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A growing number of artificial
intelligence (Al)-based clinical decision
support systems are showing
promising performance in preclinical,
in silico, evaluation, but few have yet
demonstrated real benefit to patient
care. Early stage clinical evaluation is
important to assess an Al system’s
actual clinical performance at small
scale, ensure its safety, evaluate the
human factors surrounding its use, and
pave the way to further large scale
trials. However, the reporting of these
early studies remains inadequate. The
present statement provides a
multistakeholder, consensus-based
reporting guideline for the
Developmental and Exploratory Clinical
Investigations of DEcision support
systems driven by Artificial Intelligence
(DECIDE-AI). We conducted a two
round, modified Delphi process to
collect and analyse expert opinion on
the reporting of early clinical evaluation
of Al systems. Experts were recruited
from 20 predefined stakeholder

SUMMARY POINTS

DECIDE-Al is a stage specific reporting guideline for the early, small scale and live
clinical evaluation of decision support systems based on artificial intelligence
The DECIDE-AI checklist presents 27 items considered as minimum reporting
standards. It is the result of a consensus process involving 151 experts from 18
countries and 20 stakeholder groups

DECIDE-Al aims to improve the reporting around four key aspects of early stage
live Al evaluation: proof of clinical utility at small scale, safety, human factors
evaluation, and preparation for larger scale summative trials
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categories. The final composition and
wording of the guideline was
determined at a virtual consensus
meeting. The checklist and the
Explanation & Elaboration (E&E)
sections were refined based on
feedback from a qualitative evaluation
process. 123 experts participated in
the first round of Delphi, 138 in the
second, 16 in the consensus meeting,
and 16 in the qualitative evaluation.
The DECIDE-Al reporting guideline
comprises 17 Al specific reporting
items (made of 28 subitems) and 10
generic reporting items, with an E&E
paragraph provided for each. Through
consultation and consensus with a
range of stakeholders, we have
developed a guideline comprising key
items that should be reported in early
stage clinical studies of Al-based
decision support systems in
healthcare. By providing an actionable
checklist of minimal reporting items,
the DECIDE-Al guideline will facilitate
the appraisal of these studies and
replicability of their findings.

The prospect of improved clinical outcomes and more
efficient health systems has fuelled a rapid rise in the
development and evaluation of artificial intelligence
(AI) systems over the last decade. Because most Al
systems within healthcare are complex interventions
designed as clinical decision support systems, rather
than autonomous agents, the interactions between
the Al systems, their users and the implementation
environments are defining components of the Al
interventions’ overall potential effectiveness. Therefore,
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RESEARCH METHODS AND REPORTING

Box 1: Methodological challenges of the artificial intelligence (Al)-based decision
support system evaluation

e The clinical evaluation of Al-based decision support systems presents several
methodological challenges, all of which will likely be encountered at early stage.
These are the needs to:

account forthe complexintervention nature of these systems and evaluate their

integration within existing ecosystems

account for uservariability and the added biases occurring as a result

considertwo collaborating forms of intelligence (human and Al system) and

therefore integrate human factors considerations as a core component
consider both physical patients and their data representations

account forthe changing nature of the intervention (either due to early

prototyping, version updates, or continuous learning design) and to analyse

related performance changes

minimise the potential of this technology to embed and reproduce existing

health inequality and systemic biases

estimate the generalisability of findings across sites and populations

enable reproducibility of the findings in the context of a dynamic innovation field

and intellectual property protection

o

o

o

o

o

o

o

o

bringing Al systems from mathematical performance
to clinical utility, needs an adapted, stepwise
implementation and evaluation pathway, addressing
the complexity of this collaboration between two
independent forms of intelligence, beyond measures
of effectiveness alone.' Despite indications that some
Al-based algorithms now match the accuracy of human
experts within preclinical in silico studies,’ there is
little high quality evidence for improved clinician
performance or patient outcomes in clinical studies.? *
Reasons proposed for this so called Al-chasm® are lack
of necessary expertise needed for translating a tool
into practice, lack of funding available for translation,
a general underappreciation of clinical research as
a translation mechanism® and more specifically a
disregard for the potential value of the early stages of
clinical evaluation and the analysis of human factors.”

The challenges of early stage clinical Al evaluation
(seebox 1) are similar to those of complex interventions,
as reported by the Medical Research Council dedicated
guidance,! and surgical innovation, as described by

the IDEAL Framework.® ® For example, in all three
cases, the evaluation needs to consider the potential
for iterative modification of the interventions and the
characteristics of the operators (or users) performing
them. In thisregard, the IDEAL framework offers readily
implementable and stage specific recommendations
for the evaluation of surgical innovations under
development. IDEAL stages 2a/2b, for example, are
described as development and exploratory stages,
during which the intervention is refined, operators’
learning curves analysed, and the influence of patient
and operator variability on effectiveness are explored
prospectively, prior to large scale efficacy testing.

Early stage clinical evaluation of AI systems
should also place a strong emphasis on validation of
performance and safety, in a similar manner to phase 1
and 2 pharmaceutical trials, before efficacy evaluation
at scale in phase 3. For example, small changes in
the distribution of the underlying data between the
algorithm training and clinical evaluation populations
(so called dataset shift) can lead to significant
variation in clinical performance and expose patients
to potential unexpected harm.'* !

Human factors (or ergonomics) evaluations are
commonly conducted in safety critical fields such
as aviation, the military and energy sectors.!?'*
Their assessments evaluate the impact of a device
or procedure on their users’ physical and cognitive
performance, and vice versa. Human factors, such
as usability evaluation, are an integral part of the
regulatory process for new medical devices' '® and
their application to Al specific challenges is attracting
growing attention in the medical literature.!’2°
However, few clinical AI studies report on the
evaluation of human factors,? and usability evaluation
of related digital health technology is often performed
with inconstant methodology and reporting.*!

Other areas of suboptimal reporting of clinical Al
studies have also recently been highlighted,® ?* such
as implementation environment, user characteristics
and selection process, training provided, underlying
algorithm identification, and disclosure of funding
sources. Transparent reporting is necessary

Preclinical Offline Safety/utility, Safety/effectiveness, Post-market
development validation* small scale large scale surveillance

Drugs SPIRIT/CONSORT (-Al)
Preclinical Clinical trials  Clinical trials Clinical trials Pharmacovigilance
trials phase 1 phase 2 phase 3 phase 4
Alin healthcare TRIPOD-Al and STARD-AI DECIDE-AI
In silico Silent/shadow Early live clinical Comparative .
. X .+ " . Vigilance
evaluation evaluation evaluation prospective evaluation
Surgical innovation IDEAL
IDEAL  IDEAL  IDEAL
[ IDEAL stage O stage1 stage2a stage2b IDEAL stage 3 ) IDEAL stage 4 ]

Fig 1| Comparison of development pathways for drug therapies, artificial intelligence (Al) in healthcare, and surgical innovation. The coloured lines
represent reporting guidelines, some of which are study design specific (TRIPOD-AI, STARD-AI, SPIRIT/CONSORT, SPIRIT/CONSORT-AI), others stage
specific (DECIDE-AI, IDEAL). Depending on the context, more than one study design can be appropriate for each stage. *Only apply to Al in healthcare

2
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Table 1 | Overview of existing and upcoming artificial intelligence (Al) reporting guidelines

Name Stage Study design Comment
TRIPOD-AI Preclinical development Prediction model evaluation* Extension of TRIPOD. Used to report prediction models (diagnostic or
prognostic) development, validation and updates. Focuses on model
performance
STARD-AI Preclinical development, Diagnostic accuracy studies* Extension of STARD. Used to report diagnostic accuracy studies, either
offline validation at development stage or as an offline validation in clinical settings.
Focuses on diagnostic accuracy
DECIDE-AI Early live clinical Various (prospective cohort studies, non-randomised ~ Stand alone guideline. Used to report the early evaluation of Al
evaluation* controlled trials, . . .)t with additional features such as  systems as an intervention in live clinical settings (small scale,
modification of intervention, analysis of prespecified  formative evaluation), independently of the study design and Al
subgroups, or learning curve analysis system modality (diagnostic, prognostic, therapeutic). Focuses on
clinical utility, safety, and human factors
SPIRIT-Al Comparative prospective Randomised controlled trials (protocol)* Extension of SPIRIT. Used to report the protocols of randomised
evaluation controlled trials evaluating Al systems as interventions
CONSORT-Al Comparative prospective Randomised controlled trials* Extension of CONSORT. Used to report randomised controlled trials

evaluation

evaluating Al systems as interventions (large scale, summative
evaluation), independently of the Al system modality (diagnostic,
prognostic, therapeutic). Focuses on effectiveness and safety

*Primary target of the guidelines, either a specific stage or a specific study design.
tAlthough existing reporting guidelines exist for some of these study designs (eg, STROBE for cohort studies), none of them cover all the core aspects of Al system early stage evaluation and
none would fit all possible study designs; DECIDE-Al was therefore developed as a new stand alone reporting guideline for these studies.

for informed study appraisal and to facilitate
reproducibility of study results. In a relatively new
and dynamic field such as clinical Al, comprehensive
reporting is also key to construct a common and
comparable knowledge base to build upon.

Guidelines already exist, or are under development,
for the reporting of preclinical, in silico, studies of
Al systems, their offline validation, and for their
evaluation in large comparative studies?>?°; but there
is an important stage of research between these,
namely studies focussing on the initial clinical use
of Al systems, for which no such guidance currently
exists (fig 1 and table 1). This early clinical evaluation
provides a crucial scoping evaluation of clinical utility,
safety, and human factors challenges in live clinical
settings. By investigating the potential obstacles to
clinical evaluation at scale and informing protocol
design, these studies are also important stepping
stones toward definitive comparative trials.

To address this gap, we convened an international,
multistakeholder group of experts in a Delphi exercise
to produce the DECIDE-Al reporting guideline. Focusing
on Al systems supporting, rather than replacing
human intelligence, DECIDE-AI aims to improve the
reporting of studies describing the evaluation of Al-
based decision support systems during their early,
small scale implementation in live clinical settings
(ie, the supported decisions have an actual impact on
patient care). Whereas TRIPOD-AI, STARD-AI, SPIRIT-
Al, and CONSORT-AI are specific to particular study
designs, DECIDE-AI is focused on the evaluation stage
and does not prescribe a fixed study design.

Methods

The DECIDE-AI guideline was developed through
an international expert consensus process and
in accordance with the EQUATOR Network’s
recommendations for guideline development.”” A
Steering Group was convened to oversee the guideline
development process. Its members were selected
to cover a broad range of expertise and ensure a

thelbmj | BMJ2022;377:e070904 | doi: 10.1136/bmj-2022-070904

seamless integration with other existing guidelines.
We conducted a modified Delphi process,?® with two
rounds of feedback from participating experts and one
virtual consensus meeting. The project was reviewed
by the University of Oxford Central University Research
Ethics Committee (approval number R73712/RE003)
and registered with the EQUATOR Network. Informed
consent was obtained from all participants in the
Delphi process and consensus meeting.

Initial item list generation

An initial list of candidate items was developed
based on expert opinion informed by a systematic
literature review focusing on the evaluation of Al-
based diagnostic decision support systems,’ an
additional literature search about existing guidance
for Al evaluation in clinical settings (search strategy
available on the Open Science Framework?), literature
recommended by Steering Group members,?® 22 3034
and institutional documents.?*>®

Expert recruitment

Experts were recruited through five different channels:
invitation to experts recommended by the Steering
Group, invitation to authors of the publications
identified through the initial literature searches, call
to contribute published in a commentary article in a
medical journal,’ consideration of any expert contacting
the Steering Group of their own initiative, and invitation
to experts recommended by the Delphi participants
(snowballing). Before starting the recruitment
process, 20 target stakeholder groups were defined,
namely: administrators/hospital management, allied
health professionals, clinicians, engineers/computer
scientists, entrepreneurs, epidemiologists, ethicists,
funders, human factors specialists, implementation
scientists, journal editors, methodologists, patient
representatives, payers/commissioners, policy makers/
official institution representatives, private sector
representatives, psychologists, regulators, statisticians,
and trialists.
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One hundred and thirty eight experts agreed to
participate in the first round of Delphi, of whom 123
(89%) completed the questionnaire (83 identified
from Steering Group recommendation, 12 from their
publications, 21 contacting the Steering Group from
of own initiative, and seven through snowballing). One
hundred and sixty two experts were invited to take part
in the second round of Delphi, of whom 138 completed
the questionnaire (85%). 110 had also completed the
first round (continuity rate of 89%)° and 28 were new
participants. The participating experts represented 18
countries and spanned all 20 of the defined stakeholder
groups (see supplementary notes 1 and supplementary
tables 1 and 2).

Delphi process

The Delphi surveys were designed and distributed
via the REDCap web application.”® ** The first round
consisted of four open ended questions on aspects
viewed by the Delphi participants as necessary to be
reported during early stage clinical evaluation. The
participating experts were then asked to rate, on a 1
to 9 scale, the importance of items in the initial list
proposed by the research team. Ratings of 1 to 3 on
the scale were defined as “not important,” 4 to 6 as
“important but not critical,” and 7 to 9 as “important
and critical.” Participants were also invited to
comment on existing items and to suggest new items.
An inductive thematic analysis of the narrative answers
was performed independently by two reviewers (BV
and MN) and conflict was resolved by consensus.*? The
themes identified were used to correct any omissions
in the initial list and to complement the background
information about proposed items. Summary statistics
of the item scores were produced for each stakeholder
group, by calculating the median score, interquartile
range, and the percentage of participants scoring an
item 7 or higher, as well as 3 or lower, which were
the prespecified inclusion and exclusion cut-offs,
respectively). A revised item list was developed based
on the results of the first round.

In the second round, the participants were shown
the results of the first round and invited to rate and
comment on the items in the revised list. The detailed
survey questions of the two rounds of Delphi can be
found on the Open Science Framework (OSF).? All
analyses of item scores and comments were performed
independently by two members of the research team
(BV and MN), using NVivo (QSR International, v1.0)
and Python (Python Software Foundation, v3.8.5).
Conflicts were resolved by consensus.

The initial item list contained 54 items. 120 sets
of responses were included in the analysis of the first
round of Delphi (one set of responses was excluded
due to a reasonable suspicion of scale inversion, two
due to completion after the deadline). The first round
yielded 43986 words of free text answers to the four
initial open ended questions, 6,419 item scores,
228 comments, and 64 proposals for new items.
The thematic analysis identified 109 themes. In the
revised list, nine items remained unchanged, 22 were

RESEARCH METHODS AND REPORTING

reworded/completed, 21 reorganised (merged/split,
becoming 13 items), two items dropped, and nine
new items added, for a total of 53 items. The two items
dropped were related to health economic assessment.
They were the only two items with a median score
below 7 (median 6, interquartile range 2-9 for both)
and received numerous comments describing them as
an entirely separate aspect of evaluation. The revised
list was reorganised into items and subitems. 136 sets
of answers were included in the analysis of the second
round of Delphi (one set of answers was excluded due
to lack of consideration for the questions, one due
to completion after the deadline). The second round
yielded 7101 item scores and 923 comments. The
results of the thematic analysis, the initial and revised
item lists, as well as per item narrative and graphical
summaries of the feedback received in both rounds can
be found on OSE.”

Consensus meeting

A virtual consensus meeting was held on three
occasions between the 14 and 16 of June 2021, to
debate and agree the content and wording of the
DECIDE-AI reporting guideline. The 16 members of
the Consensus Group (see supplementary notes 1
and supplementary tables 2a and 2b) were selected
to ensure a balanced representation of the key
stakeholder groups, as well as geographic diversity. All
items from the second round of Delphi were discussed
and voted on during the consensus meeting. For each
item, the results of the Delphi process were presented to
the Consensus Group members and a vote was carried
out anonymously using the Vevox online application
(www.vevox.com). A prespecified cut-off of 80% of the
Consensus Group members (excluding blank votes and
abstentions) was necessary for an item to be included.
To highlight the new, Al specific reporting items, the
Consensus Group divided the guidelines into two item
lists: an Al specific items list, which represents the
main novelty of the DECIDE-AI guideline, and a second
list of generic reporting items, which achieved high
consensus but are not Al specific and could apply to
most types of study. The Consensus Group selected 17
items (made of 28 subitems in total) for inclusion in the
Al specific list and 10 items for inclusion in the generic
reporting item list. Supplementary table 3 provides a
summary of the Consensus Group meeting votes.

Qualitative evaluation

The drafts of the guideline and of the Explanation and
Elaboration (E&E) sections were sent for qualitative
evaluation to a group of 16 selected experts with
experience in Al system implementation or in the
peer reviewing of literature related to AI system
evaluation (see supplementary notes 1), all of whom
were independent of the Consensus Group. These 16
experts were asked to comment on the clarity and
applicability of each Al specific item, using a custom
form (available on OSF*’). Item wording amendments
and modifications to the E&E sections were conducted
based on the feedback from the qualitative evaluation,
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Box 2: Glossary of terms

Al system
e Decision support system incorporating Al and consisting of: (i) the artificial intelligence or machine learning algorithm; (ii) the supporting software
platform; and (jii) the supporting hardware platform

Al system version
e Unique reference for the form of the Al system and the state of its components at a single point in time. Allows for tracking changes to the Al system
overtime and comparing between different versions

Algorithm
e Mathematical model responsible for learning from data and producing an output

Artificialintelligence (Al)

* “Science of developing computer systems which can perform tasks normally requiring human intelligence”?

Bias

* “Systematic difference in treatment of certain objects, people, or groups in comparison to others”*?

Care pathway
e Series of interactions, investigations, decision making and treatments experienced by patients in the course of their contact with a healthcare
system fora defined reason

Clinical
e Relating to the observation and treatment of actual patients ratherthan in silico or scenario-based simulations

Clinical evaluation
* Set of ongoing activities, analysing clinical data and using scientific methods, to evaluate the clinical performance, effectiveness and/or safety of
an Al system, when used as intended*”

Clinicalinvestigation

* Study performed on one or more human subjects to evaluate the clinical performance, effectiveness and/or safety of an Al system.* This can be
performed in any setting (eg, community, primary care, hospital)

Clinical workflow

e Series of tasks performed by healthcare professionals in the exercise of their clinical duties

Decision support system
e System designed to support human decision making by providing person specific and situation specific information or recommendations, to
improve care orenhance health

Exposure
e State of being in contact with, and having used, an Al system or similar digital technology.

Human-computer interaction
e Bidirectional influence between human users and digital systems through a physical and conceptual interface

Human factors

¢ Also called ergonomics. “The scientific discipline concerned with the understanding of interactions among humans and other elements of a
system, and the profession that applies theory, principles, data and methods to design in order to optimise human well-being and overall system
performance.” (International Ergonomics Association)

Indication for use
e Situation and reason (medical condition, problem, and patient group) where the Al system should be used

Insilico evaluation
* Evaluation performed via computer simulation outside the clinical settings

Intended use
e Use forwhich an Al system is intended, as stated by its developers, and which serves as the basis for its regulatory classification. The intended use
includes aspects of: the targeted medical condition, patient population, user population, use environment, mode of action

Learning curves

* Graphical plotting of user performance against experience.*> By extension, analysis of the evolution of user performance with a task as exposure to
the task increases. The measure of performance often uses other context specific metrics as a proxy

Live evaluation

e Evaluation underactual clinical conditions, in which the decisions made have a directimpact on patient care. As opposed to “offline” or “shadow
mode” evaluation where the decisions do not have a directimpact on patient care

Machine learning

* “Field of computer science concerned with the development of models/algorithms that can solve specific tasks by learning patterns from data,
rather than by following explicit rules. Itis seen as an approach within the field of AI”2¢

Participant

* Subject of a research study, on which data will be collected and from whom consent is obtained (or waived). The DECIDE-AIl guideline considers that
both patients and users can be participants

(Continued)
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Box 2: Continued

Patient

* Person (orthe digital representation of this person) receiving healthcare attention or using health services, and who is the subject of the decision
made with the support of the Al system. NB: DECIDE-Al uses the term “patient” pragmatically to simplify the reading of the guideline. Strictly
speaking, a person with no health conditions who is the subject of a decision made about them by an Al-based decision support tool to improve
their health and wellbeing or for a preventative purpose is not necessarily a “patient” per se

Patientinvolvement in research

* Research carried out “with” or “by” patients or members of the public ratherthan “to”, “about” or “for” them. (Adapted from the INVOLVE definition
of public involvement)

Standard practice

e Usual care currently received by the intended patient population for the targeted medical condition and problem. This may not necessarily be
synonymous with the state-of-the-art practice

Usability

e “Extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction in a specified
context of use™*®

User

* Person interacting with the Al system to inform their decision making. This person could be a healthcare professional or a patient

The definitions given pertain to the specific context of DECIDE-Al and the use of the terms in the guideline. They are not necessarily generally
accepted definitions and might not always be fully applicable to other areas of research

which was independently analysed by two reviewers
(BV and MN) and with conflicts resolved by consensus.
A glossary of terms (see box 2) was produced to clarify
key concepts used in the guideline. The Consensus
Group approved the final item lists including any
changes made during the qualitative evaluation.
Supplementary figures 1 and 2 provide graphical
representations of the two item lists’ (Al specific and
generic) evolution.

Recommendations

Reporting item checklist

The DECIDE-AI guideline should be used for the
reporting of studies describing the early stage live
clinical evaluation of Al-based decision support
systems, independently of the study design chosen (fig
1 and table 1). Depending on the chosen study design
and if available, authors may also wish to complete the
reporting according to study type specific guideline
(eg, STROBE for cohort studies).”’Table 2 presents the
DECIDE-AI checklist, comprising of the 17 Al specific
reporting items and 10 generic reporting items selected
by the Consensus Group. Each item comes with an E&E
to explain why and how reporting is recommended
(see supplementary appendix 1). A downloadable
version of the checklist, designed to help researchers
and reviewers check compliance when preparing or
reviewing a manuscript, is available as supplementary
appendix 2. Reporting guidelines are a set of minimum
reporting recommendations and not intended to guide
research conduct. Although familiarity with DECIDE-AI
might be useful to inform some aspects of the design
and conduct of studies within the guideline’s scope,*®
adherence to the guideline alone should not be
interpreted as an indication of methodological quality
(which is the realm of methodological guidelines
and risk of bias assessment tools). With increasingly
complex Al interventions and evaluations, it might

become challenging to report all the required
information within a single primary manuscript, in
which case references to the study protocol, open
science repositories, related publications, and
supplementary materials are encouraged.

Discussion
The DECIDE-AI guideline is the result of an international
consensus process involving a diverse group of experts
spanning a wide range of professional background and
experience. The level of interest across stakeholder
groups and the high response rate amongst the invited
experts speaks to the perceived need for more guidance
in the reporting of studies presenting the development
and evaluation of clinical Al systems, and to the growing
value placed on comprehensive clinical evaluation
to guide implementation. The emphasis placed on
the role of human-in-the-loop decision making was
guided by the Steering Group’s belief that Al will, at
least in the foreseeable future, augment rather than
replace human intelligence in clinical settings. In this
context, thorough evaluation of the human-computer
interaction and the roles played by the human users
will be key to realising the full potential of Al

The DECIDE-AI guideline is the first stage specific
Al reporting guideline to be developed. This stage
specific approach echoes recognised development
pathways for complex interventions,® &  * and
aligns conceptually with proposed frameworks for
clinical AL® °° °! *2 although no commonly agreed
nomenclature or definition has so far been published
for the stages of evaluation in this field. Given the
current state of clinical Al evaluation, and the apparent
deficit in reporting guidance for the early clinical
stage, the DECIDE-AI Steering Group considered it
important to crystallise current expert opinion into a
consensus, to help improve reporting of these studies.
Beside this primary objective, the DECIDE-AI guideline
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Table 2 | DECIDE-AI checklist

Reported on
page

Item No Theme Recommendation

1-17 Al specific reporting items
I-X Generic reporting items
Title and abstract

Identify the study as early clinical evaluation of a decision support system based on Al or machine learning, specifying

1 Ve the problem addressed
Provide a structured summary of the study. Consider including: intended use of the Al system, type of underlying algorithm,
| Abstract study setting, number of patients and users included, primary and secondary outcomes, key safety endpoints, human factors

evaluated, main results, conclusions

Introduction

a) Describe the targeted medical condition(s) and problem(s), including the current standard practice, and the
intended patient population(s)

2 Rlpel s b) Describe the intended users of the Al system, its planned integration in the care pathway, and the potential impact,
including patient outcomes, it is intended to have
Il Objectives State the study objectives
Methods
I Research governance Provide a reference to any study protocol, study registration number, and ethics approval
a) Describe how patients were recruited, stating the inclusion and exclusion criteria at both patient and data level,
and how the number of recruited patients was decided
3 Participants b) Describe how users were recruited, stating the inclusion and exclusion criteria, and how the intended number of
recruited users was decided
) Describe steps taken to familiarise the users with the Al system, including any training received prior to the study
a) Briefly describe the Al system, specifying its version and type of underlying algorithm used. Describe, or provide
a direct reference to, the characteristics of the patient population on which the algorithm was trained and its
A Al performance in preclinical development/validation studies
b) Identify the data used as inputs. Describe how the data were acquired, the process needed to enter the input data,
the pre-processing applied, and how missing/low-quality data were handled
c) Describe the Al system outputs and how they were presented to the users (an image may be useful)
a) Describe the settings in which the Al system was evaluated
5 Implementation b) Describe the clinical workflow/care pathway in which the Al system was evaluated, the timing of its use, and how
the final supported decision was reached and by whom
% Outcomes Specify the primary and secondary outcomes measured
6 Sl e TS a) Provide a description of how significant errors/malfunctions were defined and identified
b) Describe how any risks to patient safety or instances of harm were identified, analysed, and minimised
7 Human factors Describe the human factors tools, methods or frameworks used, the use cases considered, and the users involved
N A . Describe the statistical methods by which the primary and secondary outcomes were analysed, as well as any prespecified
nalysis o . - T
additional analyses, including subgroup analyses and their rationale
8 Ethics Describfe whgther specific methodologies were utilised to fulfil an ethics-related goal (such as algorithmic fairness)
and their rationale
Vi Patient involvement State how patients were involved in any aspect of: the development of the research question, the study design, and the
conduct of the study
Results
9 e a) Describe the baseline characteristics of the patients included in the study, and report on input data missingness
b) Describe the baseline characteristics of the users included in the study
a) Report on the user exposure to the Al system, on the number of instances the Al system was used, and on the users’
10 Implementation adherence to the intended implementation
b) Report any significant changes to the clinical workflow or care pathway caused by the Al system
VIl Main results Report on the prespecified outcomes, including outcomes for any comparison group if applicable
Vil Subgroups analysis Report on the differences in the main outcomes according to the prespecified subgroups
e Report any changes made to the Al system or its hardware platform during the study. Report the timing of these
11 Modifications e . X
modifications, the rationale for each, and any changes in outcomes observed after each of them
12 Human-computer Report on the user agreement with the Al system. Describe any instances of and reasons for user variation from the Al
agreement system’s recommendations and, if applicable, users changing their mind based on the Al system’s recommendations
a) List any significant errors/malfunctions related to: Al system recommendations, supporting software/hardware, or
users. Include details of: (i) rate of occurrence, (ii) apparent causes, (iii) whether they could be corrected, and (iv) an
1z Safety and errors significant potential impa(c)ts on patient care (i) apP i ! () any
b) Report on any risks to patient safety or observed instances of harm (including indirect harm) identified during the study
a) Report on the usability evaluation, according to recognised standards or frameworks
14 Human factors - -
b) Report on the user learning curves evaluation
Discussion
15 ﬁsgport oy Tizeine o Discuss whether the results obtained support the intended use of the Al system in clinical settings
16 Safety and errors Discyss what the results in.di'cate.abo.ut the safet.y profile of the Al system. Discuss any obs.e.rved errors/malfunctions
and instances of harm, their implications for patient care, and whether/how they can be mitigated
IX Etrgngﬁhs el Discuss the strengths and limitations of the study
imitations
Statements
17 Data availability Disclose if and how data and relevant code are available
) . Disclose any relevant conflicts of interest, including the source of funding for the study, the role of funders, any other roles
X Conflicts of interest

played by commercial companies, and personal conflicts of interest for each author

Al=artificial intelligence.
Al specific items are numbered in Arab numerals, generic items in Roman numerals.
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will hopefully also support authors during study
design, protocol drafting and study registration, by
providing them with clear criteria around which to
plan their work. As with other reporting guidelines,
it is important to note that the overall impact on the
standard of reporting will need to be assessed in due
course, once the wider community has had a chance to
use the checklist and explanatory documents, which
is likely to prompt modification and fine tuning of
the DECIDE-AI guideline, based on its real world use.
While the outcome of this process cannot be prejudged,
there is evidence that the adoption of consensus-based
reporting guidelines (such as CONSORT) does indeed
improve the standard of reporting.>’

The Steering Group paid special attention to the
integration of DECIDE-AI within the broader scheme
of Al guidelines (eg, TRIPOD-AI, STARD-AI, SPIRIT-
Al, and CONSORT-AI). It also focussed on DECIDE-
Al being applicable to all type of decision support
modalities (ie, detection, diagnostic, prognostic, and
therapeutic). The final checklist should be considered
as minimum scientific reporting standards and do
not preclude reporting additional information, nor
are they a substitute for other regulatory reporting
or approval requirements. The overlap between
scientific evaluation and regulatory processes was
a core consideration during the development of the
DECIDE-AI guideline. Early stage scientific studies
can be used to inform regulatory decisions (eg, based
on the stated intended use within the study), and are
part of the clinical evidence generation process (eg,
clinical investigations). The initial item list was aligned
with information commonly required by regulatory
agencies and regulatory considerations are introduced
in the E&E paragraphs. However, given the somewhat
different focuses of scientific evaluation and regulatory
assessment,’* as well as differences between regulatory
jurisdictions, it was decided to make no reference to
specific regulatory processes in the guideline, nor to
define the scope of DECIDE-AI within any particular
regulatory framework. The primary focus of DECIDE-
Al is scientific evaluation and reporting, for which
regulatory documents often provide little guidance.

Several topics led to more intense discussion
than others, both during the Delphi process and
Consensus Group discussion. Regardless of whether
the corresponding items were included or not, these
represent important issues that the Al and healthcare
communities should consider and continue to debate.
Firstly, we discussed at length whether users (see
glossary of terms) should be considered as study
participants. The consensus reached was that users
are a key study population, about whom data will be
collected (eg, reasons for variation from the Al system
recommendation, user satisfaction, etc), who might
logically be consented as study participants, and
therefore should be considered as such. Because user
characteristics (eg, experience) can affect intervention
efficacy, both patient and user variability should be
considered when evaluating Al systems, and reported
adequately.

RESEARCH METHODS AND REPORTING

Secondly, the relevance of comparator groups in
early stage clinical evaluation was considered. Most
studies retrieved in the literature search described
a comparator group (commonly the same group of
clinicians without Al support). Such comparators can
provide useful information for the design of future large
scale trials (eg, information on the potential effect size).
However, comparator groups are often unnecessary at
this early stage of clinical evaluation, when the focus is
on issues other than comparative efficacy. Small scale
clinical investigations are also usually underpowered
to make statistically significant conclusions about
efficacy, accounting for both patient and user variability.
Moreover, the additional information gained from
comparator groups in this context can often be inferred
from other sources, like previous data on unassisted
standard of care in the case of the expected effect size.
Comparison groups are therefore mentioned in item VII
but considered optional.

Thirdly, output interpretability is often described as
important to increase user and patient trust in the Al
system, to contextualise the system’s outputs within
the broader clinical information environment,'® and
potentially for regulatory purpose.”® However, some
experts argued that an output’s clinical value may
be independent of its interpretability, and that the
practical relevance of evaluating interpretability is
still debatable.>® °” Furthermore, there is currently no
generally accepted way of quantifying or evaluating
interpretability. For this reason, the Consensus Group
decided not to include an item on interpretability at the
current time.

Fourthly, the notion of users’ trust in the Al system,
and its evolution with time, were discussed. As users
accumulate experience with, and receive feedback
from, the real world use of Al systems, they will adapt
their level of trust in its recommendations. Whether
appropriate or not, this level of trust will influence,
as recently demonstrated by McIntosh et al,*® how
much impact the systems have on the final decision
making and therefore influence the overall clinical
performance of the AI system. Understanding how
trust evolves is essential for planning user training
and determining the optimal timepoints at which to
start data collection in comparative trials. However,
as for interpretability, there is currently no commonly
accepted way to measure trust in the context of clinical
Al For this reason, the item about user trust in the Al
system was not included in the final guideline. The
fact that interpretability and trust were not included
highlights the tendency of consensus-based guidelines
development towards conservatism, because only
widely agreed upon concepts reach the level of
consensus needed for inclusion. However, changes
of focus in the field as well as new methodological
development can be integrated into subsequent
guideline iterations. From this perspective, the issues
of interpretability and trust are far from irrelevant
to future Al evaluations and their exclusion from
the current guideline reflects less a lack of interest
than a need for further research into how we can
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best operationalise these metrics for the purposes of
evaluation in Al systems.

Fifthly, the notion of modifying the Al system (the
intervention) during the evaluation received mixed
opinions. During comparative trials, changes made to
theintervention during data collection are questionable
unless the changes are part of the study protocol; some
authors even consider them as impermissible, on
the basis that they would make valid interpretation
of study results difficult or impossible. However, the
objectives of early clinical evaluation are often not to
make definitive conclusions on effectiveness. Iterative
design evaluation cycles, if performed safely and
reported transparently, offer opportunities to tailor
an intervention to its users and beneficiaries, and
augment chances of adoption of an optimised, fixed
version during later summative evaluation.®®°° ¢

Sixthly, several experts noted the benefit of
conducting human factors evaluation prior to clinical
implementation and considered that therefore human
factors should be reported separately. However, even
robust preclinical human factors evaluation will not
reliably characterise all the potential human factors
issues which might arise during the use of an Al system
in a live clinical environment, warranting a continued
human factors evaluation at the early stage of clinical
implementation. The Consensus Group agreed that
human factors play a fundamental role in Al system
adoption in clinical settings at scale and that the full
appraisal of an Al system’s clinical utility can only
happen in the context of its clinical human factors
evaluation.

Finally, several experts raised concerns that the
DECIDE-AI guideline prescribes an evaluation too
exhaustive to be reported within a single manuscript.
The Consensus Group acknowledged the breadth of
topics covered and the practical implications. However,
reporting guidelines aim to promote transparent
reporting of studies, rather than mandating that every
aspect covered by an item must have been evaluated
within the studies. For example, if a learning curves
evaluation has not been performed, then fulfilment
of item 14b would be to simply state that this
was not done, with an accompanying rationale.
The Consensus Group agreed that appropriate Al
evaluation is a complex endeavour necessitating the
interpretation of a wide range of data, which should
be presented together as far as possible. It was also
felt that thorough evaluation of Al systems should
not be limited by a word count and that publications
reporting on such systems might benefit from special
formatting requirements in the future. The information
required by several items might already be reported in
previous studies or in the study protocol, which could
be cited, rather than described in full again. The use of
references, online supplementary materials, and open
access repositories (eg, OSF) is recommended to allow
the sharing and connecting of all required information
within one main published evaluation report.

There are several limitations to our work which
should be considered. Firstly, the issue of potential
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biases, which apply to any consensus process: these
include anchoring or participant selection biases.®*
The research team tried to mitigate bias through the
survey design, using open ended questions analysed
through a thematic analysis, and by adapting
the expert recruitment process, but it is unlikely
that it was eliminated entirely. Despite an aim for
geographical diversity and several actions taken to
foster it, representation was skewed towards Europe
and more specifically the United Kingdom. This
could be explained in part by the following factors:
a likely selection bias in the Steering Group’s expert
recommendations, a higher interest in our open
invitation to contribute coming from European/
UK scientists (25 out of 30 experts approaching us,
83%), and a lack of control over the response rate and
self-reported geographical location of participating
experts. Considerable attention was also paid to
diversity and balance between stakeholder groups,
even though clinicians and engineers were the most
represented, partly due to the profile of researchers
who contacted us spontaneously after the public
announcement of the project. Stakeholder group
analyses were performed to identify any marked
disagreements from underrepresented groups. Finally,
as also noted by the authors of the SPIRIT-AI and
CONSORT-AI guidelines,? % few examples of studies
reporting on the early stage clinical evaluation of
Al systems were available at the time we started
developing the DECIDE-AI guideline. This might have
impacted the exhaustiveness of the initial item list
created from literature review. However, the wide range
of stakeholders involved and design of the first round
of Delphi allowed identification of several additional
candidate items which were added in the second
iteration of the item list.

The introduction of Al into healthcare needs to
be supported by sound, robust and comprehensive
evidence generation and reporting. This is essential
both to ensure the safety and efficacy of Al systems,
and to gain the trust of patients, practitioners, and
purchasers, so that this technology can realise its
full potential to improve patient care. The DECIDE-AI
guideline aims to improve the reporting of early stage
live clinical evaluation of Al systems, which lay the
foundations for both larger clinical studies and later
widespread adoption.
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