1 ]

= E [ max
µ
¯
≤x2≤µ̄

ψ2(X1, x2)]]

= max
µ
¯
≤x1≤µ̄

max
µ
¯
≤x2≤µ̄

ψ2(x1, x2)

= max
(x1,x2)∈[µ

¯
,µ̄]2

ψ2(x1, x2).

Since ψ2(X1, X2) is unbiased, this completes the proof. Clearly, this implies (4.3.8).
Analogously one shows (4.3.7) and (4.3.9). Note that, in the second equation, we used
the fact that the random variables are Maximal distributed. A more general proof can
be found in Jin and Peng (2016, p. 9 f.).

Theorem 4.6
Let X1, . . . , Xn be i.i.d. distributed random variables with Xi

d∼M[µ
¯
,µ̄], where µ

¯
≤ µ̄

are unknown parameters of the Maximal distribution. Now, we define the estimator for
the upper mean ˆ̄µ := max{X1(ω), . . . , Xn(ω)} and resp. µ̂

¯
:= min{X1(ω), . . . , Xn(ω)}.

Then, the following statements hold true:

(i) µ
¯
≤ µ̂
¯
≤ ˆ̄µ ≤ µ̄.

(ii) ˆ̄µ is the largest unbiased estimator for µ̄.

(iii) µ̂
¯

is the smallest unbiased estimator for µ
¯
.

Proof. The first statement (i) is by construction obvious. Again, we just consider the
case n = 2. It is clear, that µ̂

¯
and ˆ̄µ are unbiased, since X1 and X2 are i.i.d and
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Maximal distributed. Let T2 = ψn(X1, X2) be a given unbiased estimator of µ̄ and for
x1, x2 ∈ R set

¯̃µ = max{x1, x2}. (4.3.10)

According to Lemma 4.3 this yields

ψ2(x1, x2) ≤ ¯̃µ = max{x1, x2}. (4.3.11)

Since y1, y2 ∈ R were chosen arbitrarly, (ii) follows. Analogously one proves (iii). This
completes the proof.

For a more general estimator, asymptotic studies and further results see Jin and Peng
(2016). We conclude this section with some remarks on related work.

4.4 Remarks on related work
We complete this chapter by pointing out further work within the G-Framework. Since
our presentation was mainly focused on clarity, we only considered the most basic struc-
tures in more detail. In particular, so-called G-Brownian motions can be defined based
on the G-normal distribution. This allows, especially, to formulate many concepts pre-
sented in the first section of this thesis in a sublinear context, i.e., stochastic calculus
under sublinear expectations. We mainly refer to Peng (2010). Albeit our explanations
do not consider multidimensional cases, all concepts can also be stated for the multidi-
mensional case. From a statistical point of view, we point out Peng and Zhou (2020)
since the authors provide a hypothesis-testing perspective within the G-Framework.
Closely related to the aforementioned work, we also refer here to Sun and Ji (2016),
which is concerned with a generalized Neyman-Pearson lemma for sublinear expecta-
tions. A generalized Neyman-Pearson type lemma was previously studied also in the
context of g-probabilities by Ji and Zhou (2010) relying on concepts discussed in pre-
vious sections of this thesis. In particular, to better understand G-normal distributions
and also provide a means for simulations, Li et al. (2021) considers a bridging link
between normal distributions and G-normal distributions, called the Semi-G-normal
distribution. A Stein type characterization is proposed in Hu et al. (2017). Although
not in direct reference to the G-Framework, Cohen (2017) also considers nonlinear
expectations to express statistical uncertainty. Moreover, Nendel (2021) seeks to link
work among the communities of imprecise probabilities and mathematical finance. Fi-
nally, we note that these references are not exhaustive, and there is more existing work
related to the G-Framework, albeit the “classical” statistical work in this area is pretty
limited.
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5 Sublinear expectation regression
In this section, we motivate a possible application of sublinear expectations in the
context of regression models. The notion of sublinear expectation regression is based
on Lin et al. (2013). This section will show that the sublinear regression model is in
fact identifiable. At the end of section, we will state some further research questions to
be addressed in future work. First we recall the “classical” linear regression model, and
record where problems may arise in the respective specifications. We examine only the
simple linear regression model in this section for the sake of clarity, although a much
larger class of regression models can be considered under sublinear expectations.

(Simple) linear regression:
Let (Ω,F , P ) be a probability space and X, Y two real-valued random variables, where
we refer to Y as response variable and toX as covariate. Let E[Y |X] be the conditional
expectation of Y given X, then we consider

Y = E[Y |X] + ε, (5.0.1)

where ε defines an error term, yet to be specified. In the case of linear regression we
specify

E[Y |X] = f(X), f linear function of X. (5.0.2)

We usually have f(X) = β0 + β1X, where β0 is called intercept and βt = (β0, β1) is
the respective regression coefficient vector. Hence, we also write f(X) = X tβ, where
we define X t = (1, X). Since we are just interested in simple linear regression, we
do not state the case with multiple covariates here, and the reader may refer e.g. to
Fahrmeir et al. (2013). Additionally to the previous assumptions, we further consider
the conditional error variance

σ2(X) = Var(ε|X) = E[ε2|X]. (5.0.3)

By assuming homoskedasticity, we simply have E[ε2|X] = E[ε2] =: σ2. In the following,
we will stay with homoskedastic errors. We also know that E[ε2] = 0, since

E[ε|X] (5.0.1)= E[(Y − [E[Y |X]])|X] = E[Y |X]− E[E[Y |X]|X]

= 0.

Thus, E[ε] = E[E[ε|X]] = 0. It is also common to assume Normal distributed errors,
i.e., ε ∼ N (0, σ2). In the case where this assumption is violated, different methods
have evolved in statistics, but as noted in Lin et al. (2013, p. 3), these methods are
entirely unrelated to nonlinear expectations. This lack of attention is because the G-
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Framework and its theoretical foundations are widely unknown in statistics. We will
now discuss the sublinear counterpart of simple linear regression.

(Simple) sublinear expectation regression:
Relying on results from previous sections, let (Ω,H, E) be a sublinear expectation space
and X, Y two real-valued random variables. Again X will denote our covariate, Y the
response variable. If we assume E [Y |X] to be a sublinear expectation, then we know
from Lemma 4.2 that there exists a family of probability measures {PY |X,θ}θ∈Θ defined
on (R,B(R)) such that

E [Y |X] = sup
θ∈Θ

EPY |X,θ [Y |X].

Guided by our considerations regarding uncertainty in the introductory section, we state
the following simple regression model

Y = E [Y |X] + ε, (5.0.4)

where we assume ε d∼ N (0, [σ
¯

2, σ̄2]), i.e., the error ε is G-normal distributed (hence,
ε is mean certain, but variance uncertain).
Proposition 5.1
Let Y = E [Y |X] + ε, where ε d∼ N (0, [σ

¯
2, σ̄2]) and E [Y |X] = Xβ. Thus, we omit the

intercept term here. If E[X2] <∞, then β is identifiable by

β = (E[X2])−1 E[X E [Y |X]].

Proof. E [Y |X] = Xβ yields

X E [Y |X] = X2β

⇔ E[X E [Y |X]] = E[X2β]

⇔ E[X E [Y |X]] = E[X2]β

⇔ (E[X2])−1 E[X E [Y |X]] = β,

where E[·] denotes the classical expectation. This completes the proof.

This generally allows the formulation of regression models in a sublinear context. For
further details and considerations, see Lin et al. (2013). For some recent work on
regressions modeling under distribution uncertainty, the reader may refer to Yang and
Yao (2021). Finally, we state some further research questions in terms of regression
modeling under sublinear expectations. The author intends to deal with these explicitly
in further work. It seems that the sublinear expectation framework is particularly suited
to formulate imprecise regression models. In this sense, we make following remark:
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Remark 5.1
Is it possible to express “imprecise covariates” through sublinear distributions? Precisely,
let (Ω,H, E) be a sublinear expectation space and X, Y two random variables. Now,
consider the following regression model

Y = Xβ + ε, X
d∼M[µ

¯
,µ̄], ε|X ∼ N (0, σ2). (5.0.5)

Hence, the covariate X is assumed to be Maximal distributed with 0 < µ
¯
< µ̄. We

interpret this assumption as follows: Instead of X being a deteriministic covariate, X
can be seen as an imprecise covariate with lower mean −E [−X] = µ

¯
and E [X] = µ̄,

respectively upper mean. Hence, by (5.0.5) we expect

E [Y ] = E [Xβ + ε] ≤ E [Xβ] + E [ε]

= β+ E [X] + β− E [−X]

= β+µ̄− β−µ
¯
.

By assuming a multivariate Maximal distribution, this idea can be generalized to the
multiple covariate case. Since multivariate sublinear random variables were not consid-
ered in this thesis, we do not explicitly address this point here.
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6 Conclusion & Outlook
This thesis considered nonlinear expectations from different perspectives and their suit-
ability for decision-making under uncertainty in dynamic and non-dynamic situations.
For a compact summary of the notions presented in this thesis, the reader may re-
fer to Figure 6. A primary goal of this work was to invoke a nonlinear (probabilistic)
way of thinking and emphasize the potential applicability of nonlinear expectations
in statistics. Therefore, this illustration demands a translation of ideas from differ-
ent academic communities. First, we clarified the fundamental difference between risk
and uncertainty by entangling the notions of risk, probability, and uncertainty under a
historical perspective. Then, taking the Ellsberg experiment as an example, we took
a closer look at a typical decision situation under uncertainty. Next, we noted why
the expected utility theory is not suitable to explain the observed preferences in the
Ellsberg experiment. Finally, motivated by the fact that classical probability measures
are insufficient to model the underlying uncertainty in some situations, we discussed
integrals with respect to non-additive measures or capacities. However, these integrals
are nonlinear due to the lack of additivity of the underlying probability measure. We
refer to the nonlinear functional

Ec : L2
F → R : X 7→ Ec[X] =

∫ ∞
0

X+dµ−
∫
X−dµd (I)

as Choquet expectation. This nonlinear functional was used to define the so-called
Choquet expected utility and thus appropriately model the observed preferences in the
Ellsberg case. In addition, we noticed that Choquet expectations could be defined in
terms of linear expectations if certain conditions are satisfied. Further, we revisited a
nonlinear, filter-consistent expectation in the framework of so-called backward stochas-
tic differential equations. For this purpose, stochastic differential equations and thus
elementary concepts of stochastic calculus were first presented in more detail. If the
pair of processes (Yt, Zt)t∈[0,T ] ∈ L2

F([0, T ],R×Rn) is the unique solution of the BSDE−dYt = g(t, Yt, Zt)dt− ZtdBt, 0 ≤ t ≤ T,

YT = X,

we call the functional

Eg : L2
FT → R : X 7→ Eg[X] = Y0 (II)

g-expectation of the random variable X. It turns out that g-expectations and cor-
responding conditional g-expectations satisfy many properties of the classical expec-
tation. So far, g-expectations are mainly applied in mathematical finance. However,
g-expectations are also used to define recursive multiple priors utility, an intertemporal
counterpart to the multiple prior model. Based on (I) and (II), we record that in both
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non-dynamic and dynamic situations, nonlinear expectations are helpful for modeling
underlying uncertainty. This observation motivates a framework under nonlinear ex-
pectations, the G-Framework. It is worth mentioning that, especially in mathematical
finance, these results under nonlinear expectations are already well known but have only
been made available to a small audience among (applied) statisticians due to under-
lying theoretical requirements. This thesis considered a straightforward illustration of
the fundamental concepts in this nonlinear framework and tried to motivate theoretical
foundations in more detail. We shifted our focus from the usual probabilistic setting
(Ω,F , P ) to nonlinear (mostly sublinear) expectation spaces (Ω,H, E) and presented
crucial notions such as independence and distribution of random variables under sub-
linear expectations. Since the so-called G-normal distribution is characterized via the
G-heat equation ut = G(uxx), on x ∈ R× (0,∞)

u = ψ, on x ∈ R× {t = 0},

we explicitly exploited the relationship between the classical normal distribution and
the heat equation in a probabilistic and non-probabilistic setting. We note that this re-
lationship also holds in the nonlinear case. Of particular interest for later applications in
statistics are the versions of the Law of Large Numbers and the Central Limit Theorem
under sublinear expectations. Especially with the estimation of the mean parameters
of the Maximal distribution, we illustrated that nonlinear versions of classical estima-
tion and test theory could, or should, evolve in future work to increase applicability in
statistics. Furthermore, the identifiability of the sublinear expectation regression served
as another example of the potential applicability of this framework.
As increasing attention is being paid to potential uncertainty in many areas of statistics
and its applications, we believe that the G-Framework may have a notable role to play
in future applications. Future research will require statistical tools in the G-Framework
to guarantee applicability to real-life questions. Furthermore, nonlinear (resp. sublinear)
expectations have to be motivated and made available to a broad (applied) audience by
employing real-life applicability. Moreover, suitable numerical methods in this context
are also inevitable. In particular, it is worthwhile to examine the sublinear expectation
regression motivated in Section 5 and reflect whether a possible imprecise generaliza-
tion in this setting is possible, as proposed in the respective remark of the section. This
approach connects directly to ideas emerging from the imprecise probability community,
making a transfer of different concepts conceivable.
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Figure 6: Visuzalisation of key elements in this thesis.
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A Probability Theory
The material in this section can be found in any introductory book on Measure and
Probability Theory, e.g. consider Bauer (2011).
Definition A.1 (σ-algebra)
Let Ω be a given set and A ⊆ 2Ω a family of subsets. Then A is called a σ-algebra, if

(i) ∅,Ω ∈ A

(ii) A ∈ A =⇒ Ac ∈ A

(iii) I countable, (Ai)i∈I ∈ AI =⇒ ⋃
i∈I
Ai ∈ A

The pair (Ω,A) is called a measurable space.

Given any family U of subsets of Ω there is always a smallest σ-Algebra containing U ,
namely the σ-algebra generated by U , i.e.

σ(U) :=
⋂
{H : H is σ-algebra on Ω, U ⊂ H} .

Definition A.2 (Measure)
A set-function µ : A −→ [0,∞] is called measure, if A is a σ-algebra and

(i) ∀A ∈ A : µ(A) ≥ 0

(ii) µ(∅) = 0

(iii) For (Ak)k∈N ∈ AN pairwise disjunct, we have:

µ

 ⋃̇
k∈N

Ak

 =
∑
k∈N

µ(Ak)

The tripel (Ω,A, µ) is called measure space.
Example A.1

1. (Rd,A) with A = B(Rd) Borel-σ-algebra, is the smallest σ-algebra containing
all open (resp. closed) sets.

∃! measure µ : A → [0,∞] :


µ([0, 1]d) = 1

∀A ∈ A ∀x ∈ Rd : µ(x+ A) = µ(A)

This measure µ is called Borel-measure.
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2. (Rd,A) with A = L(Rd) Lebesgue-σ-algebra, is the smallest σ-algebra contain-
ing all open (resp. closed) sets and all nullsets.

∃! measure µ : A → [0,∞] :


µ([0, 1]d) = 1

∀A ∈ A ∀x ∈ Rd : µ(x+ A) = µ(A)

This measure µ is called Lebesgue-measure.

Definition A.3 (σ-finite measure)
Let (Ω,F , µ) be a measure space.

(i) µ is finite, if µ(Ω) <∞.

(ii) µ is σ-finite, if there is a sequence (An)n∈N ∈ FN such that ⋃n∈NAn = Ω and
µ(An) <∞ for all n ∈ N.

Definition A.4 (µ-null set)
Let (Ω,F , µ) be a measure space. Sets A ∈ F with µ(A) = 0 are called µ-null-sets
or just null-sets.

Definition A.5 (Complete measure space)
A measure space (Ω,A, µ) is called complete, if every subset of a nullset A ∈ A also
belongs to A (and is therefore itself a nullset). In this case we also say that the measure
µ is complete.

Definition A.6 (Measurable mapping)
Let (Ω,F) and (Ω′,F ′) be two measurable spaces. A mapping X : Ω −→ Ω′ is
called A−A′-measurable, if every A′-measurable set B has a A-measurable preimage
X−1(B), i.e.

∀B ∈ A′ : X−1(B) ∈ A .

A measurable mapping is often referred to as a random variable and denoted by capital
letters, e.g. X, Y .
Definition A.7 (Conditional expectation)
Let (Ω,F , P ) be a probability space andX a real-valued random variable with E[|X|] <
∞ and Σ ⊆ F a sub-σ-algebra. Then E[X|Σ] : Ω→ R is called conditional expectation
of X given Σ if

(i) E[X|Σ] is Σ-measurable.

(ii) ∀A ∈ Σ : E[E[X|Σ]1A] = E[X1A].
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The conditional expectation is almost surely unique, hence all statements regarding
the condtional expectations should be understood up to a null-set.

Theorem A.1 (Properties of conditional expectation)
Let X, Y be two random variables on the probabilty space (Ω,F , P ) and a, b ∈ R.
Then the conditional expectation has following properties:

(i) If X is Σ-measurable, then E[X|Σ] = X.

(ii) E[aX + bY |Σ] = aE[X|Σ] + bE[X|Σ].

(iii) E[E[X|Σ]] = X.

(iv) E[X|Σ] = E[X], if X is independent of Σ.

(v) E[Y ·X|Σ] = Y · E[X|Σ], if Y is Σ-measurable.

(vi) For Σ1 ⊆ Σ2 ⊆ F we have

E[E[X|Σ2]|Σ1] = E[X|Σ1].

Theorem A.2 (Borel-Cantelli Lemma)
Let (Ω,F , P ) be a probability space and {An}n∈N ⊆ F a sequence of events. Then
we have

∞∑
i=0

P (Ai) <∞⇒ P

( ∞∑
i=0

1Ai <∞
)

= 1.

If {Bn}n∈N ⊆ F is now a sequence of independent events, then

∞∑
i=0

P (Bi) =∞⇒ P

( ∞∑
i=0

1Bi =∞
)

= 1.

Theorem A.3 (Fubini-Tonelli)
Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite measure spaces. Further, let f :
Ω1 × Ω2 → R be a F1⊗F2−B(R)-measurable function. If f is non-negative or
µ1 ⊗ µ2 integrable, then there is a µ2-nullset N ⊆ Ω2, such that for ω2 ∈ Ω2\N the
function

f(·, ω2) : Ω1 → R : ω1 7→ f(ω1, ω2)

is integrable with respect to µ1.
Further, with

fΩ1 : Ω2\N → R : ω2 7→
∫
f(·, ω2)dµ1
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we have∫
Ω1×Ω2

f(ω1, ω2)d(µ1 ⊗ µ2)(ω1, ω2) =
∫

Ω2\N

(∫
Ω1
f(ω1, ω2)dµ1(ω1)

)
dµ2|Ω2\N

(ω2).

(A.0.1)

Theorem A.4 (Dominated convergence theorem)
Let (Ω,F , P ) be a probability space and {Xn}n∈N a sequence of random variables
such that

P
(

lim
n→∞

Xn = X
)

= 1

where X is a random variable. If there exists a random variable Y such that∫
Y dP <∞ and |Xn(ω)| ≤ Y (ω)

for every n ∈ N and almost all ω ∈ Ω, then

lim
n→∞

∫
XndP =

∫
XdP.

Definition A.8 (Stochastic process)
The quadruple (Ω,F , P, {Xt}t∈I), where (Ω,F , P ) is a probability space and {Xt}t∈I
a family of random variables with values in a measurable space (E, E), is called a
stochastic process. For each ω ∈ Ω the mapping of I into E defined by t 7→ Xt(ω) is
called a path of the process. Instead of the quadruple notation we denote {Xt}t∈I as
a stochastic process. Usually (E, E) = (R,B(R)) and I = R≥0.

Definition A.9 (Stationary process)
A stochastic process {Xt}t∈I is called stationary if the respective joint distributions of
Xt1+s, . . . , Xtn+s are independent of s for all t1, . . . , tn and n ≥ 1.

Definition A.10 (Brownian motion)
A stochastic process {Bt}t∈I with I = R≥0 is called (standard) Brownian motion, if it
satisfies:

(i) B0 = 0 a.s.

(ii) For all t > s ≥ 0, we have

Bt −Bs ∼ N (0, t− s).

(iii) For all n ≥ 2 and tn > tn−1 > · · · > t0 ≥ 0, the random variables

Bti −Bti−1 , i = 1, . . . , n

are independent.
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(iv) {Bt}t≥0 has a.s. continuous samples paths.

Definition A.11 (Filtration)
Let (Ω,F) be a measurable space. A family of σ-algebras F t ⊆ F is called filtration if

∀s, t : s ≤ t⇒ F s ⊂ F t .

If P defines a probability measure on (Ω,F), then we call (Ω,F , P, {F t}t∈I) a filtered
probability space.

Definition A.12 (Brownian filtration)
Let {Bt}t∈I be the Brownian motion. Then we call the filtration F := {F t}t∈I Brownian
filtration (or filtration generated by the Brownian motion), if

F t = σ(Bs : s ≤ t).

Definition A.13 (Augmented filtration)
Let {Xt}t∈I be a stochastic process on the probability space (Ω,F , P ). Then we call
F := {Ft}t∈I the respective augmented filtration with F t := σ{Xs ∪N : 0 ≤ s ≤ t},
where N := {A ⊆ Ω| ∃B ∈ F , B ⊂ A,P (B) = 0} denotes the collection of respective
P -null sets.

Definition A.14 (Martingale)
Let (Ω,F , P ) be a probability space and {F t}t∈I a filtration. A stochastic process
{Mt}t∈I on (Ω,F , P ) is called martingale w.r.t. to the filtration {F t}t∈I if

(i) ∀t ∈ I : Mt ∈ L1(Ω,F , P ).

(ii) Mt is F t-measurable for all t ∈ I.

(iii) For all s, t ∈ I with s ≤ t we have

E[Mt| F s] = Ms a.s.

Definition A.15 (Sub- and supermartingale)
Let (Ω,F , P, {F t}t∈I) be a filtered probability space. An adapted stochastic process
{Xt}t∈I is called

(i) Submartingal, if

∀s, t ∈ I : s ≤ t⇒ Xs ≤ E[Xt| F s] a.s.
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(ii) Supermartingal, if

∀s, t ∈ I : s ≤ t⇒ Xs ≥ E[Xt| F s] a.s.

Theorem A.5 (Doob’s maximal inequality)
Let {Mn} be a non-negative submartingale and define M̄n := sup0≤m≤nMm. For
λ > 0, we have

λP (M̄n ≥ λ) ≤ E[Mn1M̄n≥λ] ≤ E[Mn].

Theorem A.6 (Law of Large Numbers)
Let (Ω,F , P ) a probability space and {Xn}n∈N a family of pairwise independent and
identicaly distributed random variables with E[|X1|] <∞. Then, we have

Sn := 1
n

n∑
i=1

Xn
a.s.−→ E[X1] for n→∞.

Theorem A.7 (Central Limit Theorem)
Let (Ω,F , P ) a probability space and {Xn}n∈N a family of i.i.d random variables with
E[|X1|] = µ <∞ and Var[X1] = σ2 <∞.
Define

Sn :=
∑n
i=1Xi − nµ
σ
√
n

.

Then, Sn converges in distribution to a standard-normal distributed random variable.
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B Functional Analysis
All results stated here can be found e.g. in Brezis (2011) or in similar introductory
books on functional analysis.
Definition B.1 (Lp spaces)
Let (Ω,F , µ) be a measure space and 1 ≤ p <∞. Then, we call

LpF =
{
f : Ω→ Rmeasurable ,

∫
|f |p dµ <∞

}
Lp space equipped with the Lp norm

‖f‖Lp =
( ∫

Ω
|f |p dµ

) 1
p

.

Further, for p =∞ we set

L∞F =

f : Ω→ R

∣∣∣∣∣∣ f is measurable and exists a constant C
such that |f(x)| ≤ C a.e. on Ω


with

‖f‖L∞ = inf{C : |f(x)| ≤ C a.e. on Ω}.

Theorem B.1 (Hahn-Banach)
Let X be a R-vector space and p be a real-valued function on X with the following
properties:

(i) Positive homogeneity,

p(λx) = λp(x) for all λ > 0

for all x ∈ X.

(ii) Subadditivity,
p(x+ y) ≤ p(x) + p(y)

for all x, y ∈ X.

Let Y now denote a subspace of X on which a linear functional l dominated by p is
defined, i.e.

∀y ∈ Y : l(y) ≤ p(y)

Then, there exists a linear extension L : X → R such that:

(i) L|Y = l

(ii) ∀x ∈ X : L(x) ≤ p(x)
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