

Abstract for poster presentation at the Joint Conference of the ÖGMP, DGMP and SGSMP, Dreiländertagung der Medizinischen Physik, September 19-22, 2021, Digital Conference

Published in: Abstactband, Joint Conference of the ÖGMP, DGMP & SGSMP Dreiländertagung der Medizinischen Physik, Editors: Univ.-Prof. Dr. DI Dietmar Georg, ao. Univ.-Prof. Dr. Mag. Wolfgang Birkfellner, ISBN: 978-3-948023-16-4

Development of scatter correction for integration mode proton imaging for a small animal irradiation platform

Schnürle, K.¹, Bortfeldt, J.¹, Englbrecht, F. S.¹, Gianoli, C.¹, Hartmann, J.¹, Hofverberg, P.⁵, Meyer, S.^{1,3}, Vidal, M.², Hérault, J.², Schreiber, J.¹, Parodi, K.¹ and Würl, M.¹

¹Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany ² Centre Antoine-Lacassagne, Nice, France ³Department of Radiology, University of Pennsylvania, Philadelphia, United States

Introduction

A novel system for pre-clinical proton therapy studies foresees proton imaging for set-up and accurate treatment planning. In integration mode, imaging at modern synchrocyclotron-based proton therapy centers with high instantaneous particle flux is possible. Commercially available detectors, such as large-area CMOS sensors allow the determination of the object's water-equivalent thickness (WET). However, image quality is strongly affected by multiple Coulomb scattering. We present experimental results and methods for proton scatter correction.

Materials & Methods

Image contrast is achieved by recording the proton energy deposition in the detector pixels for several incoming beam energies and a signal decomposition method that retrieves the WET. A single planar 114x65mm2 CMOS sensor (49.5µm pixel pitch) behind the imaged object was used. The 65MeV beam at Centre Antoine-Lacassagne (Nice, France) was passively degraded to produce probing energies suitable for small-animal sized objects.

To assess WET accuracy, a micro-CT calibration phantom with 10 inserts of tissue-mimicking materials was imaged (see Figure 1). The phantom-to-detector distance was 0.3, 1.3 and 3.3cm. Several methods (Monte Carlo-based and analytical) for proton scatter correction were investigated, some using a CBCT image of the phantom as prior knowledge.

Results

The average relative WET error compared to ground truth was <1% for 0.3cm spacing and <2% for 1.3cm. For the worst case of 3.3cm distance, preliminary results showed that WET relative error was improved from 30% to only 3% using scatter correction. Spatial resolution was better than 0.2mm, when scatter correction is applied.

Summary

A pixelated CMOS detector and post-processing methods enable proton radiographic imaging for small-animal-sized objects with reasonable WET accuracy and excellent spatial resolution by exploiting prior knowledge.

Supported by ERC.