
A Relationships between the Probability Models

Lemma A.1. For any k,m ∈ N and h ∈ (0, 1) we have the implications

PMm
k (∃hGCW) ( PMm

k (∃GCW∗) ( PMm
k (∃GCW),

PMm
k (∆h) ( PMm

k (∆0),

PMm
k (PL) ( PMm

k (∃GCW),

PMm
k (∆h) ∩ PMm

k (∃GCW) ( PMm
k (∃hGCW),

PMm
k (∆0) ∩ PMm

k (∃GCW) ( PMm
k (∃GCW∗).

Proof. This is a direct consequence of the definitions.

B GCW Identification under the Plackett-Luce Assumption

In this section, we prove the lower and upper bounds of solutions to the GCW identification problem
under the Plackett-Luce assumption stated in Theorems 5.1 and 6.1. For θ ∈ (0,∞)m we denote by
P(θ) ∈ PMm

k (PL) the corresponding PM, which is consistent with the Plackett-Luce model with
parameter θ on Sm, i.e., P(θ) = {P(θ)(·|S)}S∈[m]k is defined via

P(θ)(i|S) :=
θi∑
a∈S θa

for any S ∈ [m]k and i ∈ S.

As P(xθ) = P(θ) holds for any x > 0 and θ ∈ (0,∞)m, we may restrict ourselves w.l.o.g. to those
P(θ) with maxi∈[m] θi = 1.

In [35], the following lower resp. upper sample complexity bounds for solutions to Pm,γk (PL) resp.
Pm,γk (PL ∧ ∃GCW∗) depending on the ground-truth Plackett-Luce parameter have been proven.
Theorem B.1. Any solution A to Pm,γk (PL) fulfills

EP(θ)

[
TA
]
∈ Ω

(
max

(∑m

j=2

θj
(1− θj)2

ln
1

γ
,
m

k
ln

1

γ

))
for any θ ∈ (0, 1]m with 1 = θ1 > maxj≥2 θj .

Proof. Confer Theorem 7 in [35].

Theorem B.2. There is a solution A to Pm,γk (PL ∧ ∃GCW∗), which fulfills for any θ ∈ (0, 1]m

with 1 = θ1 > maxj≥2 θj the estimate

PP(θ)

(
D(A) ∈ GCW(P) and TA ≤ t′(θ, k, γ)

)
≥ 1− γ

with

t′(θ, k, γ) ∈ O
(

Θ[k]

k

∑m

j=2

1

(1− θj)2
ln

(
k

γ
ln

(
1

1− θj

)))
and Θ[k] := maxS∈[m]k

∑
a∈S θa.

Proof. Confer Theorem 3 in [35] and note that minj≥2(1 − θj)−2 ≥ 1 holds for any θ ∈ (0, 1]m

with 1 = θ1 > maxj≥2 θj .

To translate the preceding results into our setting, we need a better understanding of the set
PMm

k (PL ∧ ∃hGCW). This is achieved by means of the following observation. For the sake
of completeness, we also provide a characterization of PMm

k (PL ∧∆h).
Lemma B.3. For θ ∈ (0,∞)m with θ1 ≥ · · · ≥ θm we have

P(θ) ∈ PMm
k (∃hGCW)⇔ ∀j ∈ {2, . . . , k} : h(θ1 + · · ·+ θk) + θj − θ1 ≤ 0

⇔ h(θ1 + · · ·+ θk) + θ2 − θ1 ≤ 0

and

P(θ) ∈ PMm
k (∆h)⇔ ∀i ∈ [m− k] : h(θi + · · ·+ θi+k−1) + θi+1 − θi ≤ 0.
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Proof. This follows directly from the definitions.

From this, we obtain the following result, which is not explicitly needed anywhere but rather stated
for the sake of completeness.
Corollary B.4. For any h ∈ (0, 1) and m, k ∈ N with k ≤ m we have PMm

k (PL ∧ ∃hGCW) ⊇
PMm

k (PL ∧∆h) 6= ∅.

Proof. Note that PMm
k (PL ∧ ∃hGCW) ⊇ PMm

k (PL ∧ ∆h) is a direct consequence from the
definitions. To see PMm

k (PL ∧∆h) 6= ∅ we fix x > 1 with h+ h
x ≤ 1 and define θ ∈ (0, 1]m via

θj := hj

(kx)j for any j ∈ [m]. Then,

h(θi + · · ·+ θi+k−1) + θi+1 − θi

=
hi+1

(kx)i
+

(
hi+2

(kx)i+1
+ · · ·+ hi+k

(kx)i+k−1
+

hi+1

(kx)i+1

)
− hi

(kx)i

≤ hi+1

(kx)i
+

khi+1

(kx)i+1
− hi

(kx)i
=

hi

(kx)i

(
h+

h

x
− 1

)
≤ 0

holds for any i ∈ [m− k] and thus P(θ) ∈ PMm
k (PL ∧∆h) follows from Lemma B.3.

Proof of Theorem 5.1. Define θ ∈ (0, 1]m via θ1 := 1 and θj := 1−h
h(k−1)+1 for 2 ≤ j ≤ m. Then,

h
∑k

j=1
θj + θ2 − θ1 = h

(
1 +

(k − 1)(1− h)

h(k − 1) + 1

)
+

1− h− h(k − 1)− 1

h(k − 1) + 1

=
h(h(k − 1) + 1 + (k − 1)(1− h))− hk

h(k − 1) + 1
= 0

shows with regard to Lemma B.3 that P(θ) ∈ PMm
k (∃hGCW) is fulfilled. Moreover, for j ∈

{2, . . . ,m} we have 1− θj = hk
h(k−1)+1 and thus

θj
(1− θj)2

=
(h(k − 1) + 1)(1− h)

h2k2
=
hk(1− h) + (1− h)2

h2k2
,

which is in Θ( 1
hk + 1

h2k2 ) = Θ
(

1
kh2

(
1
k + h

))
, since 1− h ∈ Θ(1) as h↘ 0. In particular,

m∑
j=2

θj
(1− θj)2

∈ Θ

(
m

kh2

(
1

k
+ h

))
and thus the statement follows from Theorem B.1.

Proof of Theorem 6.1. Suppose γ ∈ (0, 1), h ∈ (0, 1) and m, k ∈ N≥2 with k ≤ m to be arbitrary
but fixed for the moment and let A be the solution to Pm,γk (PL ∧ ∃GCW∗) from Theorem B.2. For
l ∈ {2, . . . , k} define gl : [0, 1]m → R via gl(θ) := h(1 + θ2 + · · ·+ θk) + θl − 1 and denote by
B the set

{θ ∈ (0, 1]m | 1 = θ1 > θ2 ≥ · · · ≥ θm and ∀l ∈ {2, . . . , k} : gl(θ) ≤ 0}.

According to Lemma B.3, any P ∈ PMm
k (PL) with GCW(P) = 1 fulfills P ∈ PMm

k (∃hGCW)
iff P = P(θ) for some θ ∈ B. Consequently, it is with regard to Theorem B.2 sufficient to show that

Θ[k]

k

∑m

j=2

1

(1− θj)2
ln

(
k

γ
ln

(
1

1− θj

))
≤ 6m

kh2

(
1

k
+ h

)
ln

(
k

γ
ln(h−1)

)
(6)

holds for any θ ∈ B. We prove this in several steps.

Claim 1: For any θ ∈ B we have∑k

j=2

1 + θ2 + · · ·+ θk
(1− θj)2

≤ 3(1 + hk)

h2
. (7)
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Proof of Claim 1: Let B′ be the set of all θ = (1, θ2, . . . , θk) with 1 ≥ θ2 ≥ · · · ≥ θk ≥ 0 and
gl(θ) ≤ 0 for all l ∈ {2, . . . , k}. As (1, θ2, . . . , θk) ∈ B′ holds for any (1, θ2, . . . , θm) ∈ B, it is
sufficient to show that (7) holds for any θ = (1, θ2, . . . , θk) ∈ B′.

Claim 1a: For any θ ∈ B′ and l ∈ {2, . . . , k} we have θl ≤ 1− h.
Proof: For θ = (1, θ2, . . . , θk) ∈ B′ and l ∈ {2, . . . , k} we have

0 ≥ gl(θ) = h(1 + θ2 + · · ·+ θk) + θl − 1 ≥ h+ θl − 1,

and thus θl ≤ 1− h. ♣

According to Claim 1a, B′ is a compact subset of {1} × [0, 1− h]k−1. Consequently, the continuous
function f : B′ → R, f(θ) :=

∑k
j=2

1+θ2+···+θk
(1−θj)2 is well-defined and takes its maximum on B′ in

a point θ∗ ∈ B′.

Claim 1b: There is some j ∈ {2, . . . , k} s.t. g2(θ∗) = · · · = gj(θ
∗) = 0 and θ∗j+2 = · · · = θ∗k = 0.

Proof: To show indirectly the existence of some j ∈ {2, . . . , k} with gj(θ
∗) = 0 assume on

the contrary that gl(θ∗) < 0 for any l ∈ {2, . . . , k}. Then, if ε > 0 is small enough, θε :=
(1, θ∗2 + ε, θ∗3 , . . . , θ

∗
k) is an element of B′. Since

∂f

∂θ2
(θ) =

2θ2(1 + θ2 + · · ·+ θk)

(1− θ2)3
+
∑k

l=2

1

(1− θl)2
> 0

holds for any θ in the interior of B′, we would obtain f(θε) > f(θ∗) in contradiction to the
optimality of θ∗. Hence, there has to be a j ∈ {2, . . . , k} with gj(θ∗) = 0. In case j ≥ 3, we may
infer from gj−1(θ∗)− gj(θ∗) = θ∗j−1 − θ∗j ≥ 0 inductively 0 = gj−1(θ∗) = · · · = g2(θ∗).
It remains to prove θ∗j+2 = · · · = θ∗k = 0. Assume this was not the case, i.e., j ≤ k − 2 and
j′ := max{l ∈ {2, . . . , k} | θ∗l > 0} ≥ j + 2. By definition of j we have gj(θ∗) < 0. Consequently,

θ′ε := (1, θ∗2 , . . . , θ
∗
j , θ
∗
j+1 + ε, θ∗j+2, . . . , θ

∗
j′ − ε, 0, . . . , 0)

is for small values of ε ≥ 0 an element of B′. Using
∑k
l=2(θ′ε)k =

∑k
l=2 θ

∗
l we see that

d

dε
f(θ′ε) =

2

(1− θ∗j+1 − ε)3
− 2

(1− θ∗j′ + ε)3
,

which is due to θ∗j+1 ≥ θ∗j′ positive for small values of ε > 0. In particular, f(θ′ε) > f(θ′0) = f(θ∗)

holds for small ε > 0, which contradicts the optimality of θ∗. This completes the proof of Claim 1b.
♣

According to Claim 1b we may fix some j ∈ {2, . . . , k} with g2(θ∗) = · · · = gj(θ
∗) = 0 and

θ∗j+2 = · · · = θ∗k = 0. Since gl(θ∗) − gl′(θ∗) = θ∗l − θ∗l′ = 0 holds for any l, l′ ∈ {2, . . . , k}, we
have θ∗2 = · · · = θ∗j . From 0 ≥ g2(θ∗) ≥ h(1 + (j − 1)θ∗2) + θ∗2 − 1 we infer

θ∗2 = · · · = θ∗j ≤
1− h

1 + (j − 1)h
= 1− hj

1 + h(j − 1)
.

Together with θ∗j ≥ θ∗j+1 ≥ 0 = θ∗j+2 = · · · = θ∗k we obtain

1 + θ∗2 + · · ·+ θ∗k
(1− θ∗2)2

≤ 1 + jθ∗2
(1− θ∗2)2

≤ (1 + h(j − 1))2

h2j2

(
1 +

j(1− h)

1 + h(j − 1)

)
=

(1 + h(j − 1))(1− h+ j)

h2j2
≤ 2

(
1

h2j
+
h(j − 1)

h2j

)
≤ 2

h2

(
1

j
+ h

)
,
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where we have used that 1− h+ j ≤ 2j holds trivially. Combining this with the fact that g2(θ∗) ≤ 0

implies (1 + θ∗2 + · · ·+ θ∗k) ≤ 1−θ∗2
h ≤ 1

h yields

f(θ∗) =
∑k

l=2

1 + θ∗2 + · · ·+ θ∗k
(1− θ∗l )2

≤ (1 + θ∗2 + · · ·+ θ∗k)

(∑j+1

l=2

1

(1− θ∗2)2
+
∑k

l=j+2
1

)
≤ 2j

h2

(
1

j
+ h

)
+
k − j − 1

h
≤ 3(1 + hk)

h2
.

Since θ∗ was a maximum point of f in B′, Claim 1 follows. �

Claim 2: For any θ ∈ B we have
∑m
j=2

1
(1−θj)2 ≤

m−1
k−1

∑k
j=2

1
(1−θj)2 .

Proof of Claim 2: Using 1 ≥ θ2 ≥ · · · ≥ θm, this follows directly from comparing the
(m − 1)(k − 1) summands in (k − 1)

∑m
j=2

1
(1−θj)2 =

∑m
j=2

1
(1−θj)2 + · · · +

∑m
j=2

1
(1−θj)2 with

those in (m− 1)
∑k
j=2

1
(1−θj)2 . �

Claim 3: Inequality (6) holds for any θ ∈ B.
Proof of Claim 3: Let θ ∈ B be fixed and note that Θ[k] = 1 + θ2 + · · · + θk holds. From

1 ≥ θ2 ≥ · · · ≥ θm ≥ 0 we get Θ[k] ∈ [1, k]. Together with 1−θ2
Θ[k]

=
hΘ[k]−g2(θ)

Θ[k]
≥ h this shows

1 − θj ≥ 1 − θ2 ≥ h and in particular ln(1/(1 − θj)) ≤ ln(h−1) for each j ∈ {2, . . . ,m}. In
combination with Claims 1 and 2 this allows us to conclude

Θ[k]

k

∑m

j=2

1

(1− θj)2
ln

(
k

γ
ln

(
1

1− θj

))
≤ 1

k
ln

(
k

γ
ln(h−1)

)∑m

j=2

1 + θ2 + · · ·+ θk
(1− θj)2

≤ m− 1

k(k − 1)
ln

(
k

γ
ln(h−1)

)∑k

j=2

1 + θ2 + · · ·+ θk
(1− θj)2

≤ 3(m− 1)(1 + hk)

k(k − 1)h2
ln

(
k

γ
ln(h−1)

)
≤ 6m

kh2

(
1

k
+ h

)
ln

(
k

γ
ln(h−1)

)
,

where we have used that m−1
k−1 ≤

2m
k holds due to k ≥ 2. This completes the proof of Claim 3 and of

the theorem.

C Proofs for Section 4.1

Proposition C.1 (Detailed version of Proposition 4.1). Let 0 < γ < γ0 < 1/2 and 0 < h < h0 < 1

be fixed. Suppose A solves Pk,γk (∆h), let p ∈ ∆h
k be arbitrary and write i := mode(p). Then,

Ep

[
TA
]
≥
f
(

pi−pj
2(pi+pj)

, γ
)

pi + pj

holds for all j ∈ [k] \ {i} with f(z, γ) := 1−2γ
2z

⌈
ln((1−γ)/γ)

ln((1/2+z)/(1/2−z))

⌉
, which fulfills ∀z ∈ (0, h0/2) :

f(z, γ) ≥ c(h0, γ0)z−2 ln(γ−1) for some appropriate constant c(h0, γ0) > 0 that does not depend
on γ or h. In particular, we obtain the worst-case bound

supp∈∆h
k
Ep[TA] ≥ 4c(h0, γ0)h−2 ln(γ−1) (8)
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and the instance-wise bound

∀p ∈ ∆h
k : Ep[TA] ≥ 2c(h0, γ0)(h(p))−2 ln(γ−1)

(
1

k
+ h

)
. (9)

We prepare the proof of Proposition C.1 with sample complexity lower bounds of solutions to
P2,γ

2 (∆h). For the sake of convenience, we write p for (p, 1− p) ∈ ∆2. Note that solving P2,γ
2 (∆h)

resp. P2,γ
2 (∆0) reduces to deciding with error probability ≤ γ

H0 : p > 1/2 vs. H1 : p < 1/2 (10)

based on iid samples X1, X2, · · · ∼ Ber(p) for any p ∈ [0, 1] with |p−1/2| ≥ h resp. |p−1/2| > 0.
Lemma C.2. Let 0 < γ < γ0 < 1/2 and 0 < h < h0 < 1/2 and suppose A is able to decide (10)
with confidence ≥ 1− γ for any p ∈ {1/2± h}, i.e.,

P1/2+h(D(A) = 0) ≥ 1− γ and P1/2−h(D(A) = 1) ≥ 1− γ.

There exists a constant c(h0, γ0) > 0, which does not depend on γ or h s.t.

E1/2±h[TA] =
1− 2γ

2h

⌈
ln((1− γ)/γ)

ln((1/2+h)/(1/2−h))

⌉
≥ c(h0, γ0)h−2 ln(γ−1).

Proof. Let A′ be the corresponding Sequential Probability Ratio Test (cf. [41]) for (10), i.e. it
samples X1, X2, . . . until the first time n, where 1

n

∑n
k=1Xk 6∈ [1/2± Ch,γ(n)] with Ch,γ(n) :=

1
2n

⌈
ln((1−γ)/γ)

ln((1/2+h)/(1/2−h))

⌉
and decides for 0 in case 1

n

∑n
k=1Xk > 1/2 + Ch,γ(n) and for 1 in case

1
n

∑n
k=1Xk < 1/2− Ch,γ(n). On p.10–15 in [38] it is shown that A′ fulfills

P1/2+h(D(A′) = 0) ≥ 1− γ and P1/2−h(D(A′) = 1) ≥ 1− γ,

as well as

E1/2±h[TA
′
] =

1− 2γ

2h

⌈
ln((1− γ)/γ)

ln((1/2+h)/(1/2−h))

⌉
=: g(h, γ).

According to pages 19–22 in [38] or [15, Theorem 2, p. 365] or the original proof from [41], A′ is a
testA′′ with error ≤ γ (on any instance p ∈ {1/2± h}) for (10), for which E1/2±h[TA

′′
] is minimal.

In particular, we have
E1/2±h[TA] ≥ E1/2±h[TA

′
] ≥ g(h, γ).

Since w : (0, 1) → R, γ 7→ ln((1−γ)/γ)·(1−2γ)
ln(1/γ) fulfills w(1/2) = 0 and

w′(γ) =
(1− 2γ) ln(γ−1)− (γ − 1) ln(γ−1 − 1)(2γ + 2γ ln(γ−1)− 1))

(γ − 1)γ ln2(γ−1)
< 0

for every γ ∈ (0, 1/2), there exists some c′(γ0) > 0 with ln((1− γ)/γ)(1− 2γ) ≥ c′(γ0) ln(1/γ)
for each γ ∈ (0, γ0). Moreover, as ln(1 + x) < x for x > −1, we obtain for h ∈ (0, h0) the
inequality

ln

(
1/2 + h

1/2− h

)
= ln

(
1 +

4h

1− 2h

)
<

4h

1− 2h
<

4h

1− 2h0
.

Combining these estimates, we get g(h, γ) ≥ c(h0, γ0)h−2 ln(γ−1) with c(h0, γ0) := c′(γ0)(1−2h0)
8 .

Before proving Proposition C.1, we state two further auxiliary lemmata. The first one is a simplified
version of Walds identity (cf. e.g. Thm. 17.7 in [2]), which we shortly prove for the sake of
convenience. The second lemma is only required for the instance-wise bound in Proposition C.1.
Lemma C.3. Let k ∈ N and (p1, . . . , pk) ∈ ∆k be fixed. Suppose {Xt}t∈N to be an iid family of
random variables Xt ∼ Cat(p1, . . . , pk) on some joint probability space (Ω,F ,P) and {Ft}t∈N ⊆
F to be a filtration, such that {Xt}t is {Ft}t-adapted and ∀t : Xt⊥⊥Ft−1, e.g. Ft = σ(X1, . . . , Xt).
If τ is an {Ft}t-stopping time, then the random variables

Ti(τ) :=
∑

t≤τ
1{Xt=i}, i ∈ [k],
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fulfill E[Ti(τ)] = piE[τ ] for each i ∈ [k]. In particular, we obtain

E[τ ] =

∑
i∈I E[Ti(τ)]∑

i∈I pi

for any I ⊆ [k] with
∑
i∈I pi > 0.

Proof. Since {t ≤ τ} = {t > τ}c = {τ ≤ t− 1}c ∈ Ft−1 holds for any t ∈ N and Xt⊥⊥Ft−1, we
obtain

E
[
1{Xt=i}1{t≤τ}

]
= E

[
E
[
1{Xt=i}1{t≤τ}

∣∣Ft−1

]]
= E[1{t≤τ}E[1{Xt=i}|Ft−1]] = piE[1{t≤τ}].

Via an application of the monotone convergence theorem we infer

E [Ti(τ)] = limT →∞ E[Ti(τ ∧ T )]

= limT →∞
∑

t≤T
E
[
1{Xt=i}1{t≤τ}

]
= pi limT →∞

∑
t≤T

E
[
1{t≤τ}

]
= pi limT →∞ E[τ ∧ T ] = piE[τ ].

and thus in particular
∑
i∈I E[Ti(τ)] = E[τ ]

∑
i∈I pi.

Lemma C.4. Suppose p ∈ ∆h
k \ ∆h̃

k for some 0 < h < h̃ < 1 and let i := mode(p) and
j ∈ arg maxl∈[k]\{i} pl. Then, we have pi + pj ≥ 2+(k−2)h

k and pi − pj < h̃.

Proof. From p ∈ ∆h
k and mode(p) = i we infer that pl ≤ pi − h holds for each l ∈ [k] \ {i}. Thus,

1 =
∑

l∈[k]
pl ≤ pi +

∑
l 6=i

(pi − h) = kpi − (k − 1)h

shows us that pi = 1+(k−1)h
k +ε for some ε ≥ 0. Due to

∑
l 6=i pl = 1−pi and pj = maxl∈[k]\{i} pl,

we have

pj ≥
1− pi
k − 1

=
1− 1+(k−1)h

k − ε
k − 1

=
1 + h

k
− ε

k − 1
.

Consequently,

pi + pj ≥
1 + (k − 1)h

k
+ ε+

1 + h

k
− ε

k − 1

=
2 + (k − 2)h

k
+

(k − 2)ε

k − 1

≥ 2 + (k − 2)h

k
.

Moreover, p 6∈ ∆h̃
k assures the existence of some j′ ∈ [m] \ {i} with pi < pj′ + h̃. Since the choice

of j guarantees pj′ + h̃ ≤ pj + h̃, this implies pi − pj < h̃.

Proof of Proposition C.1. We may suppose w.l.o.g. i = 1 and fix j = 2. Let us define a := p1
p1+p2

and suppose we have a coin C ∼ Ber(p) with p ∈ {a, 1− a}. By simulating A, we will construct an
algorithm A′ for testing

H′0 : p = a H′1 : p = 1− a
in the following way: WheneverA makes a query at time t, we generate an independent sample Ut ∼
U([0, 1]). Then, we return the feedback Xt = i′ ∈ {3, . . . , k} iff Ut ∈ (

∑
j′≤i′−1 pj′ ,

∑
j′≤i′ pj′ ]

and in case Ut ∈ [0, p1 + p2] we generate an independent sample Ct ∼ Ber(p) from our coin C and
return

Xt =

{
1, if Ct = 1,

2, if Ct = 0.
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As soon asA terminates, we terminate and return D(A′) = 0 if D(A) = 1 and D(A′) = 1 otherwise.
By our construction, we have Pp(Xt = i) = pi for each i ∈ {3, . . . , k}

Pa(Xt = 1) = (p1 + p2)P(Ct = 1) = p1, Pa(Xt = 2) = (p1 + p2)P(Ct = 0) = p2

and similarly P1−a(Xt = 1) = p2 and P1−a(Xt = 2) = p1. Thus if p = a, A behaves as started
on p and if p = 1 − a, A behaves as started on p′ := (p2, p1, p3, . . . , pk) ∈ ∆h

k . Since A solves
Pk,γk (∆h), we obtain

Pa(D(A′) = 0) = Pp (D(A) = 1) ≥ 1− γ

and (due to 2 = arg maxj′∈[k] p
′
j)

P1−a(D(A′) = 1) = Pp′(D(A) 6= 1) ≥ Pp′(D(A) = 2) ≥ 1− γ,

i.e., A′ is able to decide H′0 versus H′1 with error probability ≤ γ. From Lemma C.2 we infer that it
has to throw the coin C (in both cases p ∈ {a, 1− a}) in expectation at least f(a− 1/2, γ) times for
this. Regarding that C is thrown in our construction iff we return as feedback an element from {1, 2},
we get that

Ep[T1(TA) + T2(TA)] ≥ f(a− 1/2, γ) where Ti(TA) :=
∑

t≤TA
1{Xt=i}.

An application of Lemma C.3 yields

Ep[TA] ≥ f(a− 1/2, γ)

p1 + p2
=
f
(

p1−p2
2(p1+p2) , γ

)
p1 + p2

,

which completes the proof of the first statement.

The worst-case bound (8) then follows from the just proven bound via

supp∈∆h
k
Ep[TA] ≥ E( 1+h

2 , 1−h2 ,0,...,0)[TA] ≥ f(h/2, γ) ≥ 4c(h0, γ0)h−2 ln(γ−1)

for some c(h0, γ0) > 0, that is assured to exist by Lemma C.2. To prove (9) suppose at first h̃ ∈ (h, 1)

and p ∈ ∆h
k \∆h̃

k to be fixed and write i := mode(p). Lemma C.4 reveals that there exists some
j ∈ [k] \ {i} with pi + pj ≥ 2+(k−2)h

k and pi − pj < h̃. Consequently, the above proven bound and
the estimate f(h, γ) ≥ c(h0, γ0)h−2 ln(γ−1) yield

Ep[TA] ≥
f
(

pi−pj
2(pi+pj)

, γ
)

pi + pj
≥ 4c(h0, γ0)

pi + pj
(pi − pj)2

ln(γ−1)

≥ 4c(h0, γ0)h̃−2 ln(γ−1)
2 + (k − 2)h

k

≥ 2c(h0, γ0)h̃−2 ln(γ−1)

(
1

k
+ h

)
.

Since p ∈ ∆
h(p)
k \

(⋃
h̃>h(p) ∆h̃

k

)
=
⋂
h̃>h(p)(∆

h(p)
k \∆h̃

k) for any p ∈ ∆h
k , (9) can be inferred

from this by taking the limit h̃↘ h(p).

From Lemma C.2 we can infer that any solution A to P2,γ
2 (∆0) fulfills limh→ 0 E1/2±h[TA] ∈

Ω(h−2) as h → 0. The following lemma improves upon this bound and is the key ingredient for the
proof of Proposition 4.2.
Lemma C.5. Let γ ∈ (0, 1/2) be fixed and suppose A to be an algorithm, which terminates a.s. for
any p 6= 1/2 and is able to decide (10) for any p 6= 1/2 with confidence ≥ 1− γ, i.e.,

∀p > 1/2 : Pp(D(A) = 0) ≥ 1− γ and ∀p < 1/2 : Pp(D(A) = 1) ≥ 1− γ.

Then,

lim sup
h→ 0

E1/2±h
[
TA
]

h−2 ln lnh−1
≥ 1

2
P1/2(TA =∞) ≥ 1

2
(1− 2γ) > 0.
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Proof. This is stated in Theorem 1 in [14]. To verify this, note that | ln | ln |h|||−1 = (ln lnh−1)−1

holds for h < 1
e and also confer the remark directly after Theorem 1 therein.

Proof of Proposition 4.2. We suppose w.l.o.g. (i, j) = (1, 2) throughout the proof. For h ∈ (0, p1 −
p2) we have (p(h))1 > (p(h))2 > (p(h))l for every l ∈ {3, . . . , k} and together with |(p(h))1 −
(p(h))2| = h this shows p(h) ∈ ∆h

k . Suppose we have a coin C ∼ Ber(p) for p 6= 1/2. By
simulating A as in the proof of Proposition 4.1 we obtain an algorithm A′ for testing H0 : p > 1/2
versus H1 : p < 1/2, which has (due to the theoretical guarantees of A) an error probability ≤ γ for
every p 6= 1/2. Consequently, Lemma C.5 guarantees the existence of a sequence {h′l}l∈N ⊆ (0, e−4)
with

∀l ∈ N :
E1/2±h′l [T

A′ ]

h′l
−2 ln lnh′l

−1 ≥
1− 2γ

2
− ε > 0

for some arbitrarily small but fixed ε ∈ (0, 1−2γ
2 ). If we choose hl := 2(p1 + p2)h′l, then the

corresponding bias of the coin C in the reduction (cf. the proof of Proposition 4.1) is exactly

(p(hl))1

(p(hl))1 + (p(hl))2
=

p1+p2
2 + hl

2

p1 + p2
=

1

2
+

hl
2(p1 + p2)

=
1

2
+ h′l

Hence, if A′ is started on 1/2 + h′l, its internal method A works as if started on p(hl). From
hl ≤ e−4 we obtain 4 = (1/2)−2 ≤ ln(h−1

l ) and thus −2 ln(1/2) ≤ ln ln(h−1
l ), i.e., ln(1/2) ≥

−1/2 ln ln(h−1
l ) ≥ −1/2 ln(h−1

l ). Consequently,

ln lnh′−1
l = ln ln

(
h−1
l

2(p1 + p2)

)
≥ ln

(
ln(1/2) + ln(h−1

l ))
)
≥ ln

(
1

2
ln(h−1

l )

)
= ln(1/2) + ln ln(h−1

l ) ≥ 1

2
ln ln(h−1

l )

holds, and we obtain similarly as in the proof of Proposition 4.1

Ep(hl)[T1(TA) + T2(TA)] ≥ E1/2+h′l
[TA

′
] ≥

(
1

2
(1− 2γ)− ε

)
h′l
−2

ln lnh′l
−1

≥ 2(p1 + p2)2

(
1

2
(1− 2γ)− ε

)
h−2
l ln lnh−1

l

Regarding that his holds for arbitrarily small ε > 0, Lemma C.3 shows5 that

Ep(hl)[T
A]

h−2
l ln lnh−1

l

≥ (1− 2γ)(p1 + p2)

holds for every l ∈ N, which completes the proof.

D Proofs of Section 4.2

Our upper bounds for both the cases m = k and m ≥ k rely on the Kiefer-Dvoretzky-Wolfowitz
inequality, which we state in the following for convenience only for categorical random variables.
Lemma D.1. Suppose X1, X2, . . . to be iid random variables Xn ∼ Cat(p) for some p ∈ ∆k. For
t ∈ N let p̂t be the corresponding empirical distribution after the t observations X1, . . . , Xt, i.e.,
p̂ti = 1

t

∑t
s=1 1{Xs=i} for all i ∈ [k]. Then, we have for any ε > 0 and t ∈ N the estimate

P
(∣∣∣∣p̂t − p

∣∣∣∣
∞ > ε

)
≤ 4e−tε

2/2.

Proof. Confer [12, 24] as well as Theorem 11.6 in [22]. Moreover, note that the cumulative dis-
tribution functions F resp. F̂ t of X1 ∼ Cat(p) resp. p̂t fulfill pj = F (j) − F (j − 1) and
p̂tj = F̂ t(j)− F̂ t(j − 1) and thus

|p̂tj − pj | ≤ |F̂ t(j)− F (j)|+ |F̂ t(j − 1)− F (j − 1)|.
for each j ∈ [k].

5Note here that (p(h))1 + (p(h))2 = p1 + p2.
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Lemma D.2. For h ∈ [0, 1], ε ∈ (−h, 1],p ∈ ∆h
k and p̃ ∈ ∆k we have

(∃i : p̃i −maxj 6=i p̃j ≥ ε and pi 6= maxj pj) ⇒ ||p̃− p||∞ ≥ (h+ ε)/2.

Proof. Suppose there is some i ∈ [k] s.t. p̃i −maxj 6=i p̃j ≥ ε and pi 6= maxj pj hold. Then, there
exists some j ∈ [k] \ {i} with

pj ≥ pi + h and p̃i ≥ p̃j + ε

and we conclude

2 ||p̃− p||∞ ≥ |pj − p̃j |+ |p̃i − pi| ≥ (pj − pi) + (p̃i − p̃j) ≥ h+ ε.

Remark D.3. The bounds from Lemma D.2 are sharp: Consider e.g. p ∈ ∆h
k and p̃ ∈ ∆k defined

via

pi =


1/2− h/2, if i = 1,

1/2 + h/2, if i = 2,

0, otherwise
and p̃i =


1/2 + ε/2, if i = 1,

1/2− ε/2, if i = 2,

0, otherwise.

Then, we have p̃1 −maxj 6=1 p̃j = ε and p1 6= maxj∈[k] pj and at the same time ||p− p̃||∞ = h+ε
2 .

For sake of convenience, we give a pseudo-code for the straightforward strategy described in Section
4.2 for solving Pk,γk (∆h) .

Algorithm 4 DKW mode identification – (non-sequential) solution to Pk,γk (∆h)

Input: γ ∈ (0, 1), h ∈ (0, 1), k ∈ N, access to iid samples Xt ∼ Cat(p)

1: Let T ← d8 ln(4/γ)h−2e
2: Observe X1, . . . , XT ∼ Cat(p)

3: return mode(p̂T ) = arg maxi∈[k]

∑T
t=1 1{Xt=i}

As a direct consequence of Lemma D.1 and Lemma D.2 we obtain the following result.
Proposition D.4. For any k ∈ N, h ∈ (0, 1) and γ ∈ (0, 1), Algorithm 4 called with parameters
γ, h, k solves Pk,γk (∆h) and terminates after exactly d8 ln(4/γ)h−2e time steps.

Lemma D.5. Let h > 0, p ∈ ∆3h
k and p̃ ∈ ∆k be fixed. Then,

∀i : p̃i ≤ maxj 6=i p̃j + h ⇒ ||p− p̃||∞ ≥ h.

Proof. To prove the contraposition, we suppose ||p− p̃||∞ < h to be fulfilled. Let i := mode(p) ∈
[k] and fix some arbitrary j ∈ [k] \ {i}. Since p ∈ ∆3h

k assures pi ≥ pj + 3h, we obtain

p̃i − p̃j = pi + (p̃i − pi) + (pj − p̃j)− pj ≥ pi − pj − 2 ||p− p̃||∞
> pi − pj − 2h ≥ h.

As j was arbitrary, we conclude that p̃i > maxj 6=i p̃j + h, which completes the proof.

Lemma D.6. For any h ∈ (0, 1/8), ε ∈ (0, 1/3) and k ∈ N≥3 there exist p ∈ ∆
(3−ε)h
k and p̃ ∈ ∆k

such that

∀i ∈ [k] : p̃i ≤ maxj 6=i p̃j + h and ||p− p̃||∞ < h.

Proof. Suppose h ∈ (0, 1/8), ε ∈ (0, 1/3) and k ∈ N≥3 to be fixed. Now, define p ∈ ∆k and
p̃ ∈ ∆k via

pj :=


1
2 + h, if j = 1,
1
2 − (2− ε)h, if j = 2,
(1−ε)h
k−2 , if j ≥ 3,
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and

p̃j :=


p1 − (1− ε

4 )h = 1
2 + εh

4 , if j = 1,

p2 + (1− ε
4 )h = 1

2 + ( 3ε
4 − 1)h, if j = 2,

(1−ε)h
k−2 , if j ≥ 3.

From h < 1/8 we infer 1/2− (2− ε)h > 1/2− 2h > 1/4 and thus

∀j ≥ 3 :
(k − 2)pj

p2
=

(1− ε)h
1/2− (2− ε)h

< 4(1− ε)h < 4h < 1/2 < k − 2.

This shows p1 − (3 − ε)h = p2 > maxj≥3 pj and consequently p ∈ ∆
(3−ε)h
k . Since p̃j = pj is

fulfilled for each j ≥ 3, we have p̃1 > p̃2 > p2 > maxj≥3 p̃j , and together with

p̃1 − p̃2 =
εh

4
− 3εh

4
+ h =

(
1− ε

2

)
h < h

we see that p̃i ≤ maxj 6=i p̃j + h holds for each i ∈ [m]. Finally ||p− p̃||∞ < h follows from
|p1 − p̃1| = (1− ε

4 )h = |p2 − p̃2| as well as pj = p̃j for all j ≥ 3.

Proof of Lemma 4.3. Let p ∈ ∆k be fixed, and note that Algorithm 1 terminates after exactly
d8 ln(4/γ)h−2e time steps. Lemma D.2 and Lemma D.1 let us directly infer

Pp

(
D(A) ∈ [k] and pD(A) < maxj∈[k] pj

)
= P

(
∃i ∈ [k] : p̂ti −maxj 6=i p̂

t
j > h and pi 6= maxj∈[k] pj

)
≤ P

(∣∣∣∣p̂t − p
∣∣∣∣
∞ > h/2

)
≤ γ. (11)

Next, suppose p ∈ ∆0
k and let i′ := mode(p) ∈ [k]. Again, Lemma D.2 yields

{D(A) ∈ [k] \ {i′}} =
{
∃i 6= i′ : p̂ti −maxj 6=i p̂

t
j > h and pi′ > maxj 6=i′ pj

}
⊆
{∣∣∣∣p̂t − p

∣∣∣∣
∞ > h/2

}
, (12)

and thus

Pp(D(A) 6∈ {i′,UNSURE}) ≤ Pp

(∣∣∣∣p̂t − p
∣∣∣∣
∞ > h/2

)
≤ γ

follows from Lemma D.1 and the choice of t. Now, let us suppose p ∈ ∆3h
k . A look at Lemma D.5

reveals

{D(A) = UNSURE} =
{
∀i ∈ [k] : p̂ti ≤ maxj 6=i p̂

t
j + h

}
⊆
{∣∣∣∣p̂t − p

∣∣∣∣
∞ > h

}
,

and combining this with (12) yields

Pp(D(A) 6= mode(p)) = Pp (D(A) ∈ [k] \ {i′} or D(A) = UNSURE)

≤ Pp

(∣∣∣∣p̂t − p
∣∣∣∣
∞ > h/2

)
≤ γ,

where the last estimate is again due to Lemma D.1.

We proceed with the proof of Proposition 4.4.

Proof of Proposition 4.4. Let p ∈ ∆0
k be fixed and abbreviate h := h(p). Moreover, denote by

D(As) the output of the instance of Algorithm 1 with parameters γs, hs that is called in iteration s of
the while loop of A (Algorithm 2). Let us define for each s ∈ N the set

Es1 := {hs > h/3 and D(As) ∈ {UNSURE,mode(p)}},
Es2 := {hs ≤ h/3 and D(As) = mode(p)}

and

E :=
⋃

s∈N
(Es1 ∪ Es2 )

c
.
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From the equivalence h′ ≤ 1
3h(p)⇔p ∈ ∆3h′

k and Lemma 4.3 we infer

Pp ((Es1 ∪ Es2 )
c
) =

{
Pp ((Es1 )

c
) , if hs > h/3

Pp ((Es2 )
c
) , if hs ≤ h/3

}
≤ γs

and therefore

Pp(E) ≤
∑

s∈N
γs =

∑
s∈N

6γ

π2s2
= γ. (13)

Now, let s0 := s0(h) ∈ N be such that hs0 ≤ h/3 < hs0−1 and note that

Ec ⊆ Es02 ⊆ {D(As0) 6= UNSURE}
⊆ {A terminates at latest after the s0-th iteration of the while loop}. (14)

In particular, A terminates almost surely on Ec. Regarding the construction6 of A we also have

Ec =
⋂

s∈N
(Es1 ∪ Es2 ) ⊆

⋂
s∈N
{D(As) ∈ {UNSURE,mode(p)}}

⊆ {D(A) = mode(p)} . (15)

Since A makes in its s-th iteration of the while loop (according to Algorithm 1) exactly
d8 ln(4/γs)h

−2
s e queries, combining (13), (14) and (15) yields

Pp

(
D(A) = mode(p) and TA ≤ t0(h, γ)

)
≥ Pp (Ec) ≥ 1− γ,

with t0(h, γ) :=
∑
s≤s0(h)d8 ln(4/γs)h

−2
s e. As the choice of s0 = s0(h) guarantees h

3 < hs0−1 =

2−s0 and thus s0 < log2(3h−1), we obtain with regard to the choices of hs = 2−s−1 and γs = 6γ
π2s2

that

t0(h, γ) ≤ 27
∑s0(h)

s=1
22s−1 ln

(
2π2s2

3γ

)
∈ O

(∑s0(h)

s=1
22s−1 ln

(
s0(h)

γ

))
⊆ O

(
4s0(h) ln

(
s0(h)

γ

))
⊆ O

(
4log2(3/h) ln

(
log2(3h−1)γ−1

))
⊆ O

(
h−2

(
ln lnh−1 + ln γ−1

))
as min{h, γ} → 0. It remains to show that TA is almost surely finite w.r.t. Pp. For an arbitrary
integer s ≥ log2(3/h) we have hs ≤ h/3 and thus

Pp

(
TA =∞

)
≤ Pp (∀s′ ∈ N with hs′ ≤ h/3 : D(As′) = UNSURE)

≤ Pp (D(As) = UNSURE) ≤ Pp((Es2 )c) ≤ γs,

which directly implies Pp(TA =∞) ≤ lims→∞ γs = 0.

E Remaining Proofs for Section 6

We prove the following more detailed version of Theorem 6.2.
Theorem E.1. LetA be Algorithm 3 called with the parameters k,m ∈ N with k ≤ m and γ ∈ (0, 1).
Then,A solvesPm,γk (∃GCW∧∆0) and fulfills for any P = {P(·|S)}S∈[m]k ∈ PMm

k (∃GCW∧∆0)

PP

(
D(A) = GCW(P) and TA ≤ t′(P,m, k, γ)

)
≥ 1− γ,

where t′(P,m, k, γ) is given as

max
{∑

s≤s′
t0(h(P(·|Bs)), γ′) : B1, B2, . . . , Bs′ ∈ [m]k s.t.

⋃
s≤s′

Bs = [m]
}

(16)

with s′ := d m
k−1e, γ

′ := γ
s′ and t0(h, γ) defined as in Proposition 4.4, i.e., t0(h, γ) =∑

s≤s0(h)d8 ln(4/γs)h
−2
s e with s0(h) = dlog2(3/h)e − 1.

6Note here that D(A) ∈ [m] holds, i.e., A cannot terminate with UNSURE as output.
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Proof. Suppose P = {P(·|S)}S∈[m]k ∈ PMm
k (∃GCW ∧ ∆0) to be fixed and abbreviate

i := GCW(P). Recall the internal values s, Ss and Fs of Algorithm 3. If A terminates, then the
value of s is s′ := d m

k−1e. Let us write Ãs for the instance of Algorithm 2, which is called with
parameters m, γ′ and sample access to P(·|Ss) in Step 2 (or 9), i.e., we have is = D(Ãs) ∈ Ss for
each s ≤ s′. For s ≥ 2, Ss and Fs depend on the outcome of Ãs−1 and are thus random variables.

Claim 1: On the event {TA <∞} we have

(i) Fs′ = ∅ and
⋃
s≤s′ Ss = [m], i.e.,

∑
s≤s′ t0(γ′, h(P(·|Ss))) ≤ t′(P,m, k, γ) holds a.s.,

(ii) {D(A) 6= i} ⊆
⋃
s≤s′{D(Ãs) 6= mode(P(·|Ss))}.

Proof of Claim 1: Suppose TA < ∞. Clearly, |Fs| is monotonically decreasing in s. Whenever
|Fs| ≥ k, then |Ss ∩ Fs| ≥ k − 1 and thus |Fs+1| ≤ |Fs| − (k − 1) are fulfilled. Hence, |Fs| ≤
m − s(k − 1) holds for any s ≤ s′ − 1. In particular, we have |Fs′−1| ≤ k − 1, which implies
Fs′ = ∅.
From [m] = F0 ⊇ F1 ⊇ · · · ⊇ Fs′ = ∅ and ∀s ≤ s′ : Fs+1 = Fs \ Ss we infer

⋃
s≤s′ Ss = [m],

which proves (i). Regarding that the implications

j ∈ Ss \ Ss′ ⇒ ∃l ∈ {0, . . . , s′ − s} : j ∈ Ss+l−1 \ Ss+l

and
j ∈ Ss \ Ss+1 ⇒ j 6= is

are trivially fulfilled for all j ∈ [m] and s ∈ {0, . . . , s′ − 1}, we obtain

{i 6∈ Ss′} ⊆ {∃s < s′ : i ∈ Ss and i 6∈ Ss+1}
⊆ {∃s < s′ : i ∈ Ss and is 6= i}.

Due to {i ∈ Ss and is 6= i} ⊆ {D(Ãs) 6= mode(P(·|Ss))}, this implies

{D(A) 6= i} = {i ∈ Ss′ and i 6= is′} ∪ {i 6∈ Ss′}

⊆
⋃

s≤s′
{i ∈ Ss and i 6= is}

⊆
⋃

s≤s′
{D(Ãs) 6= mode(P(·|Ss))}.

�

Claim 2: We have the estimate

PP

(
∃s ≤ s′ : D(Ãs) 6= mode(P(·|Ss))) or T Ãs > t0(γ′, h(P(·|Ss)))

)
≤ γ.

Proof of Claim 2: For s ≤ s′ let

Es :=
{
D(Ãs) 6= mode(P(·|Ss))) or T Ãs > t0(γ′, h(P(·|Ss)))

}
denote the set, where A fails at round s in the sense that Ãs either makes an error in finding
mode(P(·|Ss)) or queries “too many” samples for this. For B ∈ [m]k and s ≤ s′ − 1 with
PP({Ss = B} ∩

⋂
s̃≤s−1E

c
s̃) > 0 we have with regard to Proposition 4.4

PP

(
Es

∣∣∣ {Ss = B} ∩
⋂

s̃≤s−1
Ecs̃

)
= PP(·|B)

(
D(Ãs) 6= mode(P(·|B)) or T Ãs > t0(γ′, h(P(·|B)))

)
≤ γ′,
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where we have used that both
⋂
s̃≤s−1E

c
s̃ and the choice {Ss = B} are independent of the samples

observed by Ãs. We conclude

PP

(⋃
s≤s′

Es

)
= PP

(⋃
s≤s′

Es \
(⋃

s̃≤s−1
Es̃

))
≤
∑

s≤s′

∑
B∈[m]k

PP

(
Es ∩ {Ss = B} ∩

⋂
s̃≤s−1

Ecs̃

)
=
∑

s≤s′

[∑
B
PP

(
Es

∣∣∣{Ss = B} ∩
⋂

s̃≤s−1
Ecs̃

)
PP

(
{Ss = B} ∩

⋂
s̃≤s−1

Ecs̃

)]
≤
∑

s≤s′
γ′ ≤ γ,

where we have written
∑
B for the sum over all B ∈ [m]k with PP

(
{Ss = B} ∩

⋂
s̃≤s−1E

c
s̃

)
> 0.
�

Now, let us define for s ≤ s′ the events

Rs :=
{
T Ãs ≤ t0(γ′, h(P(·|Ss)))

}
andR :=

⋂
s≤s′ Rs. Due to TA =

∑
s≤s′ T

Ãs we have

R ⊆
{
TA ≤

∑
s≤s′

t0(γ′, h(P(·|Ss)))
}
⊆
{
TA <∞

}
.

The equalityRc =
⋃
s≤s′ Rcs together with Part (ii) of Claim 1 and Claim 2 let us infer

PP ({D(A) 6= i} ∪ Rc) = PP (({D(A) 6= i} ∩ R) ∪Rc)

≤ PP

(⋃
s≤s′

{
D(Ãs) 6= mode(P(·|Ss)))

}
∪Rcs

)
= PP

(
∃s ≤ s′ : D(Ãs) 6= mode(P(·|Ss))) or T Ãs > t0(γ′, h(P(·|Ss)))

)
≤ γ

and we can thus conclude with the help of Part (i) of Claim 1 that

PP

(
D(A) = i and TA ≤ t′(P,m, k, γ)

)
≥ PP

(
D(A) = i and TA ≤

∑
s≤s′

t0(γ′, h(P(·|Ss))
)

≥ PP ({D(A) = i} ∩ R)

≥ 1− γ.

Proof of Theorem 6.2. According to Theorem E.1, A solves Pm,γk (∃GCW ∧ ∆0). Let P =
{P(·|S)}S∈[m]k ∈ PMm

k (∃GCW ∧∆0) be arbitrary. Theorem E.1 ensures that

PP

(
D(A) ∈ GCW(P) and TA ≤ t′(P,m, k, γ)

)
≥ 1− γ

holds with t′(P,m, k, γ) as in (16). By definition of h(P) we have h(P(·|S)) ≥ h(P) for any S ∈
[m]k, whence monotonicity of t0(h, γ) from Proposition 4.4 w.r.t. h shows us that t0(h(P(·|S)), γ) ≥
t0(h(P), γ) for any S ∈ [m]k. Thus, a look at (16) reveals that

t′(P,m, k, γ) ≤ T ′(h(P),m, k, γ)

with T ′(h,m, k, γ) :=
⌈
m
k−1

⌉
t0

(
h, γ
dm/(k−1)e

)
, which is according to Proposition 4.4 in

O
(
m
kh2 ln

(
m
k

) (
ln lnh−1 + ln γ−1

))
.

The following algorithm is a solution to Pm,γk (∃hGCW ∧∆0).
Theorem E.2. LetA be Algorithm 5 called with parameters m, k ∈ N with k ≤ m and γ, h ∈ (0, 1).
Then,A solves Pm,γk (∃hGCW∧∆0) and terminates a.s. for any P ∈ PMm

k (∃hGCW∧∆0) before

some time t′(m, k, h, γ) ∈ O
(
m
kh2 ln

(
m
kγ

))
.
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Algorithm 5 Solution to Pm,γk (∃hGCW ∧∆0)

Input: k,m ∈ N, γ ∈ (0, 1), h ∈ (0, 1), sample access to P = {P(·|S)}S∈[m]k ,
Initialization: Ã := Alg. 1, i0 ← UNSURE, h′ ← h

3 , γ′ ← γ
dm/(k−1)e , let S1 ∈ [m]k arbitrary,

F1 ← [m], s← 1
. Ss : candidate set in round s, Fs : remaining elements in round s

. is ∈ Ss ∪ {UNSURE} : output of Ã in round s
1: while |Fs| > 0 do
2: is ← Ã(h′, γ′, sample access to P(·|Ss))
3: Fs+1 ← Fs \ Ss
4: Write Fs+1 = {j1, . . . , j|Fs+1|}.
5: if |Fs+1| < k then
6: Fix distinct j|Fs+1|+1, . . . , jk ∈ [m] \ (Fs+1 ∪ {is}).
7: if is ∈ [m] then Ss+1 ← {is, j1, . . . , jk−1}
8: else Ss+1 ← {j1, . . . , jk}
9: s← s+ 1

10: is ← Ã(h′, γ′, sample access to P(·|Ss))
11: if is ∈ [m] then return is
12: else return 1

Proof of Theorem E.2. Let us define the random variable sA := min{s ∈ N |Fs = ∅} ∈ N ∪ {∞}
and suppose P ∈ PMm

k to be arbitrary but fixed for the moment.
Claim 1: We have sA ≤ s′ := d m

k−1e a.s. w.r.t. PP.
Proof of Claim 1: Assume on the contrary that sA > s′. Note that |Fs| is monotonically decreasing
in s. Whenever |Fs| ≥ k, then |Ss ∩ Fs| ≥ k − 1 and thus |Fs+1| ≤ |Fs| − (k − 1) are fulfilled.
Hence, |Fs| ≤ m− s(k− 1) holds for any s ≤ s′− 1. In particular, we have |Fs′−1| ≤ k− 1, which
implies Fs′ = ∅, contradicting the assumption sA > s′. This proves that sA ≤ s′ is fulfilled a.s. �

Using that A makes exactly sA calls of Ã (i.e., Algorithm 1) with parameters h′, γ′ and each such
call is executed with a sample complexity of exactly d8 ln(4/γ′)/h′

2e, the total sample complexity
of A is at most

s′d8 ln(4/γ′)/h′
2e =

⌈
m

k − 1

⌉⌈
72

h2
ln

(
4dm/(k − 1)e

γ

)⌉
,

which is in O
(
m
kh2 ln

(
m
kγ

))
as max{m, k, h−1, γ−1} → ∞. It remains to prove correctness of A.

Write A′ for Algorithm 6 called with the same parameters as A.
Claim 2: For any P ∈ PMm

k , we have
PP (D(A) 6= GCW(P)) = PP (D(A′) 6= GCW(P)) .

Proof of Claim 2: This follows directly from the fact that for any S ∈ [m]k, different calls of Ã on
P(·|S) are by assumption executed on different samples of P(·|S) and thus independent of each
other. �

This result shows that it is sufficient to prove correctness of A′. In the following, we denote by s, is
Fs and Ss the internal statistics of A′ and write Ãs for that instance of Ã, which is executed in A′ to
determine is. Let P ∈ PMm

k (∃hGCW ∧∆0) be fixed and define i := GCW(P).

Claim 3: For all s ≤ s′ we have
PP (i ∈ Ss and is 6= i) ≤ γ′.

Proof of Claim 3: Suppose B ∈ [m]k with i ∈ [m] and PP(Ss = B) > 0 to be arbitrary but fixed
for the moment. By assumption on P we have P(·|B) ∈ ∆3h′

k and since Ãs is Algorithm 1 executed
with parameters h′, γ′ and sample access to P(·|Ss) only, Lemma 4.3 assures

PP (i ∈ Ss and is 6= i|Ss = B)

= PP(·|B)(Alg. 1 started with h′, γ′ does not output mode(P(·|B))) ≤ γ′.
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Claim 3 thus follows via summation over all such B. �

On the event {TA′ < ∞}, we infer from [m] = F0 ⊇ F1 ⊇ · · · ⊇ FsA = · · · = Fs′ = ∅ and
∀s ≤ s′ : Fs+1 = Fs \ Ss similarly as in the proof of Theorem E.1

{D(A′) 6= i} ⊆
⋃

s≤s′
{i ∈ Ss and is 6= i}.

As TA
′
<∞ holds a.s. w.r.t. PP, combining this with Claim 3 directly yields

PP(D(A′) 6= i) ≤
∑

s≤s′
γ′ = γ,

which completes the proof.

Algorithm 6 Modification of Algorithm 5 for the proof of Theorem E.2
Input: k,m ∈ N, γ ∈ (0, 1), h ∈ (0, 1), sample access to P = {P(·|S)}S∈[m]k ,
Initialization: Ã := Algorithm 1, i0 ← UNSURE, h′ ← h

3 , γ′ ← γ
dm/(k−1)e

S1 ← [k], F1 ← [m], s← 1

1: Execute steps 1–8 of Algorithm 5.
2: let s′ ← d m

k−1e
3: while s < s′ do
4: is ← Ã(h′, γ′, sample access to P(·|Ss))
5: Fs+1 ← Fs, Ss+1 ← Ss
6: s← s+ 1
7: is ← Ã(h′, γ′, sample access to P(·|Ss))
8: return is

F Proof of Theorem 5.2

Before proving Theorem 5.2, we require some preparation. For S ∈ [m]k and p,q ∈ ∆S let us write
KL(p,q) for the Kullback-Leibler divergence of random variables X ∼ Cat(p) and Y ∼ Cat(q),
i.e.,

KL(p,q) =

{∑
x∈S:px>0 px ln

(
px
qx

)
, if ∀y ∈ S : qy = 0 ⇒ py = 0,

∞, otherwise.

For the sake of convenience, we write in the binary case k = 2 simply kl(x, y) :=
KL((x, 1− x), (y, 1− y)) for any x, y ∈ [0, 1].
Lemma F.1. (i) For any S ∈ [m]k and p,q ∈ ∆S we have

KL(p,q) ≤
∑

x∈S

(px − qx)2

qx
.

(ii) The inequality kl(γ, 1− γ) ≥ ln((2.4γ)−1) holds for any γ ∈ (0, 1).

Proof. The statement from (i) is Lemma 3 in [11] and for (ii) cf. Equation (3) in [21].

Given an algorithm A, which tackles the problem Pm,γk (∆h), let us write SAt for the query (element
of [m]k) made at time step t. Moreover, define TAS to be the number of times A makes the query

S ∈ [m]k before termination, i.e., TAS =
∑TA

t=1 1{SAs =S} and TA =
∑
S∈[m]k

TAS are fulfilled.
Let iAt ∈ SAt be the feedback observed by A at time step t, after having queried SAt , and write
FAt := σ(SA1 , i

A
t , . . . , S

A
t , i
A
t ) for the sigma algebra generated by the behaviour and observed

feedback of A until time t, and as usual FTA := FATA = σ
(⋃

t≤TA FAt
)

.

Since A may be thought of as a multi-armed bandit with
(
m
k

)
arms (one for each S ∈ [m]k) and

“rewards” iAt ∈ SAt , we may translate Lemma 1 from [21] to our setting in the following way:
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Lemma F.2. Let P,P′ ∈ PMm
k (∆h ∧ ∃GCW) with7 P(j|S),P′(j|S) > 0 for any S ∈ [m]k and

j ∈ S. If an algorithm A tackles Pm,γk (∆h ∧ ∃GCW) and fulfills EP[TA],EP′ [T
A] <∞, then∑

S∈[m]k
EP

[
TAS
]

KL(P(·|S),P′(·|S)) ≥ supE∈FTA kl (PP(E),PP′(E))

We are now ready to prove Theorem 5.2. The proof idea is similar to the one followed in the proof of
Theorem 7 in [35].

Proof of Theorem 5.2. We prove the instance-wise and asymptotic lower bound separately.

Part 1: Proof of the instance-wise bound
After relabeling the items in [m], we may suppose w.l.o.g. GCW(P) = 1 throughout the proof.
Write for convenience P[1] := P, recall that mS = mode(P[1](·|S)) for any S ∈ [m]k and define
P[l] ∈ PMm

k (∆h) for each l ∈ {2, . . . ,m} via

P[l](l|S) := P[1](mS |S), P[l](mS |S) := P[1](l|S),

P[l](j|S) := P[1](j|S) for all j ∈ S \ {l,mS} (17)

for any S ∈ [m]k with l ∈ S and

P[l](j|S) := P[1](j|S) for all j ∈ S

for any S ∈ [m]k with l 6∈ S. Abbreviating P
[r]
S := P[r](·|S) we directly obtain KL

(
P

[1]
S ,P

[l]
S

)
= 0

whenever S 6∈ [m]
(l)
k := {S ∈ [m]k | l ∈ S and l 6= mS}. Define

Σ(l) :=
∑

S∈[m]
(l)
k

EP[1]

[
TAS
]

for each l ∈ {2, . . . ,m}. Now, suppose l to be fixed for the moment and note that GCW(P[l]) = l
holds by construction of P[l]. As A solves Pm,γk (∆h), the event E := {D(A) = 1} ∈ FTA fulfills
PP[1](E) ≥ 1− γ and PP[l](E) ≤ γ. Consequently, by applying part (ii) of Lemma F.1 and Lemma
F.2, we obtain

ln
(
(2.4γ)−1

)
≤ kl (PP[1](E),PP[l](E))

≤
∑

S∈[m]k
EP[1]

[
TAS
]

KL
(
P

[1]
S ,P

[l]
S

)
=
∑

S∈[m]
(l)
k

EP[1]

[
TAS
]

KL
(
P

[1]
S ,P

[l]
S

)
,

that is,

Σ(l) ≥ ln
(
(2.4γ)−1

)
min

S∈[m]
(l)
k

1

KL
(
P

[1]
S ,P

[l]
S

) . (18)

For any S = {i1, . . . , ik} ∈ [m]k with i1 := mS the term EP[1]

[
TAS
]

appears exactly k − 1 times as
summand in

Σ(2) + · · ·+ Σ(m) =
∑m

l=2

∑
S∈[m]k:mS 6=l∈S

EP[1]

[
TAS
]
,

namely as one summand in Σ(i2), . . . ,Σ(ik) each. Hence, (18) lets us infer

(k − 1)EP[1]

[
TA
]

=
∑

S∈[m]k
(k − 1)EP[1]

[
TAS
]

≥ Σ(2) + · · ·+ Σ(m)

≥ ln
(
(2.4γ)−1

)∑m

l=2
min

S∈[m]
(l)
k

1

KL
(
P

[1]
S ,P

[l]
S

) .
7We put these conditions on P and P′ in order to guarantee mutually absolutely continuity of the “rewards”

iS ∼ Cat(P(·|S)) resp. i′S ∼ Cat(P′(·|S)), S ∈ [m]k, which is formally required in Lemma 1 in [21].
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This completes our proof of the instance-wise bound. �

Part 2: Proof of the worst-case bound
Since the statement is trivial for h = 1, we may assume w.l.o.g. h ∈ (0, 1) in the following. Let
us abbreviate ∆[m]k := {w = (wS)S∈[m]k ∈ [0, 1][m]k |

∑
S∈[m]k

wS = 1}. For S ∈ [m]k, write
S = {S(1), . . . , S(k)} with S(1) < · · · < S(k). Suppose ε ∈ (0, 1/2) to be arbitrary but fixed for the
moment and define P[1,ε] ∈ PMm

k (∃GCW ∧∆h) via

P[1,ε](S(1)|S) :=
1 + h+ 2ε

2
, P[1](S(2)|S) :=

1− h
2

and
∀j ∈ {3, . . . , k} : P[1](S(j)|S) :=

ε

k − 2
.

for any S ∈ [m]k. For l ∈ {2, . . . ,m} let P[l,ε] be as P[1,ε] with [m] being relabeled via the l-shift
νl : [m] → [m] given by

1 7→ l, 2 7→ l + 1, . . . m− l − 1 7→ m, m− l 7→ 1, . . . m 7→ l − 1,

i.e., P[l,ε](νl(ir)|{νl(i1), . . . , νl(ik)}) = P[1,ε](ir|{i1, . . . , ik}) for any {i1, . . . , ik} ∈ [m]k and
r ∈ [k]. Then, P[l] ∈ PMm

k (∃GCW ∧∆h) and GCW(P[l]) = l hold for any l ∈ [m]. Write

P∗(ε) := {P[1,ε],P[2,ε], . . .P[m,ε]}

and define

P∗(¬l) :=
{
P ∈ PMm

k (∃GCW ∧∆h) |GCW(P) 6= l and ∀S ∈ [m]k : minj∈S P(j|S) > 0
}
.

For any P,P′ ∈ PMm
k (∃GCW ∧ ∆h) fulfilling minS∈[m]k minj∈S P(j|S) > 0 as well as

minS∈[m]k minj∈S P
′(j|S) > 0 and GCW(P) 6= GCW(P′) Lemma F.2 guarantees similarly

as above

ln((2.4γ)−1) ≤
∑

S∈[m]k
EP

[
TAS
]

KL(PS ,P
′
S),

where we have written PS resp. P′S for P(·|S) resp. P′(·|S). Regarding arbitrariness of P and
P′ therein and using that EP[TA] > 0 and

(
EP[TAS ]/EP[TA]

)
S∈[m]k

∈ ∆[m]k hold trivially for any
P ∈ PMm

k , we may follow an idea from [18] (cf. the proof of Theorem 1 therein) and estimate

ln((2.4γ)−1) ≤ minP∈P∗(ε) infP′∈P∗(¬GCW(P))

∑
S∈[m]k

EP

[
TAS
]

KL(PS ,P
′
S)

≤ minP∈P∗(ε) EP[TA] infP′∈P∗(¬GCW(P))

∑
S∈[m]k

EP

[
TAS
]

EP[TA]
KL(PS ,P

′
S)

≤ supw∈∆[m]k
minP∈P∗(ε) EP[TA] infP′∈P∗(¬GCW(P))

∑
S∈[m]k

wSKL(PS ,P
′
S). (19)

Suppose w ∈ ∆[m]k to be arbitrary but fixed for the moment. The identity

k = k
∑

S∈[m]k
wS =

∑
l∈[m]

∑
S∈[m]k:l∈S

wS

assures the existence of some l = l(w) ∈ [m] with
∑
S∈[m]k:l∈S wS ≤

k
m . Abbreviate P := P[l,ε].

After relabeling [m] via ν−1
l , we may assume w.l.o.g. l = 1 in the following, i.e. P = P[1,ε] ∈ P∗(ε).

Define P′ ∈ PMm
k via

P′(2|S) :=
1 + h+ 2ε

2
, P′(minS \ {2} |S) :=

1− h
2

and P′(j|S) :=
ε

k − 2

for any j ∈ S \ {2,min(S \ {2})}, if 2 ∈ S, and

P′(j|S) := P(j|S)
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for any j ∈ S, if 2 6∈ S. From P′ ∈ PMm
k (∃GCW ∧∆h) and GCW(P′) = 2 6= 1 = GCW(P)

we infer P′ ∈ P∗(¬GCW(P)). In case {1, 2} 6⊆ S, we have P(j|S) = P′(j|S) for any j ∈ S and
thus KL(PS ,P

′
S) = 0. In the remaining case {1, 2} ⊆ S Lemma F.1 allows us to estimate

KL(PS ,P
′
S)

= KL

((
1 + h+ 2ε

2
,

1− h
2

,
ε

k − 2
. . . ,

ε

k − 2

)
,

(
1− h

2
,

1 + h+ 2ε

2
,

ε

k − 2
. . . ,

ε

k − 2

))
≤ (h+ ε)2

(
2

1− h
+

2

1 + h+ ε

)
=

(4 + 2ε)(h+ ε)2

(1− h)(1 + h+ ε)
.

Regarding the choice of l = 1 we infer∑
S∈[m]k

wSKL(PS ,P
′
S) =

∑
S∈[m]k:{1,2}⊆S

wSKL(PS ,P
′
S)

≤ (4 + 2ε)(h+ ε)2

(1− h)(1 + h+ ε)

∑
S∈[m]k:1∈S

wS ≤
k(4 + 2ε)(h+ ε)2

m(1− h)(1 + h+ ε)

and thus clearly

EP[TA]
∑

S∈[m]k
wSKL(PS ,P

′
S) ≤ k(4 + 2ε)(h+ ε)2

m(1− h)(1 + h+ ε)
EP[TA].

Since w was arbitrary and P = P[l(w),ε], combining this with (19) yields

ln((2.4γ)−1)

≤ supw∈∆[m]k
minP∈P∗(ε) EP[TA] infP′∈P∗(¬GCW(P))

∑
S∈[m]k

wSKL(PS ,P
′
S)

≤ supw∈∆[m]k
EP[l(w),ε] [TA] infP′∈P∗(¬GCW(P[l(w),ε]))

∑
S∈[m]k

wSKL
(
P

[l(w),ε]
S ,P′S

)
≤ k(4 + 2ε)(h+ ε)2

m(1− h)(1 + h+ ε)
supw∈∆[m]k

EP[l(w),ε] [TA]

≤ k(4 + 2ε)(h+ ε)2

m(1− h)(1 + h+ ε)
maxl∈[m] EP[l,ε] [TA].

As ε ∈ (0, 1/2) was arbitrary, we finally conclude

supP∈PMm
k (∃GCW∧∆h) EP

[
TA
]
≥ supε∈(0,1/2) maxl∈[m] EP[l,ε]

[
TA
]

≥ supε∈(0,1/2)

m(1− h)(1 + h+ ε)

k(4 + 2ε)(h+ ε)2
ln((2.4γ)−1)

≥ m(1− h2)

4kh2
ln((2.4γ)−1).

Remark F.3. The instance-wise bound in Theorem 5.2 appears to be maximal on an instance
P ∈ PMm

k defined via

P(mS |S) :=
1− h+ hk

k
and P(j|S) :=

1− h
k

for each j ∈ S \ {mS}.

with mS := minS for each S ∈ [m]k. Note that P(mS |S) = P(j|S) + h is fulfilled for each
S ∈ [m]k, j ∈ S \ {mS}. Regarding the definition of mS we thus have P ∈ PMm

k (∆h) with
GCW(P) = 1. With P[l](·|S) defined as in Theorem 5.2 we can estimate for each l ∈ {2, . . . ,m}
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and S ∈ [m]k with l ∈ S \ {mS} via Lemma F.1

KL
(
P(·|S),P[l](·|S)

)
≤
∑

j∈S

(P(j|S)−P[l](j|S))2

P(j|S)

=
(P(mS |S)−P[l](mS |S))2

P[l](mS |S)
+

(P(l|S)−P[l](l|S))2

P[l](l|S)

=
(P(mS |S)−P(l|S))2

P(l|S)
+

(P(l|S)−P(mS |S))2

P(mS |S)

=
(P(mS |S)−P(l|S))2(P(mS |S) + P(l|S))

P(mS |S)P(l|S)

=
h2k(1− h+ hk + 1− h)

(1− h+ hk)(1− h)
≤ 2kh2

1− h
,

where we have used hk ≥ 0 in the last step. Consequently, the instance-wise bound from Theorem
5.2 yields

EP

[
TA
]
≥ (m− 1)(1− h) ln((2.4γ)−1)

2h2k(k − 1)
∈ Ω

(
m

k2h2
ln

1

γ

)
,

which is by a factor 1/k asymptotically smaller than the worst-case bound stated in Theorem 5.2.

In the case of dueling bandits (k = 2), the instance-dependent bound from Theorem 5.2 reduces to

EP

[
TA
]
≥ ln((2.4γ)−1)

∑
l∈[m]\{i}

1

KL(P(·|{i, l}),P[l](·|{i, l}))

= ln((2.4γ)−1)
∑

l∈[m]\{i}

1

kl(P(i|{i, l}),P(l|{i, l}))
for any P ∈ PMm

2 (∃GCW ∧∆h) with GCW(P) = i and any solution A to Pm,γ2 (∃GCW ∧∆h).
By means of this, we obtain the following worst-case sample lower bound, which is by a factor
2(m−1)
m larger than the one stated in Theorem 5.2.

Corollary F.4. If A solves Pm,γ2 (∃GCW ∧∆h), then

supP∈PMm
2 (∃GCW∧∆h) EP

[
TA
]
≥ (m− 1)(1− h2)

4h2
ln((2.4γ)−1).

Proof. Define P ∈ PMm
2 (∃GCW ∧∆h) via P(i|{i, j}) := 1+h

2 for any 1 ≤ i < j ≤ m. Theorem
5.2 and Lemma F.1 allow us to infer

EP

[
TA
]
≥ (m− 1) ln((2.4γ)−1)

kl((1 + h)/2, (1− h)/2)

≥ (m− 1) ln((2.4γ)−1)

(
2h2

1− h
+

2h2

1 + h

)−1

=
(m− 1)(1− h2) ln((2.4γ)−1)

4h2
.

Remark F.5. Suppose A solves Pk,γk (∆h), let p ∈ ∆h
k and write i := mode(p). According to

Prop. C.1 we have

Ep

[
TA
]
≥ maxl∈[m]\{i}

1− 2γ

2φl,i(p)(pl + pi)

⌈
ln((1− γ)/γ)

ln((1/2+φl,i(p))/(1/2−φl,i(p)))

⌉
=: LB1(p, γ)

with φl,i(p) := pi−pl
2(pl+pi)

, and Thm. 5.2 guarantees

Ep

[
TA
]
≥ ln((2.4γ)−1)

k − 1

∑
l∈[k]\{i}

(
pl ln

(
pl
pi

)
+ pi ln

(
pi
pl

))−1

=: LB2(p, γ).

In an empirical study we observed LB1(p, γ) > LB2(p, γ) for all of 1000 parameters p sampled iid
and uniformly at random from ∆0

k, for any (k, γ) ∈ {5, 10, 15}× {0.01, 0.05, 0.1}. For example, we
have LB1((0.2, 0.2, 0.15, 0.2, 0.25), 0.05) ≈ 252 > 152.9 ≈ LB2((0.2, 0.2, 0.15, 0.2, 0.25), 0.05).
This indicates that the instance-wise lower bound of Prop. C.1 is larger than that from Thm. 5.2.
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G Additional Experiments

G.1 Comparison of DKWT with PAC-WRAPPER

In this section, we provide further experimental results. First, we repeat the experiment regarding the
comparison of DKWT and PW from Section 7 for θ = (1, 2−1, 2−2, . . . , 2−9), with γ = 0.1 and for
different values of k. Table 5 shows the results obtained with 10 repetitions. Similar to the results in
the main paper, both algorithms apparently keep the desired confidence of 90%, but PW requires far
more samples for this. The fact that the observed sample complexities are not throughout decreasing
in k is supposedly due to the large standard errors and the little number of repetitions. However, they
strongly indicate that DKWT outperforms PW in terms of sample complexity.

Table 5: Comparison of DKWT with PAC-WRAPPER (PW) on θ = (1, 2−1, 2−2, . . . , 2−9)

TA Accuracy

k DKWT PW DKWT PW

2 8310 (0.0) 2509460 (226634.0) 1.00 1.00
3 4078 (348.9) 46277676 (30635546.4) 1.00 1.00
4 3925 (1014.3) 775101 (108535.7) 1.00 1.00
5 3397 (529.2) 6450264 (1363336.3) 1.00 1.00
6 2213 (465.0) 130069344 (77405795.5) 1.00 1.00
7 2856 (507.4) 253206333 (125199242.0) 1.00 1.00
8 3817 (608.9) 27159632 (12458792.0) 1.00 1.00
9 2855 (680.7) 146229360 (79427860.6) 1.00 1.00

Next, we compare DKWT with PW on synthetic data considered in [35], where PW has first been
introduced. We restrict ourselves to θarith,θgeo ∈ [0, 1]16 defined via

θarith
1 := 1, ∀i ∈ [15] : θarith

i+1 := θarith
i − 0.06,

θgeo
1 := 1, ∀i ∈ [15] : θgeo

i+1 :=
4

5
· θgeo
i ,

because the other synthetic datasets considered in Fig. 2 of [35] (i.e., g1 and b1) are not in
PMm

k (∃GCW ∧ ∆0), which is formally required for DKWT. For θ ∈ {θarith,θgeo} we exe-
cute DKWT with γ = 0.01 for 1000 repetitions on feedback generated by P(θ) and report the mean
termination time (and standard error in brackets) as well as the observed accuracy in Table 6. A look
at Fig. 2 of [35] reveals that DKWT indeed outperforms PW on both datasets while still keeping its
theoretical guarantees.

Table 6: Results of DKWT on θarith and θgeo

TA of A =DKWT Accuracy

θarith 1277781 (22284.0) 1.00
θgeo 55132 (910.5) 1.00

G.2 Comparison of DKWT with SELECT, SEEBS and EXPLORE-THEN-VERIFY

The authors of [29] restrict themselves in the analysis of their algorithm SEEBS to probability models
P ∈ PMm

2 (∃GCW ∧∆0), which fulfill both of the following conditions:

• Strong stochastic transitivity (SST): For all distinct distinct i, j, k ∈ [m] with P(i|{i, j}) ≥
1/2 and P(j|{j, k}) ≥ 1/2 we have

P(i|{i, k}) ≥ max{P(i|{i, j}),P(j|{j, k})}

• Stochastic triangle inequality (STI): For all distinct i, j, k ∈ [m] we have

|P(i|{i, k})− 1/2| ≤ |P(i|{i, j})− 1/2|+ |P(j|{j, k})− 1/2|.
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In particular, SEEBS is only proven to identify the correct GCW with confidence ≥ 1− γ for any P
in a set PMm

2 (∃GCW ∧∆0 ∧ SST ∧ STI) ( PMm
2 (∃GCW ∧∆0).

Table 7 shows the observed termination times (and standard errors theoreof in brackets) of DKWT,
SELECT, SEEBS and EtV compared on PMm

2 (∃GCW ∧ ∆h) in the same manner as done in
Section 7, where the true value of h is revealed to SELECT but not to DKWT, SEEBS or EtV. The
results for m ∈ {5, 10} are averaged over 100 repetitions and are partly the same as shown in Table
4, the results for m ∈ {15, 20} are averaged over 10 repetitions. Table 8 shows the corresponding
accuracies observed during the experiment underlying Table 7. Almost any algorithm in any case
achieves an accuracy of ≥ 95%, the only exception is SELECT for m = 20 and h = 0.20 and this is
supposedly due to the little number of repetitions considered. The results indicate again that DKWT
outperforms SEEBS but not SELECT. Since SELECT obtains as further information the true value
of h, this is not at all surprising.

Table 7: Comparison of DKWT, SELECT, SEEBS and EXPLORE-THEN-VERIFY (EtV)

TA

m h DKWT SELECT SEEBS EtV

5 0.20 6010 (293.2) 252 (4.2) 7305 (432.1) 8601 (589.2)
5 0.15 8874 (460.0) 460 (7.3) 13393 (904.5) 11899 (986.9)
5 0.10 15769 (1457.1) 989 (17.0) 19802 (1543.2) 260171 (210678.1)
5 0.05 31454 (4127.4) 3924 (68.6) 36855 (3533.2) 156534 (115903.1)

10 0.20 14334 (492.8) 565 (2.5) 16956 (617.9) 26115 (969.2)
10 0.15 18563 (734.5) 1009 (4.2) 27527 (1126.7) 32548 (2514.6)
10 0.10 33040 (1625.1) 2245 (9.7) 47330 (2138.2) 68858 (11304.5)
10 0.05 78660 (6517.2) 8971 (39.2) 83877 (5842.6) 220098 (92484.9)

15 0.20 21932 (1618.1) 803 (13.9) 28605 (2161.5) 54197 (5307.3)
15 0.15 27446 (2500.0) 1436 (12.3) 38084 (4985.3) 78753 (27741.4)
15 0.10 45737 (6709.6) 3248 (20.7) 67383 (8117.1) 116014 (24282.2)
15 0.05 114152 (18704.0) 12993 (82.7) 108738 (19780.4) 2804238 (2560594.1)

20 0.20 32038 (1209.2) 1154 (8.7) 40910 (2893.1) 78286 (3451.5)
20 0.15 39792 (3923.6) 2080 (12.6) 58793 (4828.0) 122582 (24065.7)
20 0.10 87667 (13380.8) 4616 (32.3) 105249 (13231.8) 631195 (281883.6)
20 0.05 134628 (21743.3) 18375 (138.2) 164439 (30175.4) 2094505 (1694236.4)

Table 8: Accuracies of DKWT, SELECT, SEEBS and EXPLORE-THEN-VERIFY (EtV) correspond-
ing to the experiment of Table 7

Accuracy

m h DKWT SELECT SEEBS EtV

5 0.20 1.00 0.97 1.00 1.00
5 0.15 1.00 1.00 1.00 1.00
5 0.10 1.00 0.99 1.00 1.00
5 0.05 1.00 1.00 1.00 1.00

10 0.20 1.00 0.95 1.00 1.00
10 0.15 1.00 0.98 1.00 1.00
10 0.10 1.00 0.99 1.00 1.00
10 0.05 1.00 1.00 1.00 1.00

15 0.20 1.00 1.00 1.00 1.00
15 0.15 1.00 1.00 1.00 1.00
15 0.10 1.00 1.00 1.00 1.00
15 0.05 1.00 1.00 1.00 1.00

20 0.20 1.00 0.90 1.00 1.00
20 0.15 1.00 1.00 1.00 1.00
20 0.10 1.00 1.00 1.00 1.00
20 0.05 1.00 1.00 1.00 1.00
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G.3 Comparison of DKWT with Alg. 5

Finally, we compare DKWT and Alg. 5 by means of their average sample complexity and accuracy
when executed on 1000 instances P, which were drawn independently and uniformly at random
from (a) PM5

k (∃GCW ∧∆h) and (b) PM5
k (∃hGCW ∧∆0.01). We choose γ = 0.05 and restrict

ourselves due to PM5
5 (∃GCW ∧∆h) = PM5

5 (∃hGCW ∧∆0.01) to k ∈ {2, 3, 4}. Similarly as in
our comparison to SELECT, Alg. 5 is revealed the true value of h and started with this as parameter.
The results are collected in (a) Table 9 and (b) Table 10. In any of the cases (a) and (b), DKWT
apparently outperforms Alg. 5 if h is smaller than some threshold h0, and the value of h0 appears to
be significantly larger for (a) than for (b). This indicates that Alg. 5 may be preferable over DKWT
if h(P) is small and P ∈ PMm

k (∃h′GCW ∧∆0) holds for some a priori known h′ ∈ (0, 1/2).

Table 9: Comparison of DKWT with Alg. 5 on PM5
k (∃GCW ∧∆h)

TA Accuracy

k h DKWT Alg. 5 DKWT Alg. 5

2 0.9 4155 (0.0) 2664 (0.0) 1.00 1.00
2 0.7 4155 (0.0) 4405 (0.0) 1.00 1.00
2 0.5 4155 (0.0) 8630 (0.0) 1.00 1.00
2 0.3 4195 (12.7) 23970 (0.0) 1.00 1.00
2 0.1 14729 (423.4) 215695 (0.0) 1.00 1.00

3 0.9 2298 (0.0) 1464 (0.0) 1.00 1.00
3 0.7 2298 (0.0) 2418 (0.0) 1.00 1.00
3 0.5 2298 (0.0) 4737 (0.0) 1.00 1.00
3 0.3 2381 (17.5) 13155 (0.0) 1.00 1.00
3 0.1 14933 (436.1) 118383 (0.0) 1.00 1.00

4 0.9 1428 (0.0) 1356 (0.0) 1.00 1.00
4 0.7 1428 (0.0) 2238 (0.0) 1.00 1.00
4 0.5 1428 (0.0) 4386 (0.0) 1.00 1.00
4 0.3 1492 (15.0) 12183 (0.0) 1.00 1.00
4 0.1 13449 (306.4) 109626 (0.0) 1.00 1.00

Table 10: Comparison of DKWT with Alg. 5 on PM5
k (∃hGCW ∧∆0.01)

TA Accuracy

k h DKWT Alg. 5 DKWT Alg. 5

2 0.9 53913 (7092.4) 2477 (8.0) 1.00 1.00
2 0.7 63647 (8322.8) 4124 (13.0) 1.00 1.00
2 0.5 54370 (6753.8) 8167 (24.2) 1.00 1.00
2 0.3 59488 (7738.0) 23275 (53.4) 1.00 1.00
2 0.1 60682 (7256.5) 214358 (236.4) 1.00 1.00

3 0.9 40359 (6188.7) 1464 (0.0) 1.00 1.00
3 0.7 27069 (3621.2) 2418 (0.0) 1.00 1.00
3 0.5 37362 (5774.2) 4737 (0.0) 1.00 1.00
3 0.3 31553 (4551.6) 13155 (0.0) 1.00 1.00
3 0.1 45929 (5277.3) 118383 (0.0) 1.00 1.00

4 0.9 24164 (4446.0) 1356 (0.0) 1.00 1.00
4 0.7 39088 (6293.2) 2238 (0.0) 1.00 1.00
4 0.5 31835 (5462.0) 4386 (0.0) 1.00 1.00
4 0.3 31796 (5131.8) 12183 (0.0) 1.00 1.00
4 0.1 48202 (5765.3) 109626 (0.0) 1.00 1.00
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