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1. Experimental Settings

To demonstrate the effectiveness of robust depth estimation methods, we present results for
models trained with a variety of robust loss functions. As most of them involve loss-specific
hyperparameters, as well as the optimization algorithm itself, we conducted a hyperparam-
eter optimization for each induced model.

To this end, we employed a random search with 20 trials per run. In each trial, the
model was trained using the regarded hyperparameter configuration for 25 epochs with a
batch size of 16. When training on a subset of a given data set, we randomly sampled the
desired number of instances from the original training split. We used Adam with default
parameters as optimizer and optimized the initial learning rate η ∈ [1e−4, 1e−1]. As learn-
ing rate schedule, we applied cosine annealing (Loshchilov and Hutter, 2017). Moreover,
we augmented the training and depth pairs by randomly flipping the images horizontally,
augmenting the colors with varying hue, saturation, brightness and contrast, and randomly
swapped the red and blue color channels. To select the model for the final assessment, the
validation root mean squared error was calculated on iBims-1 (Koch et al., 2018).

Table 1 enlists the hyperparameters along with their considered search spaces being
optimized. We kept the notation the same as in the referred original publications.

Given the finally selected models, we evaluated the depth metrics as described in the
paper and further extended in this supplementary material. As NYUD-v2 (Silberman et al.,
2012) and SunRGBD (Song et al., 2015) only provide depth values up to 10 m, we only
assessed depth values in the ground truth data of the benchmark data sets with up to this
value.

We ran all experiments on a modern high-performance cluster with several Nvidia RTX
1080 Ti, 2080 Ti and Titan RTX accelerators. In total, the experimental evaluation took
about 4500 GPU hours.
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Lienen Nommensen Ewerth Hüllermeier

Table 1: Loss-specific hyperparameters and their search spaces being considered within the
random search.

Loss Hyperparameter Space(s)

LHuber (Laina et al., 2016) c ∈ [0.1, 0.9]
LBerHu (Laina et al., 2016) c ∈ [0.1, 0.9]
LRuber (Irie et al., 2019) c ∈ [0.1, 0.9]
LBarron (Barron, 2019) α ∈ [0, 2], c ∈ [0.1, 50]
Ltrim (Ranftl et al., 2020) U ∈ [0.1, 0.9] {Largest % of residuals being trimmed}
LScaledSIError (Lee et al., 2019) λ ∈ [0.1, 0.9], α ∈ [0.1, 25]

OSLL1 ε ∈ [0, 0.25]
OSLL2 ε ∈ [0, 0.25]
FOSLL1 ε ∈ [0, 0.25], δ ∈ [0, 2]

2. Model Architecture

Fig. 1 shows the EfficientNet-based (Tan and Le, 2019) architecture as being used within
our empirical studies. More precisely, we considered a EfficientNetB0 encoder pretrained
on ImageNet and freezed the weights during training. While the encoder part comprises ap-
prox. 4 million parameters, we effectively maintained 11 million decoder weights, resulting
in a total of 15 million parameters. As can be seen in the figure, the decoder part con-
sists of stacked upsamling components applying convolutional, BatchNormalization, ReLU
activation and bilinear upsampling layers.
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Figure 1: EfficientNet-based U-Net architecture as being used within the empirical evalua-
tion. The blue downsampling layers are specified by the employed backbone. The
layer captions denote the corresponding output dimensionality of the respective
layers.
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3. Additional Experimental Results

3.1. Metrics

Beyond the reported metrics in the paper, we further present results on the following addi-
tional metrics.

• Root mean squared error log (RMSLog):
√

1
n

∑n
i=1(log yi − log ŷi)2

• Squared relative difference (SQREL): 1
n

∑n
i=1

(yi−ŷi)2
yi

3.2. Homogeneous Depth Sensor: NYUD-v2

Tab. 2 extends Tab. 1 as presented in the main paper by providing results on DIODE
for the additional metrics, as well as further errors on the Eigen test split of NYUD-v2.
In accordance to the results presented in the paper, our loss proposals provide the best
performance on DIODE. In the case of NYUD-v2, the scaled SI error turns out to perform
best.

Table 2: Averaged results over three runs for additional metrics on DIODE and the Eigen
test split of NYUD-v2 for a varying number of instances with the corresponding
standard deviations. The best model is indicated in bold per number of instances
and metric.

# Insts. Loss
DIODE NYUD-v2

RMSLog (↓) SQREL (↓) log10 (↓) RMSLog (↓) SQREL (↓) δ2 (↑) δ3 (↑)

2k

L2 0.607 ± 0.013 1.144 ± 0.058 0.135 ± 0.012 0.393 ± 0.037 0.497 ± 0.101 0.757 ± 0.042 0.899 ± 0.025

L1 0.598 ± 0.007 1.133 ± 0.076 0.124 ± 0.002 0.381 ± 0.036 0.407 ± 0.059 0.802 ± 0.015 0.926 ± 0.006

LHuber 0.589 ± 0.037 1.084 ± 0.088 0.109 ± 0.001 0.316 ± 0.004 0.305 ± 0.014 0.843 ± 0.006 0.949 ± 0.002

LBerHu 0.580 ± 0.004 1.074 ± 0.034 0.110 ± 0.004 0.320 ± 0.012 0.317 ± 0.034 0.836 ± 0.013 0.946 ± 0.006

LRuber 0.592 ± 0.020 1.085 ± 0.024 0.107 ± 0.005 0.313 ± 0.013 0.320 ± 0.050 0.847 ± 0.017 0.947 ± 0.010

LBarron 0.585 ± 0.013 1.090 ± 0.022 0.115 ± 0.008 0.331 ± 0.020 0.360 ± 0.045 0.824 ± 0.026 0.938 ± 0.012

Ltrim 0.664 ± 0.087 1.183 ± 0.069 0.129 ± 0.007 0.371 ± 0.023 0.575 ± 0.227 0.778 ± 0.024 0.912 ± 0.016

LScaledSIError 0.572 ± 0.016 1.043 ± 0.008 0.097 ± 0.007 0.284 ± 0.018 0.265 ± 0.043 0.877 ± 0.019 0.961 ± 0.008

LWeightedL2 0.582 ± 0.005 1.132 ± 0.044 0.134 ± 0.009 0.387 ± 0.028 0.483 ± 0.076 0.761 ± 0.030 0.903 ± 0.019

OSLL1 0.567 ± 0.024 1.091 ± 0.048 0.123 ± 0.012 0.359 ± 0.035 0.432 ± 0.093 0.794 ± 0.038 0.929 ± 0.021

OSLL2 0.592 ± 0.050 1.203 ± 0.115 0.137 ± 0.016 0.395 ± 0.044 0.561 ± 0.142 0.746 ± 0.055 0.889 ± 0.034

FOSLL1 0.590 ± 0.019 1.103 ± 0.035 0.112 ± 0.005 0.329 ± 0.018 0.336 ± 0.007 0.832 ± 0.018 0.948 ± 0.010

10k

L2 0.585 ± 0.010 1.088 ± 0.008 0.115 ± 0.001 0.336 ± 0.002 0.343 ± 0.032 0.824 ± 0.006 0.940 ± 0.005

L1 0.586 ± 0.030 1.072 ± 0.032 0.095 ± 0.004 0.280 ± 0.011 0.251 ± 0.034 0.883 ± 0.014 0.964 ± 0.005

LHuber 0.588 ± 0.027 1.123 ± 0.030 0.096 ± 0.001 0.284 ± 0.003 0.279 ± 0.019 0.878 ± 0.003 0.959 ± 0.002

LBerHu 0.593 ± 0.008 1.093 ± 0.010 0.086 ± 0.001 0.258 ± 0.003 0.208 ± 0.009 0.904 ± 0.004 0.973 ± 0.000

LRuber 0.578 ± 0.003 1.068 ± 0.012 0.087 ± 0.004 0.261 ± 0.011 0.218 ± 0.021 0.901 ± 0.010 0.971 ± 0.004

LBarron 0.579 ± 0.021 1.103 ± 0.013 0.106 ± 0.009 0.311 ± 0.026 0.315 ± 0.053 0.849 ± 0.029 0.951 ± 0.012

Ltrim 0.602 ± 0.019 1.080 ± 0.022 0.098 ± 0.013 0.313 ± 0.070 0.244 ± 0.048 0.884 ± 0.024 0.964 ± 0.012

LScaledSIError 0.600 ± 0.025 1.096 ± 0.040 0.079 ± 0.002 0.237 ± 0.004 0.171 ± 0.007 0.926 ± 0.002 0.981 ± 0.001

LWeightedL2 0.580 ± 0.007 1.065 ± 0.021 0.107 ± 0.004 0.314 ± 0.011 0.295 ± 0.028 0.848 ± 0.012 0.950 ± 0.007

OSLL1 0.541 ± 0.004 1.053 ± 0.005 0.107 ± 0.002 0.311 ± 0.004 0.324 ± 0.019 0.844 ± 0.004 0.947 ± 0.004

OSLL2 0.538 ± 0.006 1.039 ± 0.023 0.115 ± 0.004 0.335 ± 0.012 0.379 ± 0.036 0.821 ± 0.017 0.932 ± 0.010

FOSLL1 0.597 ± 0.033 1.102 ± 0.045 0.091 ± 0.004 0.272 ± 0.013 0.232 ± 0.033 0.891 ± 0.015 0.966 ± 0.008

Tab. 3 further shows results on DIODE and NYUD-v2 for the study involving artificial
noise added to the training data. As can be seen, LRuber performs best on the noisy test
data, whereas it provides inferior performance to most of the superset losses on the clear
DIODE data. This suggests that it is more prone to reproduce the sensor errors.
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Table 3: Further results on DIODE and the Eigen test split of NYUD-v2 when trained
on 2k instances from NYUD-v2 with artificial noise (averaged results over three
runs). The best model is indicated in bold per noise degree and metric.

Noise ε̂ Loss
DIODE NYUD-v2

RMSLog (↓) SQREL (↓) REL (↓) log10 (↓) RMS (↓) δ1 (↑) δ2 (↑) δ3 (↑) RMSLog (↓) SQREL (↓)

0.5

L2 0.652 ± 0.031 2.074 ± 0.281 0.789 ± 0.055 0.226 ± 0.012 1.677 ± 0.098 0.221 ± 0.012 0.484 ± 0.026 0.700 ± 0.031 0.605 ± 0.031 1.669 ± 0.218

L1 0.597 ± 0.013 1.126 ± 0.034 0.343 ± 0.026 0.130 ± 0.008 0.976 ± 0.061 0.474 ± 0.027 0.773 ± 0.030 0.912 ± 0.017 0.388 ± 0.021 0.419 ± 0.053

LHuber 0.568 ± 0.018 1.301 ± 0.177 0.464 ± 0.090 0.150 ± 0.021 1.175 ± 0.175 0.427 ± 0.068 0.705 ± 0.065 0.862 ± 0.041 0.431 ± 0.047 0.732 ± 0.243

LBerHu 0.556 ± 0.014 1.080 ± 0.027 0.306 ± 0.008 0.112 ± 0.003 0.860 ± 0.028 0.545 ± 0.014 0.829 ± 0.008 0.941 ± 0.003 0.326 ± 0.008 0.348 ± 0.022

LRuber 0.580 ± 0.008 1.079 ± 0.012 0.286 ± 0.012 0.112 ± 0.004 0.853 ± 0.024 0.535 ± 0.010 0.833 ± 0.010 0.946 ± 0.006 0.328 ± 0.014 0.307 ± 0.023

LBarron 0.591 ± 0.016 1.591 ± 0.130 0.667 ± 0.028 0.200 ± 0.005 1.473 ± 0.045 0.249 ± 0.006 0.551 ± 0.013 0.772 ± 0.023 0.538 ± 0.016 1.216 ± 0.105

Ltrim 0.612 ± 0.039 1.417 ± 0.022 0.510 ± 0.002 0.174 ± 0.003 1.269 ± 0.011 0.360 ± 0.001 0.635 ± 0.002 0.818 ± 0.001 0.527 ± 0.034 0.803 ± 0.023

LScaledSIError 1.143 ± 0.491 1.796 ± 0.545 0.521 ± 0.175 0.369 ± 0.187 1.753 ± 0.472 0.154 ± 0.142 0.306 ± 0.269 0.437 ± 0.351 0.914 ± 0.412 0.993 ± 0.486

LWeightedL2 0.613 ± 0.007 1.671 ± 0.028 0.618 ± 0.009 0.189 ± 0.002 1.362 ± 0.015 0.315 ± 0.006 0.590 ± 0.005 0.778 ± 0.005 0.522 ± 0.004 1.076 ± 0.025

OSLL1 0.555 ± 0.012 1.117 ± 0.037 0.369 ± 0.057 0.129 ± 0.013 0.932 ± 0.078 0.491 ± 0.043 0.774 ± 0.045 0.907 ± 0.029 0.371 ± 0.037 0.462 ± 0.104

OSLL2 0.621 ± 0.026 1.884 ± 0.242 0.770 ± 0.079 0.223 ± 0.018 1.552 ± 0.149 0.208 ± 0.026 0.487 ± 0.048 0.717 ± 0.044 0.595 ± 0.047 1.581 ± 0.307

FOSLL1 0.583 ± 0.021 1.078 ± 0.050 0.300 ± 0.012 0.107 ± 0.006 0.857 ± 0.029 0.529 ± 0.021 0.825 ± 0.017 0.939 ± 0.009 0.343 ± 0.031 0.34 ± 0.02

1.0

L2 0.898 ± 0.093 5.929 ± 0.764 1.387 ± 0.387 0.333 ± 0.073 2.899 ± 0.714 0.130 ± 0.097 0.268 ± 0.161 0.438 ± 0.170 0.861 ± 0.151 5.079 ± 2.088

L1 0.561 ± 0.006 1.117 ± 0.022 0.366 ± 0.014 0.133 ± 0.003 1.007 ± 0.031 0.460 ± 0.007 0.758 ± 0.013 0.904 ± 0.009 0.381 ± 0.008 0.464 ± 0.031

LHuber 0.701 ± 0.010 2.834 ± 0.151 1.073 ± 0.102 0.286 ± 0.020 2.384 ± 0.229 0.112 ± 0.026 0.307 ± 0.055 0.556 ± 0.052 0.735 ± 0.043 3.017 ± 0.472

LBerHu 0.566 ± 0.008 1.107 ± 0.036 0.375 ± 0.036 0.132 ± 0.008 0.993 ± 0.059 0.482 ± 0.022 0.772 ± 0.029 0.905 ± 0.018 0.389 ± 0.028 0.498 ± 0.079

LRuber 0.571 ± 0.001 1.096 ± 0.035 0.295 ± 0.030 0.113 ± 0.008 0.880 ± 0.071 0.532 ± 0.030 0.833 ± 0.026 0.945 ± 0.014 0.325 ± 0.023 0.354 ± 0.085

LBarron 0.721 ± 0.041 3.004 ± 0.581 1.001 ± 0.134 0.270 ± 0.027 2.059 ± 0.254 0.152 ± 0.052 0.367 ± 0.075 0.592 ± 0.066 0.707 ± 0.061 2.541 ± 0.592

Ltrim 0.575 ± 0.003 1.361 ± 0.036 0.488 ± 0.019 0.167 ± 0.003 1.231 ± 0.018 0.369 ± 0.009 0.648 ± 0.011 0.828 ± 0.008 0.470 ± 0.009 0.724 ± 0.045

LScaledSIError 1.124 ± 0.407 1.912 ± 0.352 0.593 ± 0.115 0.410 ± 0.188 1.920 ± 0.448 0.134 ± 0.144 0.265 ± 0.260 0.381 ± 0.320 1.025 ± 0.424 1.209 ± 0.411

LWeightedL2 0.670 ± 0.033 1.861 ± 0.266 0.667 ± 0.100 0.201 ± 0.021 1.464 ± 0.144 0.291 ± 0.050 0.553 ± 0.058 0.750 ± 0.044 0.555 ± 0.050 1.249 ± 0.301

OSLL1 0.559 ± 0.016 1.093 ± 0.018 0.351 ± 0.059 0.122 ± 0.014 0.933 ± 0.075 0.511 ± 0.044 0.796 ± 0.045 0.918 ± 0.028 0.354 ± 0.037 0.441 ± 0.110

OSLL2 0.783 ± 0.033 3.304 ± 0.811 1.211 ± 0.276 0.310 ± 0.051 2.546 ± 0.566 0.125 ± 0.073 0.288 ± 0.129 0.493 ± 0.132 0.818 ± 0.083 3.812 ± 1.484

FOSLL1 0.559 ± 0.007 1.089 ± 0.030 0.322 ± 0.014 0.118 ± 0.003 0.910 ± 0.029 0.516 ± 0.015 0.811 ± 0.010 0.931 ± 0.007 0.342 ± 0.009 0.384 ± 0.036

3.3. Heterogeneous Depth Sensors: SunRGBD

In Tab. 4, we provide more results on DIODE and the official test split of SunRGBD when
trained on the corresponding training part. While the results on DIODE are matching the
observations made with regard to the other metrics, LWeightedL2 performs remarkably well
on the noisy SunRGBD test data when trained on the full data. It is worth to note that
the performance on the latter test data gets worse the more data is observed. This could
potentially be due to a domain-shift between iBims-1 and SunRGBD.

3.4. Hyperparameter Sensitivity

All superset losses employ a hyperparameter ε that determines the degree of imprecisiation
involved in the training. Here, we assess the sensitivity of this parameter when training on
NYUD-v2 with either 2k or 10k subsamples in the same experimental setting as considered
before. To this end, we fix ε to values in [0, 0.25] and solely optimize the initial learning rate
η on iBims-1 as we did in the main experiments, and report the RMSE and δ1 accuracy
on DIODE. For FOSLL1 , we set the fuzzy set support parameter δ to 1. For statistical
significance, we conducted each experiment five times.

As can be seen in Figure 2(a) for 2k instances, OSLL1 benefits from higher degrees of
imprecisiation towards ε = 0.15 compared to simple L1 (ε = 0). On the contrary, least
squares optimization using OSLL2 leads to worse performance with higher variance. In case
of 10k training instances (Figure 2(b)), OSLL2 provides the best performance for ε = 0.1,
whereas the variance of OSLL1 increases with higher degrees of imprecisiation. In any case,
FOSLL1 shows relatively low sensitivity to the degree of imprecisiation, while providing
competitive performance at the same time.
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Table 4: Additional results on DIODE and the official SunRGBD test split (average over
three runs). The best model is indicated in bold per number of instances and
metric.

# Insts. Loss
DIODE SunRGBD

RMSLog (↓) SQREL (↓) log10 (↓) δ2 (↑) δ3 (↑) RMSLog (↓) SQREL (↓)

2k

L2 0.797 ± 0.195 1.221 ± 0.117 0.148 ± 0.007 0.747 ± 0.002 0.911 ± 0.005 0.472 ± 0.045 0.708 ± 0.055

L1 0.577 ± 0.010 1.057 ± 0.056 0.146 ± 0.007 0.725 ± 0.026 0.896 ± 0.016 0.446 ± 0.020 0.718 ± 0.089

LHuber 0.561 ± 0.010 1.064 ± 0.039 0.145 ± 0.007 0.730 ± 0.026 0.901 ± 0.016 0.442 ± 0.018 0.782 ± 0.089

LBerHu 0.581 ± 0.026 1.030 ± 0.053 0.154 ± 0.002 0.712 ± 0.012 0.887 ± 0.009 0.499 ± 0.047 0.782 ± 0.054

LRuber 0.562 ± 0.013 1.020 ± 0.036 0.150 ± 0.003 0.710 ± 0.010 0.888 ± 0.007 0.454 ± 0.007 0.798 ± 0.039

LBarron 0.568 ± 0.013 1.101 ± 0.022 0.151 ± 0.006 0.709 ± 0.021 0.886 ± 0.015 0.457 ± 0.016 0.896 ± 0.110

Ltrim 0.600 ± 0.026 1.215 ± 0.060 0.150 ± 0.011 0.746 ± 0.009 0.910 ± 0.007 0.477 ± 0.063 0.680 ± 0.101

LScaledSIError 0.579 ± 0.009 1.053 ± 0.015 0.152 ± 0.003 0.706 ± 0.010 0.883 ± 0.008 0.458 ± 0.008 0.784 ± 0.036

LWeightedL2 0.582 ± 0.018 1.107 ± 0.054 0.143 ± 0.005 0.740 ± 0.018 0.905 ± 0.010 0.441 ± 0.016 0.703 ± 0.078

OSLL1 0.538 ± 0.018 1.054 ± 0.019 0.145 ± 0.004 0.723 ± 0.014 0.894 ± 0.010 0.453 ± 0.011 0.795 ± 0.040

OSLL2 0.541 ± 0.007 1.073 ± 0.063 0.144 ± 0.007 0.729 ± 0.026 0.902 ± 0.017 0.452 ± 0.019 0.796 ± 0.102

FOSLL1 0.565 ± 0.007 1.020 ± 0.018 0.151 ± 0.003 0.708 ± 0.009 0.884 ± 0.005 0.459 ± 0.008 0.788 ± 0.041

Full

L2 0.535 ± 0.006 0.972 ± 0.035 0.152 ± 0.001 0.706 ± 0.003 0.885 ± 0.003 0.458 ± 0.003 0.862 ± 0.006

L1 0.561 ± 0.010 0.998 ± 0.036 0.154 ± 0.002 0.698 ± 0.007 0.877 ± 0.004 0.464 ± 0.005 0.845 ± 0.044

LHuber 0.533 ± 0.022 0.960 ± 0.023 0.156 ± 0.003 0.691 ± 0.011 0.873 ± 0.009 0.469 ± 0.008 0.906 ± 0.021

LBerHu 0.551 ± 0.027 0.944 ± 0.045 0.158 ± 0.001 0.687 ± 0.004 0.869 ± 0.003 0.484 ± 0.015 0.927 ± 0.053

LRuber 0.521 ± 0.005 0.900 ± 0.022 0.158 ± 0.001 0.688 ± 0.003 0.868 ± 0.003 0.477 ± 0.003 0.940 ± 0.047

LBarron 0.535 ± 0.006 0.979 ± 0.016 0.155 ± 0.001 0.696 ± 0.005 0.877 ± 0.003 0.466 ± 0.004 0.906 ± 0.038

Ltrim 0.563 ± 0.021 1.032 ± 0.048 0.159 ± 0.008 0.693 ± 0.014 0.872 ± 0.011 0.505 ± 0.053 0.963 ± 0.125

LScaledSIError 0.519 ± 0.016 0.913 ± 0.027 0.158 ± 0.002 0.686 ± 0.006 0.867 ± 0.005 0.473 ± 0.004 0.868 ± 0.039

LWeightedL2 0.540 ± 0.017 0.983 ± 0.047 0.150 ± 0.001 0.711 ± 0.005 0.888 ± 0.003 0.455 ± 0.004 0.839 ± 0.017

OSLL1 0.486 ± 0.015 0.826 ± 0.069 0.155 ± 0.002 0.702 ± 0.008 0.875 ± 0.005 0.460 ± 0.006 0.929 ± 0.033

OSLL2 0.507 ± 0.013 0.976 ± 0.114 0.152 ± 0.001 0.706 ± 0.005 0.889 ± 0.004 0.456 ± 0.002 0.912 ± 0.041

FOSLL1 0.550 ± 0.023 0.934 ± 0.023 0.157 ± 0.001 0.694 ± 0.007 0.878 ± 0.003 0.466 ± 0.004 0.943 ± 0.056
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Figure 2: RMSE and δ1 with the respective standard deviations on the DIODE test data
for models trained on either 2k or 10k instances from NYUD-v2.

3.5. Discussion

In our experiments, we consider various scenarios that may apply to real-life use cases. In
most scenarios, either facing few training instances in a relatively uniform domain (NYUD-
v2 with 2k instances) or training data captured by heterogeneous depth sensors (Sun-
RGBD), OSLL1 represents an easy to optimize yet well performing method for robust depth
regression. Nevertheless, OSLL2 becomes more effective when observing more instances in
the homogeneous sensor setting, whereas FOSLL1 has shown promising performance in the
high noise scenario. However, the increased expressiveness of complex fuzzy set-based su-
perset modeling comes with a larger hyperparameter search space, making its optimization
more resource demanding. This method could potentially benefit from more than 20 trials in
the random search as conducted within our experiments, as well as from more sophisticated
yet domain tailored fuzzy set modeling.
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4. Exemplary Predictions

In Fig. 3, we provide sample predictions of selected baselines and our superset learning-
based methods on DIODE. Here, we consider models trained on a subset of 2k instances
from NYUD-v2 with different degrees of noise injection. As can be seen, the robust superset
learning-based losses keep providing reliable predictions even for high degrees of noise, for
which L2-related losses fail.
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Figure 3: Exemplary predictions for two DIODE images of models trained on a subset of
discussed loss functions. Here, we compare models trained with different noise
levels ε̂ injected into the training data as discussed in the paper.
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