ENVIRONMENTAL MUTAGENESIS

Official Journal of the Environmental Mutagen Society

PRESENT OFFICERS, ENVIRONMENTAL MUTAGEN SOCIETY, 1979–1980

<table>
<thead>
<tr>
<th>President</th>
<th>President-Elect</th>
<th>Secretary</th>
<th>Treasurer</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.L. Mendelsohn</td>
<td>S. Wolff</td>
<td>S. Green</td>
<td>A.D. Mitchell</td>
</tr>
</tbody>
</table>

Councillors

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Albertini</td>
<td>R.H. Haynes</td>
<td>M.J. Prival</td>
<td>M. Shelby</td>
</tr>
<tr>
<td>A.D. Bloom</td>
<td>M. Hite</td>
<td>V.A. Ray</td>
<td>V. Simmon</td>
</tr>
<tr>
<td>D.J. Brusick</td>
<td>R. Kimball</td>
<td>H.S. Rosenkranz</td>
<td>D. Stoltz</td>
</tr>
<tr>
<td>V.C. Dunkel</td>
<td>J. McCann</td>
<td>L.B. Russell</td>
<td>R. Valencia</td>
</tr>
<tr>
<td>W.G. Flamm</td>
<td>D. Matheson</td>
<td>G. Sega</td>
<td></td>
</tr>
</tbody>
</table>

EDITOR-IN-CHIEF

Seymour Abrahamson, University of Wisconsin, Madison, Wisconsin

ASSOCIATE EDITOR

Carter Denniston, University of Wisconsin, Madison, Wisconsin

BOOK REVIEW EDITOR

Benjamin P. Sonnenblick, Rutgers University, Newark, New Jersey

REFERENCE EDITORS

Elizabeth S. Von Halle, Oak Ridge National Laboratory, Oak Ridge, Tennessee

John S. Wassom, Oak Ridge National Laboratory, Oak Ridge, Tennessee

Bradford L. Whitfield, Oak Ridge National Laboratory, Oak Ridge, Tennessee

CONTRIBUTING EDITORS

Bruce N. Ames, University of California, Berkeley, California

Verne A. Ray, Pfizer Pharmaceuticals, Groton, Connecticut

Frederick J. de Serres, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina

EDITORIAL BOARD

J. Grant Brewen, Allied Chemical Corporation, Morristown, New Jersey

Herman E. Brockman, Illinois State University, Normal, Illinois

David Brusick, Litton Bionetics, Inc., Kensington, Maryland

Anthony V. Carrano, Lawrence Livermore Laboratory, Livermore, California

Donald Clive, Burroughs Wellcome Co., Research Triangle Park, North Carolina

John W. Drake, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina

Philip E. Hartman, Johns Hopkins University, Baltimore, Maryland

Robert H. Haynes, York University, Toronto, Ontario

William R. Lee, Louisiana State University, Baton Rouge, Louisiana

Marvin S. Legator, University of Texas Medical Branch, Galveston, Texas

Michael W. Lieberman, Washington University School of Medicine, St. Louis, Missouri

Joyce McCann, University of California, Berkeley, California

Michael Plewa, University of Illinois, Urbana, Illinois

Louise Prakash, University of Rochester School of Medicine, Rochester, New York

R. Julian Preston, Oak Ridge National Laboratory, Oak Ridge, Tennessee

Liane B. Russell, Oak Ridge National Laboratory, Oak Ridge, Tennessee

Robert Shapiro, New York University, New York, New York

Bernard Strauss, University of Chicago, Chicago, Illinois

Sheldon Wolff, University of California, San Francisco, California

Stanley Zimmering, Brown University, Providence, Rhode Island

The code at the bottom of the first page of each article in this journal indicates the copyright owner's consent that copies of the article may be made within the limits of Section 107 or 108 of the US Copyright Law. For copying beyond these limits, except as noted below, consent is given on the condition that the copier pay the stated per-copy fee through the Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970. This consent does not extend to other kinds of copying not permitted by law, such as copying for general distribution, advertising or promotional purposes, creating new collective works, or for resale.

Environmental Mutagenesis (ISSN 0192-2521; Coden ENMUDM) is published quarterly by Alan R. Liss, Inc., 150 Fifth Avenue, New York, NY 10011.

Subscription price: $60; Volume 2, 1980, four issues: $60 in US; $70 in Europe, the Middle East, and Africa; $66 in other countries. (Subscriptions going to Europe, the Middle East, and Africa will be sent air freight to Europe and mailed from there.) Payments must be in US dollars or at the current rate of exchange. For payments not made in US currency and through a US bank, add $6 service charge. Environmental Mutagen Society Members Only Please send changes of address, inquiries, and claims to Environmental Mutagen Society, 4720 Montgomery Lane, Bethesda, MD 20814.
Contents

Volume 2, Number 1 1980

EDITORIAL
Editor's Prologue
Seymour Abrahamson .. 1

INVITED REVIEW
Bacterial Mutagenesis: Review of New Insights
Philip E. Hartman .. 3

RESEARCH PAPERS
Tissue-Specific Induction of Sister Chromatid Exchanges by Ethyl Carbamate in Mice
Gladwin T. Roberts and James W. Allen 17

Effects of Epoxide Hydratase Inhibitors in Forward and Reversion Bacterial Mutagenesis Assay Systems
Derek Guest and John G. Dent .. 27

Sister Chromatid Exchange In Vivo in Mice: I. The Influence of Increasing Doses of Bromodeoxyuridin
James L. Wilmer and E.R. Soares 35

Sex-Related Differences in Cytogenetic Effects of Benzene in the Bone Marrow of Swiss Mice
Julianne Meyne and M.S. Legator 43

Regulation of Dimethylnitrosamine Metabolism by Androgenic Hormones
K. Bilkshi, D. Brusick, L.P. Bullock, and C.W. Bardin 51

Mutagenicity of 2- and 3-Carbon Halogenated Compounds in the Salmonella/Mammalian-Microsome Test
S.J. Stolzenberg and C.H. Hine 59

Mitotic Arrest by Benzimidazole Analogs in Human Lymphocyte Cultures
Henry E. Holden, Paula A. Crider, and Margitta G. Wahrenburg 67

I. Bacterial Mutagenicity of Particulates From Houston Air
Barbara Lee Borns Preidecker 75

II. Comparative Extraction of Houston Air Particulates With Cyclohexane or a Mixture of Benzene, Methanol, and Dichloromethane
Barbara Lee Borns Preidecker 85

Mutagenic Effects of Bleomycin in Drosophila melanogaster
H. Traut ... 89

MEETING REPORT
Second European Workshop on Bacterial In Vitro Mutagenicity Test Systems
J.P. Seiler, I.E. Mattern, M.H.L. Green, and D. Anderson 97
RESEARCH PAPERS

Mutagenicity of Effluents From an Experimental Fluidized Bed Coal Combustor
Charles R. Clark and Charles H. Hobbs .. 101

Lack of an Indication of Mutagenic Effects of Dinitrotoluenes and
Diaminotoluenes in Mice
E.R. Soares and L.F. Lock .. 111

Increases in Morphologically Abnormal Sperm in Rats Exposed to
Co60 Irradiation
L.F. Lock and E.R. Soares ... 125

The Mutagenic Effect of Platinum Compounds in Drosophila melanogaster
R.C. Woodruff, R. Valencia, R.F. Lyman, B.A. Earle, and J.T. Boyce 133

In Vitro Induction of Segregational Errors of Chromosomes by Natural
Cannabinoids in Normal Human Lymphocytes
Richard T. Henrich, Takayuki Nogawa, and Akira Morishima 139

X Irradiation and Sister Chromatid Exchange in Cultured Human Lymphocytes
William F. Morgan and Peter E. Crossen 149

Sister Chromatid Exchange Studies in Human Fibroblast—Rat Hepatocyte
Co-Cultures: A New In Vitro System to Study SCEs
Andrew D. Kligerman, Stephen C. Strom, and George Michalopoulos 157

Enzyme Mutants Induced by Low-Dose-Rate γ-Irradiation in Drosophila:
Frequency and Characterization
Robert R. Racine, Charles H. Langley, and Robert A. Voelker 167

Genetic Effects of Strong Magnetic Fields in Drosophila melanogaster:
II. Lack of Interaction Between Homogeneous Fields and Fission
Neutron-Plus-Gamma Radiation
P.G. Kale and J.W. Baum .. 179

Evidence That the Repair Deficient mei-9a Female in Drosophila melanogaster
Is a Strong Potentiator of Chromosome Loss Induced in the Paternal
Genome by Dimethylnitrosamine
S. Zimmering, A.W. Hartmann, and S.F. Cooper 187

The Action of Three Anticlastogens on the Induction of Sister Chromatid
Exchange by Trenimon and 8-Hydroxyquinoline Sulfate in Human
Lymphocyte Cultures
E. Gebhart and H. Kappauf .. 191

BOOK AND ARTICLE REVIEWS

B.P. Sonnenblick ... 201

MEETING REPORT

Eleventh Annual Meeting of the Environmental Mutagen Society
Officers of the Society ... 203
Councilors .. 203
Program Committee ... 204
Registration Fees and Hours ... 204
General Information ... 204
Program .. 206
Abstracts ... 230
Author Index to Abstracts ... 317
Announcement ... 321
EDITORIAL

Laboratory Safety and Handling Procedures for Chemical Mutagens
David J. Brusick .. 323

RESEARCH PAPERS

Variation in the Baseline Sister Chromatid Exchange Frequency in Human Lymphocytes
A.V. Carrano, J.L. Minkler, D.G. Stetka, and D.H. Moore II ... 325

Induction of Chromosome Shattering and Micronuclei by Ultraviolet Light and Caffeine. I. Temporal Relationship and Antagonistic Effects of the Four Deoxyribonucleosides
C. Cremer, T. Cremer, and M. Simickova ... 339

The Anaerobe-Mediated Mutagenicity of 2-Nitrofluorene and 2-Aminofluorene for Salmonella typhimurium
George E. Karpinsky and Herbert S. Rosenkranz ... 353

Mutagenicity of Pesticides Evaluated by Means of Gene-Conversion in Saccharomyces cerevisiae and in Aspergillus nidulans
M. de Bertoldi, M. Griselli, M. Giovannetti, and R. Barale ... 359

Absence of Arsenite Mutagenicity in E coli and Chinese Hamster Cells
T.G. Rossman, D. Stone, M. Molina, and W. Troll ... 371

Use of Hydroxyurea in the Measurement of DNA Repair by the BND Cellulose Method
James Irwin and Bernard Strauss .. 381

Sunlight-Induced Mutagenesis and Toxicity in L5178Y Mouse Cells: Determination and Comparison With Other Light Sources
Kenneth Krell and Elizabeth D. Jacobson ... 389

Effect of N-Alkyl Chain Length on the Mutagenicity of N-Nitrosated 1-Naphthyl N-Alkylcarbamates
Bryan K. Eya and Ronald E. Talcott ... 395

James T. MacGregor, Martin J. Diamond, Laurence W. Mazzeno, Jr., and Mendel Friedman .. 405

Estimation of the Weight-Dependent Probability of Detecting a Mutagen With the Ames Assay
James B. Johnston and Philip K. Hopke ... 419

BRIEF COMMUNICATION

Genes Controlling Sensitivity to Alkylation and X-Ray Damage on Chromosome 3 of Drosophila melanogaster
A.K. Beck, R.R. Racine, and F.E. Würgler ... 425

MEETING REPORT

Meeting Report on the Second EMS Workshop
David J. Brusick ... 431

Program Announcement .. 433
RESEARCH PAPERS

Differential Induction of Sister Chromatid Exchanges by Indirect-Acting Mutagen-Carcinogens at Early and Late Stages of Embryonic Development
Lori A. Todd and Stephen E. Bloom .. 435

How Many Loci on the X-Chromosome of Drosophila melanogaster Can Mutate to Recessive Lethals?
S. Abrahamson, F.E. Würgler, C. DeJongh, and H. Unger Meyer 447

Short-Term Cytogenetic Assays of Nine Cancer Chemotherapeutic Drugs With Metabolic Activation
William W. Au, Dennis A. Johnston, Cheryl Collie-Bruyere, and T.C. Hsu 455

Hyperthermia Induced Dissociation of the X-Y Bivalent in Mice
M.L. Garriott and C.L. Chrisman .. 465

The Relative Contributions of B and T Lymphocytes in the Human Peripheral Blood Mutagen Test System as Determined by Cell Survival, Mitogenic Stimulation, and Induction of Chromosome Aberrations by Radiation
Jeffrey L. Schwartz and Mary Esther Gaulden 473

A Comparison of the Ability of Frog and Rat S-9 to Activate Promutagens in the Ames Test
Albert M. Cheh, Alan B. Hooper, Jill Skochdopole, Craig A. Henke, and Robert G. McKinnell .. 487

Clastogen-Induced Micronuclei in Peripheral Blood Erythrocytes: The Basis of an Improved Micronucleus Test
James T. MacGregor, Carol M. Wehr, and Daniel H. Gould 509

Potentiation of Chromosome Loss Induced in the Paternal Genome by Methyl Methanesulfonate and Procarbazine Following Matings With Repair Deficient mei-9a Females of Drosophila
S. Zimmering and K.L. Kammermeyer 515

The Evaluation of the Epoxide Diluent, n-Butylglycidyl Ether, in a Series of Mutagenicity Assays

Genotoxic Activity in Microorganisms of Tetryl, 1,3-Dinitrobenzene and 1,3,5-Trinitrobenzene
Douglas B. McGregor, Colin G. Riach, Rowan M. Hastwell, and Jack C. Dacre 531

BRIEF COMMUNICATION

A Maternal Effect in Homozygous mei-9a mei-41D5 Repair Deficient Drosophila melanogaster Females Influencing the Recovery Rate of Progeny Bearing a Y Chromosome
S. Zimmering and S.F. Cooper .. 543

BOOK AND ARTICLE REVIEWS

B.P. Sonnenblick .. 547

Author Index .. 549

Subject Index .. 551
Induction of Chromosome Shattering and Micronuclei by Ultraviolet Light and Caffeine. I. Temporal Relationship and Antagonistic Effects of the Four Deoxyribonucleosides

C. Cremer, T. Cremer, and M. Simickova

Institute of Human Genetics, University of Freiburg, Albertstr. 11, D-7800 Freiburg i. Br. (C.C., M.S.), and Institute of Anthropology and Human Genetics, University of Heidelberg, Im Neuenheimer Feld 328, D-6900 Heidelberg (T.C.), Federal Republic of Germany

It is known that nucleosides may have antimutagenic and anticlastogenic effects. Here, we have investigated the influence of nucleosides on the induction of shattered chromosomes (fragmentation and/or pulverization of chromosomes of a mitotic cell) and of micronuclei by ultraviolet (UV) light and caffeine. Asynchronous cell cultures of a V79 subline of the Chinese hamster were irradiated at wavelength 254 nm using fluences up to 5.2 joules/m². Following irradiation, the cells were postincubated either with 1.0 mM or 2.0 mM caffeine alone or with caffeine plus the four deoxyribonucleosides (dXs) (concentration 0.1 mM each). After different incubation times (three to 24 hours), chromosome preparations were performed. In other experiments, synchronized cells were used. The percentage of metaphase spreads with shattered chromosomes and the percentage of cells with micronuclei were determined. Post-treatment with caffeine alone resulted in shattered chromosomes in a high percentage of cells at the first post-irradiation mitosis as described previously. Formation of cells with micronuclei was observed only after the appearance of mitotic cells with shattered chromosomes, the maximum percentage of cells with micronuclei being smaller than the maximum percentage of cells with shattered chromosomes. The strong potentiating effect of UV-light plus caffeine was significantly reduced, however, if the post-treatment was performed with caffeine plus nucleosides. A significant reduction was also observed in the percentage of micronuclei. An evaluation of the mitotic indices and of cell-cycle parameters indicates that the effect of nucleosides was not due to enhanced interphase death.

Key words: chromosome shattering, ultraviolet (UV) light, caffeine, nucleosides, antimutagens, micronuclei

INTRODUCTION

In a number of cell strains, especially in rodent cells, caffeine is known to potentiate the chromosome damaging effects of ultraviolet (UV) light and a number of chemical mutagens [Kihlman, 1974; Nilsson and Lehmann, 1975; Hartley-Asp, 1976; Kihlman, 1977;

Received January 2, 1980; accepted May 8, 1980.

Parts of this investigation will be presented in the doctoral dissertation of M. Simickova to be submitted to the Faculty of Medicine, University of Freiburg i. Br.

0192-2521/80/0203-0339$02.60 © 1980 Alan R. Liss, Inc.
A striking phenomenon observed after UV irradiation ($\lambda = 254$ nm) and caffeine post-treatment is the frequent occurrence of cells with generalized chromosome shattering (GCS) (fragmentation and/or pulverization of all chromosomes of a mitotic cell) [Nilsson and Lehmann, 1975; T. Cremer et al, 1979].

In the present investigation, we have studied the influence of nucleosides on this phenomenon. These substances are known to have antimutagenic and anticlastogenic effects [Novick and Szilard, 1952; Kihlman, 1977; Gebhart, 1977]. Here, it is shown that the addition of deoxyribonucleosides to the postirradiation medium exerts a strong antagonistic effect on the induction of GCS. In addition, we examined the influence of nucleosides on the production of cells with micronuclei [Boller and Schmid, 1970; Countryman and Heddle, 1976]. The presence of nucleosides also reduced the percentage of micronuclei produced by UV light and caffeine.

MATERIAL AND METHODS

Cell Material and Culture Conditions

Cells of a subline of V79 Chinese hamster cells [Cremer et al, 1976] were used. This cell line has a modal chromosome number of 21 and a mean generation time of 13–14 hours. The cells were grown in Eagle's minimum essential medium (MEM) supplemented with 10% fetal calf serum (FCS), nonessential amino acids, and antibiotics (100 units/ml penicillin and 100 μg/ml streptomycin) in a humidified atmosphere with 5% CO$_2$. MEM (Flow Laboratories, Germany) was free from deoxyribonucleosides.

For experiments, cells were grown in 6-cm plastic petri dishes (Nunc/Denmark). Asynchronous cultures were inoculated after trypsination and grown two days before use. Synchronous populations were obtained by the mitotic shake-off procedure which resulted in at least 90% mitotic cells as revealed by direct chromosome preparations. The percentage of S-phase cells in these populations was small (\leq 2%) as shown by pulse labeling with 3H-thymidine prior to detachment.

UV Irradiation and Post-treatment

Asynchronous cells grown in petri dishes were labeled with 3H-thymidine (0.1 μCi/ml, 5 μCi/mmole; Amersham Buchler) for 30 minutes prior to irradiation. Synchronized cells were used without prelabeling. Medium was removed before irradiation and the cells were washed twice with Hanks' solution (without phenol red). Thereafter, cells were irradiated from above, while covered with a 1 mm layer of Hanks' solution. A germicidal lamp (Sterisol 5143, Original Hanau) was used emitting predominantly at 254 nm wavelength. The fluence rate was determined to be 3.5 W/m2 by means of a calibrated photodiode (United Detector Technology, Santa Monica, California). The duration of irradiation (0.75 seconds, 1.5 seconds) was controlled by openings in rotating masks above the cells which were moved by the wheel of a record player. This procedure allowed a precise adjustment of the irradiation time. Immediately after the irradiation, the cells were postincubated at 37°C in MEM with 10% FCS, either with caffeine (1–2 mM) alone or with caffeine plus the four deoxyribonucleosides (dXs) (deoxyadenosine, deoxycytidine, deoxyguanosine, and thymidine; concentration 0.1 mM each). Except for the addition of dXs, all treatments were identical and made in duplicate. After different incubation times (3–27 hours), in situ chromosome preparation was performed [Zorn et al, 1976]. Colchicine
(2 μg/ml) was added 3 hours before preparation. The dishes were air-dried and stained with aceto-orcein. The scoring of dishes was performed “blind,” i.e., in the absence of information about the treatment regimen. To examine chromosome damage and micronucleus formation, at least 50 metaphases and 500 interphase cells, respectively, were analyzed per dish; i.e., at least 100 metaphase figures and 1,000 interphase cells were scored for each treatment and fixation time.

For statistical evaluation the binomial assumption was made, and the confidence limits $p_1 \leq p \leq p_2$ for proportions were determined [Beyer, 1974]. The observed frequency is p and p_1 and p_2 are the lower and upper limits of the 95% confidence interval, respectively. Throughout the text, the 95% confidence intervals are given as decimals. The actual data are expressed as a percent. The term “nonsignificant difference” between two observed frequencies p_1, p_2 means that the 95% confidence intervals of p_1 and p_2 overlapped; if the term “significant difference” is used, the 95% confidence intervals of p_1 and p_2 were clearly separated from each other.

Autoradiography

After microscopic evaluation as described above, pulse-labeled cells were covered with Ilford nuclear emulsion K2 and processed following standard procedures [Zorn, 1978]. Exposure time at 4°C was two weeks. In autoradiographs, the percentage of labeled metaphases was determined.

RESULTS

1. **Classification of Metaphase Figures**

The metaphase figures obtained following whole-cell irradiation ($\lambda = 254$ nm) of V79 cells and post-treatment with caffeine in the presence or absence of deoxyribonucleosides were classified in the following way [Zorn et al., 1977; Zorn, 1978; T. Cremer et al., 1980a]: class A: No recognizable alterations of chromosome morphology; class B: Metaphase plates with one, occasionally two alterations. In most cases, these alterations were achromatic lesions ("gaps") or chromatid breaks. Occasionally, chromatid exchange figures were found. Deviations from the modal chromosome number were not classified as aberrations; class C: All metaphase spreads containing more than two aberrations with the majority of chromosomes (11 and more) remaining intact, were classified as class C. In the whole-cell irradiation experiments presented here, class C figures were a very rare event (< 1%), in contrast to experiments in which only a small part of the cell nucleus was UV-microirradiated [Zorn et al., 1977; Zorn, 1978]; class D: This class contains metaphase spreads in which the majority of chromosomes (11 and more) remaining intact, were classified as class C. In the whole-cell irradiation experiments presented here, class C figures were a very rare event (< 1%), in contrast to experiments in which only a small part of the cell nucleus was UV-microirradiated [Zorn et al., 1977; Zorn, 1978]; class E: This class contains metaphase spreads in which the majority of chromosomes (11 and more) showed an aberrant morphology, only one or several chromosomes remaining intact (Fig. 1a); class E: In metaphase spreads of class E, all chromosomes were affected (GCS), appearing fragmented and/or pulverized (Fig. 1b, c). In the majority, figures as shown in Figure 1c were observed. The term GCS is introduced as a descriptive one to avoid any prejudice concerning the continuity or discontinuity of the DNA strand. Following UV-irradiation alone (up to 7 joules/m²) or caffeine post-treatment alone (1–2 mM), metaphase figures of classes C-E were rare events (< 1% each) [Zorn, 1978]. UV-irradiation plus caffeine post-treatment, however, induced GCS in a synergistic (potentiating) way up to almost 100% of all metaphase figures obtained.
Fig. 1. Chromosome shattering following UV irradiation (λ = 254 nm) of V79 cells and postincubation with caffeine. a) Aberrant morphology in the majority of chromosomes, only one or several chromosomes remaining intact: Class D; b, c) All chromosomes affected (generalized chromosome shattering, GCS): Class E; fragmentation of all chromosomes (b); pulverization of all chromosomes (c).

2. Percentage of Cells with GCS

To investigate the influence of the addition of the dXs on the amount of GCS, cells were treated under identical conditions except addition of dXs.

Figure 2 shows the result for asynchronous cells irradiated with 2.6 joules/m² or 5.2 joules/m² and post-treated with 1 mM caffeine with or without dXs. At 2.6 joules/m², the percentage of cells with GCS was low (<3%) in both cases (Fig. 2a, b), and no significant difference was observed.

Irradiation with 5.2 joules/m² and postincubation with 1 mM caffeine alone induced a maximum of 33% (0.23 < p < 0.42) of cells with GCS (Fig. 2c). This percentage was significantly reduced, however, if dXs were added. In this case, a maximum of 12% (0.06 < p < 0.20) cells with GCS was obtained (Fig. 2d).

In Figure 3, the frequencies of metaphase figures classes A through E are shown for cells post-treated with 2 mM caffeine. At this concentration, irradiation with 2.6 joules/m² and post-treatment with caffeine alone had a considerable effect: Up to 40% (0.30 < p < 0.50) of cells with GCS were found (Fig. 3a). Again, the percentage of cells with GCS was significantly reduced if dXs were added (Fig. 3b), the maximum being 12% (0.06 < p < 0.20). The antagonistic effect of the addition of dXs was also observed following irradiation with 5.2 joules/m². While a maximum of 97% (0.92 < p < 0.99) of cells with GCS was observed without addition of dXs (Fig. 3c), the maximum was 78% (0.69 < p < 0.86) in the presence of dXs.

In Figure 4, the results of experiments with synchronized cells are shown. These cells were irradiated 3–5 hours after mitotic detachment and post-treated with 1 mM caffeine in the presence or absence of dXs. Again, a significant reduction of cells with GCS was obtained if nucleosides were added (Fig. 4a, b). After 15 hours incubation with 1 mM caffeine in the absence of nucleosides, the amount of cells with GCS was 15% (0.08 < p < 0.24) after irradiation with 2.6 joules/m² and 50% (0.4 < p < 0.8) after 5.2 joules/m². In the presence of dXs, the maximum percentages were 1.5% (0 < p < 0.07) and 3% (0 < p < 0.08) for the two doses, respectively. It is interesting to note that, in all cases with a significant reduction of the percentage of cells with GCS, the presence of nucleosides also significantly reduced the total aberration frequency (sum of percentages of cells with aberrations classes B through E, achromatic lesions excluded).
Fig. 2. UV irradiation (λ = 254 nm) of asynchronous V79 cells and caffeine post-treatment (1 mM) with or without the four deoxyribonucleosides (dXs; concentration 0.1 mM each); Induction of chromosome alterations. Abscissa: Incubation time following irradiation (hr); ordinate: Percentage of metaphase figures class A—E. (a) no chromosomal alterations; Class A, single defects (one, occasionally two aberrations); Class B, aberrant morphology in the majority of chromosomes, only one or several chromosomes remaining intact; Class D, all chromosomes affected (fragmentation and/or pulverization); generalized chromosome shattering (GCS): Class E. (a) 2.6 joules/m², no dXs; (b) 2.6 joules/m², plus dXs. (c) 5.2 joules/m², no dXs, (d) 5.2 joules/m², plus dXs. For each value, at least 100 mitotic cells were scored.
Fig. 3. UV-irradiation ($\lambda = 254$ nm) of asynchronous V79 cells and caffeine post-treatment (2 mM) with or without the four deoxyribonucleosides (dXs; concentration 0.1 mM each): Induction of chromosome alterations. Abscissa: Incubation time following irradiation (hr); Ordinate: Percentage of metaphase figures classes A–E (see legend to Fig. 2) – □, class A; △, class B; ■, class D; , class E. (a) 2.6 joules/m2, no dXs; (b) 2.6 joules/m2, plus dXs; (c) 5.2 joules/m2, no dXs; (d) 5.2 joules/m2, plus dXs. For each value, at least 100 mitotic cells were scored.
Fig. 4. UV-irradiation ($\lambda = 254$ nm) of synchronized V79 cells (G1 and early S) and caffeine post-treatment (1 mM) with or without the four deoxyribonucleosides (dXs; concentration 0.1 mM each): Induction of generalized chromosome shattering and formation of micronucleated cells. a,b: Induction of generalized chromosome shattering (GCS). Abscissa: Incubation time following irradiation (hr); ordinate: Percentage of metaphase figures; classes A–E – o, no chromosomal alterations (class A), caffeine post-treatment without dXs; •, no chromosomal alterations (class A), caffeine post-treatment in the presence of dXs; ●, all chromosomes affected (GCS), caffeine post-treatment without dXs; •, all chromosomes affected (GCS), caffeine post-treatment in the presence of dXs. (a) 2.6 joules/m2; (b) 5.2 joules/m2. For each value, at least 100 mitoses were scored. (c, d) Induction of cells with micronuclei: Abscissa: Incubation time following irradiation (hr); Ordinate: Percentage of cells with micronuclei; o, no dXs; •, plus dXs. (c) 2.6 joules/m2; (d) 5.2 joules/m2. For each value, at least 1000 cells were scored.
Fig. 5. UV-irradiation (λ = 254 nm) of asynchronous V79 cells and caffeine post-treatment with or without the four deoxyribonucleosides (dXs; concentration 0.1 mM each): Induction of cells with micronuclei. Abscissa: Incubation time following irradiation (hr); ordinate: Percentage of cells with micronuclei; x, 0 joules/m²; ○, 2.6 joules/m²; ●, 5.2 joules/m². (a) 1 mM caffeine, no dXs; (b) 1 mM caffeine, plus dXs; (c) 2 mM caffeine, no dXs; (d) 2 mM caffeine, plus dXs. For each value, at least 1000 cells were scored. In the majority of cases (70%), micronucleated cells had one to three micronuclei.
3. Formation of Micronuclei

The percentage of cells with micronuclei obtained after UV-irradiation (2.6 joules/m² and 5.2 joules/m²) without caffeine post-treatment or after caffeine treatment of un-irradiated cultures was low (≤ 2%, 0.01 ≤ p ≤ 0.03), the differences being not significant. A significant increase (up to 14%, 0.11 ≤ p ≤ 0.16), however, was observed following the combined treatment with 5.2 joules/m² and 1 mM caffeine (Fig. 5a). While 2.6 joules/m² and 1 mM caffeine post-treatment did not result in a significant increase of cells with micronuclei (Fig. 5a), 2 mM caffeine post-treatment produced a considerable effect (maximum 16%, 0.14 ≤ p ≤ 0.18) even at this lower UV-dose (Fig. 5c). Addition of dXs significantly reduced the percentage of cells with micronuclei (Fig. 5b, d). The maxima of the percentage of micronucleated cells obtained in the presence of dXs were 8% (0.06 ≤ p ≤ 0.10) for 5.2 joules/m² plus 1 mM caffeine; 3.5% (0.02 ≤ p ≤ 0.045) for 2.6 joules/m² plus 2 mM caffeine; 13% (0.10 ≤ p ≤ 0.15) for 5.2 joules/m² plus 2 mM caffeine (without dXs – 24% (0.21 ≤ p ≤ 0.26)).

A comparison of the data presented for the induction of GCS (Figs. 2 and 3) and the results obtained for the production of micronuclei (Fig. 5) clearly shows that cells with micronuclei appeared only after a significant increase of cells with GCS was observed. For example, irradiation with 5.2 joules/m² and 2 mM caffeine post-treatment resulted in 60% mitotic cells with GCS after 9 hours incubation (Fig. 3c). At this time, the percentage of cells with micronuclei did not exceed the level of unirradiated controls.

A significant reduction of the percentage of cells with micronuclei by the addition of dXs was observed also in case of synchronized cultures (Fig. 4c, d). A comparison with the data presented in Fig. 4a, b shows that the formation of cells with GCS again preceded the appearance of cells with micronuclei.

4. Mitotic Index and Cell-Cycle Parameters

For all incubation times, the mitotic indices were determined. It was found that the addition of nucleosides did not significantly reduce the mitotic indices if compared with cells treated in the absence of dXs. In some cases, the mitotic index was even slightly higher when nucleosides were added. Furthermore, at 5.2 joules/m² plus caffeine post-treatment a reduction of the mitotic delay of approximately 3 hours was observed in the presence of dXs.

The duration of S-phase and of G₂ + prophase was estimated from the metaphase labeling index (MLI) curves according to the method of Evans and Scott [1964]. The results of these estimates are presented in Table I. Up to UV fluences of 2.6 joules/m², the differences in the duration of S-phase and G₂ + prophase were small to nonexistent whether nucleosides were added or not. At 5.2 joules/m² and postincubation with 1 mM and 2 mM caffeine, the duration of S-phase was observed to be reduced by approximately three hours in the presence of dXs. This fits well to the reduction of the mitotic delay derived from the mitotic index curves. No influence of dXs on the duration of G₂ + prophase was found at this UV fluence. It should be emphasized, however, that these measurements of cell-cycle parameters are only rough estimates since sampling times of 3 hours with colchicine were used to collect cells in metaphase. In any case, the mitotic indices and the cell-cycle estimates obtained from the MLI curves indicate that the reduction of the percentage of GCS and of micronucleated cells by the addition of the four deoxyribonucleosides cannot be explained by enhanced interphase death.
<table>
<thead>
<tr>
<th>UV fluence</th>
<th>0 joule/m²</th>
<th>2.6 joule/m²</th>
<th>5.2 joule/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S-phase (hr)</td>
<td>G₂ + prophase (hr)</td>
<td>S-phase (hr)</td>
</tr>
<tr>
<td>Post-treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 mM Caffeine, 0 mM dXs</td>
<td>7.0</td>
<td>3.8</td>
<td>nd</td>
</tr>
<tr>
<td>0 mM Caffeine, 0.1 mM dXs</td>
<td>6.0</td>
<td>3.8</td>
<td>nd</td>
</tr>
<tr>
<td>1.0 mM Caffeine, 0 mM dXs</td>
<td>7.0</td>
<td>3.5</td>
<td>8.0</td>
</tr>
<tr>
<td>1.0 mM Caffeine, 0.1 mM dXs</td>
<td>6.5</td>
<td>4.2</td>
<td>6.5</td>
</tr>
<tr>
<td>2.0 mM Caffeine, 0 mM dXs</td>
<td>6.3</td>
<td>4.5</td>
<td>6.7</td>
</tr>
<tr>
<td>2.0 mM Caffeine, 0.1 mM dXs</td>
<td>7.0</td>
<td>4.5</td>
<td>6.1</td>
</tr>
</tbody>
</table>

*The cell-cycle parameters given were calculated from metaphase labeling index (MLI) curves according to the method of Evans and Scott [1964].

S-phase (hr): Estimated from the time interval between half of the maximum labeling index on the ascending limb to half the maximum labeling index on the descending limb of the first peak, minus the duration of the ³H-thymidine treatment (30 minutes).

G₂ + prophase: Estimated from the time interval between the beginning of ³H-thymidine treatment to the time when the labeling index reached half of the maximum value.

dXs: deoxyadenosine + deoxycytidine + deoxyguanosine + thymidine; concentration 0.1 mM each.

nd = not determined.

From growth curves of exponentially growing cells, a generation time of 13–14 hours was estimated.
DISCUSSION

1. GCS and Premature Chromosome Condensation

GCS (class E) was the most frequently observed class of altered chromosome morphology in the present experiments using whole-cell irradiation ($\lambda = 254$ nm) and post-treatment with caffeine. Two types of GCS were obtained: 1) Metaphase figures with chromatid breaks and/or gaps in all chromosomes (Fig. 1b); 2) metaphase figures with “pulverization” [Zorn et al, 1976; Vogel and Bauknecht, 1978] of the chromosomes (Fig. 1c). We have seen many examples of GCS where chromosomes with numerous chromatid breaks were still present besides pulverized chromosomes. This suggests that types 1 and 2 are closely related to each other. Type 2 was obtained in the large majority of metaphase figures with GCS. These figures resemble prematurely condensed chromosomes (PCC) during S-phase (S-PCC) [Johnson and Rao, 1970; Sperling and Rao, 1974] or G1-PCC following UV irradiation [Schor et al, 1975]. Therefore, we have considered the possibility that type 2 figures might be due to micronucleus-derived premature chromosome condensation [Obe and Beek, 1975]. The temporal relationship between the observation of shattered chromosomes and the production of micronuclei observed in our experiments, however, rules out such a possibility: Enhanced formation of micronuclei was observed after mitotic cells with shattered chromosomes appeared in the cultures (compare Figs. 2, 3, and 5).

Different mechanisms for the induction of GCS and PCC, however, do not exclude the possibility that pulverized chromosomes in metaphase plates with GCS indicate a failure of chromosome condensation. Whether the pulverized appearance of chromosomes in GCS figures is mainly due to a large number of DNA breaks or to a failure of chromosome condensation, remains to be investigated. A model developed by us previously to explain the induction of GCS by UV light and caffeine [Zorn et al, 1977; T. Cremer et al, 1980a, b] is compatible with both possibilities.

2. Antagonistic Effects of Nucleosides

The antimutagenic and anticlastogenic action of deoxyribonucleosides is well known [Novick and Szilard, 1952; Kihlman, 1977; Gebhart, 1977]. In the present investigation, it is shown that the synergistic effect of UV light plus caffeine on the induction of GCS and of micronucleated cells is significantly reduced by the addition of the four dXs to the post-irradiation medium. The evaluation of mitotic indices and cell-cycle parameters indicates that the effect is not due to enhanced interphase death.

A possible explanation of the antagonistic effects of nucleosides on the induction of chromosome shattering by UV light and caffeine may be obtained by findings of Collins and Johnson [1979] that the addition of nucleosides may enhance DNA repair synthesis in UV-irradiated Microtus agrestis cells. Unscheduled DNA synthesis following UV irradiation was observed also in the V79 line used in the present investigation [Zorn, 1978]. This suggests the following line of reasoning: First, it seems to be generally assumed that the synergistic action of UV light plus caffeine on the induction of chromosome aberrations is due to the inhibition of daughter strand repair (postreplication repair) of DNA photolesions [Nilsson and Lehmann, 1975; Kihlman, 1977; Roberts, 1978]. Here it is assumed that the inhibition of daughter strand repair by caffeine plays a decisive role also in the induction of generalized chromosome shattering: GCS is induced if the number of daughter strand repair sites exceeds a certain threshold which may vary from cell to cell [T.
Cremer, Cremer, and Simickova

Cremer et al, 1980a, b]. Second, addition of nucleosides to the postirradiation medium may enhance the excision of UV-induced pyrimidine dimers. If so, the number of remaining DNA photolesions and, hence, the number of daughter-strand-repair sites becomes smaller in nucleoside-treated cells than in untreated ones. If this number falls below the threshold value characteristic for a given cell as first described, no GCS is induced. Although the model outlined above is far from proven, it offers a plausible mechanism for the antagonistic effect of nucleosides on GCS and fits well with the data available. It is also consistent with evidence obtained by Nakano and co-workers [1979] that the adverse effect of caffeine on the survival of UV-irradiated V79 cells is strongly diminished by an enhancement of the period of time available for excision repair. While the anticlastogenic effect of nucleosides may be due to their effect on excision-repair capacity, possible effects of an improved supply of cells with nucleosides on daughter-strand-repair capacity may also be considered.

Caffeine may have an inhibiting effect on the uptake and on the metabolism of DNA-precursors [Lehmann and Kirk-Bell, 1974] (C.A. Waldren, personal communication, 1980). The addition of nucleosides might overcome the adverse effect of a reduced supply of nucleosides. Furthermore, some interference of nucleosides with uptake and/or metabolism of caffeine, thus reducing the effective intracellular concentration of caffeine, should not be omitted from consideration.

CONCLUSIONS

Deoxyribonucleosides exert an antagonistic effect on the induction of GCS and micronucleus production by UV light and caffeine in V79 cells. It is suggested that by the addition of nucleosides, the excision repair capacity may be promoted, thus reducing the number of caffeine-sensitive sites of daughter strand repair (postreplication repair).

ACKNOWLEDGMENTS

This work was supported by grants from the Deutsche Forschungsgemeinschaft (Wo 148/16 and SFB 46). We thank Dipl Biol Hella Baumann, Brigitte Lechner, and Ghassan Jabbur for their excellent technical assistance in part of the experiments. We are greatly indebted to Dr. Beryl Hartley-Asp (Helsingborg, Sweden) for stimulating discussions.

REFERENCES

Author Index

Abrahamson, Seymour, 1, 447
Allen, James W., 17
Anderson, D., 97
Au, William W., 455

Bakshi, K., 51
Barale, R., 359
Bardin, C.W., 51
Baum, J.W., 179
Beck, A.K., 425
Bloom, Stephen E., 435
Boyce, J.T., 133
Brusick, David J., 51, 323, 431
Bullock, L.P., 51

Carrano, A.V., 325
Cheh, Albert M., 487
Chrisman, C.L., 465
Clark, Charles R., 101
Collie-Bruyere, Cheryl, 455
Connor, T.H., 521
Cooper, S.F., 187, 543
Cremer, C., 339
Cremer, T., 339
Crider, Paula A., 67
Crossen, Peter E., 149

Dacre, Jack C., 531
de Bertoldi, M., 359
DeJongh, C., 447
Dent, John G., 27
Diamond, Martin J., 405

Earle, B.A., 133
Eya, Bryan K., 395

Friedman, Mendel, 405

Garriott, M.L., 465
Gaulden, Mary Esther, 473
Gebbhart, E., 191
Giovannetti, M., 359
Gould, Daniel H., 509
Green, M.H.L., 97
Griselli, M., 359
Guest, Derek, 27

Hartman, Philip E., 3
Hartmann, A.W., 187
Hastwell, Rowan M., 531
Henke, Craig A., 487
Henrich, Richard T., 139
Hine, C.H., 59
Hobbs, Charles H., 101
Holden, Henry E., 67
Hooper, Alan B., 487
Hopke, Philip K., 419
Hsu, T.C., 455

Irwin, James, 381

Jacobson, Elizabeth D., 389
Johnston, Dennis A., 455
Johnston, James B., 419

Kale, P.G., 179
Kamermeyer, K.L., 515
Kappauf, H., 191
Karpinsky, George E., 353
Kligerman, Andrew D., 157
Krell, Kenneth, 389

Langley, Charles H., 167
Legator, M.S., 43, 521
Lock, L.F., 111, 125
Lyman, R.F., 133

MacGregor, James T., 405, 509
Mattern, I.P., 97
Mazzeno, Laurence W., Jr., 405
McGregor, Douglas B., 531
McKinnell, Robert G., 487
Meyer, H. Unger, 447
Meyne, Julianne, 43, 521
Michalopoulos, George, 157
Minkler, J.L., 325
Molina, M., 371
Moore, D.H., II, 325
Morgan, William F., 149
Morishima, Akira, 139

Nogawa, Takayuki, 139
Pullin, T.G., 521

549
Preidecker, Barbara Lee Borns, 75, 85
Racine, Robert R., 167, 425
Riach, Colin G., 534
Roberts, Gladwin T., 17
Rosencranz, Herbert S., 353
Rossman, T.G., 371
Schwartz, Jeffrey L., 473
Seliger, J.P., 97
Skochdopole, Jill, 487
Soares, E.R., 35, 111, 125
Sonnenblick, B.P., 201, 547
Stetka, D.G., 325
Stolzenberg, S.J., 59
Stone, D., 371
Strauss, Bernard, 381

Strom, Stephen C., 157
Talcott, Ronald E., 395
Todd, Lori A., 435
Traut, H., 89
Troll, W., 371

Valencia, R., 133
Voelker, Robert A., 167

Wahrenburg, Margitta G., 67
Ward, J.B., Jr., 521
Wehr, Carol M., 509
Wilmer, James L., 35
Woodruff, R.C., 133
Würgler, F.E., 425, 447

Zimmering, S., 187, 515, 543
Subject Index

Abstracts to the Eleventh Annual Meeting of the Environmental Mutagen Society, 230
Author index to, 317
Activation, 353
Aflatoxin B₁ (AF-B₁), 435
Air particulates, 75
Allozyme deficiencies, 167
Anaerobes, 353
Anaphase preparation of chromosomes, 139
Aneuploidy, 89
Anticlastogens, 191
Antimutagens, 339
Arsenic, 371
Aspergillus, 359

Bacterial mutagenesis, 27
Baseline frequency, 325
Benzene, 43
Benzimidazole, 67
Bleomycin, 89
Bromodeoxyuridine, 35, 325

Caffeine, 339
Cancer chemotherapeutic drugs, 455
Cannabidiol, 139
Cannabinol, 139
Cascade impactors, 101
Cell survival, 473
Chemical mutagens, 381
Chick embryo, 435
Chinese hamster cells, 371
Chromosome aberrations, 473
breakage, 455
loss, 187, 515
shattering, 339
Chronic irradiation, 167
Clastogens, 509
Coal fly ash, 101
Co-culture, 157
Cyclohexene oxide, 27
Cyclophosphamide, 157
Cyto genetics, 43, 465
assays, 455
screening, 509

Delta-9-tetrahydrocannabinol, 139
Development, 435
Diaminotoluene, 111
Dim ethyl nitrosamine, 51
Dinitrotoluene, 111
DMN, 187
DNA repair, 75, 371, 381, 531
Dominant lethal, 111
Drosophila females, 543
melanogaster, 89, 133, 179, 187
Dyes, 405

E coli, 371, 531
8-hydroxyquinoline sulfate, 191
Enzyme inhibition, 27
Epoxide hydratase, 27
Ethyl carbamate, 17

5-Bromodeoxyuridine, 149
Flame retardants, 405
Fluidized bed combustion, 101
Fluorescent lamp, 389
4-(p-nitrobenzyl) pyridine, 395

Fractionation, 75

Gamma radiation, 473
Gene-conversion, 359
Genetic effects, 179
factors, 51

Halogenated hydrocarbons, 59
Hepatocytes, 157
Human, 325
B lymphocytes, 473
lymphocyte cultures, 139
T lymphocytes, 473

Hydroxyurea, 381
Hyperthermia, 465

In vitro mutagenesis assay, 51
In vivo, 17, 35
Ionizing radiation, 179

Lethals, 133
L5178Y cells, 389
Loci number, 447
Lymphocyte, 325
 chromosomes, 149
 cultures, 191

Magnetic fields, 179
Maternal effect, 543
Medroxyprogesterone acetate, 51
 mei-9a, 515
Metabolic activation, 435
Metaphase, 43
Mice, 35, 111, 465
Micronucleus, 43, 339, 509
Mitotic
 arrest, 67
 index, 473
 recombination, 531
MMS, 515
Mutagenesis, 59, 371, 395
Mutagenicity, 75, 353, 405
Mutations, 133, 179, 389, 531
Nitrosocarbamates, 395
 N-methyl-N'-nitro-N-
 -nitroguanidine, 381
NO-carbaryl, 395
Nucleosides, 339
Nulls, 167

1,3-dinitrobenzene, 531
1,3,5-trinitrobenzene, 531

Pellet implantation, 35
Peripheral blood, 509
Pesticides, 359
Platinum, 133
Potentiation, 515
Procarbazine, 515
Radiation, 125
Rats, 125
Recessive sex-linked lethals, 89
Repair deficiency, 187, 543
Replicative synthesis, 381
RF/J mice, 51
Saccharomyces cerevisiae, 359, 395, 531
Salmonella typhimurium, 353, 395, 405, 531
 mutagenicity test, 101
Segregational errors of chromosomes, 139
Sister chromatid exchange, 17, 35, 149, 157, 191, 325, 435
Size-dependent mutagenicity, 101
Spermatogenesis, 465
Sperm morphology, 111, 125
Spindle disruption, 67
Spontaneous mutation rates for lethals and specific loci, 447
Spot test, 111
Sterility, 133
Structure-activity relationship, 59
Sun lamp, 389
Sunlight, 389
Testosterone, 51
Tetryl, 531
Tissue specific, 17
Toxicity, 133, 389
Translocations, 89
Trenimon, 191
Trichloropropene oxide, 27
2-acetylaminofluorene (2-AAF), 435
2-aminofluorene, 353
2-nitrofluorene, 353
Ultraviolet light, 339
Vapor phase hydrocarbons, 101
X-linked recessive lethals, 447
X irradiation, 149