FIRST VIENNA SHOCK FORUM
Part B: Monitoring and Treatment of Shock

Proceedings of the First Vienna Shock Forum
held May 1–3, 1986

Editors
Günther Schlag
Heinz Redl
Ludwig Boltzmann Institute
for Experimental Traumatology
Vienna, Austria
Library of Congress Cataloging-in-Publication Data
Vienna Shock Forum (1st : 1986)
First Vienna Shock Forum.

(P)rogress in clinical and biological research ; 236)
Includes bibliographies and index.
W1 PR668E v.236 / QZ 140 V662 1987f)
RB150.S5V54 1987 616'.047 87-3921
ISBN 0-8451-5086-3 (set)
Contents

Contributors ... xi
Contents of Part A .. xvii
Preface
Günther Schlag and Heinz Redl ... xxi

1. MONITORING OF SHOCK

1.1. Prognostic Indices and Scoring
Scoring Systems and Predictors of ARDS and MOF
R. Jan A. Goris, Hans K.S. Nuytinck, and Heinz Redl 3
The Use of Scoring Systems as Prognostic Parameter After Surgery
and Trauma
Peter Lehmkuhl, M. Ludwig, and I. Pichlmayr 17
Prediction of Outcome in Sepsis
H.B. Stoner .. 25
Prognostic Indices in Septic Shock
Jesús Villar, Miguel A. Blazquez, José A. Bolaños, Juan J. Manzano,
and José Quintana .. 33

1.2. Biochemical Parameters
Quantification of Granulocyte Enzymes/Proteins With Immunoassays
H. Lang, S. Neumann, W. Rautenberg, H. Fritz, Marianne Jochum,
and D. Inthorn .. 41
Studies of Granulocyte Function (Chemiluminescence Response)
in Postoperative Infection
Dietrich Inthorn, Thomas Szczepanik, Dieter Mühlbayer, Marianne Jochum,
and Heinz Redl .. 51
Elevated D-erythro-Neopterin Levels in Intensive Care Patients With Septic
Complications
Wolfgang Strohmaier, Heinz Redl, Günther Schlag, and Dietrich Inthorn 59
The Influence of Septic Shock on Plasma Proteins, Lymphocytes
and Metabolic Parameters
Erich Roth, Rudolf Steininger, Ingrid Schindler, Gerhard Hamilton,
Walter Mauritz, Friedrich Zekert, Manfred Mattausch, Eva Schönthal,
Paul Sporn, and Josef Funovics ... 67
Inhibition of Beta-FXIIa in Plasma of Volunteers and Polytraumatized Patients
Günther Fuhrer, Michael J. Gallimore, Wolfgang Heller, and Hans-Eberhard Hoffmeister .. 77

Can the Outcome After Trauma or Sepsis be Predicted From Biochemical or Hormonal Parameters?
Thomas Pasch, Jörg Mahlstedt, Josef Pichl, Gernot Buheitel, and Edgar Pscheidl .. 85

The Proenzyme Functional Inhibition Index as a Predictor in Septicemia
Ansgar O. Aasen .. 97

1.3. Hemodynamic Parameters
Physiologic Monitoring and Therapy of High Risk Surgical Patients
William C. Shoemaker .. 103

Hämodynamic Pattern in Septic Peritonitis
Heinz Köhler, W. Reichow, J. Martell, G. Köveker, and A. Schafmayer .. 109

Early Metabolic and Vascular Tone Patterns in Lethal Sepsis
Ivo Giovannini, Giuseppe Boldrini, Carlo Chiarla, Marco Castagneto, and Giancarlo Castiglioni .. 115

Judgement of Central Haemodynamics With and Without Swan Ganz Catheter in Septic Shock States
Gerhard Redl, Ernst Zadrobilek, Ingrid Schindler, Walter Mauritz, and Paul Sporn .. 123

Hemodynamic Characterization of Sepsis
K. Lenz, A. Laggner, W. Druml, G. Graninger, G. Grimm, and B. Schneeweß .. 129

1.4. Extravascular Lung Water
Intravascular Starling Forces and Extravascular Lung Water in Advanced Septic Shock States
Ernst Zadrobilek, Ingrid Schindler, Gerhard Redl, Walter Mauritz, Hermann Gilly, Paul Sporn, and Karl Steinbereithner .. 139

Dynamics of Extravascular Lung Water in Major Burns
Anton N. Laggner, Kurt Lenz, Gernot Sommer, Wilfred Druml, Bruno Schneeweisz, Georg Grimm, and Gunter Kleinberger .. 145

Extravascular Lung Water and Pulmonary Artery Pressure With Acute Respiratory Failure—Effect of Ketanserin Administration
W. Heinrichs, U. Fauth, and M. Halmágyi .. 153

2. TREATMENT OF SHOCK

2.1. Basic Supportive Therapy
Prevention of ARDS and MOF by Prophylactic Mechanical Ventilation and Early Fracture Stabilisation
R.J.A. Goris .. 163
Contents / ix

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Strategies of Ventilatory Management in Shock</td>
<td>175</td>
</tr>
<tr>
<td>H. Benzer, M. Baum, J. Koller, W. Koller, G. Kroesen, and N. Mutz</td>
<td></td>
</tr>
<tr>
<td>Therapeutic Approaches: Haemodynamic and Respiratory Complications</td>
<td>185</td>
</tr>
<tr>
<td>in Septic Shock</td>
<td></td>
</tr>
<tr>
<td>P. Lawin, H.J. Lübbesmeyer, M. Möllmann, N. Mertes, and H. Van Aken</td>
<td></td>
</tr>
<tr>
<td>2.2. Volume Replacement</td>
<td></td>
</tr>
<tr>
<td>Fluid Resuscitation in Canine Traumatic-Hemorrhagic Shock: Long-Term Comparison of Hydroxyethyl Starch vs. Ringer’s Lactate</td>
<td>197</td>
</tr>
<tr>
<td>Uwe B. Brückner, Michael Albrecht, Lorenz Frey, and Lars-G. Hein</td>
<td></td>
</tr>
<tr>
<td>Treatment of Experimental Mesenteric Shock by Different Fluids</td>
<td>205</td>
</tr>
<tr>
<td>János Hamar, Joachim Lutz, László Dézsi, and Miklós Juhász</td>
<td></td>
</tr>
<tr>
<td>Does Isovolemic Hemodilution Predispose to Infection?</td>
<td>209</td>
</tr>
<tr>
<td>Wolfgang Graninger, Franz X. Lackner, Reswan Khosropour, Christine Hlozanek, and Robert Kurz</td>
<td></td>
</tr>
<tr>
<td>2.3. Plasmapheresis and Hemofiltration</td>
<td></td>
</tr>
<tr>
<td>Plasma Exchange in Septic Shock</td>
<td>215</td>
</tr>
<tr>
<td>Lars J. Bjertnaes</td>
<td></td>
</tr>
<tr>
<td>Continuous Pump Driven Hemofiltration (CPDHF) in Septic Renal Failure</td>
<td>225</td>
</tr>
<tr>
<td>Paul Sporn, Walter Mauritz, Gerhard Redl, Ingrid Schindler,</td>
<td></td>
</tr>
<tr>
<td>Karl Steinbereithner, and Ernst Zadrolipek</td>
<td></td>
</tr>
<tr>
<td>Continuous Arterio-Venous Hemofiltration for the Treatment of Acute Renal Failure in Septic Shock</td>
<td>235</td>
</tr>
<tr>
<td>Wolfgang Reichow, Heinz Koehler, Klaus Dietrich, and Anton Schafmayer</td>
<td></td>
</tr>
<tr>
<td>The Continuous Arterio-Venous Hemofiltration in Septic Shock</td>
<td>241</td>
</tr>
<tr>
<td>H.C. Rau, K.H. Staubach, C. Hohlbach, and W. Klingler</td>
<td></td>
</tr>
<tr>
<td>2.4. Corticosteroids</td>
<td></td>
</tr>
<tr>
<td>Corticosteroids in the Treatment of Septic Shock</td>
<td>249</td>
</tr>
<tr>
<td>William Schumer</td>
<td></td>
</tr>
<tr>
<td>Effect of Methylprednisolone, Prednisolone and Dexamethasone on Granulocyte Function and Complement Activation</td>
<td>261</td>
</tr>
<tr>
<td>Heinz Redl, Herbert Lamche, Eva Paul, Anna Schiesser, and Günther Schlag</td>
<td></td>
</tr>
<tr>
<td>Comparison of Different Corticosteroids in Rat Endotoxemia</td>
<td>273</td>
</tr>
<tr>
<td>Soheyl Bahrami, Anna Schiesser, Heinz Redl, and Günther Schlag</td>
<td></td>
</tr>
<tr>
<td>Can Preoperative High Dose Corticosteroids Preserve Normal Pulmonary Permeability and Homeostasis?</td>
<td>287</td>
</tr>
<tr>
<td>Lennart Smith, Svenerik Andreasson, Toni Saldeen, and Bo Risberg</td>
<td></td>
</tr>
<tr>
<td>2.5 Specific Measures</td>
<td></td>
</tr>
<tr>
<td>Influence of Parenteral Nutrition on Lung Surfactant in the Traumatized Rat</td>
<td>295</td>
</tr>
<tr>
<td>Soheyl Bahrami, Harald Gasser, Wolfgang Strohmaier, Heinz Redl, and Günther Schlag</td>
<td></td>
</tr>
</tbody>
</table>
Effects of Surfactant Replacement on Respiratory Failure Induced by Free Oxygen Radicals
B. Lachmann, O.D. Saugstad, and W. Erdmann 305

Glucose-Insulin-Potassium (GIK) in Hypodynamic Septic Shock
Walter Mauritz, Ingrid Schindler, Ernst Zadrobilek, and Paul Sporn 315

Non-Adrenergic Inotropic Support in Septic Shock
Marc Domb, Corinne De Boelpaepe, and Jean-Louis Vincent 319

Effects of Endotoxin and Gadolinium Chloride on Acute Septic Peritonitis
and Septic Shock in Rats
George Lázár, Jr., Elizabeth Husztik, and George Lázár 323

Index .. 329
Contributors

Ansgar O. Aasen, Surgical Department, Ullevea Hospital, University of Oslo, 0407 Oslo 4, Norway [97]

Michael Albrecht, Institute of Anesthesiology, University of Munich, D-8000 Munich, Federal Republic of Germany [197]

Svenerik Andreasson, Department of Surgery, University of Goteborg, Goteborg, Sweden [287]

Soheyl Bahrami, Ludwig Boltzmann Institute for Experimental Traumatology, Vienna, Austria [273, 295]

M. Baum, Klinik fur Anaesthesiologie der Universität Innsbruck, A-6020 Innsbruck, Austria [175]

H. Benzer, Klinik für Anästhesiologie der Universität Innsbruck, A-6020 Innsbruck, Austria [175]

Lars J. Bjertnaes, Department of Anesthesiology, Institute of Clinical Medicine, University of Tromsø, N-9000 Tromsø, Norway [215]

Miguel A. Blazquez, Intensive Care Unit, Hospital N.S. del Pino, Canary Islands, Spain [33]

José A. Bolaños, Intensive Care Unit, Hospital N.S. del Pino, Canary Islands, Spain [33]

Giuseppe Boldrini, Centro di Studio per la Fisiopatologia dello Shock, CNR, Università Cattolica, Rome, Italy [115]

Uwe B. Brückner, Department of Experimental Surgery, University of Heidelberg, D-6900 Heidelberg, Federal Republic of Germany [197]

Gernot Buheitel, Department of Anaesthesiology, University of Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany [85]

Marco Castagneto, Centro di Studio per la Fisiopatologia dello Shock, CNR, Università Cattolica, Rome, Italy [115]

Giancarlo Castiglioni, Centro di Studio per la Fisiopatologia dello Shock, CNR, Università Cattolica, Rome, Italy [115]

Carlo Chiarla, Centro di Studio per la Fisiopatologia dello Shock, CNR, Università Cattolica, Rome, Italy [115]

Corinne De Boelpaepe, Department of Intensive Care, Erasme University Hospital, Free University of Brussels, Brussels, Belgium [319]

László Dézsi, Experimental Research Department, Semmelweis University, Budapest, Hungary [205]

The numbers in brackets are the opening page numbers of the contributors’ articles.
Klaus Dietrich, Department of General Surgery, Georg-August-University, Göttingen, Federal Republic of Germany [235]

Marc Domb, Department of Intensive Care, Erasme University Hospital, Free University of Brussels, Brussels, Belgium [319]

Wilfred Druml, 1. Department of Internal Medicine, University of Vienna, A-1090 Vienna, Austria [129,145]

W. Erdmann, Department of Anesthesia, Erasmus University, Rotterdam, The Netherlands [305]

U. Fauth, Klinik für Anästhesie, Universitätsklinik Mainz, D-6500 Mainz 1, Federal Republic of Germany [153]

Lorenz Frey, Institute of Anesthesiology, University of Munich, D-8000 Munich, Federal Republic of Germany [197]

H. Fritz, Department of Clinical Chemistry and Clinical Biochemistry, University of Munich, Federal Republic of Germany [41]

Günther Fuhrer, Department of Thoracic and Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [77]

Josef Funovics, 1st Surgical Clinic, University of Vienna, Vienna, Austria [67]

Michael J. Gallimore, Department of Thoracic and Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [77]

Harald Gasser, Ludwig Boltzmann Institute for Experimental Traumatology, Vienna, Austria [295]

Hermann Gilly, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, University of Vienna, Vienna, Austria [139]

Ivo Giovannini, Centro di Studio per la Fisiopatologia dello Shock, CNR, Università Cattolica, Rome, Italy [115]

R. Jan A. Goris, Department of General Surgery, St. Radboud University Hospital, Nijmegen, The Netherlands [3,163]

G. Graninger, Intensive Care Unit, 1. Medical Department, University of Vienna, Vienna, Austria [129]

Wolfgang Graninger, Departments of Chemotherapy and of Anesthesia and General Intensive Care, University of Vienna, Medical School, Vienna, Austria [209]

Georg Grimm, 1. Department of Internal Medicine, University of Vienna, A-1090 Vienna, Austria [129,145]

M. Halmágyi, Klinik für Anästhesie, Universitätsklinik Mainz, D-6500 Mainz 1, Federal Republic of Germany [153]

János Hamar, National Institut of Traumatology, Budapest, Hungary [205]

Gerhard Hamilton, 1st Surgical Clinic, University of Vienna, Vienna, Austria [67]

Lars G. Hein, Department of Experimental Surgery, University of Heidelberg, D-6900 Heidelberg, Federal Republic of Germany [197]

W. Heinrichs, Klinik für Anästhesie, Universitätsklinik Mainz, D-6500, Mainz 1, Federal Republic of Germany [153]

Wolfgang Heller, Department of Thoracic and Cardiovascular Surgery, University of Tübingen, Federal Republic of Germany [77]
Christine Hlozanek, Departments of Chemotherapy and of Anesthesia and General Intensive Care, University of Vienna, Medical School, Vienna, Austria [209]

Hans-Eberhard Hoffmeister, Department of Thoracic and Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [77]

C. Hohlbach, Department of Surgery, Medical University of Lübeck, D-2400 Lübeck, Federal Republic of Germany [241]

Elizabeth Husztik, Institute of Medical Biology, University Medical School, Szeged, Hungary [323]

Dietrich Inthorn, Surgery Clinic Grosshadern, University of Munich, Munich, Federal Republic of Germany [41,51,59]

Marianne Jochum, Department of Clinical Chemistry and Clinical Biochemistry, University of Munich, Munich, Federal Republic of Germany [41,51]

Miklós Juhász, O. Korvin Hospital, Department of Surgery, Budapest, Hungary [205]

Reswan Khosropour, Departments of Chemotherapy and of Anesthesia and General Intensive Care, University of Vienna, Medical School, Vienna, Austria [209]

Gunter Kleinberger, 1. Department of Internal Medicine, University of Vienna, A-1090 Vienna, Austria [145]

W. Klingler, Department of Surgery, Medical University of Lübeck, D-2400 Lübeck, Federal Republic of Germany [241]

Heinz Köhler, Department of General Surgery, Göttingen University, 3400 Göttingen, Federal Republic of Germany [109,235]

J. Koller, Klinik für Anästhesiologie der Universität Innsbruck, A-6020 Innsbruck, Austria [175]

W. Koller, Klinik für Anästhesiologie der Universität Innsbruck, A-6020 Innsbruck, Austria [175]

G. Köveker, Department of General Surgery, Göttingen University, 3400 Göttingen, Federal Republic of Germany [109]

G. Kroesen, Klinik für Anästhesiologie der Universität Innsbruck, A-6020 Innsbruck, Austria [175]

Robert Kurz, Departments of Chemotherapy and of Anesthesia and General Intensive Care, University of Vienna, Medical School, Vienna, Austria [209]

B. Lachmann, Department of Anesthesia, Erasmus University, Rotterdam, The Netherlands [305]

Franz X. Lackner, Departments of Chemotherapy and of Anesthesia and General Intensive Care, University of Vienna, Medical School, Vienna, Austria [209]

Anton N. Laggner, 1. Department of Internal Medicine, University of Vienna, A-1090 Vienna, Austria [129,145]

Herbert Lamche, Ludwig Boltzmann Institute for Experimental Traumatology, Vienna, Austria [261]

H. Lang, Biochemical Research Institute E. Merck, Darmstadt, Federal Republic of Germany [41]
P. Lawin, Klinik für Anästhesiologie und Operative Intensivmedizin, Westfälische Wilhelms-Universität, D-4400 Münster, Federal Republic of Germany [185]

George Lázár, Institute of Pathophysiology, University Medical School, Szeged, Hungary [323]

George Lázár, Jr., Department of Surgery, University Medical School, Szeged, Hungary [323]

Peter Lehmkuhl, Department of Anesthesiology, IV Med. Hochschule Hannover, D 3000 Hannover 51, Federal Republic of Germany [17]

Kurt Lenz, 1. Department of Internal Medicine, University of Vienna, A-1090 Vienna, Austria [129, 145]

H. J. Lübbesmeyer, Klinik für Anästhesiologie und Operative Intensivmedizin, Westfälische Wilhelms-Universität, D-4400 Münster, Federal Republic of Germany [185]

M. Ludwig, Department of Anesthesiology, IV Med. Hochschule Hannover, D 3000 Hannover 51, Federal Republic of Germany [17]

Joachim Lutz, Department of Physiology, University of Würzburg, Würzburg, Federal Republic of Germany [205]

Jörg Mahlstedt, Department of Nuclear Medicine, University of Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany [85]

Juan J. Manzano, Intensive Care Unit, Hospital N.S. del Pino, Canary Islands, Spain [33]

J. Martell, Department of General Surgery, Göttingen University, 3400 Göttingen, Federal Republic of Germany [109]

Manfred Mattausch, 1st Surgical Clinic, University of Vienna, Vienna, Austria [67]

Walter Mauritz, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, University of Vienna, A-1090 Vienna, Austria [67, 123, 139, 225, 315]

N. Mertes, Klinik für Anästhesiologie und Operative Intensivmedizin, Westfälische Wilhelms-Universität, D-4400 Münster, Federal Republic of Germany [185]

M. Möllmann, Klinik für Anästhesiologie und Operative Intensivmedizin, Westfälische Wilhelms-Universität, D-4400 Münster, Federal Republic of Germany [185]

Dieter Mühlbayer, Department of Surgery, Klinikum Großhadern, University of Munich, Federal Republic of Germany [51]

N. Mutz, Klinik für Anästhesiologie der Universität Innsbruck, A-6020 Innsbruck, Austria [175]

S. Neumann, Biochemical Research Institute E. Merck, Darmstadt, Federal Republic of Germany [41]

Hans K.S. Nuytinck, Department of General Surgery, St. Radboud University Hospital, Nijmegen, The Netherlands [3]

Thomas Pasch, Department of Anaesthesiology, University of Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany [85]

Eva Paul, Ludwig Boltzmann Institute for Experimental Traumatology, Vienna, Austria [261]

Josef Pichl, Department of Internal Medicine, University of Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany [85]
Contributors / xv

I. Pichlmayr, Department of Anesthesiology, IV Med. Hochschule Hannover, D 3000 Hannover 51, Federal Republic of Germany [17]

Edgar Pscheidl, Department of Anaesthesiology, University of Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany [85]

José Quintana, Intensive Care Unit, Hospital N.S. del Pino, Canary Islands, Spain [33]

H. C. Rau, Department of Surgery, Medical University of Lübeck, D-2400 Lübeck, Federal Republic of Germany [41]

W. Rautenberg, Biochemical Research Institute E. Merck, Darmstadt, Federal Republic of Germany [41]

Gerhard Redl, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, University of Vienna, Vienna, Austria [123,139,225]

Heinz Redl, Ludwig Boltzmann Institute for Experimental Traumatology, Vienna, Austria [xxi,59,261,273,295]

Wolfgang Reichow, Department of General Surgery, Georg-August-University, Göttingen, Federal Republic of Germany [109,235]

Bo Risberg, Department of Surgery, University of Göteborg, Göteborg, Sweden [287]

Erich Roth, 1st Surgical Clinic, University of Vienna, Vienna, Austria [67]

Tom Saldeen, Department of Forensic Medicine, University of Uppsala, Uppsala, Sweden [287]

O. D. Saugstad, Department of Pediatrics, National Hospital Norway, Oslo, Norway [305]

Anton Schafmayer, Department of General Surgery, Georg-August-University, Göttingen, Federal Republic of Germany [109,235]

Anna Schiesser, Ludwig Boltzmann Institute for Experimental Traumatology, Vienna, Austria [261,273]

Ingrid Schindler, Ludwig Boltzmann Institute, Department of Anaesthesia and General Intensive Care Medicine, University of Vienna, A-1090 Vienna, Austria [67,123,139,225,315]

Günther Schlag, Ludwig Boltzmann Institute for Experimental Traumatology, Vienna, Austria [xxi,59,261,273,295]

Bruno Schneeweiz, 1. Department of Internal Medicine, University of Vienna, A-1090 Vienna, Austria [129,145]

Eva Schönthal, 1st Surgical Clinic, University of Vienna, Vienna, Austria [67]

William Schumer, Departments of Surgery and Biochemistry, University of Health Sciences, The Chicago Medical School, North Chicago, IL 60064 [249]

William C. Shoemaker, Department of Surgery, Los Angeles County King-Drew Medical Center, University of California, Los Angeles, Los Angeles, CA 90059 [103]

Lennart Smith, Department of Surgery, University of Göteborg, Göteborg, Sweden [287]

Gernot Sommer, 1. Department of Internal Medicine, University of Vienna, A-1090 Vienna, Austria [145]
Paul Sporn, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, University of Vienna, A-1090 Vienna, Austria [67,123,139,225,315]

K. H. Staubach, Department of Surgery, Medical University of Lübeck, D-2400 Lübeck, Federal Republic of Germany [241]

Karl Steinbereithner, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, University of Vienna, A-1090 Vienna, Austria [139,225]

Rudolf Steininger, Ist Surgical Clinic, University of Vienna, Vienna, Austria [67]

H.B. Stoner, Hope Hospital, Eccles Old Road, Salford M6 8HD, England [25]

Wolfgang Strohmaier, Ludwig Boltzmann Institute for Experimental Traumatology, Vienna, Austria [59,295]

Thomas Szczeponik, Department of Surgery, Klinikum Großhadern, University of Munich, Federal Republic of Germany [51]

H. Van Aken, Klinik für Anästhesiologie und Operative Intensivmedizin, Westfälische Wilhelms-Universität, D-4400 Münster, Federal Republic of Germany [185]

Jesús Villar, Intensive Care Unit, Hospital N.S. del Pino, Canary Islands, Spain [33]

Jean-Louis Vincent, Department of Intensive Care, Erasme University Hospital, Free University of Brussels, Brussels, Belgium [319]

Ernst Zadrobilek, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, University of Vienna, A-1090 Vienna, Austria [123,139,225,315]

Friedrich Zekert, Ist Surgical Clinic, University of Vienna, Vienna, Austria [67]
Contents of Part A: Pathophysiological Role of Mediators and Mediator Inhibitors in Shock

1. THE PATHOPHYSIOLOGICAL ROLE OF MEDIATORS AND INHIBITORS THEREOF IN SHOCK

1.1. Complement—Granulocytes

Complement Activity in Shock / Mats Heideman and Anders Bengtson

Inflammatory Mediators in Patients With Ischemic Limbs / Anders Bengtson, Pia Holmberg, and Mats Heideman

Granulocytes as Mediators of Tissue Injury in Shock: Therapeutic Implications / Dale E. Hammerschmidt and Gregory M. Vercellotti

Role of Fibrin-Neutrophil Interactions in Lung Vascular Injury / Asrar B. Malik

Quantitative Estimation of Leukostasis in the Posttraumatic Lung—Canine and Human Autopsy Data / Heinz Redl, Hans P. Dinges, and Günther Schlag

Whole Body Inflammation in Trauma Patients; an Autopsy Study / Hans K.S. Nuytinck, Xavier J.M.W. Offermans, Karel Kubat, and R. Jan A. Goris

Neutrophil Protease Enzymes and Oxygen Free Radicals as Mediators of Pulmonary Membrane Damage / Stephen Westaby

1.2. Proteases

Studies on Shock During Extracorporeal Circulation During Aorto-Coronary Bypass Operations / Wolfgang Heller, Günther Fuhrer, Hans-Eberhard Hoffmeister, and Michael J. Gallimore

Biochemical Monitoring of the Lung During and After Extracorporeal Circulation / Geza Horpacsy, Werner Hügel, Hugo Müller, and Alfred Geißler

Effect of Elevated Cl-Esterase Inhibitor Levels on Elastase Release In Vitro—A Proposed Model of Shock (ECC) / Wolfgang Heller, Günther Fuhrer, Susanne Hoberg, Hans-Eberhard Hoffmeister, and Anton Philapitsch

Granulocyte Elastase and White Cell Counts in Septic Pigs / M. Siebeck, H. Hoffmann, and R. Geiger

Influence of the Lysosomal Elastase Inhibitor Eglin on the Development of Interstitial Lung Edema in E. coli Bacteremia in Pigs / H.F. Welter, M. Siebeck, O. Thetter, and M. Jochum

Evaluation of the Kinin-Induced Pathomechanisms in the Development of ARDS by Kallikrein Inhibition In Vivo / O. Thetter, H. Hoffmann, M. Siebeck, H.F. Welter, and H. Fritz

Local Activation of the Kallikrein-Kinin System in the Lung Following E. coli Sepsis in Sheep / Svenerik Andreasson, Lennart Smith, Ansgar O. Aasen, and Bo Risberg

Cl-Esterase Inhibitor in Early Septicemia / M. Siebeck, A. Philapitsch, H. Wiesinger, and H.F. Welter

Anti-Proteases in Endotoxemia / Daniel L. Traber

Effect of Aprotinin and Cl-Esterase Inhibitor on Activation of the Plasma Kallikrein-Kinin System In Vivo / H. Hoffmann, M. Siebeck, O. Thetter, E. Fink, and A. Philapitsch
Cellular Effects of Aprotinin / Heinz Redl, Anna Schiesser, Eva Paul, Claudia Wilfing, and Günther Schlag

Hemodynamics and Proteolysis in Experimental Trypsin Induced Shock / Froye Naess, Johan Pillgram-Larsen, Tom E. Ruud, Jan O. Stadaas, and Ansgar O. Aasen

Protease Inhibitor Infusion Improves Survival Rate and Hemodynamics in Experimental Pancreatic Shock / Tom E. Ruud, Ansgar O. Aasen, Johan Pillgram-Larsen, and Jan O. Stadaas

Biologic Availability of Injected or Aerosolized Alpha|Proteinase Inhibitor / R.M. Smith, R.G. Spragg, and K.M. Moser

Multitherapy: A New Treatment Regimen in Endotoxemia / Ansgar O. Aasen, Tom E. Ruud, Johan Pillgram-Larsen, and Jan O. Stadaas

1.3 Oxygen Radicals—Lipid Peroxidation

Oxygen Radicals and Lipid Peroxidation in Experimental Shock / Gerd O. Till and Peter A. Ward

Cytotoxic Lipid Peroxidation Products / Hermann Esterbauer, Ernst Koller, Peter Heckenast, Robert Moser, and Claude Celotto

Antioxidant Drugs and Shock Therapy / O. Ortolani, M. Biasiucci, A. Trebbi, M. Cianciulli, and R. Cuocolo

Protection by Ebselen Against Endotoxin Shock in Rats or Mice Sensitized by Galactosamine / K.-H. Konz, G. Tiegs, and A. Wendel

1.4. Prostaglandins, Leukotrienes, and Platelet Activation Factor

Activation of the Pulmonary Arachidonic Acid System and Its Consequences for Hemodynamics and Fluid Balance / Heinz Neuhof, Werner Seeger, and Norbert Suttorp

Leukotrienes as Mediators in Endotoxin Shock and Tissue Trauma / Dietrich Keppler, Wolfgang Hagmann, and Claudio Denzlinger

Generation of Leukotrienes in Polytraumatic Patients With Adult Respiratory Distress Syndrome (ARDS) / J. Knöller, W. Schönheld, T. Joka, J. Sturm, and W. König

Increased Hemodynamic and Survival With Endotoxin and Septic Shock With Ibuprofen Treatment / Roger C. Bone, Elizabeth Rogers Jacobs, and Frank J. Wilson, Jr.

Effect of Ibuprofen on Components of an Acute Systemic Inflammatory Response Evoked by Intravenous Endotoxin Administration in the Conscious Sheep / Gary J. Jesmok, Frederick Aono, Janet Simpson, and Julian Borgia

Effect of the Nonsteroidal Antiinflammatory Agent BW755C in Rat and Sheep Endotoxemia / Soheyl Bahrami, Fred Mihm, Martin Thurnher, Christa Vogl, Anna Schiesser, Heinz Redl, and Günther Schlag

Effectiveness of Prostaglandin E1 in Adult Respiratory Distress Syndrome / William C. Shoemaker

Efficiency of Prostacyclin in Rabbit Endotoxin Shock / Heinrich Ditter, Peter Röttger, Reinhard Voss, and F. Reinhard Matthias
1.5 Endotoxin

Endotoxin: The Causative Factor of Mediator Release During Sepsis / Daniel L. Traber

Endotoxin Shock Model in the Dog: A Reevaluation / Jean-Louis Vincent, Marc Domb, Pascal Luy paert, Corinne De Boelpaepe, Philippe Van der Linden, and Serge Blécic

Perturbation of Transmembrane Signaling Mechanisms in Acute and Chronic Endotoxemia / Judy A. Spitzer, Elena R. Turco, Ion V. Deaciuc, and Bryan L. Roth

Endotoxin-Induced Generation of Oxygen Free Radicals in Freshly Drawn Human Blood / Hubert Reichele, Dagmar Langner, Peter Wendl, and Günther Blümel

Inhibition of Lipopolysaccharide-Mediated Activation of Neutrophils With Monosaccharide Derivatives of Lipid A / Charles Lam, Elizabeth Basalka, Eberhard Schütze, and Hubert Walzl

2. RESULTS OF MEDIATOR RELEASE

Physiologic and Metabolic Correlations in Human Septic Shock / John H. Siegel

Multisystem Organ Failure / Hans-Peter Schuster

Changes in Metabolic Control in Injury and Sepsis / Rod A. Little and Keith N. Frayn

Catecholamines in the Serum of Multiple Trauma Patients—Mediators of ARDS? / P. Sefrin

Increased Systemic Microvascular Permeability in Septic Shock / A.B. Johan Groeneveld and Lambertus G. Thijs

Differences in Regional Oxygen Supply, Oxygen Consumption and Blood Flow During the Onset of E. coli Sepsis / G.I.J.M. Berthuizen, R.J.A. Goris, H.J.M. Beijer, and G.A. Charbon

Vascular Perfusion of the Ischemic Small Intestine / Miklós Juhász, János Hamar, László Dézsi, Erzsébet Fehér, and Joachim Lutz

Reaction Pattern of Alveolar Cells in the Posttraumatic Lung Failure / Theo Joka, Udo Obertacke, Wolfgang Schönfeld, Susanne Oberste-Beulmann, Ulrich Pison, Ernst Kreuzfelder, Marianne Jochum, and Gerda Zilow

Wound Inflammatory Mediators and Multisystem Organ Failure / Robert H. Demling

Burn Shock and Its Resuscitation / David N. Herndon, James G. Hilton, Daniel L. Traber, and Robert E. Barrow

3. THE HEART AS A SPECIAL TARGET ORGAN IN SHOCK

Evaluation of Heart Performance With Special Emphasis on Severe Hemodynamic Changes During Hypovolemic-Traumatic Shock / Peter Krösl and Günther Schlag

Myocardial Dysfunction in Sepsis / John J. Spitzer, Lani W. Smith, Edmund C. Burke, and Kathleen H. McDonough

Studies on Low Molecular Weight Inotropic Plasma Substances in Prolonged Hypovolemic Traumatic Shock / Seth Halström, Christa Vogl, Peter Krösl, Heinz Redl, and Günther Schlag

Cardiodepressant and Cardiostimulant Factors in Shock / Sandor Nagy

Release of Myocardial Depressant Factor (MDF) During Cardiopulmonary Bypass (CPB): Influence of Corticosteroids (Methylprednisolone) and Protease Inhibitor (Aprotinin) / Farag I. Coraim, Günther Laufer, Wilfried Ilias, Gregor Wollenek, and Ernst Wolner

Endogenous Nickel Release in Injured Patients: A Possible Cause of Myocardial Damage / Kornél Szabó, István Balogh, and Anna Gergely

Heart Rate During Hypotensive Central Hypovolemia Before and After Atropine in Man / Kåre Sander-Jensen, Jesper Mehløen, Carsten Stadeager, Peter Bie, and Jørgen Warberg

Antioxidant Protection Against Free Radicals Mediated Myocardial Injury / Elizabeth Röth, Bela Török, William Bär, and Susan Pollak
STUDIES OF GRANULOCYTE FUNCTION (CHEMILUMINESCENCE RESPONSE) IN POSTOPERATIVE INFECTION

Dietrich Inthorn(1) Thomas Szczeponik(1), Dieter Mühlbayer(1), Marianne Jochum(2), Heinz Redl(3) Dept. of Surgery, Klinikum Großhadern (1), Dept. of Clinical Chemistry (2), Univ. of Munich, Ludwig Boltzmann Institute for Experimental Traumatology, Vienna (3)

INTRODUCTION

Due to their ability to phagocytose soluble and solid agents polymorphnuclear granulocytes (PMN) are predominating in the nonspecific defense system. Activation of PMN phagocytosis, intracellular killing of microorganisms and digestion of foreign bodies proceed with increasing hexose monophosphate shunt activity and non-mitochondrial oxygen consumption (Becker et al. 1958, Sbarra and Karnovsky 1959). During this "respiratory burst" highly reactive oxygen derivates (O$_2^-$, H$_2$O$_2$, ·OH, O$_2$, OCl$^-$) are generated, which are responsible factors for intracellular microbicidal activity (Babić et al. 1973) and which can be assayed in diluted whole blood by luminol amplified chemiluminescence (CL) (Kato et al. 1981). We studied the CL-response to in vitro-stimulation in whole blood samples of surgical patients in comparison to the disease state.

MATERIAL AND METHODS

Patients: 70 men, mean age 58.5 years, and 43 women, mean age 61.8 years, with manifest infections or at high risk for developing infectious complications were prospectively studied. They were adjoined daily to a severity group I - IV according to the clinically detectable degree of complications: Group I: 60 patients without postoperative complications. Group II: 16 patients with slight or moderate infections (wound infections, regionally limited pe-
ritonitis, basal pneumonia). Group III: 10 patients with severe postoperative infections (locally not limited soft tissue infection, 1 - 2 quadrant peritonitis, extensive broncho-pneumonia). Group IV: 27 patients with sepsis (positive blood culture, ensured infection focus and remote organ failure). Measurement of CL in Diluted Whole Blood: The reaction mixture contained 0.1 ml di-luted blood (50 μl EDTA blood + 700 μl phosphate buffered saline solution with 0.1 % glucose), 1.6 ml Veronal buffer (pH 7.2, containing Ca ++, Mg ++ + 1 % glucose and human albumin each) and 0.2 ml luminol (7 x 10^{-4} M in phosphate buffer, pH 7.4). Following 10 min. incubation at 37°C the reaction was started by addition of 0.1 ml opsonized (15 min. at 37°C with pooled normal serum) zymosan solution (20 mg/ml). The CL (counts per min.) was measured at 37°C (Biolumat 9505, Fa. Berthold, Wildbad, FRG, Apple II e computer) and calculated as the CL-integral over 30 min. for the whole sample (= total activity, counts per 30 min.). Specific activity was calculated from total activity as counts per 30 min. and 10^5 PMN. Data are indicated as mean ± SEM.

RESULTS

The specific CL activity of human granulocytes in response to the in vitro-stimulus zymosan was slightly diminished by the anesthesiologic-operative trauma (279 ± 43 counts) followed by an increase up to 844 ± 83 counts at the 3. postoperative day and a decrease to preoperative activity within the next 4 days. The primary reduction of specific CL activity however was more than compensated by the postoperative leukocytosis so that total CL activity increased already in the early postoperative phase reaching its maximum at the 1. day (Fig.1).

In patients with microbial-infectious complications the total CL activity increased according to the clinical severity of the inflammation. This was due to an enhanced specific CL response as well as to an increase of WBC. Interestingly, even slight to moderate bacterial infections (group II) induced a mean increase of specific CL comparable to that of severe infection (group III), whereas only during sepsis an additional enhancement of the CL response per granulocyte was found (Table 1). This behaviour is more clearly demonstrable in the follow up of severe infection or sepsis throughout the course of the disease (Fig. 2). Patients dying in the later phase showed a
Fig. 1: Total CL-activity (---), specific CL-activity (△--△) and number of leucocytes (---) in the control group.

distinctly higher total and an intensified specific in vitro-excitability to CL already one day before the clinical manifestation of the fatal complication. In contrast, in surviving patients diagnosis of severe infection coincided with the maximum of the CL response. During the first days of the following inflammatory course the slightly decreasing CL values in both groups did not show any significant difference. In the later phase, however, a clear dis-
Table 1: Total and specific CL-activity in group I - IV patients (X ± SEM)

<table>
<thead>
<tr>
<th>CL</th>
<th>preop.</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total activity</td>
<td>13575</td>
<td>34298</td>
<td>51782</td>
<td>62633</td>
<td>118564</td>
</tr>
<tr>
<td>Specific activity</td>
<td>433</td>
<td>573</td>
<td>1071</td>
<td>1091</td>
<td>1503</td>
</tr>
</tbody>
</table>

Fig. 2. Total CL-activity (left) and specific CL-activity (right) in patients developing sepsis. ---- patients dying in the later course, —— survivors.

crimination in the CL activity was observed, although both groups showed clinically an equally severe degree of inflammation at this observation period. The specific CL response of PMN of surviving patients stayed in the range of 1100 whilst the excitability of the granulocytes in patients dying later on increased up to two-fold. Depending on the significantly higher decline of circulating leukocytes in the latter patients, the total CL activity in their blood samples was similar to those shown by surviving subjects at the last day of severe infection or sepsis (Fig. 3). During the following recovery period the CL response to zymosan further decreased gradually to normal values due to decline of specific CL activity and leuko-
Granulocyte Chemiluminescence in Surgical Patients

Fig. 3. Total CL-activity (left) and specific CL-activity (right) from dying patients (-----) and survivors in the recovery phase (- - - - - - -).

Fig. 4: Specific CL-activity in group IV patients: Survivors (a), patients dying in the later course (b) and those dying within 10 days (c).

DISCUSSION

Measurement of the CL response of whole blood samples to in vitro-stimulation seems to be a reliable assay for estimation of phagocytic capacity (Ewetz et al. 1981, Tono-Oka et al. 1983). Use of highly diluted blood and op-
sonized particles provides information exclusively about the phagocytic capacity of the PMN cells. Facing clinical employment of the assay, time consuming cell separation methods are no longer necessary, which may also impair granulocytic function (Ogle et al. 1985). Moreover, falsification of CL values by high erythrocyte numbers (quench effect) may be limited, if highly diluted blood samples are used (Allen et al. 1982, Redl et al. 1983, Szczeponik 1986).

With the assay procedure applied in this study a depressing influence of anesthesiologic-operative trauma to the excitability of PMN granulocytes could be clearly demonstrated. In this respect, longer operation times induced also a slower increase of specific CL capacity following the primary decrease (data not shown). Nonbacterial inflammation as part of each wound healing elicited excitability of the PMN cells corresponding to the healing course.

An increased CL response of the granulocytes to microbial inflammation has been described recently (Barbour et al. 1980, Allen et al. 1982, Tono-Oka et al. 1983). Interestingly, in our study blood samples either from moderate or severe inflamed patients showed an equally elevated specific CL response. This is in contrast to results shown by Allen et al. 1982 and Tono-Oka et al. 1983. Latter authors only found an increased total excitability during infection answer. Enhancement of total CL activity elicited by an exogenous stimulus according to the degree of inflammation primarily reflected a rise of granulocyte numbers in peripheral blood and only in fatal sepsis a further increase of specific CL activity. In the later course of clinical similarly severe sepsis granulocytes of non-survivors have been considerably more excitable than those of survivors. Highest CL values were observed in patients, who died very early throughout the septic course (Fig. 4). This observation might suggest an overshooting in defense power in the latter patients. By that means, hyperreactivity of phagocytes to stimuli like microbes, cell debris or other foreign substances in the organism may lead locally to a tremendous release of toxic oxygen species as well as lysosomal enzymes greatly overstressing the regulatory inhibitor potential with fatal consequences (Jochum et al. 1986).
REFERENCES

Index

Abdominal surgery, proenzyme functional inhibition index, 99-100
Acute phase reactants, 64, 67
Adult respiratory distress syndrome. See ARDS; Scoring systems/prediction, ARDS and MOF
Albumin
 loss, fluid resuscitation, hydroxyethyl starch vs. Ringer's lactate, 200-203
 preoperative isovolemic hemodilution, 210-212
Amino acids
 clearance rate, plasma, 8, 13
 septic patients, 67, 70-73
Amrinone, 320-321
Anaphylatoxins. See under Complement system
Antibiotics, postoperative septic shock, 188, 189
Antiplasmin and proenzyme functional inhibition index, 77, 83, 98, 100
Antithrombin III
 β-factor Xlla inhibition, polytraumatized patients vs. normals, 77, 78, 82, 83
 and organ failure scores, septic patients, 70-75
 plasma exchange, septic shock, 218-219
 preoperative isovolemic hemodilution, 209-212
 and proenzyme functional inhibition index, predictor in septicemia, 98, 100, 101
α1-Antitrypsin and organ failure scores, septic patients, 68, 70-74
APACHE, 17-21, 26-29
Arachidonic acid cascade
corticosteroid treatment of septic shock, 252-254
scoring systems/prediction, ARDS and MOF, 8-9, 13, 59, 176
septic shock, postoperative, symptomatic therapeutic management, 192
see also Prostaglandins; Thromboxanes
ARDS
fluid resuscitation, hydroxyethyl starch vs. Ringer's lactate, 197, 203
methylprednisolone, high-dose preoperative, maintenance of pulmonary permeability, 287-288
plasma exchange, septic shock, 217
prevention
 early fracture stabilization (osteosynthesis), 163-167, 169
 mechanical ventilation, 163, 167-171
 pros and cons, 167
 scale, 169-170
 ventilation, 182
septic shock, postoperative, symptomatic therapeutic management, 187, 191, 192
see also Scoring systems/prediction, ARDS and MOF
Arterial pressure, mean, septic peritonitis, 110, 111
Atelectasis, lung surfactant replacement, 310
Bilirubin, corticosteroids compared, endotoxemic shock, 277, 278
Blastogenesis, spontaneous, and organ failure scores, septic patients, 70, 72, 74
Blood pressure
 fluid resuscitation, hydroxyethyl starch vs. Ringer's lactate, 198, 199
 pulmonary artery hypertension, 124
Branch chain decision tree, physiologic monitoring and therapy, high-risk surgical patients, 106
BUN

329
hemofiltration, septic acute renal failure, 226, 227, 236
prediction of outcome, trauma/sepsis, 87-90, 92
Burns. See under Lung water, extravascular
Calcium metabolism, abnormal, 319
Carbohydrates, dietary, lung surfactant and parenteral nutrition, 296, 301-302
Carbon monoxide, early predictors of sepsis, 118-119
Cardiac output
correlation with functional impairment, 131, 135-136
early predictors, sepsis, 117, 118
monitoring, septic shock, 123-124, 126-127
septic peritonitis, 110, 111, 113
Cardiovascular system
failure correlated with metabolic and lymphocyte parameters, septic patients, 69-73
Hannover Intensive Score, 23
see also Heart; Hemodynamics entries
Catecholamine resistance/failure
glucose-insulin-potassium (GIK) following, 315, 318
inotropic support, non-adrenergic, 319-320
Catheters, arterial
extravascular lung water, major burns with sepsis, 146
pulmonary, 123-124
radial, correlation with functional impairment, 131
see also Swan-Ganz catheter
Cecal ligation and perforation model, acute septic peritonitis and shock, 323-324
Cerebrum, and Hannover Intensive Score, 24
C1-esterase inhibitor
β-factor XIIa inhibition, polytraumatized patients vs. normals, 77, 78, 81, 83, 84, 101
parameters correlated with organ failure scores, septic patients, 70-72
Chemiluminescence. See under Granulocytes
Chromogenic peptide substrate, proenzyme functional inhibition index, 99
Clearance rate, plasma amino acids, scoring systems/prediction, ARDS and MOF, 8, 13
Colloid(s)
cf. crystalloid fluid resuscitation, 197
plasma osmotic pressure, extravascular lung water, sepsis/septic shock major burns, 147-150
with MOF, 139-143
preoperative isovolemic hemodilution, 209, 210, 212, 213
septic shock, postoperative, symptomatic therapeutic management, 189, 190
Coma
eyear fracture stabilization (osteosynthesis), prevention of ARDS and MOF, 166
Glasgow Scale, 24, 27, 29
Complement system
activation, prevention, 163, 171
anaphylatoxins (C3a and C5a), 9-10, 12, 13
corticosteroids in septic shock, 249, 261-262, 269-270
and corticosteroids compared, endotoxemic shock, 275, 279, 281, 283
septic shock, 251-252, 261-264, 269, 270
inactivation, Gram-negative septicemia, 216, 217, 219-221
scoring systems/prediction, ARDS and MOF, 9-10, 12, 13
Continuous positive airway pressure (CPAP), 177, 178, 181
Continuous positive pressure ventilation (CPPV), 177, 178, 181
Corticosteroids compared, endotoxemic shock, rats, 273-284
complement activation, 275, 279, 281, 283
dexamethasone, 274-284
DIC, 279, 283
fatty liver, 281, 284
leukocytes, 279-283
methylprednisolone, 274-282, 284
measurements, 275
bilirubin, 275, 277, 278
fibrinogen, 279, 280, 283
glucose, 275-277, 283-284
lactate, 275, 277, 281
platelets, 279, 283
transaminases, 275, 277, 278, 281
and mortality, 282, 283
prednisolone, 274-282, 284
see also Methylprednisolone, high-dose
preoperative, maintenance of pulmonary permeability

Corticosteroids in treatment of septic shock, 249-257
arachidonic acid cascade, 252-254
complement, 251-252, 261-264, 269-270
anaphylatoxins, 249, 261-262, 269-270
complications, 255
dexamethasone, 252, 255, 262-264, 267, 269
endotoxin, 249, 252-255, 263, 264, 270
energy pathway, 250, 254-255
glucocorticoids, 250-252, 255-256
granulocyte function, 261-262, 264-270, 269-270
aggregation, 264-266
chemiluminescence, 262, 266-267
elastase, 262, 266, 270
hemodynamics, 250
individualization, 273
inflammation, 250-251, 274
methylprednisolone sodium succinate, 251, 253-254, 256, 261
and microvascular permeability, 254
cf. NSAIs, 253-254, 256
prednisolone, 261-267, 269
survival, 255-257

Cortisol, prediction of outcome, trauma/sepsis, 87, 88, 91, 92
C-peptide, prediction of outcome, trauma/sepsis, 87-90, 91, 92
C-reactive protein, and organ failure scores, septic patients, 68, 70-74
Creatinine, hemofiltration, septic acute renal failure, 226-227, 236, 245
Crystallloid cf. colloid fluid resuscitation, 197

Dexamethasone
endotoxemic shock, 274-284
experimental mesenteric shock, 205
septic shock, 252, 255, 261-264, 267, 269
Dextran, preoperative isovolemic hemodilution, 210-213
cf. hydroxyethyl starch, 210-213
Digestive tract, selective decontamination, 188
Dipalmitoylphosphatidylcholine (DPPC), 295, 298, 299, 302
Disseminated intravascular coagulation, corticosteroids compared, endotoxemic shock, 279, 283

Early fracture stabilization (osteosynthesis), prevention of ARDS and MOF, 163-167, 169
pros and cons, listed, 167
Edema, pulmonary. See Pulmonary edema
Elastase, granulocyte
corticosteroid effect, 262, 266, 270
immunoassay quantification, 10, 11, 13, 41-43, 45-47
and organ failure/ARDS, 10, 11, 13, 70-74
Electrophoresis, SDS-PAGE, hemofiltration in septic acute renal failure, 242, 247
Endotoxemic shock, 215-217, 220-221
corticosteroid treatment, 249, 252-255, 263, 264, 270
fluid treatment of experimental mesenteric shock, 205-207
Gram-negative septicemia, 215-217, 220-221
see also Corticosteroids compared, endotoxemic shock, rats
Energy pathway, corticosteroid treatment of septic shock, 250, 254-255
Escherichia coli, 205-207
Ethical considerations
naloxone, septic shock, postoperative symptomatic management, 191-192
sepsis, prediction of outcome, 29
Extracorporeal membrane oxygenation, septic shock, postoperative, 192
Factor XII (Hageman factor), 78, 80, 83
³-Factor XIIa inhibition, polytraumatized patients vs. normals, plasma, 77-84
antithrombin III, 77, 78, 82, 83
C₁-esterase inhibitor, 77, 78, 81, 83, 84, 101
factor XII (Hageman factor), 78, 80, 83
kallikrein inhibition, 77, 78, 81-83
α₂-macroglobulin, 78, 82, 83
mortality, 80-84
prekallikrein, 77, 78, 80, 82, 83
prothrombin, 77, 83, 98
Fat
dietary, and lung surfactant, multiple trauma, 296, 301-302
embolism, ventilation, prevention of ARDS and MOF, 168
Fatty acids
free, prediction of outcome, trauma/sepsis, 87, 88, 90
lung surfactant and parenteral nutrition, multiple trauma, 300-301
Fibrinogen, corticosteroids compared, endotoxemic shock, 279, 280, 283
Fibronectin, 210-213
and organ failure scores, septic patients, 68, 72, 73
Flow, physiologic monitoring and therapy, high-risk surgical patients, 104
Fluid management
experimental mesenteric shock, 205-207
and hemodynamics monitoring, septic shock, 124-126
physiologic monitoring and therapy, high-risk surgical patients, 106-107
unrecognized hypovolemic shock, 106 and ventilation, 180
see also Hemodilution, preoperative iso-volemic, and subsequent infection
Fluid replacement with colloid-containing solution, advanced septic shock with MOF, 139-140, 143
increased permeability and pulmonary edema, 142-143
Fluid resuscitation, hydroxyethyl starch vs. Ringer’s lactate, traumatic-hemorrhagic shock, 197-203
albumin loss, 200-203
ARDS, 197, 203
blood pressure, 198, 199
colloid cf. crystalloid, 197
extravascular lung water, 198, 200, 201, 203
fluid loss into peritoneum, 200-201
pulmonary edema, 197, 203
FMLP, 262, 264, 266, 268
Fractures, prevention of ARDS and MOF early stabilization, 163-167, 169
pros and cons, listed, 167
and ventilation, 168-169
Free radicals, oxygen, 103, 216-217, 221, 269, 270, 283; see also Lung surfactant replacement and oxygen free radical-induced respiratory failure, guinea pigs
Gadolinium chloride RES blockade, acute septic peritonitis and shock, rat, 323-328
cecal ligation and perforation, 323-324
liver, effects on, 327
LPS effect, 324-326, 328
mortality, 324-326
splenectomy, 325-328
Gastrointestinal tract and Hannover Intensive Score, 23-24
Glasgow Coma Scale, 24, 27, 29
eye early fracture stabilization, prevention of ARDS and MOF, 166
Glucocorticoids in septic shock, 193, 250-252, 255-256; see also Dexamethasone
Glucose
and corticosteroids compared, endotoxemic shock, 275-277, 283-284
prediction of outcome, trauma/sepsis, 87, 88, 91, 92
Glucose-insulin-potassium (GIK) in Peritonitis with hypodynamic septic shock, 315-318
complications, 317
after failure of volume loading and catecholamines, 315, 318
hemodynamics, 316-318
inotropic action of insulin, 317-318
renal failure, acute, 315
Gram-negative septicemia, pathophysiology, 215–217, 219–221
Granulocytes, 176, 210
corticosteroid treatment of septic shock, 261, 262, 264–270, 283
enzymes/proteins, quantification with immunoassay, 10, 41–47
assays, 46, 47
elastase, 10, 11, 13, 41–43, 45–47
lactoferrin, 42, 43, 46, 47
myeloperoxidase, 41–43, 46–47
function, chemiluminescence studies, postoperative infection, 51–56
dilution, 56
hyperreactivity, 56
and leukocyte numbers, 53–55
measurement, 52
and mortality, 52–53
septic patients, 52–54
survivors, 54, 55
see also Elastase, granulocyte
GTP metabolism, 59, 63
Hageman factor (factor XII), 78, 80, 83
Hannover Intensive Score, 17–21, 23–24
Heart
correlation with functional impairment, 129, 132, 135–137
PCWP, 129, 132, 136
left ventricular function, 129, 132, 135–137
septic peritonitis, 110, 111, 113
septic shock, postoperative, symptomatic therapeutic management, 190–191
rate, septic peritonitis, 110–111
Hematocrit
fluid treatment, experimental mesenteric shock, 205–207
preoperative isovolemic hemodilution, 209–213
Hemodilution, preoperative isovolemic, and subsequent infection, 209–213
albumin, 210–212
antithrombin III, 209–212
colloids, 209, 210, 212, 213
dextran, 210–213
cf. hydroxyethyl starch, 210–213
hematocrit, 209–213
monocyte-phagocyte system, 209, 210, 212
Hemodynamics
corticosteroid treatment of septic shock, 250
glucose-insulin-potassium (GIK) in peritonitis with hypodynamic septic shock, 316–318
hemofiltration, septic acute renal failure, 228, 229, 231–232, 237, 242
Swan-Ganz monitoring, 228, 231
inotropic support, non-adrenergic, septic shock, 319–320
physiologic monitoring and therapy, high-risk surgical patients, 103–106
flow maldistribution vs. low flow, 104
septic shock, postoperative, symptomatic therapeutic management, 186–187, 190–191
Hemodynamics correlated with functional impairment, sepsis, 129–137
cardiac output, 131, 135–136
heart, 129, 132, 135–137
left ventricular function, 129, 132, 135–137
PCWP, 129, 132, 136
lactate, 133, 137
mortality, 129, 130, 133, 134
organ failure, kidney and lung, 129, 135–136
oxygen
\[\text{DO}_2 - \text{VO}_2 \] relationship, 129, 132–137
transport, 136
patient data, 130
radial artery catheter, 131
total peripheral resistance, 130, 133, 135
Hemodynamics monitoring with and without Swan-Ganz catheter, septic shock, 123–127
cardiac output, 123, 124, 126, 127
fluid management, 124–126
invasive monitoring, risks, 126
PA hypertension, 124
pulmonary artery, catheterization, 123–124
pulmonary capillary wedge pressure, 123, 124, 126, 127
renal failure, 126
systemic vascular resistance, 123, 124, 126, 127
Hemofiltration, continuous, septic acute
renal failure, 225–232, 235–238, 240
arteriovenous, 235–238, 240–247
BUN, 226, 227, 236
complications (bleeding), 230, 237
creatinine, 226–227, 236, 245
hemodynamics, 228, 229, 231, 232, 237, 242
Swan-Ganz monitoring, 228, 231
heparin, 226, 227, 236
lung function, 245
extravascular lung water, 227, 228, 232
metabolites liberated from bloodstream, 241–243
HMW proteins, 241, 242, 247
prostaglandins, 242, 246
SDS-PAGE, 242, 247
thromboxane, 242, 246
MOF, 225, 231, 232, 237
mortality, 231, 232, 237
pump driven, 225–232, 236
retrospective study, 241, 242
sodium, potassium and phosphate, 236–237
see also Plasma exchange, septic shock
Heparin and hemofiltration, 226, 227, 236
HGH, prediction of outcome, trauma/sepsis, 86, 87, 88, 91
High molecular weight proteins, hemofiltration, septic acute renal failure, 241, 242, 247
High-risk patients. See Monitoring, physiologic, and therapy, high-risk surgical patients
Hydroxyethyl starch
cf. dextran, preoperative isovolemic hemodilution, 210–213
fluid treatment, experimental mesenteric shock, 205–207
see also Fluid resuscitation, hydroxyethyl starch vs. Ringer’s lactate, traumatic-hemorrhagic shock
Hyperreactivity of granulocytes, chemiluminescence studies, postoperative infection, 56
Hypodynamic shock. See Glucose-insulin-potassium GIK in peritonitis with hypodynamic septic shock
Hypovolemic shock, unrecognized, physiologic monitoring and therapy, high-risk surgical patients, 106; see also Fluid resuscitation, hydroxyethyl starch vs. Ringer’s lactate, traumatic-hemorrhagic shock; Scoring systems/prediction, hypovolemic and traumatic shock
Igs, 210–213
Immune system, and Hannover Intensive Score, 24
Immunooassay, granulocyte enzymes/proteins quantification, 10, 41–47
Immunoglobulins, 210–213
Inflammation, corticosteroid treatment of septic shock, 250–251, 274
Inhalation injury, extravascular lung water, major burns with sepsis, 145, 150
Injury Severity Score, prediction of outcome, trauma/sepsis, 86, 90, 93, 165, 169–171
Inotropic action, insulin, 317–318
Inotropic support, non-adrenergic, in septic shock, dog, 319–321
amrinone, 320–321
myocardial depression, 319–320
adrenergic resistance, 319–320
calcium metabolism, abnormal, 319
Insulin. See Glucose-insulin-potassium (GIK) in peritonitis with hypodynamic septic shock
Inverse ratio ventilation, 177–179
Isovolemic hemodilution. See Hemodilution, preoperative isovolemic, and subsequent infection
Kallikre in inhibition in septicemia, 98, 100
and β-factor XIIa inhibition, polytraumatized patients vs. normals, 77, 78, 81–83
Ketanserin. See Respiratory failure, acute, ketanserin administration
Ketone, blood, scoring systems/prediction, ARDS and MOF, 8, 13
Kidneys
and Hannover Intensive Score, 23
prediction of outcome, trauma/sepsis, 87–90, 92
see also Renal failure

Lactate
corticosteroids compared, endotoxemic shock, 275, 277, 281
hemodynamics correlated with functional impairment, 133, 137
prediction of outcome, trauma/sepsis, 87–90
Ringer’s, fluid treatment, experimental mesenteric shock, 205–207; see also Fluid resuscitation, hydroxyethyl starch vs. Ringer’s lactate, traumatic-hemorrhagic shock
Lactoferrin, granulocyte, immunoassay quantification, 42, 43, 46, 47
Lavage, pulmonary, multiple trauma, 296, 299–201
Lecithin, lung surfactant and parenteral nutrition, multiple trauma, 299, 300, 302
Leprosy, 220
Leukocytes
corticosteroids compared, endotoxemic shock, 279–283
numbers, and granulocyte function, chemiluminescence studies, postoperative infection, 53–55
see also Granulocytes
Leukotrienes, corticosteroid treatment of septic shock, 253
Lipid peroxidation, lung surfactant replacement and free radical-induced respiratory failure, 312
Lipopolysaccharide, gadolinium chloride RES blockade, acute septic peritonitis and shock, 324–326, 328
Liver
and acute respiratory failure, ketanserin administration, 158
bilirubin, 277,278
failure correlated with metabolic and lymphocyte parameters, septic patients, 69, 73, 75
hypercatabolic, early predictors, sepsis, 118–119
fatty, corticosteroids compared, endotoxemic shock, 281, 284
gadolinium chloride RES blockade, acute septic peritonitis and shock, 327 transaminases, corticosteroids compared, 275, 277, 278, 281
Lung
failure, correlation with functional impairment, 129, 135, 136
metabolic and lymphocyte parameters, septic patients, 69, 70
and Hannover Intensive Score, 23
hemofiltration, septic acute renal failure, 245
vascular resistance, septic peritonitis, 110, 112
see also Methylprednisolone, high-dose preoperative, maintenance of pulmonary permeability; Pulmonary entries; Respiratory entries; Ventilatory management
Lung surfactant and parenteral nutrition, multiply traumatized rat,295–302
fat emulsion cf. carbohydrate calories, 296, 301–302
hypo- cf. normocaloric regimens, 296–302
lavage, pulmonary, 296, 299–301
nitrogen balance, 296–297
phospholipid composition, 295, 298–302
DPPC, 295, 298, 299, 302
fatty acid pattern, 300–301
lecithin species, 299, 300, 302
ventilation, 295
Lung surfactant replacement and oxygen free radical-induced respiratory failure, guinea pigs, 305–312
atelectasis, 310
compliance, 306, 308, 309, 311
lipid peroxidation, 312
replacement surfactant, rabbit, 306 vs. saline, 306, 308
SOD, 305, 309
superoxide radicals, 305
and/or ventilation, 306, 308, 312
xanthine oxidase, 305, 309–312
Lung water, extravascular
and acute respiratory failure, ketanserin administration, 153–156
advanced septic shock with MOF, 139–144
fluid replacement with calloid-containing solutions, 139–140, 143
increased permeability, 142–143
intravascular starling forces, 139, 142
microvascular hydrostatic pressure, 139–144
PCWP, 139–143
plasma colloid osmotic pressure, 139–143
pulmonary edema, 142–143
fluid resuscitation, hydroxyethyl starch vs. Ringer’s lactate, 198, 200–201, 203
hemofiltration, septic acute renal failure, 227, 228, 232
major burns with sepsis, 145–151
arterial catheter, 146
associated microorganisms, 148, 149
increased microvascular permeability, 145, 150, 151
inhalation injury, 145, 150
microvascular hydrostatic pressure (Pmv), 145
mortality, 148, 150
PCWP, 146–151
plasma colloid osmotic pressure (COP), 147–150
and pulmonary edema, 145, 150
Lymph, high-dose preoperative methylprednisolone, maintenance of pulmonary permeability, sheep, 288–292
Lysosomal enzymes, high-dose preoperative methylprednisolone, maintenance of pulmonary permeability, 287–288; see also Cl-esterase inhibitor; Elastase, granulocyte
α2-Macroglobulin, 210–212
and β-factor XIIa inhibition, polytraumatized patients vs. normals, 78, 82, 83
and organ failure scores, septic patients, 68, 70–74
Macrophages, D-erythro-neopterin levels, ICU patients with severe complications, 59, 64
Meningococcal infection, plasma exchange, septic shock, 218–221
Mesenteric shock, experimental, fluid treatment, 205–207
Methylprednisolone cf. other corticosteroids, septic/endotoxemic shock, 251, 253–254, 256, 261, 274–282, 284
Methylprednisolone, high-dose preoperative, maintenance of pulmonary permeability, 254, 287–292
ARDS, 287–288
lymph flow, 288–291
lysosomal enzymes, 287, 288
platelets, 287–289, 292
prostaglandins, 287–288, 291–292
and pulmonary circulation, 288
sheep, chronic lung lymph fistula, 289–292
Starling equation, 288–289
thromboxanes, 291–292
Microvascular hydrostatic pressure (Pmv), extravascular lung water
advanced septic shock with MOF, 139–144
major burns with sepsis, 145
Monitoring, physiologic, and therapy, high-risk surgical patients, 103–107
branch chain decision tree, 106
fluid management, aggressive, 106–107
unrecognized hypovolemic shock, 106
hemodynamics, 103–106
maldistribution of flow vs. low flow, 104
oxygen transport, 103–106
survivors cf. nonsurvivors, 103–105
see also Hemodynamics, monitoring with and without Swan-Ganz catheter, septic shock
Monocytes
activated, Gram-negative septicemia, 217, 219, 220
- phagocyte system, preoperative isovolemic hemodilution, 209, 210, 212
Mortality
corticosteroids compared, endotoxemic shock, 282–283
extravascular lung water, major burns with sepsis, 148, 150
β-factor XIIa inhibition, polytraumatized patients vs. normals, 80–84
gadolinium chloride RES blockade, acute septic peritonitis and shock, 324–326
granulocyte function, chemiluminescence studies, postoperative infection, 52–53
hemodynamics correlated with functional-impairment, 129, 130, 133–134
hemofiltration, septic acute renal failure, 231, 232, 237
D-erythro-neopterin levels, ICU patients with severe complications, 60 and proenzyme functional inhibition index, predictor in septicemia, 99
Multiple organ failure (MOF)
 hemofiltration, septic acute renal failure, 225, 231, 232, 237
 prevention, early fracture stabilization (osteosynthesis), 163–167, 169 pros and cons, listed, 167
 prevention, mechanical ventilation, 163, 167–171 pros and cons, 167
see also Early fracture stabilization (osteosynthesis), prevention of ARDS and MOF; Scoring systems/prediction, ARDS and MOF; under Lung water, extravascular
Multiple trauma. See Trauma
Myeloperoxidase, granulocyte, immunoassay quantification, 41–43, 46–47
Myocardial depression. See Cardiac output; Heart; Hemodynamics entries
Naloxone, septic shock, postoperative symptomatic therapeutic management, 191 ethical considerations, 191–192
D-erythro-Neopterin levels, ICU patients with severe complications, 59–64
case records, 62
GTP metabolism, 59, 63 macrophage, 59, 64 mortality, 60 sepsis, 60, 62 statistical evaluation, 60 survivors, 60–61
Nitrogen
balance, lung surfactant and parenteral nutrition, multiple trauma, 296–297
BUN, 87–90, 92, 226, 227, 236
excretion, early predictors, sepsis, 116, 119
Nonsteroidal anti-inflammatory agents, corticosteroid treatment cf. septic shock, 253–254, 256
Nonthyroidal illness (NTI), 92–93
Osmolality, prediction of outcome, trauma/sepsis, 87–90, 92
Osteitis, early fracture stabilization (osteosynthesis), prevention of ARDS and MOF, 166
Osteosynthesis, early, prevention of ARDS and MOF, 163–167, 169
 pros and cons, listed, 167
Oxygen
administration, 177–178 consumption, early predictors, sepsis, 116–119
hemodynamics correlated with functional impairment
 $\text{DO}_2 - \text{VO}_2$ relationship, 129, 132–137
 transport, 136
 radicals, 163, 216–217, 221, 269, 270, 283; see also Lung surfactant replacement and oxygen free radical-induced respiratory failure, guinea pigs
 transport
 physiologic monitoring and therapy, high-risk surgical patients, 103–106
 septic shock, postoperative, symptomatic therapeutic management, 189, 190
Oxygenation, extracorporeal membrane, postoperative septic shock, 192
Parenteral nutrition, postoperative septic shock, 189, 191; see also Lung surfactant and parenteral nutrition, multiply traumatized rat
PCWP. See Pulmonary capillary wedge pressure (PCWP)
PEEP
 plasma exchange, septic shock, 218
 septic shock, postoperative, symptomatic therapeutic management, 190–192
Perfluorochemicals, fluid treatment, experimental mesenteric shock, 205–207
Peritoneum, fluid loss into, fluid resuscitation, hydroxyethyl starch vs. Ringer’s lactate, 200–201
Peritonitis, postoperative, symptomatic therapeutic management, 187, 188; see also Gadolinium chloride RES blockade, acute septic peritonitis and shock, rat; Glucose-insulin-potassium (GIK) in peritonitis with hypodynamic septic shock
Peritonitis, septic, hemodynamic patterns, 109–114
heart rate, 110–111
physiologic measurements, 110–111
cardiac output, 110, 111, 113
left ventricular stroke work, 110, 111, 113
mean arterial pressure, 110, 111
pulmonary vascular resistance, 110, 112
total peripheral resistance, 110–112
Swan-Ganz catheter, 109–110
Permeability, microvascular
and acute respiratory failure, ketanserin administration, 157, 158
corticosteroid treatment of septic shock, 254
and extravascular lung water
advanced septic shock, 142–143
major burns with sepsis, 145, 150, 151
see also Methylprednisolone, high-dose preoperative, maintenance of pulmonary permeability
Phagocytes, preoperative isovolemic hemodilution, 209, 210, 212
Phosphate, hemofiltration, septic acute renal failure, 236–237
Phospholipids, lung surfactant and parenteral nutrition, multiple trauma, 295, 298–302
Physiologic monitoring. See Monitoring, physiologic, and therapy, high-risk surgical patients
Plasma colloid osmotic pressure and extravascular lung water advanced septic shock with MOF, 139–143
major burns with sepsis, 147–150
Plasma exchange, septic shock, 215–221
antithrombin III, 218, 219
ARDS, 217
meningococcal infection, 218–221
pathophysiology, Gram-negative septicemia, 215–217
activated monocytes, 217, 219, 220
complement activation, 216, 217, 219–221
endotoxin, 215–217, 220, 221
PEEP, 218
see also Hemofiltration, continuous, septic acute renal failure
Plasminogen, proenzyme functional inhibition index, predictor in septicemia, 77, 83, 98, 100
Platelets
corticosteroids compared, endotoxemic shock, 279, 283
methylprednisolone, high-dose preoperative, maintenance of pulmonary permeability, 287–289, 292
PMNs. See Granulocytes
Polytrauma. See Trauma
Positive end expiratory pressure (PEEP), 178, 179, 190–192
Postoperative metabolic and lymphocyte parameters, scoring systems/prediction, 72, 74; see also Septic shock, postoperative, symptomatic therapeutic management; under Granulocytes
Potassium, hemofiltration, septic acute renal failure, 236–237; see also Glucose-insulin-potassium (GIK) in peritonitis with hypodynamic septic shock
Prealbumin and organ failure scores, septic patients, 68, 70–74
Prediction. See Scoring systems/prediction entries
Prednisolone
corticosteroids compared, endotoxemic shock, 274–282, 284
treatment of septic shock, 261–267, 269
Prekallikrein
and β-factor XIIa inhibition, polytraumatized patients vs. normals, 77, 78, 80, 82, 83
and organ failure scores, septic patients, 70–75
and proenzyme functional inhibition index, predictor in septicemia, 98, 100
Preoperative treatments. See Hemodilution, preoperative isovolemic, and subsequent infection; Methylprednisolone, high-dose preoperative, maintenance of pulmonary permeability
Proenzyme functional inhibition index, predictor in septicemia, 77, 97–101
abdominal surgery, 99–100
antiplasmin, 77, 83, 98, 100
antithrombin III, 98, 100, 101
chromogenic peptide substrate, 99
functional protease inhibitor deficiencies, 100, 101
kallikrein inhibition, 98, 100
and mortality, 99
multiple trauma, 99
plasminogen, 77, 83, 98, 100
prekallikrein, 98, 100
prothrombin, 77, 83, 98, 100
Prognostic indices. See Scoring systems/prediction entries
Prostaglandins. See Scoring systems/prediction entries
corticosteroid treatment of septic shock, 253
hemofiltration, septic acute renal failure, 242, 246
methylprednisolone, high-dose preoperative, 287–288, 291–292
scoring systems/prediction, ARDS and MOF, 9
see also Arachidonic acid cascade
Protease inhibitor deficiencies, functional, predictor in septicemia, 100, 101
α1-Proteinase inhibitor, 210–212
Prothrombin, 77, 83, 98, 100
Pseudomonas, 253
aeruginosa, 216
Pulmonary artery catheterization, and hemodynamics monitoring, septic shock, 123–124; see also Catheters, arterial
hypertension, and hemodynamics monitoring, septic shock, 124
pressure, mean, and acute respiratory failure, ketanserin administration, 153–158
Pulmonary capillary wedge pressure (PCWP) correlation with functional impairment, 129, 132, 136
extravascular lung water advanced septic shock with MOF, 139–143
major burns with sepsis, 146–151
and hemodynamics monitoring, septic shock, 123–124, 126–127
septic shock, postoperative, symptomatic therapeutic management, 190
Pulmonary edema
cf. ARDS, scoring, 3–4
extravascular lung water advanced septic shock with MOF, 142–143
major burns with sepsis, 145, 150
fluid resuscitation, hydroxyethyl starch vs. Ringer’s lactate, 197, 203
septic shock, postoperative, symptomatic therapeutic management, 190
and ventilation, 175–176
functional residual capacity, 176, 178, 181
Radial artery catheter, correlation with functional impairment, 131
Renal failure
correlation with functional impairment, 129, 135, 136
metabolic and lymphocyte parameters, septic patients, 69–74
glucose-insulin-potassium (GIK) in peritonitis with hypodynamic septic shock, 315
and hemodynamics monitoring, septic shock, 126
and ventilation, 180
see also Hemofiltration, continuous, septic acute renal failure
Resistance. See Vascular resistance
Respiratory failure, acute, ketanserin administration, 153–158
extravascular lung water, 153–156
liver function, 158
mean pulmonary artery pressure, 153–158
permeability, microvascular, 157, 158
serotonin, 153, 157–158
Swan-Ganz catheter, 154
see also Lung surfactant replacement and oxygen free radical-induced respiratory failure, guinea pigs

Respiratory System, and Hannover Intensive Score, 23
Reticuloendothelial system, 207, 210, 212–213, 249, 283; see also Gadolinium chloride RES blockade, acute septic peritonitis and shock, rat
Retinol-binding protein and organ failure scores, septic patients, 68, 72
Ringer’s lactate, fluid treatment, experimental mesenteric shock, 205–207; see also Fluid resuscitation, hydroxyethyl starch vs. Ringer’s lactate, traumatic-hemorrhagic shock
Saline cf. lung surfactant replacement, free radical-induced respiratory failure, 306, 308
Schwartzman reaction, 215
Scoring systems/prediction. See also D-erythro-Neopterin levels, ICU patients with severe complications; Proenzyme functional inhibition index, predictor in sepsis
Scoring systems/prediction, ARDS and MOF, 3–13
clinical parameters, 7–8
granulocyte enzymes and proteins, immunnoassay quantification, 10, 41–47
elastase, 10, 11, 13, 41–43, 45–47
laboratory parameters, 8–12
arachidonic acid cascade, 9, 13, 59, 176
blood ketone ratio, 8, 13
central plasma clearance rate of amino acids, 8, 13
complement, 9–10, 12, 13, 59
MOF, in sepsis, 4–6
listed, 5
predisposing conditions, at-risk patients, 6–7
true ARDS cf. other pulmonary edema, 3–4
Scoring systems/prediction, hypovolemic and traumatic shock, 17–21, 23–24
APACHE, 17–21, 26–29
Glasgow Coma Scale, 24, 27, 29, 166
Hannover Intensive Score (HIS), multiple organ systems, 17–21, 23–24
listed, 23–24
Injury Severity Score (ISS), 86, 90, 93, 165, 169–171
TISS, 17–21
trauma score, 17
Scoring systems/prediction, sepsis and trauma, 25–29, 67–75, 85–93
amino acids, 67, 70–73
antithrombin III, 70–75
α₁-antitrypsin, 68, 70–74
BUN, 87–90, 92
case records, 68
C₁-esterase inhibitor, 70–72
circulatory, 69–71, 73
cortisol, 87, 88, 91, 92
C-peptide, 87–89, 91, 92
C-reactive protein, 68, 70–74
early, 155–119
cardiac output, 117, 118
CO₂, 118, 119
liver failure, hypercatabolic, 118–119
nitrogen excretion, 116, 119
oxygen consumption, 116–119
statistics, 116
total peripheral resistance, 116–119
elastase, 70–74
ethical considerations, 29
fibronectin, 68, 72, 73
free fatty acids, 87–88, 90
glucose, 87–88, 91, 92
HGH, 87, 88, 91
kidney, 69–71, 73, 74, 87, 90, 92
lactate, 87–90
liver, 69, 73, 75
lung, 69, 70
α₂-macroglobulin, 68, 70, 71–74
cf. normals and postoperative nonseptic, 72, 74
osmolality, 87, 88, 90, 92
prealbumin, 68, 70–74
prekallikrein, 70–75
prognostic indices, 33–39
 graphs of scores, 35
 listed, 35
 statistically significant problems, 34–36, 39
reference frame, 28–29
retinol-binding protein, 68, 72
spontaneous blastogenesis, 70, 72, 74
statistics, 70
T cells
 helper and suppressor, 70–72
 subset ratio, 70–74
thyroid hormones in nonthyroidal illness, 87, 89–93
transferrin, 68, 70–75
transition scales, 25–26
Sepsis
 granulocyte function, chemiluminescence studies, postoperative infection, 52–54
 major burns with, extravascular lung water, 145–151
 MOF in, 4–6
 D-erythro-neopterin levels, ICU patients with severe complications, 60, 62
see also Hemodynamics correlated with functional impairment, sepsis; Hemofiltration, continuous, septic acute renal failure; Scoring systems/prediction, sepsis and trauma
Septicemia. See Proenzyme functional inhibition index, predictor in septicemia
Septic shock, postoperative, symptomatic therapeutic management, 185–193
antibiotics, 188, 189
arachidonic acid cascade, blocking, 192
catecholamines, exogenous, 189, 191
glucocorticoids, 193
hemodynamics, 186–187
 left ventricular function, 190–191
 Swan-Ganz catheter, PCWP, 190
naloxone, 191
 ethical considerations, 191–192
 parenteral nutrition, 189, 191
peritonitis, 187, 188
selective decontamination of digestive tract, 188
respiratory, 187, 191
ARDS, 187, 191–192
edema, 190
extracorporeal membrane oxygenation, 192
oxygen transport, 189, 190
volume therapy (colloid), 189, 190
see also Corticosteroids in treatment of septic shock; Gadolinium chloride RES blockade, acute septic peritonitis and shock; Glucose-insulin-potassium (GIK) in peritonitis with hypodynamic septic shock; Hemodynamics, monitoring with and without Swan-Ganz catheter, septic shock; Inotropic support, non-adrenergic, in septic shock, dog; Plasma exchange, septic shock; under Lung water, extravascular
Serotonin, 217
 and acute respiratory failure, ketanserin administration, 153, 157, 158
Sodium, hemofiltration, septic acute renal failure, 236–237
Splenectomy, gadolinium chloride RES blockade, acute septic peritonitis and shock, rat, 325–328
Starling equation/forces, 139, 142, 288–289
Superoxide dismutase, lung surfactant replacement and free radical-induced respiratory failure, 305, 309
Superoxide radicals, lung surfactant replacement and free radical-induced respiratory failure, 305
Surfactant. See Lung surfactant entries
Survival
corticosteroid treatment of septic shock, 255–257
granulocyte function, chemiluminescence studies, postoperative infection, 54–55
D-erythro-neopterin levels, ICU patients with severe complications, 60, 61
physiologic monitoring and therapy, high-risk surgical patients, 103–105
Swan-Ganz catheter
and acute respiratory failure, ketanserin administration, 154
hemofiltration, septic acute renal failure, 228, 231
septic peritonitis, 109-110
septic shock, postoperative, symptomatic therapeutic management, 190
see also Catheters, arterial; Hemodynamics, monitoring with and without Swan-Ganz catheter, septic shock

TBG, 87, 89, 90, 93
T cells, 59, 63
 parameters correlated with organ failure scores, septic patients
 helper and suppressor, 70-72
 subset ratio, 70-74
Thromboplastin, 217, 219, 220
Thromboxanes
corticosteroid treatment of septic shock, 253
hemofiltration, septic acute renal failure, 242, 246
methylprednisolone, high-dose preoperative, maintenance of pulmonary permeability, 291-292
scoring systems/prediction, ARDS and MOF, 9
see also Arachidonic acid cascade

Thyroid hormones
 in nonthyroidal illness (NTI), 87, 89, 90-93
 prediction of outcome, trauma/sepsis, 87, 89-93
Thyroxine (T₄), 87, 89-91, 93
TISS, 17-21
Transaminases, liver, corticosteroids compared, endotoxemic shock, 275, 277, 278, 281
Transferrin and organ failure scores, septic patients, 68, 70-75
Transition scales, 25-26

Trauma
 multiple, proenzyme functional inhibition index, predictor in septicemia, 99 score, 17
 see also β-Factor XIIa inhibition, poly-traumatized patients vs. normals, plasma; Fluid resuscitation, hydroxyethyl starch vs. Ringer’s lactate, traumatic-hemorrhagic shock; Lung surfactant and parenteral nutrition, multiply traumatized rat; Scoring systems/prediction, hypovolemic and traumatic shock; Scoring systems/prediction, sepsis and trauma

Triiodothyronine (T₃), 87-91, 93
TSH, 87, 89, 91-93

Vascular resistance
 peripheral, 130, 133, 135
 early predictors, sepsis, 116-119
 septic peritonitis, 110-112
 pulmonary, septic peritonitis, 110, 112
 systemic, and hemodynamics monitoring, septic shock, 123-124, 126-127

Ventilatory management, 175-182
CPAP, 177, 178, 181
CPPV, 177, 178, 181
fluid management, 180
IRV, 177-179
lung surfactant
 and parenteral nutrition, multiple trauma, 295
 replacement and free radical-induced respiratory failure, 306, 308, 312
oxygen administration, 177-178
PEEP, 178, 179
prevention of ARDS and MOF, 163, 167-171, 182
pros and cons, 167
prophylaxis cf. early therapy, 175
pulmonary edema, 175-176
 functional residual capacity, 176, 178, 181
renal failure, 180
schedule, 180-181
Volume loading, failure, glucose-insulin-potassium (GIK) following, 315, 318

Water, extravascular lung. See Lung water, extravascular

Waterhouse-Friderichsen syndrome, 216

Xanthine oxidase, lung surfactant replacement and free radical-induced respiratory failure, 305, 308-312

ZAP, 264, 265