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Summary. In 1885 Carl Rabl published his theory on the internal 
structure of the interphase nucleus. We have tested two predic- 
tions of this theory in fibroblasts grown in vitro from a female 
Chinese hamster, namely (1) the Rabl-orientation ofinterphase 
chromosomes and (2) the stability of the chromosome arrange- 
ment established in telophase throughout the subsequent inter- 
phase. Tests were carried out by premature chromosome 
condensation (PCC) and laser-UV-microirradiation of the 
interphase nucleus. Rabl-orientation of chromosomes was 
observed in G1 PCCs and G2 PCCs. The cell nucleus was 
microirradiated in G1 at one or two sites and pulse-labelled 
with SH-thymidine for 2 h. Cells were processed for autoradio- 
graphy either immediately thereafter or after an additional 
growth period of 10 to 60h. Autoradiographs show un- 
scheduled DNA synthesis (UDS) in the microirradiated nuclear 
part(s). The distribution of labelled chromatin was evaluated in 
autoradiographs from 1035 cells after microirradiation of a 
single nuclear site and from 253 cells after microirradiation of 
two sites. After 30 to 60 h postincubation the labelled regions 
still appeared coherent although the average size of the labelled 
nuclear area fr increased from 14.2% (0 h) to 26.5% (60 h). The 
relative distance dr, i.e. the distance between two micro- 
irradiated sites divided by the diameter of the whole nucleus, 
showed a slight decrease with increasing incubation time. Nine 
metaphase figures were evaluated for UDS-label after micro- 
irradiation of the nuclear edge in GI. An average of 4.3 chro- 
mosomes per cell were labelled. Several chromosomes showed 
joint labelling of both distal chromosome arms including the 
telomeres, while the centromeric region was free from label. 
This label pattern is interpreted as the result of a V-shaped 
orientation of these particular chromosomes in the interphase 
nucleus with their telomeric regions close to each other at the 
nuclear edge. Our data support the tested predictions of the 
RaN-model. Small time-dependent changes of the nuclear space 
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occupied by single chromosomes and of their relative positions 
in the interphase nucleus seem possible, while the territorial 
organization of interphase chromosomes and their arrangement 
in general is maintained during interphase. The present limita- 
tions of the methods used for this study are discussed. 

Introduction 

In 1885 Carl Rabl published his theory on the internal structure 
of the interphase nucleus.' This theory was based on micro- 
scopic examination of Salamandra maculata and Proteus cells. 
It states--in modern terminology--that chromosomes maintain 
their individuality as well as their anaphase-telophase orienta- 
tion throughout interphase and occupy distinct territories in the 
interphase nucleus. These paradigms were then much more 
firmly established by the work of Boveri using Ascaris megalo- 
cephala (Boveri 1888, 1909). Boveri also showed clearly that the 
telomeres of the chromosomes end at the nuclear envelope. In 
Rabl's original drawing of his model the place and the 
orientation of each interphase chromosome is given by the 
course of a primary nuclear thread, from which secondary and 
tertiary threads extend as lateral projections and form the three 
dimensional chromatin network of the interphase nucleus 
(Fig. 1 a, b). The centromeres are preferentially located on one 
site of the nucleus, which Rabl calls the "Polfeld'. From this 
Polfeld the primary threads run to the opposite site of the 
nucleus, called the "Gegenpolseite', mainly along the periphery 
of the nucleus, but occasionally also directly through the 
interior of the cell nucleus. Telomeres are associated with each 
other at the Gegenpolseite. Due to the assumed V-shape of the 
primary threads of metacentric chromosomes the telomeres 
of both arms are closely associated. In prophase the extended 
chromatin streams back into the primary threads along 
pathways preformed by the secondary and tertiary threads and 
mitotic chromosomes become visible as separate entities 
(Fig. 1 c-f). 
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Fig. la-e.  Rabl's scheme of the interphase nucleus reprinted from (Rabl 1885, Table XII, 12a, b); a nucleus seen from the side, a r r o w  indicates the 
"Polfeld", b the same nucleus seen from another position with the "Polfeld" in the centre. The upper part of the nucleus shows the course of Rabl's 
"primS.re Kernffiden" (primary threads). Note that the centromeres are cooriented at the "Polfeld". The lower part represents Rabl's "Kernnetz" 
(nuclear network), which is produced by numerous lateral projections originating from the primary threads, e and f Fluorescence microscopy 
showing early prophase (c) and a somewhat later stage of prophase (f) of an unfixed Chinese hamster cell nucleus stained with Hoechst 33258 
(15gg/mi in Hanks' solution at room temperature, two washes with Hanks' for at least 5 rain each to remove excess of the stain). These stages 
approximately represent Rabl's "dichtes Knfiuel" (dense coil) (c) and "lockeres Knfiuel" (loose coil) (f). d and e "Lockeres Knfiuel" drawn from 
the "Gegenpolseite" (d) and from the "Polseite" (e) reprinted from Rabl (1885, Table XII, 2b, c). Note that the orientation of the interphase 
chromosomes as indicated by primary threads in a and b is maintained in prophase chromosomes. In comparison with Rabl's dense coils 
chromosomes in loose coils appear thicker and shorter. For further explanation of Rabl's model see text 

Astonishingly since then our understanding of  the internal 
order of the interphase nucleus has little improved. Still the 
question of the actual arrangement of the interphase chromo- 
somes and their possible functional significance is a matter of 
considerable controversy at least in mammalian cells (Vogel 
and Schroeder 1974; Comings 1980; for plant cells see Avivi 
and Feldman 1980). In the case of  chromosome territories as 
proposed by the Rabl-Boveri model,  the assumed fixing points 
of each chromosome to the nuclear matrix and the nuclear 
membrane (Vogel and Schroeder 1974; Comings 1980) should 
be concentrated within a small and coherent nuclear segment. 
In other models which consider a more extended distribution of  
chromosomes within the nucleus, these fixing points should be 
scattered over a much larger area of the nuclear envelope and 
matrix as well (Comings 1968; Vogel and Schroeder 1974). 
Evidently this latter type of  organization would result in more 
intermingling of the chromatin fibres of  different chromosomes.  
Evidence for a territorial organization has recently been 
reviewed by Comings (1980). However,  the possible dynamics 
of chromatin movements during interphase, especially during 
S-phase, are still far from clear. Vogel and Schroeder (1974) 
have discussed the possibility that somatic pairing may not exist 
during the whole interphase, but in part of it only. Such a 
dynamic view of the interphase arrangement is in contrast to 
Boveri 's conclusion that the interphase is, with regard to 
chromosome configuration, the most conservative phase (Bo- 
veri 1909, p 208). We may, however, consider the possibility 
that certain major fixing points, for example at the nuclear 
envelope, are maintained during interphase, while others are 

changing when the cell proceeds from G1 through S-phase. If 
so, the chromatin fibre representing an individual chromosome 
might be localized in the same distinct territory in telophase and 
the following prophase as shown by Boveri (1909), but much 
more intermingled with the fibres from other chromosomes in 
S-phase as compared with early G1 and late G2. The 
decondensation-condensation cycle of  interphase chromosomes 
as revealed by PCC experiments (Sperling and Rao 1974) 
would fit such an idea. 

The scarcity of evidence regarding the interphase chromo- 
some arrangement is obviously due to the fact that individual 
chromosomes in most cell types cannot be seen directly in the 
interphase nucleus. The Rabl-Boveri model was therefore based 
mainly on indirect conclusions drawn from observations of 
chromosomes in fixed mitotic cells. In the meantime the 
arrangement of chromosomes has been extensively studied in 
metaphase preparations (compare Zang and Back 1968; Zankl 
and Zang 1974; Hens et al. 1975; Kirsch-Volders et al. 1977, 
1980), but direct approaches to study the topography of 
chromatin in the interphase nucleus have remained very limited 
(Hoehn and Martin 1973; Comings 1980). Only recently have 
methods become available which can be used to study the 
problem of the internal order of chromosomes in the mam- 
malian interphase nucleus in a straightforward way instead of 
drawing indirect conclusions from studies of the arrangement 
of chromosomes at metaphase (Vogel and Schroeder 1974; 
Cremer et al. 1979 a, 1980; Sperling and Luedtke 1981; Hager  et 
al. to be published). At the same time these studies provide 
possibilities for testing whether the metaphase arrangement of 
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chromosomes reflects the interphase arrangement as well 
(Cremer et al. in preparation). In the present investigation we 
have applied two methods which we consider as especially 
promising tools for elucidating the arrangement of chromo- 
somes in the interphase nucleus, namely premature chromo- 
some condensation (PCC) (Sperling and Luedtke 1981) and 
microirradiation of the nucleus (Cremer et al. 1979a, 1980; 
Zorn et al. 1979). Evidence for chromosome territories in the 
Chinese hamster Gl-nucleus has previously been established by 
microirradiation experiments (Cremer et al. 1979a; Zorn et al. 
1979). In the present investigation we have tested the validity of 
two other predictions of the Rabl-Boveri model, namely the 
orientation of the interphase chromosomes and the stability of 
the chromosome arrangement once established at telophase 
throughout the subsequent interphase. The object of our 
investigation was the nucleus of Chinese hamster fibroblasts 
cultured in vitro. These cells contain 22 chromosomes and 
should allow a good comparison with Salamandra maculata, for 
which Rabl stated a number of 24 chromosomes. 

Materials and Methods 

Cell Strain and Culture Conditions 

A fibroblastoid Chinese hamster cell strain was established 
from lung tissue of a three-week-old female and grown under 
standard conditions (Zorn et al. 1979). A number of early 

passage cultures were stored in liquid nitrogen and cells from 
passage numbers 10-15 were used for the experiments. At this 
passage level the majority of cells had still maintained their 
diploid status as shown by Q-banding analysis. 

Premature Chromosome Condensation 

Unsynchronized Chinese hamster cells were fused to mitotic 
HeLa cells for the induction of premature chromosome conden- 
sation (PCC). The detailed procedure for PCC induction has 
been described earlier (Sperling and Rao 1974). In brief: mitotic 
HeLa cells and Chinese hamster interphase cells were mixed in 
a ratio of 2:1 (1 x 10 6 cells total) and incubated with 500 HAU 
of UV inactivated Sendai virus at 4 ° C for 15 min. The virus-cell 
mixture was then transferred into a water bath of 37 ° C for 40 rain 
and thereafter treated with hypotonic KC1 (0.075M) for 20 min. 
The cells were then centrifuged and carefully fixed by layering a 
mixture of methanol/acetic acid (3 : 1) on top of the cell sediment. 
Thirty minutes later the contents of the centrifuge were pipetted. 
After three changes of fixative the cells were dropped onto wet 
slides, air-dried, and stained with Giemsa. 

Laser Microbeam. The laser microbeam has been described 
earlier (Cremer et al. 1974, 1976). Briefly, a continuous wave 
coherent UV-beam of wavelength 257 nm was focused to one 
site in a cell with a quartz microscope objective (Zeiss Ultrafluar 
32x/0.40 Ph Glyz.) which was simultaneously used for obser- 
vation of the cells in phase contrast. Aiming was performed 
by means of a cross hair. The diameter of the microbeam at its 
focal site is approximately 1 gin. By changing the position of 
an adapting lens, different diameters of the irradiation field in 
the object plane can be adjusted (Cremer et al. 1981). In the 
present experiments roughly 10 to 15% of the total area of 
nuclei of average size was microirradiated. The UV power 
incident at the cell surface was approximately 7.5x 10 -9W, 

the irradiation time varied between 1/125 and 1/15 of a 
second. 

Conditions of Microirradiation. Cells were synchronized by 
selective harvest of mitotic cells and incubated in Eagle's 
minimum essential medium with 0.5% foetal calf serum (FCS) 
to keep them within the G1 phase of the cell cycle for the 
desirable period of time. Experimental fields of approximately 
0.25 mm 2 were marked by scalpel cuts in the bottom of plastic 
petri dishes. Petri dishes were placed into special irradiation 
chambers and cells growing in experimental fields were used for 
microirradiation experiments, while cells outside these fields 
served as controls. In some experiments the site of micro- 
irradiation within the nucleus was chosen at random except for 
the fact that nucleoli were excluded from microirradiation. In 
other experiments the edge of the nucleus was microirradiated 
at one site, or both poles of the ellipsoid nuclei were micro- 
irradiated close to the nuclear edge. A detailed description of 
the microirradiation procedure has been presented in previous 
publications (Cremer et al. 1976; Zorn et al. 1979). 

Posttreatment of Microirradiated Cells. After microirradiation 
of cells in G1, cells were incubated for two hours with medium 
without FCS containing 101aCi/ml 3H-thymidine (Amersham, 
sp.act.47Ci/mmol). Thereafter the cells were either fixed 
immediately or allowed to proceed through the cell cycle for 
different periods of time after feeding them with fresh medium 
without 3H-thymidine and containing ,15% FCS (postincuba- 
tion period). Interphase ceils were fixed with 3% glutaraldehyde 
for 10 rain and five subsequent changes of 2% perchloric acid. 
Mitotic cells were blocked by addition of 1 gg/ml colchicine for 
three hours.- Chromosome preparations were performed in situ 
as previously described (Zorn et al. 1979) and stained with 
DAPI (Schnedl et al. 1977). Autoradiography was carried out 
following standard procedures and autoradiographs were 
slightly stained with acetic orceine (Zorn et al. 1979). 

Results 

Premature Chromosome Condensation Experiments 

Premature chromosome condensation (PCC) was used to 
analyze the arrangement of Chinese hamster chromosomes in 
the interphase nucleus with respect to polarity. PCCs were 
classified according to the polarization of chromosomes as first 
described by Rabl in 1885 (Rabl orientation). A completely 
polarized orientation was assumed when almost all chromo- 
somes (at least more than two thirds, i.e. more than 15 out of 
the total number of 22 chromosomes) exhibited a polar orienta- 
tion with the centromeres coorientated to each other, and the 
metacentric and submetacentric chromosomes appeared more 
or less V-shaped and the acrocentric chromosomes rod-shaped 
(Fig. 2). Occasionally the plates exhibited two centres instead of 
one (Fig. 2a). If only about half of the chromosomes (some 10 
to 15) were oriented in this way the plates were classified as 

"partially polarized". In the case of more or less random 
orientation they were classified as "non-polarized". The results 
of three independent fusion experiments are shown in Table 1. 
The frequencies of completely and partially polarized PCCs 
varied between 28% and 72%. It is important that the polarized 
chromosome arrangement was observed both in G1 and G2 
PCCs. We noted somewhat higher frequencies in G2 PCCs as 
compared to G1 PCCs. This difference can probably be 
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Fig. 2a--tl. Orientation of prematurely condensed chromo- 
somes of Chinese hamster nuclei after fusion with mitotic 
HeLa cells; a and b completely polarized Gt PCC, 
c and d completely polarized G2 PCC. Note that almost 
all centromeres are coorientated, exhibiting the "Rabl 
orientation". In a two centres are visible 

Table 1. Orientation of prematurely condensed chromosomes 

Exp. n Completely Partially Nonpolarized 
no. polarized polarized 

1 100 36% 36% 28% 
2 100 9% 37% 54% 

3 50 6% 22% 72% 

n: Number of evaluated G1- and G2-PCCs 

a t t r ibuted to the ra ther  lengthy G1 PCC chromosomes  which 
make the observat ion  of  a polarized or ienta t ion  more difficult. 
Our  PCC experiments  are in agreement  with Rabl 's  model  of  a 
polarized a r rangement  of  in terphase  chromosomes .  The ex- 
per iments  are also compat ib le  with Rabl ' s  and  Boveri 's  argu- 
ments tha t  the a r r angemen t  of  ch romosomes  established in 
telophase is ma in ta ined  dur ing  interphase.  Independen t  ev- 
idence for these conclusions will be described in the next 
section. 

Microbeam Experiments 

Experimental Rationale. The following microbeam experiments  
were per formed to answer  two questions: (1) Do G l - c h r o m o -  
somes exhibit  a polarized or ien ta t ion  as suggested by PCC- 
experiments? (2) Does the G l - a r r a n g e m e n t  of ch romosomes  
change when the cell proceeds th rough  the cycle? 

The experimental  ra t ionale  of the mic robeam approach  for 
answering these questions can easily be unders tood  by com- 
paring the interphase nucleus and  its chromosomes  with a coil 
composed of a n u m b e r  of threads.  Figure 3 shows two basically 
different a r rangements  of four  threads.  Each thread may form a 
distinct terr i tory (coil A) (Fig. 3a) or the threads may  be 
extended th roughou t  the whole coil (coil B) (Fig. 3 d). W h e n  all 
threads are of the same colour it becomes difficult or even 
impossible to visualize the individual  a r rangement  of each 
thread in the coil. To overcome this p rob lem a small  segment  of  
the coil is marked  by some colour  (Fig. 3b, e). If the arrange-  
ment  of threads in the coil is static, then the colour  should  
remain concent ra ted  thereaf ter  at the marked  segment.  Fur ther -  
more, if two different segments are marked,  the distance 
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Fig. 3a-f. Illustration of the experimental rationale of microirradiation experiments: the interphase nucleus is compared with a coil composed 
of a number of threads (chromosomes). a and b Two basically different arrangements A and B. In A each thread forms a distinct territory 
(domain), in B the threads are extended throughout the whole coil. The examples shown here are meant to illustrate the power of the micro- 
beam method to decide between different types of arrangements; they are not intended to suggest an actual chromosome arrangement of any 
particular cell type. b and e Similar arrangements of threads as shown in a and d. All threads are of the same light colour so that it becomes difficult 
to distinguish the individual arrangement of each thread in the coil. A small part is marked by some black colour. In microirradiation experiments 
an autoradiographic procedure is used to mark the irradiated nuclear site (compare Fig. 4). e and f The same threads as shown in b and e after 
disassembling of the two coils. Marked regions of the individual threads can be identified. Three sources of information can be used to recon- 
struct the original arrangement of threads: (1) the site of the coil selected for marking, (2) the number of marked and unmarked threads, (3) the 
distribution of markings along the individual threads 

between these segments should not change with time. On the 
other hand,  if the arrangement  of threads changes then we 
would expect a time dependent  effect on the distribution of  the 
colour and the distance between two coloured segments. 
Finally, if coils with one marked segment are disassembled into 
individual threads three sources of information can be used to 
reconstruct the arrangement  of threads at the time of segment- 
marking: (a) the site of the coil selected for marking, (b) the 
number of marked threads, and (c) the distribution of markings 
along individual threads. In the case of a nonterritorial  
organization as exemplified in coil B the markings are more or 

less scattered over many or even all the threads (Fig. 3f). In 
contrast,  a territorial organization would result in extensive 
markings on a few threads, while other threads representing the 
majority of  threads in the case of  larger numbers would remain 
completely untouched (Fig. 3c). If all the threads end at the 
periphery of  the coil then marking of  a peripheral segment 
should result in threads stained at their ends. 

This rationale was experimentally realized as follows. Chinese 
hamster cells were microirradiated in G1 at one or two sites and 
pulse-labelled with 3H-thymidine for 2h  immediately there- 
after. 3H-thymidine was incorporated into the damaged DNA 
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strands during unscheduled D N A  synthesis (UDS) in the micro- 
irradiated nuclear part. Cells were processed for autoradio-  
graphy either immediately or after they had proceeded through 
additional parts of  the cell cycle and in some cases reached the 
first post-irradiation mitosis. 

Static or Dynamic Arrangement of Chromosomes During Inter- 
phase? Figure 4 shows nuclei microirradiated either at a random 
site of  the nucleoplasm or at both poles some 2 gm inside from 
the nuclear edge. The autoradiographs were obtained im- 
mediately after the labelling (Fig. 4a, c) or after an additional 
postincubation period of 30 and 60h (Fig. 4b, d). Notably,  all 
these nuclei show label restricted to one and two sites, respec- 
tively. After 30 to 60 h postincubation the enlarged nuclei often 
showed a less dense accumulation of  silver grains over the 
irradiated nuclear part as compared with cells processed for 
autoradiography immediately after the labelling period. How- 
ever, the labelled regions still appeared rather coherent even 
after such prolonged postincubation periods. In parallel sets of  
experiments microirradiated cells were treated in exactly the 

same way except for an additional continuous labelling with 
3H-thymidine (0.1 laCi/ml) for the whole growth period. In these 
experiments roughly 60% of the nuclei became labelled over 
their whole area after 40 h, indicating that a large fraction of 
these cells had proceeded into S-phase (Fig. 5). 

For quantitative analysis camera lucida drawings of single 
microirradiated nuclei were obtained at a convenient magnif- 
ication. As shown in Fig. 6 the following measurements were 
carried out. The UDS-labelled nuclear area f was arbitrarily 
encircled and both f and the total nuclear area F were deter- 
mined by planimetry. In addition we measured the distance d 
between the centres of  two labelled nuclear sites and the 
diameter D of  the nucleus given by a line through the two 
centres. When comparing f and d for different postincubation 
periods (0 to 60h) one has to take into account the increase of 
the nuclear size. The mean values for F (gm 2) at 0 (n =361) and 
20 (n=215)  hours postincubation did not significantly differ 
from each other in the t-test (179.1 + 3.93 SEM versus 187.4+ 
4.61). Between 20 and 60 h a significant increase (P < 0.00 I) of  F 
was noted by linear regression analysis with a regression co- 

Fig. 4. Autoradiographs of Chinese hamster 
cells after UV-microirradiation of the nucleus 
in G1 at one site (a and b) or at two sites 
(e and d). Irradiated cells were labelled 
with 3H-thymidine for 2h while un- 
scheduIed DNA synthesis (UDS) was taking 
place at the microirradiated site(s) and fixed 
either immediately after the label period 
(a, c) or after an additional postincahation 
period of 30h (d) and 60h (b) respectively. 
Bar, 10t.tm 
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Fig. 5. Entry of microirradiated cells into S-phase. Nuclei were micro- 
irradiated in G1 at one site with different doses and pulse-labelled with 
3H-thymidine for two hours as described for the detection of un- 
scheduled DNA synthesis (UDS). Thereafter the cells were allowed 
to proceed through the cycle by adding fresh medium with 15% FCS 
containing 0.1 gCi/ml 3H-thymidine and processed for autoradiography 
after different postincubation periods. Nuclei with label distributed 
over their whole area were considered as having entered S-phase 
during the postincubation time. The majority of nuclei still considered 
in G1 showed label restricted to the microirradiation site indicating 
UDS (compare Fig. 4). ~,-~, : No irradiation, 0 h (127 nuclei), 20 h (496), 
30h (278), 40h (773), 60h (318); , , - . - a :  1/15s, Oh (127), 20h (61), 
30h (46), 40h (149), 60h (130); [ ] . . .  []: 1/60s, Oh (106), 20h (102), 
30h (151), 40h (256), 60h (80); , , - - -m :  1/125s, Oh (181), 20h (0), 
30h (92), 40h (210), 60h (155) 

nuclear  size we ca lcu la ted  (a) the  relat ive label led nuc lear  a rea  
fr as pe rcen t  o f  the  tota l  nuc lea r  a rea  (fr : f / F  × 100) and  (b) 

the relat ive d i s tance  dr  be tween  two mic ro i r r ad ia t ed  nuc lea r  
sites (dr  = d / D ) .  In the  case when  the c h r o m o s o m e  a r r a n g e m e n t  
r emained  f ixed dur ing  in te rphase  we expec ted  cons t an t  values 
for fr  a n d  dr  i n d e p e n d e n t  o f  changes  o f  the  nuc lear  size. 
F r e q u e n c y  d i s t r ibu t ion  curves for  f r -values  poo l ed  f r o m  all 
exper iments  are  s h o w n  in Fig.  7. Wi th  increas ing  p o s t i n c u b a -  
t ion pe r iod  these curves s h o w e d  a shif t  to larger  fr-values.  The  

increase o f  fr wi th  t ime was f o u n d  to be s ignif icant  by l inear  
regress ion analysis  ( P <  0.001) wi th  a regress ion  coeff ic ient  o f  
+0.20.  Table 2 shows  the  average  fr-values  ob t a ined  for  

7=16Z- ,].j j~.2 Oh % 
20 n=356 20 

1 0 ~  10 

10 20 30 40 50 60 fr 10 20 30 40 50 60 fr 

D 

Fig. 6. Measurements performed in autoradiographs of single micro- 
irradiated nuclei. The scheme shows a nucleus microirradiated at two 
sites (compare Fig. 4d). F: Total nuclear area; f: labelled nuclear area 
per microirradiation site (small arrows); D: diameter of the nucleus; 
d: distance of the centres of the two labelled sites; fr = f / F x  100: percent 
UDS-labelled area; d r = d / D :  relative distance between two micro- 
irradiated sites 

efficient o f  +0 .23 .  The  m e a n  value for  F (/,tm 2) was 236.4_+ 
7.19 (SEM)  af ter  4 0 h  ( n = 2 2 3 )  and  312.0_+ 11.77 af ter  60h  
(n=171).  This  increase p r e s u m a b l y  reflects the  S-phase  de-  
p e n d e n t  increase o f  the  nuc lea r  vo lume ,  while mi to t ic  events  
were rare  in these cells. To c o m p e n s a t e  for  the increase o f  the 

~=26.5 60h 

10 20 30 40 50 60 fr 10 20 30 ~;0 50 60 fr 

Fig. 7. Frequency distribution of UDS-labelled area fr (compare Fig. 6). 
Nuclei were microirradiated at one site in G1, pulse-labelled with 3H- 
thymidine for 2 h and processed for autoradiography either immediately 
thereafter (Oh) or after 20, 40, and 60h postincubation with fresh 
medium with 15% FCS. Nuclei were grouped into subclasses according 
to fr-values. In subclass 0-5  the smallest fr-value was 3%. Ordinate: 
Relative frequency for each subclass as percent of total number n of 
evaluated nuclei. Abscissa: f r = f / F x  100, i.e. labelled area f as percent 
of total nuclear area F. Linear regression analysis shows a significant 
increase (P< 0.001) of fr with increasing postincubation period. For 
further details of measurements compare Table 2 

Table 2. UDS-labelled nuclear area fr (= percent of total nuclear area) resulting from microirradiation of a single nuclear site in GI: Effect of 
irradiation time and postincubation time after pulse-labelling with 3H-thymidine. For further explanation see Fig. 6 

Irradiation time Postincubation time 

Oh 10 h 20h 30h 40h 60h 

1/125 s 13.8_+ 0.60 - -  19.1 _+ 0.77 - -  23.8_+ 1.00 
(n= 159) (n= 91) (n= 117) 

1/60s 11.3+_ 1.13 11.1+_ 1.10 10.7_+ 0.88 12.5_+ 0.84 - -  
(n = 21) (n = 36) (n = 46) (n = 34) 

1/15s 15.0_+ 0.61 - -  16.7_+ 0.81 - -  18.6_+ 1.01 
(n = 176) (n = 78) (n = 108) 

27.9_+ 1.06 
(n = 83) 

25.3_+ 1.21 
(n = 86) 

Pooled data (compare Fig. 7) 14.2_+ 0.40 - -  16.4_+ 0.53 - -  21.3_+ 0.71 26.5_+ 0.81 
(n = 356) (n = 215) (11 = 225) (n = 169) 

For each experiment the average fr and the standard error of the mean (SEM) are indicated 
n: Number of evaluated nuclei 
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different UV-doses and postincubation periods. The increase of 
fr was most pronounced at the lowest UV-dose (1/125 s). Here, 
the average fr-value had roughly doubled after 60 h and signif- 
icant differences were obtained by t-test between 0 and 20h 
(P< 0.001), 20 and 40 h (P< 0.001), and 40 and 60h (P< 0.01). 
A somewhat smaller increase of fr at higher doses might 
indicate a dose dependent inhibition of  microirradiation on 
chromatin movements.  The results of  measurements of  dr be- 
tween two microirradiated nuclear sites are shown in Table 3 
and Fig. 8. Linear regression analysis of pooled data showed a 
slight but significant (P< 0.001) decrease of  dr with increasing 
postincubation time (regression coefficient -0.0015),  while the 
absolute distance d between the spots remained roughly 
constant. 

Chromosome Arrangement  at the Nuclear Edge. Since the nucleus 
of  Chinese hamster fibroblasts resembles a flat ellipsoid the 
nuclear edge can be specified as the region where the curvature of 
the nuclear envelope has its maximum. The question arises 
whether particular chromosomal  regions, e.g. telomers, are pre- 
ferentially associated with this region. In the following ex- 
periments the periphery of Gl-nuclei  including the nuclear edge 

was microirradiated. Microirradiated cells were pulse-labelled 
with 3H-thymidine as described above. Thereafter cells were fixed 
and processed for autoradiography either immediately (Fig. 9) 
or metaphase spreads were obtained from microirradiated cells 
after an additional period of  growth for some 30 to 40 h. Spreads 
were then stained with DAPI ,  photographed with a Zeiss fluores- 
cence microscope III, and examined for the distribution of UDS-  
label after autoradiography (Fig. 10). This approach was limited 
by the small number  of UDS-labelled cells which entered the first 
postirradiation mitosis, but in a total of  nine spreads labelled 
chromosomes could be identified by their morphology and 
banding patterns. The average number of  labelled chromosomes 
per spread was 4.3 (range 1-7). Some of these chromosomes 
were damaged, but the majority appeared intact. UDS-label was 
clearly distinguishable from label patterns which originate from 
semiconservative DNA-synthesis by criteria previously de- 
scribed (Zorn et al. 1979). Notably, labelled chromosomes lay 
fairly adjacent to each other (Fig. I 0). In 31 of a total of 39 label- 
led chromosomes the respective homologue was unlabelled. In 
four cases concerning chromosomes No. 1, 2, 3, and 5, both 
homologues were jointly labelled. The question of random or 
non-random neighbourhood relationships between territories of 

Table 3. Relative distance dr between two UDS-labelled sites resulting from microirradiation of two nuclear sites in GI: Effect of irradiation 
time and postincubation time after pulse-labelling with 3H-thymidine. For further explanation see Fig. 6 

Irradiation time Postincubation period 

Oh 20h 30h 40h 

1/125-1/30 s 0.64_+ 0.011 0.64_+ 0.012 0.63_+ 0.015 0.59_+ 0.020 
(n = 50) (n = 46) (n = 23) (n = 38) 

1/15 s 0.66_+ 0.015 0.60_+ 0.019 - -  0.58_+ 0.016 
(n = 30) (n = 34) (n = 32) 

Pooled data (compare Fig. 8) 0.65_+ 0.009 0.62+_ 0.011 - -  0.59_+ 0.013 
(n = 80) (n = 80) (n = 70) 

For each experiment the average dr and the standard error of the mean (SEM) are indicated 
n: Number of evaluated nuclei 

% R=0,65 Oh 
N n=80 

3o 0,5 I,o 

21 l i" =0,62 ,nh0 

20. ~=Q,59 Z,0h 
n=70 

~ 0 0  d/D 
Fig. 8. Relative distance dr (compare Fig. d) between two micro- 
irradiated nuclear sites. After microirradiation in G1 the cells were 
labelled with 3H-thymidine for 2 h and processed for autoradiography 
either immediately thereafter or after 20 and 40 h of additional growth. 
Nuclei were arbitrarily grouped into subclasses according to dr-values. 
The ordinate shows the relative frequency (% of total number n of 
evaluated nuclei) for each subclass. Linear regression analysis shows a 
significant (P< 0.001) albeit small decrease of dr with increasing post- 
incubation time. For further details of measurements compare Table 3 

homologous chromosomes will be discussed in a subsequent 
paper (Cremer et al. in preparation). 

With regard to UDS-label  patterns on individual chromo- 
somes several features are of  interest. Three small chromosomes 
appeared labelled over their whole length, while 36 chromo- 
somes showed label only over a part of varying length. This 
result can easily be explained by the chance localization of  the 
microbeam between the borders of  several territories. Six 
chromosomes (No. 1, three cases, No.2,  3, 5, one case each) 
showed joint  labelling of both their distal chromosome arms, 
while their proximal arm and the centromeric region was not 
labelled (see Fig. 10 for examples). This result fits with a V- 
shaped orientation of these chromosomes in the interphase 
nucleus with their telomeres situated adjacent to each other 
at or close to the nuclear edge. The average frequency with which 
such a label pattern can be expected would depend on the angle 
between the two chromosome arms of V-shaped chromosomes 
and on the diameter of  the microbeam. Present microbeam data 
are not sufficient to decide whether the V-shaped orientation of 
metacentric and submetacentric chromosomes is the rule or 
rather an exception in the Chinese hamster cell nucleus. Labelled 
chromosome parts included a total of  15 centromeric and 39 telo- 
meric regions, one labelled telomeric region in 21 chromosomes 
and two in 9 chromosomes.  In 7 chromosomes the centromere 
and one telomere were jointly included in the labelled part. Only 
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Fig. 9. Autoradiographs of three cells after UV-microirradiation 
of the nuclear edge, labelling with 3H-thymidine for 2 h and 
fixation immediately after the label period. Bar denotes 10 gm 

Fig. 10a-f. Cells were microirradiated at one site of the nuclear edge in G1 (compare Fig. 9) and pulse-labelled with 3H-thymidine for two hours. 
Chromosome preparations were performed in situ after a postincubation period of 30-40h and stained with DAPI. a-c Fluorescence micro- 
scopy of three metaphase spreads; d-f autoradiographs of the same metaphase spreads. UDS-labelled chromosome segments were associated 
with each other in G1 at the microirradiated part of the nuclear edge. Small arrows point to chromosomes in which distal regions of both arms 
are jointly labelled. Labelled chromosomes and their respective homologues are designated by their number in cases where identification was 
possible. Miscondensation within the labelled region of a chromosome no. 1 may be noted (Fig. 10a, white arrow). The large arrow in Fig. 10d 
indicates UDS-label still localized at the edge of an interphase nucleus some 40 h after microirradiation 

in 4 cases label appeared  clearly restricted to a par t  of chromo-  
some arms,  while the centromeric  and telomeric regions were not  

involved. 

Discussion 

In the present  invest igation we have applied two different 
approaches  to investigate the internal  a r rangement  of chromo-  
somes in the interphase nucleus of Chinese hamste r  f ibroblasts ,  
namely premature  ch romosome  condensa t ion  and  UV-micro-  
irradiation.  In spite of the inherent  l imitat ions of bo th  these 

approaches ,  which will be discussed below, the results suppor t  
several of Rabl ' s  (1885) and  Boveri 's  (1888, 1909) predict ions 
namely: (1) tha t  the relative posi t ions of  ch romosome  terri tories 
in the interphase nucleus which are formed in telophase are 
preserved dur ing the subsequent  in terphase and  (2) tha t  chro- 
mosomes retain their  anaphase- te lophase  or ienta t ion dur ing 

interphase.  
The small number  of UDS-label led chromosomes  per  meta-  

phase which has been ob ta ined  after micro i r radia t ion  and  
pulse-labelling of the nucleus with 3H-thymidine in G1 strongly 
supports  the concept  of a terr i torial  organizat ion of chromo-  
somes in the interphase nucleus at this stage of  the cell cycle 
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(Cremer et al. 1979a; Zorn et al. 1979; this paper). Further- 
more, use of antibodies specific for the detection of UV- 
irradiated DNA has made it possible to detect microirradiated 
chromatin by indirect immunofluorescence microscopy both in 
microirradiated interphase nuclei and in metaphases obtained 
from cells after microirradiation of the nucleus at any stage of 
the preceding interphase (Cremer et al. 1980; Hens et al. in 
preparation). In particular, we have observed by indirect 
immunofiuorescence microscopy specific staining of only a very 
few chromosomal segments in metaphase after microirradiation 
of the nucleus in S-phase. These findings show that the ter- 
ritorial arrangement of chromosomes as previously demon- 
strated for the Gl-nucleus, is also maintained in the subsequent 
S-phase (Hens et al. in preparation). 

Interpretation of fr- and dr-values as parameters of possible 
changes in the relative positions of chromosome territories 
during the cell cycle (Figs. 6-8; Tables 2 and 3) should be per- 
formed with the reservation in mind that microirradiation 
might induce changes in the condensation of damaged chro- 
matin and affect the mobility of the microirradiated chromo- 
somes in the interphase nucleus to a certain extent. Obstacles 
against movements of microirradiated chromatin might result 
from microirradiation induced"stickiness" and/or interchanges 
between microirradiated chromosomes. On the other hand, 
UDS-label patterns on individual chromosomes indicate that 
the microbeam had affected only a part of most irradiated 
chromosomes. Accordingly, major movements of the non- 
irradiated part of these chromosomes and of non-irradiated 
neighbouring chromosomes should have grossly influenced the 
interphase topography of the microirradiated chromatin as 
well. Time dependent alterations of fr- and dr-values, however, 
while statistically significant were relatively small, although 
progress in the cell cycle from G1 into S-phase was demon- 
strated for the majority of microirradiated cells (Fig. 5). Even 
after 60 h postincubation the labelled nuclear region appeared 
to be still coherent. In the case of microirradiation of the 
nuclear edge or nuclear poles the localization of the labelled 
areas remained at these sites even after 40 h. In a preliminary 
series of experiments (Cremer et al. 1979 b) microirradiation of 
the Gl-nucleus was restricted to the smallest nuclear area pos- 
sible. Pulse-labelling with 3H-thymidine was performed under 
slightly modified conditions and resulted in fr-values of 3-4% 
in cells fixed immediately after the labelling period and of 4-5% 
in cells fixed after additional growth periods up to 80h. In con- 
clusion, our data do not indicate major changes of the arrange- 
ment of interphase chromosomes when the cells proceed from 
G1 into S-phase, while small time dependent changes of the 
nuclear space and the exact nuclear position occupied by single 
interphase chromosomes or chromosome segments would be 
compatible with these data. A rather static arrangement of 
chromosome territories during interphase would be the logical 
consequence of many fixing points of chromatin to the nuclear 
matrix and nuclear envelope. Slight changes of chromatin 
distribution in microirradiated nuclei support the idea that this 
fixation is not completely rigid. Either fixing points might be 
resolved and newly formed at a somewhat distant site or 
chromatin fibres might slide along certain fixing points (Pardoll 
et al. 1980). Such a dynamic association of chromatin fibres 
with the nuclear matrix might be of great functional importance 
but does not seem to influence the territorial organization of 
interphase chromosomes and their gross arrangement in 
general. 

In the light of the above conclusions the Rabl-type polariza- 
tion of G1 and G2 PCCs appears as a passive relic of their 
anaphase-telophase orientation, which is maintained through- 
out the cell cycle. Loss of polarization, which was observed in 
many Chinese hamster PCCs ranging from 28% to 72% in dif- 
ferent experiments, is most likely due to artefacts of the PCC 
preparation procedure, including hypotonic treatment and 
spreading of PCC chromosomes. It has previously been shown 
that in Muntjac cells (2n=7) the frequency of completely 
polarized PCCs can be as high as 84%, the remainder showing 
partial polarization (Sperling and Luedtke 1981). Moreover, 
even Muntjac Go lymphocytes which may be arrested at this 
stage for up to several months or years exhibit this polarized 
orientation in most of the cells analyzed (Sperling and Luedtke 
1981). In Chinese hamster cells (2n=22) the maximum fre- 
quency of completely polarized PCCs was only 36%. Probably 
a higher number of chromosomes decreases the chance to 
preserve the Rabl-type orientation during the PCC-procedure 
(Sperling 1982). 

On the other hand the possibility should be taken into con- 
sideration that PCC might initiate movements of chromosomes 
similar to those which start in prophase. Coorientation of 
centromeres in PCCs might then in part reflect some progres- 
sion of the centromeric regions of chromosomes towards each 
other after the induction of PCC. Microirradiation of the 
periphery of the nucleus including the nuclear edge more often 
resulted in labelling of the distal arms of chromosomes, in- 
cluding the telomeres, than in labelling of centromeric regions. 
However, when we take into account that the number of 
telomeres exceeds the number of centromeres our present data 
do not show a remarkable excess of labelled telomeres in the 
microirradiated nuclear part. Visualization of centromeres in 
the intact nucleus has become possible by indirect immuno- 
fluorescence microscopy with antibodies which bind specifically 
to centromeres (Moroi et al. 1980). Preliminary data seem to 
indicate that the centromeres of Chinese hamster cells are 
clustered in some nuclei but distributed more or less over the 
whole nuclear area in others (Moroi et al. 1980). Further dis- 
cussion of the distribution of centromeres and telomeres in the 
Chinese hamster cell nucleus is postponed until more data 
become available. 
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