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Abstract

Statistical analysis of microbial genomic data within epidemiological cohort studies holds the

promise to assess the influence of environmental exposures on both the host and the host-

associated microbiome. However, the observational character of prospective cohort data

and the intricate characteristics of microbiome data make it challenging to discover causal

associations between environment and microbiome. Here, we introduce a causal inference

framework based on the Rubin Causal Model that can help scientists to investigate such

environment-host microbiome relationships, to capitalize on existing, possibly powerful, test

statistics, and test plausible sharp null hypotheses. Using data from the German KORA

cohort study, we illustrate our framework by designing two hypothetical randomized experi-

ments with interventions of (i) air pollution reduction and (ii) smoking prevention. We study

the effects of these interventions on the human gut microbiome by testing shifts in microbial

diversity, changes in individual microbial abundances, and microbial network wiring between

groups of matched subjects via randomization-based inference. In the smoking prevention

scenario, we identify a small interconnected group of taxa worth further scrutiny, including

Christensenellaceae and Ruminococcaceae genera, that have been previously associated

with blood metabolite changes. These findings demonstrate that our framework may

uncover potentially causal links between environmental exposure and the gut microbiome

from observational data. We anticipate the present statistical framework to be a good start-

ing point for further discoveries on the role of the gut microbiome in environmental health.
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Author summary

Environmental influences on the human gut microbiome are still to be discovered or bet-

ter understood. In this paper, we contribute to the field of microbiome research and envi-

ronmental epidemiology by suggesting a stage-based causal inference framework relying

on the foundations of the Rubin Causal Model. A particularity of the framework is the use

of randomization-based inference, which we value to be a necessary exploratory inference

method when tackling untapped research questions. To illustrate the framework, we

explore the effects of two inhaled environmental exposures previously hypothesized to be

linked with gastrointestinal diseases and the gut microbiome: air pollution exposure and

cigarette smoking.

This is a PLOS Computational Biology Methods paper.

1 Introduction

The human microbiome plays a pivotal role in maintaining a healthy physiology via multiple

interactions with the host. The gut microbiome, for instance, provides important metabolic

capabilities for food digestion [1, 2] and regulates immune homeostasis [3]. Although dietary

interventions [4], pathogen infections [5], and antibiotics use [6] can trigger rapid changes of

gut microbial compositions and can lead to dysbiotic disruptions of host-microbiome interac-

tions, the long-term impact of environmental exposures on the human gut microbiome

remains poorly understood. In this paper, we provide a causal inference framework for assess-

ing such epidemiological questions and analyze a prospective cohort with collected micro-

biome data. Recent technological advances, through culture-independent analyses, have

facilitated a surge in observational studies of the human microbiome [7–9]. A common

method to catalog microbial constituents is high-throughput amplicon sequencing [10], allow-

ing the acquisition of gut microbiome survey data for large prospective cohort studies. Impor-

tant examples include the Human Microbiome Project [11], the British TwinsUK study [12],

the Dutch LifeLines-DEEP [13] and Rotterdam Studies [14], the Chinese Guangdong Gut

Microbiome Project [15], the American Gut Project [16], and the German KORA study [17].

Thus far, these and other studies have linked alterations in gut microbial compositions to

several common diseases, including rheumatoid arthritis, colorectal cancer, obesity, inflamma-

tory bowel disease (IBD), and diabetes [18]. Although environmental exposures such as partic-

ulate matter (PM) [19] and smoking [20] are also related to these diseases, an understanding of

environment-gut microbiome relationships and their implications for disease mechanisms has

remained elusive. Here, we examine such environment-gut microbiome relationships within a

causal inference framework [21] combined with state-of-the-art statistical methods for ampli-

con sequence variant (ASV) data [22]. We illustrate our analysis framework using data from

the German KORA study [17] and focus on two inhaled environmental exposures previously

hypothesized to be linked with gastrointestinal diseases and the gut microbiome: (i) particulate

matter (PM) with diameter smaller or equal to 2.5 μm (PM2.5) and (ii) cigarette smoking.

Air pollution exposure has been found to be associated with gastrointestinal diseases, such

as appendicitis [23], inflammatory bowel disease [24], abdominal pain [25], and metabolic
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disorders [26]. Current research suggests that air pollution may impact the gut microbiome

which, in turn, acts as a “mediator” of the association between air pollution and metabolic dis-

orders such as obesity and type 2 diabetes [27–29]. These studies found associations between

nitric oxide, nitrogen dioxide [27], PM [28], and ozone [30] exposures and the gut micro-

biome. Several potential pathways explain how particles affect human health. The gut is

exposed to PM through: (i) mucociliary clearance, i.e., the self-cleaning mechanism of the

bronchi, inducing inhaled PM to be cleared from the lungs to the gut, and (ii) oral route expo-

sure, when food and water are contaminated by PM prior to being ingested or in the alimen-

tary canal via inhalation [31, 32]. Results from murine studies of the effect of PM on the gut

[33–37] suggest that exposure to PM changes the microbial composition and increases gut per-

meability, leading to higher systemic inflammation due to the unrestrained influx of microbial

products from the gut into the systemic circulation [38].

The chemical mixture of cigarette smoke inhaled into the lungs has an effect on blood

markers that, in turn, interact with the gut. Another pathway is that the toxicants of cigarette

smoke swallowed into the gastrointestinal tract induce gastrointestinal microbiota dysbiosis

via antimicrobial activity and regulation of the intestinal microenvironment [39]. Cigarette

smoking is an inhaled exposure that has been shown to influence the susceptibility of diseases

such as IBD, colorectal cancer, and systemic diseases [20, 40, 41]. Animal studies suggest that

cigarette smoke may mediate its effects through alterations of intestinal microbiota [42]. In

humans, shifts in the gut microbiome composition and diversity were observed after smoking

cessation. These shifts were similar to previously observed shifts in obese vs. lean patients, sug-

gesting a potential microbial link between the metabolic function of the gut and smoking ces-

sation [43]. Comparison of the gut microbiome composition of smokers and never-smokers

led to similar observations [44]. So far, the underlying mechanisms of the effect of smoking on

not only gut-related, but also autoimmune diseases have not been established. It has been

hypothesizes that the gut microbiome may be the missing link between smoking and autoim-

mune diseases [20].

Central to the present study is the investigation of the causal question: Does reducing
inhaled environmental exposures alter the human gut microbiome? As summarized in Fig 1, we

answer this question using the following four-stage analysis framework: (i) conceptualize

hypothetical environmental interventions that could have resulted in the observed data at

hand, (ii) design our non-randomized data, so that the unconfoundedness assumption can be

assumed, (iii) choose powerful, state-of-the-art test statistics from the literature to compare

human gut microbiome at different levels of taxonomic granularity between subjects assigned

to the interventions vs. not, and (iv) interpret the implications of the results for recommending

further studies or the studied hypothetical intervention. The reason for using this four-stage

approach is for the transparency of its assumptions when interpreting results. The Methods

section elaborates on each of these steps. An essential ingredient in stage (iii) of our framework

is the use of a randomization-based hypothesis testing with powerful test statistics comparing

subjects under an intervention vs. not [45, 46]. We do not attempt to provide an estimate of

(and uncertainty around) an estimand to avoid relying on assumptions such as the additivity

of the treatment effects, asymptotic arguments, or an imputation model, which may be the

case when drawing Neymanian (i.e., distribution-based) or Bayesian inferences. This Fisherian

approach is a non-asymptotic first step to start shedding light on merely-touched research

questions dependent on complex data structures, such as human gut microbiome data.

The present causal inference framework relies on ideas developed in the 70s [47–50] and

the Rubin Causal Model [51, 52] to analyze observational data by reconstructing the ideal con-

ditions of randomized experiments, the “gold standard” to draw objective causal inferences on

the effects of an intervention [53]. A formidable statistical challenge is, however, to define and
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test these intervention effects for high-dimensional taxonomically-structured microbiome rel-

ative abundance data. Here, we adapted and advanced several state-of-the-art approaches from

the statistical literature tailored to amplicon data, ranging from tests for α-diversity in net-

worked communities [54, 55], Microbiome Regression-based Kernel Association Tests (MiR-

KAT) for β-diversity to randomization-based differential compositional mean tests [56]. We

also applied and analyzed individual taxon differential abundance tests with taxonomic rank-

dependent reference selection [57] and sparse compositionally robust taxon-taxon network

estimation schemes [58] with novel differential edge tests [59], thus covering a comprehensive

list of archetypical microbiome data analysis tasks.

Our framework complements recent causal inference approaches for microbiome data such

as mediation methods [60, 61], graphical models [62], and Mendelian randomization [63, 64]

to analyze observational gut microbiome data. In these studies, the target for interventions is

the microbiome and the understanding of its effects on diseases, i.e., the microbiome is treated

as the exposure and diseases as outcomes. Here, we are interested in examining the effects of

environmental exposures (interventions) on the gut microbiome (“the” outcome), when only

non-randomized data are available. To the best of our knowledge, no other observational

study interested in environmental effects on the gut microbiome addressed their research

question using causal inference methods.

In the following, we detail the characteristics of the KORA FF4 study population and high-

light potential effects of the hypothetical interventions, air pollution reduction and smoking

prevention, on the gut microbiome. In particular, we characterize potential effects in terms of

changes in overall microbial diversity, taxon-level abundances, and microbial associations. In

the smoking prevention analysis, we identified taxa, including Ruminococcaceae (UCG-005,

Fig 1. The four stages of the causal inference framework [21] adapted to the exploration of environment-gut

microbiome relationships. Stage 1: Formulation of a plausible hypothetical intervention (e.g., decreasing inhaled

environmental exposures) to examine its impacts on the gut microbiome. Stage 2: Construct a hypothetical paired-

randomized experiment in which the environmental intervention been implemented randomly. Stage 3: Choose

powerful test statistics comparing the gut microbiome had the subjects been hypothetically randomized to the

environmental intervention vs. not and test the sharp null hypotheses of no effect of the intervention at different

aggregation levels of the data. Stage 4: Interpretation of the statistical analyses and recommendations for future studies

or implementation of the intervention.

https://doi.org/10.1371/journal.pcbi.1010044.g001
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UCG-003, UCG-002) and Christensenellaceae R-7-group, that are part of a stable sub-commu-

nity in the microbial association networks and have been found to contribute to circulating

blood metabolites in the LifeLines-Deep cohort [65].

2 Methods

2.1 The German KORA FF4 cohort study

The data come from the German KORA FF4 cohort study, which involves participants aged 25

to 74 years old living in the city of Augsburg [17]. The participants were subject to health ques-

tionnaires and follow-up examinations. During the study, stool samples were collected and the

gut microbiota data for 2,033 participants were obtained with 16S rRNA gene sequencing. For

each participant we have their long-term exposure to air pollution (particulate matter). The

long-term exposure variables come from the ULTRA III study, in which air pollutants were

monitored several times a year at 20 locations within the Augsburg region. From this data,

annual averages of air pollutants were calculated using land-use regression models. The mod-

els explain the spatial variation of the pollutants with predictor variables derived from geo-

graphic information systems (GIS). To obtain the long-term air pollution values for each

participant, land-use regression models were applied to their residential address. Moreover, to

elucidate relationships between health outcomes and diet, dietary intake data were collected

for 1,469 participants of the KORA FF4 cohort. Dietary intake was derived using a method

combining information from a food frequency questionnaire (FFQ) and repeated 24-h food

lists [66]. In brief, the usual food intake (in gram/day) was calculated as the product of the

probability of consumption of a food on a given day and the average amount of a food con-

sumed on a consumption day.

2.1.1 Gut microbiome data sequencing and preprocessing. DNA Extraction, 16S rRNA

Gene Amplification, and Amplicon Sequencing. Fecal DNA extraction was isolated by fol-

lowing the protocol of [67]. The samples were profiled by high-throughput amplicon sequenc-

ing with dual-index barcoding using the Illumina MiSeq platform. Based on a study providing

guidelines for selecting primer pairs [68], the V3-V4 region of the gene encoding 16S ribo-

somal RNA was amplified using the primers 341-forward (CCTACGGGNGGCWGCAG; bac-

terial domain specific) and 785-reverse (GACTACHVGGGTATCTAATCC; bacterial domain

specific). Amplification was undertaken using the Phusian High-Fidelity DNA Polymerase

Hotstart as per manufacturer’s instructions. The PCR libraries were then barcoded using a

dual-index system. Following a round of purification with AMPure XP beads (Beckman Coul-

ter), libraries were quantified and pooled to 2nM. The libraries were sequenced on an Illumina

MiSeq (2 x 250 bp), using facilities provided by the Ziel NGS-Core Facility of the Technical

University Muenchen (TUM).

Bioinformatics. The demultiplexed, per-sample, primer-free amplicon reads were pro-

cessed by the DADA2 workflow [22, 69] to infer sequence variants, remove chimeras, and

assign taxonomies with the Silva v128 database [70] using the naive Bayesian classifier method

[71] until the genus-level assignment and the exact matching method [72] for species-level

assignment. We opted for the high-resolution DADA2 method to infer sequence variants

without any fixed threshold, thereby resolving variants that differ by as little as one nucleotide.

Amplicon sequence variants (ASVs) do not impose the arbitrary dissimilarity thresholds that

define OTUs. They provide consistent labels because they represent a biological reality that

exists outside the data being analyzed: the DNA sequence of the assayed organism, thus they

remain consistent into the indefinite future [22]. The result of the DADA2 pipeline is two data-

sets: (i) a ASV count dataset, where each row specifies how often an ASV was sequenced and

(ii) a taxonomic assignment dataset, where each row specifies the taxonomic names of an
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ASV. It is common to create a phylogenetic tree of the ASVs to later on calculate microbial

diversity measures such as the DivNet [55] and UniFrac [73] (see the Statistical analysis stage

of Methods Section 2). The multiple genome alignment for the phylogenetic tree was built

with the DECIPHER R package enabling a profile-to-profile method aligns a sequence set by

merging profiles along a guide tree until all the input sequences are aligned [74]. The multiple

genome alignment was used to construct the de novo phylogenetic tree using phangorn R

package. We first construct a neighbor-joining tree [75], and then fit a maximum likelihood

tree using the neighbor-joining tree as a starting point. After 16S rRNA sequencing the 2,033

stool samples from the KORA cohort and processing the sequences with the DADA2 pipeline,

we observe 15,801 ASVs (see Fig A and Table A in S1 Text).

2.2 Causal inference framework

The four stages of the causal framework [21] that we use to construct hypothetical randomized

experiments to study the environment-microbiome relationship are the following:

1. Conceptual: Formulation of a plausible hypothetical intervention (e.g., decreasing air pollu-

tion levels) to examine its impacts on the gut microbiome.

2. Design: Reconstruct the hypothetical randomized experiment had the environmental inter-

vention been implemented randomly.

3. Analysis: Choose valid and powerful test statistics comparing the gut microbiome had the

subjects been hypothetically randomized to the environmental intervention vs. not and test

the sharp null hypotheses of no effect of the intervention at different aggregation levels of

the data.

4. Summary: Interpretation of the statistical analyses and recommendations for future studies

and interventions.

2.3 Conceptual stage: Formulation of the hypothetical randomized

experiment in terms of potential outcomes

To understand whether environmental interventions have an effect on the human gut micro-

biome, the objective is to reconstruct a hypothetical experiment that mimics a controlled ran-

domized experiment [53], in which an environmental intervention could be believed to have

been randomized. Let Wi be the indicator of the assignment for subject i (i = 1, . . ., N) to an

environmental intervention vs. none, where:

Wi ¼
1 if i is under the intervention;

0 if i is not:

(

ð1Þ

The composition of a human gut microbiome can be expressed as a B-dimensional vector

of the microbial abundance. We define Yb
i as the real abundance (count) of the bth bacterial

taxon, b = 1, . . ., B for subject i. We define the potential outcomes of subject i as Yb
i ð1Þ, the bth

taxon abundance (count) had subject i been randomized to the environmental intervention

(Wi = 1), and Yb
i ð0Þ, had subject i not been randomized to the intervention (Wi = 0). Table 1

shows the potential outcomes for the N subjects.

Only one of the two potential outcomes can actually be observed for each subject: this is

why the Rubin Causal Model characterizes causal inference as a missing data problem [52],

where the observed outcome of subject-i and taxa-b can be expressed as a function of both
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potential outcomes:

Yb;obs
i ¼ WiYb

i ð1Þ þ ð1 � WiÞYb
i ð0Þ ð2Þ

2.3.1 Observed outcomes measurement. The human gut microbiome can be composed

of trillions of bacteria. However, due to technology limitations, the exact abundance and num-

ber of all strains present in a human subject cannot be measured. To tackle this limitation, we

opted for the processing of Amplicon Sequence Variants (ASVs) from our sequencing data to

approximate the true gut microbiome composition of our study population [22, 69]. ASVs

refer to individual DNA sequences recovered from a high-throughput marker gene analysis,

the 16S rRNA gene in our case. Therefore, in this study the observed outcome under investiga-

tion is a N × A matrix, for a = 1, . . ., A ASVs, an approximation of the N × B matrix described

above. This limitation adds another layer of missing data, i.e., we are missing the true gut

microbial composition of each subject. We define the ASV counts we measured for each sub-

ject-i as Ca;obs
i , which corresponds to Yb2A;obs

i plus some measurement error.

2.4 Design stage: Reconstruction of the conceptualized hypothetical

experiment

To assess causality, randomized experiments have long been regarded as the “gold standard”.

We are interested in the effect of environmental interventions that are often unpractical or eth-

ical to assign randomly to humans within an experiment [21]. Therefore, we resort to a design

stage [76] with a matched-sampling strategy to construct two hypothetical randomized experi-

ments to assess the effects of an intervention on the changes in gut microbiome composition.

The aim of our pair-matching strategy is to achieve balance in background covariates distribu-

tions as it is expected, on average, in randomized experiments. This approach attempts to cre-

ate exchangeable groups as if the exposure was randomly assigned to each participant given

measured covariates, to guarantee exposure assignment is not confounded by the measured

background covariates. The exposure assignment mechanism determines which units receive

which exposure; in other words, which potential outcomes are observed and which are missing

[52]. The unconfoundedness of the assignment mechanism given covariates is a key assump-

tion of the Rubin Causal Model.

Our pair-matching strategy aims to remove individual-specific confounding (e.g., years of

age, sex, unit of BMI). Briefly, subject i under Wobs
i ¼ 1 with pre-exposure covariates Xi is

matched to subject i?, under Wobs
i? ¼ 0 only if Xi? is “similar” to Xi. For each unit, the vector of

covariates is given by Xi ¼ ðXð1Þ

i ; . . . ;XðkÞ

i Þ. In order to ensure covariate balance, we only allow

a treated unit to be matched with a control unit if the component-wise distances between their

covariate vectors are less than some pre-specified thresholds δ1, . . ., δk. For any pair of

Table 1. Potential outcomes for the subjects of the hypothetical experiment.

Taxa 1 2 . . . B

Subjects Wi = 0 Wi = 1 Wi = 0 Wi = 1 Wi = 0 Wi = 1

1 Y1
1
ð0Þ Y1

1
ð1Þ Y2

1
ð0Þ Y2

1
ð1Þ . . . . . . YB

1
ð0Þ YB

1
ð1Þ

2 Y1
2
ð0Þ Y1

2
ð1Þ Y2

2
ð0Þ Y2

2
ð1Þ . . . . . . YB

2
ð0Þ YB

2
ð1Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . .

N Y1
Nð0Þ Y1

Nð1Þ Y2
Nð0Þ Y2

Nð1Þ . . . . . . YB
Nð0Þ YB

Nð1Þ

https://doi.org/10.1371/journal.pcbi.1010044.t001
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covariate vectors Xi and Xi?, we define the difference between them as

DðXi;Xi? Þ ¼
0 if jXðkÞ

i � XðkÞ

i? j < dk for k ¼ 1; . . .K;

þ1 otherwise

8
<

:
ð3Þ

This constrained pair matching can be achieved using a maximum bipartite matching [77]

on a graph such that: (i) there is one node per unit, partitioned into intervention nodes and

control nodes, (ii) the edges are pairs of treated and control nodes with covariates Xi and Xi?,

and (iii) an edge exists if and only if Δ(Xi, Xi?) < +1. By construction, using a maximum

bipartite matching algorithm on this graph as implemented in the igraph R package pro-

duces the largest set of matched pairs that satisfy the unit-specific proximity constraints set by

our thresholds. Let NE ¼
PN

i¼1
Wi be the number of subjects under the environmental inter-

vention and NC ¼
PN

i¼1
1 � Wi the number of control subjects, after matching.

After excluding the participants of the cohort that take antibiotics and had a cancer of the

digestive organ, the pre-matched data set consists of 1,967 participants. At this stage, the objec-

tive is to create balanced data subsets for which the plausibility of the “unconfoundedness”

assumption is based on a diagnostic of our choice. We choose the thresholds, δ1, . . ., δ7,

according to the pre-matching diagnostic plots of the covariate distributions (see Figs B-G in

S1 Text). We privilege a large dataset with balance, while assuring that the created pairs, or in

other words “twins”, are scientifically plausible, e.g., no male and female could be matched.

We assume a covariate to be balanced when its distribution is approximately the same under

the exposure vs. not. The thresholds are: the absolute differences between the amount of alco-

hol consumption is less than δ1 = 25 g/day, between the body-mass-index is less than δ2 = 4

kg/m2, between age is less than δ3 = 5 years, the diabetes status (diabetic, non-diabetic) is iden-

tical, i.e., δ4 = 0, and so are sex (male, female), i.e., δ5 = 0, and physical activity (active, inactive),

i.e., δ6 = 0. Additionally, in the air pollution reduction experiment: the smoking status

(smoker, ex-smoker, never-smoker) is identical, i.e., δ7 = 0, and in the smoking prevention

experiment: the absolute difference between years of education is less than δ7 = 3 years.

After matching, we obtain two subsets of the data that can be analyzed as coming from two

pair-randomized experiments: (i) an air pollution (ap) reduction hypothetical experiment

(Nap = 198), and (ii) a smoking prevention hypothetical experiment (Ns = 542); both data sets

exhibit no evidence against covariate imbalance (see Table 2 and Figs B-G in S1 Text).

It is well known that diet has an influence on the gut microbiome and future studies on the

gut should include dietary intake data in their analysis [78, 79]. In our study, we only have

access to dietary intake data for a portion of our samples, therefore we examine balance diag-

nostics in usual nutrient intake after matching in order to maintain a large data set before

matching. Figs H-I in S1 Text show that after matching, our intervention and control units (in

both hypothetical experiments) do not exhibit imbalance with respect to the following food

items: potatoes/roots, vegetables, legumes, fruits/nuts, dairy products, cereal products, meat,

fish, egg products, fat, and sugar. In the same way, we checked for covariate balance after

matching for medication intake, also a well-known confounder in human gut microbiome

studies. Figs D and G in S1 Text show that after matching, our intervention and control units

(in both hypothetical experiments) do not exhibit imbalance with respect to medication

intake.

2.5 Statistical analysis stage: Randomization-based inference

To compare the gut microbiome of subjects under the environmental intervention to control

subjects, we choose to not rely on asymptotic arguments, but instead take a Fisherian
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perspective (i.e., randomization-based inference) [45, 80]. We test sharp null hypotheses (H0)

of no effect of the intervention for any unit by choosing test statistics that account for the com-

plex microbiome data structure, including the additional “layer” of missing data. The ASV

count data has a challenging structure because: (i) it is high-dimensional, (ii) some ASVs have

low prevalence, (iii) the ASVs are strongly correlated, and (iv) it is compositional. ASV-count

data is said to be “compositional” because between units comparison of ASV counts might not

be informative due to the limited sequencing depth of the machine and the total number of

sequenced reads varies from unit to unit (i.e., they have no common denominator) [81].

In randomization-based inference the goal is to construct the null randomization distribu-

tion of a test statistic assuming H0, T, by computing the values of the test statistic for all possi-

ble intervention assignments. Because the number of assignments is very large, we calculate an

approximating p-value using Niter iterations, i.e., the proportion of computed test statistics that

are as large or larger than the observed test statistic: 1

Niter

PNiter
l¼1

1Tl�Tobs , where 1Tl�Tobs ¼ 1 when

Tl � Tobs, and 0 otherwise (for two-sided tests we obtain the p-values by taking absolute value

of Tl and Tobs, i.e., |Tl| and |Tobs|). A small p-value shows that the observed test statistic is a rare

event when the null hypothesis is true, which indicates the results are worth further scrutiny

[82]. In the following subsections, we describe the null hypotheses we test and the test statistics

we use to draw randomization-based inferences with Niter = 10,000 possible intervention

assignments following a matched-pair design (see summary Table 3). This means that the per-

mutations of the intervention assignment vectors needed to calculate the Fisher p-values fol-

low the design of our hypothetical experiments. When units have varying probabilities of

being treated, the analysis of experiments, even when hypothetical, should reflect their design

[53, 76].

2.5.1 Diversity analyses. �Within Subjects Diversity.

One of the challenges of analyzing ASV-count data is working around the low prevalence of

some ASVs that are due to the limited sequencing depth of the machine and the fact that some

ASVs are not shared in the entire population (see Fig A in S1 Text). Therefore, before directly

testing within-subject diversity differences with so called “plug-in” estimates, it has been

recently suggested to start with estimating the diversity with statistical models [54]. We will

Table 2. Before and after matching number of units. The thresholds for the air pollution experiment are based on

90th and 10th percentiles of the PM2.5 distribution.

Air pollution Smoking

NC NE NC NE

Matching PM2.5 � 13.0 μg/m3 PM2.5 � 10.3 μg/m3 Smoker Never smoker

Before 206 193 302 908

After 99 99 271 271

https://doi.org/10.1371/journal.pcbi.1010044.t002

Table 3. Data transformation and choice of test statistics.

analysis level data transformation test statistic

richness breakaway [83] betta regression coefficient [54]

α-diversity DivNet [55] betta regression coefficient [54]

β-diversity pairwise distance matrices MiRKAT score statistic [84]

high-dimensional means centered log ratios mean abundance difference [56]

abundance normalization by ratio [57] LogFold mean difference

correlation association matrices [58] differential associations [59]

https://doi.org/10.1371/journal.pcbi.1010044.t003
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follow this idea by estimating richness with the breakaway method [83] and estimating the

Shannon index for α-diversity with the DivNet method [55].

Richness. The sharp null hypothesis of no effect of the intervention on the richness can be

written as: H0;R :
PB

b¼1
1Yb

i ð0Þ>0 ¼
PB

b¼1
1Yb

i ð1Þ>0. To estimate the richness of subject i (i.e., the

number of bacterial taxa present in subject i), we will estimate the total richness in subject i,
observed and unobserved, by Bi with the breakaway model [83]. Let fi,1, fi,2, . . . denote the

number of bacterial taxa observed once, twice, and so on, in a subject i, and let fi,0 denote the

number of unobserved bacteria, so that Bi = fi,0 + fi,1 + fi,2 + . . .. The idea behind the breakaway

method is that for each subject i, it predicts the number of unobserved bacteria, fi,0, with a non-

linear regression model to, in turn, provide an estimate of Bi.
α-diversity. The sharp null hypothesis of no effect of the intervention on α-diversity can be

written as: H0;a :
PB

b¼1
Yb

i ð0Þ ¼
PB

b¼1
Yb

i ð1Þ. To have estimates for indices of the α-diversity of

subject i (i.e., its total microbial abundance) and their variance, we use the DivNet method,

because it accounts for the co-occurrence patterns (i.e., ecological networks) of bacterial taxa in

the microbial community [55]. Let Zb
i ¼ Yb

i =
PB

b¼1
Yb

i 2 ½0; 1� denote the unknown relative

abundance of taxa b in subject i, noting that
PB

b¼1
Zb
i ¼ 1. As a reminder, Ca;obs

i denotes the

number of times taxa a was observed in the stool sample of subject i in our data. One of the

most common α-diversity indices is the Shannon entropy [85], which is defined as:

ai;Shannon ¼ �
PB

b¼1
Zb
i logðZb

i Þ. This index captures information about both the species richness

(i.e., number of species) and relative abundances of the species: as the number of species in the

population increases, so does the Shannon index, and as the relative abundances diverge from a

uniform distribution and become more unequal, the Shannon index decreases. In the ecological

literature, researchers mostly use the following maximum likelihood estimate of αi,Shannon (often

referred to as a “plug-in” estimate): �
PA

a¼1

Ca
iPA

a¼1
Cai

log CaiPA

a¼1
Ca
i

� �

. It has been proven that this

estimate is negatively biased [86]. Therefore, various corrections have been proposed and are

detailed in [55]. However, most of the suggested estimates are only functions of the ASV count

vectors Ca
i and do not utilize the full ASV count data matrix C and the co-occurrence pattern,

i.e., ecological network, of the ASVs. Willis and Martin [55] showed that these networks can

have substantial effects on estimates of diversity and proposed an approach, called DivNet, to

estimating diversity in the presence of an ecological network. DivNet estimates are based on log-

ratio transformations by fixing a “baseline” taxon for comparison, which are modeled by a multi-

variate normal distribution to incorporate the co-occurrence structure between the taxa as the

covariance matrix. The main advantage of DivNet method is the use of information shared

across all samples to obtain more precise and accurate estimates.

Choice of test statistic. The test statistic we use to test H0,R and H0,α are the coefficient of

the intervention indicator estimated by the regression suggested by Willis et al. [54]. Using the

coefficient of a model as the test statistic of a Fisher test was introduced in the 70s [87]. At this

stage, to achieve larger bias reductions, frequentist regression models can be used to remove

residual confounding that was not accounted for, during the design stage [47, 48].

Willis et al. [54] suggest to test changes in richness (Bi) and α-diversity (â i) with a hierarchi-

cal regression model, assuming that richness is a function of: the intervention indicator Wi,

random variation that is not attributed to the covariates, and the standard error previously

estimated with breakaway or DivNet (because not every bacterial taxon in each subject was

observed so we cannot not know the true richness or α-diversity for any i). The regression

models are built with the betta function available in the breakaway R package [54, 83].

Between Subjects Diversity.

PLOS COMPUTATIONAL BIOLOGY Randomization-based causal inference framework for human gut microbiome data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010044 May 9, 2022 10 / 30

https://doi.org/10.1371/journal.pcbi.1010044


β-diversity. Distance-based analysis is a popular approach for evaluating the association

between an exposure and microbiome diversity. The pairwise distances, dii?, for high-dimen-

sional data we consider are the: UniFrac (unweighted) distance [73], Jaccard index, Aitchison

distance [88] (i.e, Euclidean distance on centered log-ratio transformed data), and Gower dis-

tance [89] (on centered log-ratio transformed data). We choose the unweighted paired

UniFrac, because it is a distance metric (i.e., a non-negative real-valued function) as opposed

to the generalized UniFrac. In the same way, the Jaccard distance was chosen as opposed to the

commonly used Bray-Curtis. The sharp null hypothesis of no effect of the intervention on β-

diversity can be written as: H0,β: dii?(0) = dii?(1).

Choice of test statistic. Despite the popularity of distance-based approaches, the field of

microbiome studies suffers from technical challenges, especially in selecting the best distance.

Therefore, we use the suggested microbiome regression-based kernel association test (MiR-

KAT) [84] that uses a kernel regression and a standard variance-component score test statistic

[90]. To consider different distance measures, the optimal MiRKAT: tests H0,β for each indi-

vidual kernel, obtains the p-value for each of the tests, and then adjust for multiple comparison

with a p-value with an omnibus test. Instead, we use a fully randomization-based multiple

comparison adjustment method detailed subsequently.

Multiple comparison adjustments. We follow the fully randomization-based procedure

for multiple comparisons adjustments suggested by Lee et al. [91], which is directly motivated

by the intervention assignment actually used in the experiment. This procedure has been sug-

gested to have sufficient power to detect causal effects [91]. In our hypothetical experiments,

we have matched paired intervention assignments. Both the unadjusted and adjusted p-values

in the procedure are randomization-based, so do not require any assumptions about the

underlying distribution of the data. The adjusted p-values are calculated following Steps 1–4:

1. Calculate for each hypothesis h, an unadjusted p-value for the observed test statistic by tak-

ing the proportion of computed test statistics that are as large or larger than the observed

test statistic. This procedure is detailed in the introduction of the Statistical analysis stage

section. Also, for each hypothesis h, h = 1, ‥, H, and intervention assignment iteration iter,
iter = 1, . . ., Niter, record the vector of calculated test statistics Th;iter

b ¼ ðT1;1

b ; . . . ;TH;Niter
b Þ.

2. For each h and each iteration iter, calculate an unadjusted randomization-based p-value,

with Th;iter
b as the observed test statistic. For each iter, record the minimum p-value of the H

p-values.

3. The repetitions of Step 2 capture the joint randomization distribution of the test statistics

and thus, of the unadjusted p-values.

4. To calculate the adjusted p-values for the observed test statistics, for each h, take the propor-

tion of “minimum p-values” (recorded in Step 2) that are less than or equal to its unadjusted

p-value calculated in Step 1.

Step 2–3. essentially represent a translation of the multiple test statistics into p-values shar-

ing a common 0–1 scale.

2.5.2 Composition analyses. Compositional equivalence.
The compositionality problem means that: a change in abundance (i.e., sequenced counts)

of a taxon in a sample induces a change in sequenced counts across all taxa. This problem,

among others, leads to many false positive discoveries when comparing taxon abundances

between groups. Moreover, because the components of a composition must sum to unity,

directly applying standard multivariate statistical methods intended for unconstrained data to

compositional data may result in inappropriate and misleading inferences [88]. Therefore, we

PLOS COMPUTATIONAL BIOLOGY Randomization-based causal inference framework for human gut microbiome data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010044 May 9, 2022 11 / 30

https://doi.org/10.1371/journal.pcbi.1010044


impose a centered log-ratio transformation of the compositions before testing the null hypoth-

esis of no difference in average microbial abundance as suggested by [56].

For the measured microbiome data C, the centered log-ratio matrices L = (Li, . . ., LN) are

defined by La
i ¼ log Cai

gðCiÞ

� �
, where gðCiÞ ¼ ð

QA
a¼1

Ca
i Þ

1=A
denotes the geometric mean of the vec-

tor Ci ¼ ðC1
i ; . . . ;CA

i Þ. The sharp null hypothesis of no microbiome composition difference

between the subjects under the intervention vs. not can be written as H0,M: for each subject i,
Li(0) = Li(1).

Choice of test statistic. The scale invariant test statistic suggested by [56] for testing H0,M is

based on the differences �La;obs
E � �La;obs

C , where �La;obs
E ¼ 1=NE

P
i:Wi¼1

La
i is the sample mean of the

centered log ratios for subjects under the intervention. Because microbiome data are often

sparse (i.e., only a small number of taxa may have different mean abundance), the following

test statistic is considered: TM ¼
NENC
NEþNC

max
1�a�A

ðLa;obs
E �La;obs

C Þ2

ĝaa
, where ĝaa are the pooled-sample cen-

tered log-ratio variances.

Differential abundance
The compositional nature of the microbiome data requires to choose appropriate reference

sets with respect to which testing of changes in individual taxon relative abundances becomes

feasible [81]. A recent approach that follows this methodology is the DACOMP (differential

abundance testing with compositionality adjustment) method, proposed by [57]. DACOMP is

a data-adaptive approach that: 1) identifies a subset of non-differentially abundant (reference)

ASVs (R) in a testing dataset, and 2) tests the null of no differential abundance (DA) of the

other ASVs (a) “normalized-by-ratio” in a training dataset. First, a taxon enters the set R =

(r1, . . ., rF) if it has low variance (< 2) and high prevalence (> 90%) (see Figs L-M in S1 Text).

For the analyses at the ASV level, we chose the variance to be < 3 and the prevalence to

be > 40% as thresholds in order the have at least one reference per subject. Second, using the

suggested “normalization-by-ratio” approach, the null hypothesis to be tested for ASV a is that

ASV a is not differentially abundant: Hða=2RÞ

0;DA :
Cai ð0Þ

Cai ð0Þþ
PR

f¼1
C
rf
i ð0Þ

¼
Ca
i ð1Þ

Ca
i ð1Þþ

PR

f¼1
C
rf
i ð1Þ

,

Choice of test statistic. To test this sharp null hypothesis, we use the LogFold change avail-

able in the dacomp package with the Compute.resample.test function. This function

is useful to perform randomization-based inference for differential abundance testing, because

it enables to directly incorporate a matrix of hypothetically randomized intervention assign-

ments, which is an appealing feature when researchers work with particular designs. Because

we are testing Hða=2RÞ

0;DA ||A|| − ||R|| times at all taxonomic ranks, we adjust for multiple tests with

the method described in the β-diversity analysis section [91].

Partial correlation structure
For our matched intervention and control subjects, we predicted microbial association net-

works using the Sparse InversE Covariance estimation for Ecological ASsociation Inference

(SPIEC-EASI) framework [58] that uses 1) centered log-ratio transformations of the observed

ASV counts, Ca;obs
i , to perform 2) Sparse Inverse Covariance selection (with the graphical lasso

method [92]), and finally 3) pick a model based on edge stability (with the StARS method [93])

to obtain a sparse inverse covariance matrix. The non-zero entries of this matrix are propor-

tional to the negative partial correlations among the taxa and form the edge set in an undi-

rected weighted graph G = (V, E). Here, the vertex (or node) set V = v1, . . ., vp represents the p
genera and the edge set E � V × V the possible associations among them. The null hypotheses

of no effect of the environmental intervention on the observed genera network associations

can be expressed as: H0,N: E(0) = E(1).
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Choice of test statistic. We compare the intervention and control networks with test statis-

tics for the difference in genera associations individually. To generate sampling distributions

of the test statistics under H0,N, the intervention and control labels are reassigned 10,000 times

to the samples while the matched pair structure is maintained, i.e., the assignment to interven-

tion or control is permuted within each pair. The SPIEC-EASI framework is then re-applied to

each permuted data set. This procedure is implemented with the Network Construction and

Comparison for Microbiome Data, NetCoMi, R package [59]. To adjust for multiple differen-

tial association tests, we use the method described in the β-diversity and differential abundance

analyses section [91].

2.6 Summary stage: Interpretation of the results

If the null hypothesis of no difference in the gut microbiome between the matched groups of

treated and control units is rejected, that difference warrants further scrutiny to assess whether

it can be attributed to the different treatments, assuming the assignment “unconfoundness”

assumption holds. We can then report that the gut microbiome composition was or was not

altered by the introduction of the environmental intervention. It is important to note that

interpretation should be restricted to units that remain in the finite sample after matching (see

their detailed characteristics in Figs B-I in S1 Text). The data do not provide direct information

for “unmatched” units. Caution regarding extrapolation to units with covariate values beyond

values observed in the balanced subset of the data is necessary.

3 Results

To illustrate our causal inference framework, we first conceptualize two hypothetical environ-

mental interventions that potentially influence the gut microbiome: (i) an air pollution reduc-

tion, and (ii) a smoking prevention intervention. Second, for each intervention, we construct a

hypothetical matched-pair randomized experiment, aiming at satisfying the “unconfounded-

ness” assumption (see Methods section). Third, we analyze the “unconfounded”/“as-if ran-

domized” data subset with randomization-based inference to test sharp null hypotheses of no

effect of the interventions for each unit at different taxonomic levels of the microbial ASV

data. The results presented subsequently correspond to the third stage of the framework.

Fourth, causal conclusions are developed in the Discussion section. Following the American

Statistical Association statement [82, 94], we avoid searching for “statistically significant”

results with a dichotomous approach. To give structure to our results reporting, we reject the

sharp null hypotheses of no effect of an environmental intervention when the p-value is lower

or equal to 0.1 or, when computed, when the adjusted p-value is lower or equal to 0.2. We are

more tolerant with adjusted p-values because multiple comparison adjustments are conserva-

tive and our study is exploring a nearly untapped field. Nonetheless, we highly recommend to

the readers interested in our research questions or result replication to examine all reported p-

values in Figs and Tables, because higher p-values do not mean that an effect is improbable,

absent, false, or unimportant [82].

3.1 Characteristics of study population

Our study is based on data from the KORA FF4 study cohort [17]. Because we performed a

design stage before analyzing the data we have two study populations, one per hypothetical

experiment, which are subsets of the entire cohort (see Design stage in the Methods section).

In the air pollution reduction experiment, we analyze 99 matched pairs of subjects living in

highly (PM2.5 � 13.0 μg/m3) and less (PM2.5 � 10.3 μg/m3) polluted areas with similar back-

ground characteristics distributions (Table 4 and Figs B-D and Fig H in S1 Text). The
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thresholds for the air pollution experiment intervention are based on 90th and 10th percentiles

of the PM2.5 distribution. We focus on the PM2.5 pollutant, originating mainly from traffic

emissions and fossil fuel combustion, for its known penetrating effects into the lung and

potential implication for the gut microbiome [27]. In the smoking prevention experiment, we

analyze 271 matched pairs of smokers and never-smokers (with background characteristics

distributions presented in Table 4 and Figs E-G and Fig I in S1 Text). A total of 45 units are

included in the balanced data subset of both hypothetical experiments.

3.2 Microbial diversity analysis

A common first step in microbiome data analysis is estimating and assessing microbial diver-

sity. We begin by investigating the potentially causal effects of the interventions on within-sub-

ject diversity (α−diversity) and between-subject variation (β−diversity), respectively.

3.2.1 Within-subject diversity. Gut bacterial richness and Shannon diversity were esti-

mated on the ASV level with the breakaway [83] and DivNet [55] method, respectively. Com-

parisons of the distributions of these estimated variables between subject under the intervention

vs. not in both hypothetical experiments are shown by boxplots in Fig 2. The small approximate

Fisherian p-values based on 10,000 permutations of the intervention assignment give us ground

for rejecting the null hypotheses of no effect of an air pollution reduction (p-valueap,richness �

0.0008, p-valueap,α−div. � 0.0388) and smoking prevention (p-values,richness � 0.1518,

p-values,α−div. � 0.0497) on the diversity of the human gut microbiome. On average, lower diver-

sity was observed in the subjects living in polluted areas or smokers compared to participants

living in less polluted areas or non-smokers. This diversity difference motivates the more in-

depth analyses of the gut microbiome composition presented subsequently.

3.2.2 Between-subject variation. To estimate β-diversity indices, we calculated UniFrac,

Aitchison, Jaccard, and Gower dissimilarities between all possible pairs of subjects. The results

are shown in Table 5. To alleviate the problem of choosing the best dissimilarity metric for β−
diversity estimation, we follow the Microbiome Regression-based Kernel Association Test

Table 4. Baseline characteristics of the study population in the air pollution reduction (left table) and smoking prevention experiments (right table). Continuous var-

iables: mean and standard deviation (St. d.). Categorical variables: number of samples per category (N) and proportion of category (%).

Air pollution (PM2.5) Smoking

� 13.0 μg/m3 � 10.3 μg/m3 Smoker Never-Smoker

Mean St. d. Mean St. d. Mean St. d. Mean St. d.

Age 60.6 12.4 60.3 12.4 54.2 9.4 54.4 9.6

Body Mass Index 27.0 4.3 27.0 3.8 26.7 4.4 26.7 4.2

Alcohol intake (g/day) 11.3 14.1 11.5 13.9 13.0 15.6 11.6 14.3

Years of education 11.9 2.6 11.7 2.8 11.7 2.3 11.8 2.2

N % N % N % N %

Sex F 41 20.7 41 20.7 130 24.0 130 24.0

M 58 29.3 58 29.3 141 26.0 141 26.0

Smoking Ex-S. 27 13.6 27 13.6 - - - -

Never-S. 62 31.3 62 31.3 - - - -

Smoker 10 5.1 10 5.1 - - - -

Diabetes No 95 48.0 95 48.0 264 48.7 264 48.7

Yes 4 2.0 4 2.0 7 1.3 7 1.3

Phys. Activity No 36 18.2 36 18.2 125 23.1 125 23.1

Yes 63 31.8 63 31.8 146 26.9 146 26.9

https://doi.org/10.1371/journal.pcbi.1010044.t004
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(MiRKAT) of Zhao et al. [84] suggesting to compute several metrics and then adjust for multi-

ple comparisons. In both experiments, we reject the sharp null hypotheses of no effect of the

intervention on between-subject variation.

3.3 Microbial compositions analysis

We next investigated whether shifts in microbial compositions as a whole or differences in spe-

cific microbial taxa were observable in the hypothetical experiments. We illustrate this by

designing and analyzing sharp null hypotheses for global compositional means and differential

genus abundances.

3.3.1 Compositional mean differences. Testing whether two study groups have the same

microbiome composition can be viewed as a two-sample testing problem for high-dimensional

compositional mean equivalence. We tested sharp null hypotheses using a test statistic devel-

oped particularly for that purpose by Cao et al. [56]. Table 6 summarizes the results for each

taxonomic level. We reject the sharp null hypotheses of gut microbiome composition equiva-

lence for the air pollution reduction and smoking prevention experiments. In both experi-

ments, p-values are higher at the ASV level than at higher taxonomy levels.

3.3.2 Differential taxon abundances. For compositional microbiome data, identifying

sets of potentially “differentially abundant taxa” relates to testing sharp null hypotheses of no

difference in abundance of individual taxa with respect to a reference set. We conducted such

an analysis on the genus level for all genera present in at least 5% of the samples. This preva-

lence threshold was guided by the amount of information preserved when performing filter-

ing, i.e., microbial abundance and the number of taxa observed per sample (see Figs N-Q in S1

Text). We applied the Differential abundance testing for compositional data (DACOMP)

approach [57] and used two-sided tests since we lack prior knowledge on the direction of the

Fig 2. Richness and α-diversity. Boxplots (with median), values of the test-statistics from the betta regression [54],

and one-sided randomization-based p-values for 10,000 permutations of the intervention assignment following a

matched-pair design. (A) Boxplots of the richness. (B) Boxplots of the α-diversity.

https://doi.org/10.1371/journal.pcbi.1010044.g002

Table 5. β-diversity. Microbiome Regression-based Kernel Association Test (MiRKAT), unadjusted and adjusted one-sided randomization-based p-values for 10,000 per-

mutations of the intervention assignment following a matched-pair design.

Air pollution Smoking

distance test-statistic p-value p-valueadj test-statistic p-value p-valueadj

UniFrac 12.1 0.0199 0.0506 61.5 0.0024 0.0070

Aitchison 82596.0 0.1096 0.2466 356921.5 0.0001 0.0003

Jaccard 19.4 0.0884 0.2043 84.5 0.0001 0.0003

Gower 0.2 0.0089 0.0250 0.1 0.0485 0.1204

https://doi.org/10.1371/journal.pcbi.1010044.t005
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abundance changes. Fig 3 highlights the key DACOMP results for both experiments. In the air

pollution reduction experiment, we reject the sharp null hypothesis of no differential abun-

dance only for the Marvinbryantia genus (p-valueadj. = 0.0120) (see Table B in S1 Text). We

also reject the sharp null hypothesis of no effect of smoking prevention for eleven genera (see

Fig 3 and Table C in S1 Text). Five belong to the Ruminococcaceae family: Ruminococcaceae-
UCG-002, Ruminococcaceae-UCG-003, Ruminococcaceae-UCG-005, Ruminococcus-1, and

Ruminococcaceae-NK4A214-group, three to the Lachnospiraceae family: Lachnospira, Lachnos-
piraceae-NK4A136-group, and Coprococcus-1, one to the Christensenellaceae family: Christen-
senellaceae-R-7-group, and two to the Mollicutes class, which belong to the NB1-n and

Mollicutes-RF9 order.

3.4 Microbial network analysis

To gain insights into changes in the organizational structure of the underlying microbial gut

ecosystem, we next calculated sparse genus-genus association networks for each exposure level

and hypothetical experiment and highlight the results of our randomization-based differential

association testing.

Table 6. Compositional equivalence test. Test statistic for high-dimensional data suggested by [56] and one-sided randomization-based p-values for 10,000 permutations

of the intervention assignment following a matched-pair design.

ASV Species Genus Family Order Class Phylum

Air Pollution nb. of taxa (p) 4,370 414 252 74 44 29 15

test statistic 12.8 12.9 11.9 8.8 8.4 8.4 8.1

p-value 0.1451 0.0722 0.0733 0.1521 0.1161 0.1021 0.0591

Smoking nb. of taxa (p) 7,409 479 271 81 48 31 16

test statistic 13.0 14.5 13.3 11.6 8.6 9.4 10.4

p-value 0.1607 0.0302 0.0384 0.0279 0.0859 0.0440 0.0135

https://doi.org/10.1371/journal.pcbi.1010044.t006

Fig 3. Differential abundance. For each genus, adjusted two-sided randomization-based p-values for 10,000

permutations of the smoking prevention intervention assignment following a matched-pair design. Genera with no tip

point belong to the set of reference taxa. Black circled tip point: differentially abundant genus (Marvinbryantia) in the

air pollution reduction experiment.

https://doi.org/10.1371/journal.pcbi.1010044.g003
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3.4.1 Genus-genus association networks. We used the Sparse InversE Covariance estima-

tion for Ecological ASsociation Inference (SPIEC-EASI) framework [58] to infer genus-genus

associations in our two hypothetical experiments. We used the glasso mode of SPIEC-EASI

with default parameters (see Methods for details). Fig 4A shows the overall structure of the

learned sparse association networks for the smoking prevention experiment (smokers (left

panel) and non-smokers (right panel), respectively). Each network possesses a single large con-

nected component consisting of 30–40 mostly Firmicutes genera (highlighted area in Fig 4A).

These connected components also included the majority of the previously identified poten-

tially differentially abundant genera, including Ruminococcaceae (UCG-005, UCG-002),

Fig 4. Genus-genus associations of smokers and never-smokers (n = 271, p = 140). (A) Visualization of the genus-genus partial correlations estimated with the

SPIEC-EASI method. Edges thickness is proportional to partial correlation, and color to sign: red: negative partial correlation, green: positive partial correlation.

Node size is proportional to the centered log ratio of the genus abundances, and color is according to phyla. Triangle shaped nodes are differentially abundant (see

Fig 3). (B) Zoom in largest connected component and differential associations (bold genera).

https://doi.org/10.1371/journal.pcbi.1010044.g004
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Ruminococcus-1, and Christensenellaceae-R-7-group (see Fig 4B for a detailed view of the con-

nectivity pattern). The genus-genus associations networks derived from the air pollution

reduction experiment showed similar overall topological features containing one large con-

nected component of 60 genera, including Ruminococcaceae (UCG-005, UCG-003, UCG-002)
and Christensenellaceae-R-7-group among others (see also Fig R in S1 Text).

3.4.2 Differential genus-genus associations. To identify potentially differential network

associations in the intervention experiments, we coupled the SPIEC-EASI network estimation

procedure with permutations of the intervention assignment, available in the NetCoMi R

package [59] (see also Methods for details). For each hypothetical experiment, we list the five

genus-genus associations with smallest adjusted two-sided randomization-based p-values in

Table 7 and highlight these associations in Fig 4B. In the air pollution reduction experiment,

we reject the sharp null hypothesis of no differential association for two edges: the Succinivi-
brio/Slackia edge (p-valueadj. � 0.0661), and the Ruminiclostridium/Cloacibacillus edge

(p-valueadj. � 0.1063) (see Table 7 and Fig R in S1 Text).

In the smoking prevention experiment, we also reject the sharp null hypothesis of no differ-

ential association for two edges: the Ruminiclostridium-6/Ruminococcaceae-UCG-010 edge

(p-valueadj. � 0.1585), and the Ruminiclostridium-6/Christensenellaceae-R-7-group edge

(p-valueadj. � 0.1585) (see Table 7). The genera that participate in these potentially differential

associations are also highlighted in Fig 4B.

3.5 Exploring associations between genera and lipid metabolites

The gut microbiome is a substantial driver of circulating lipid levels, and prior work has

shown [65, 95, 96] that the relative abundance of several microbial families, including Chris-
tensenellaceae, Ruminococcaceae, and the Tenericutes phylum were negatively correlated with

triglyceride and positively associated with high-density lipoproteins (HDL) cholesterol. Since

our analysis identified a small interconnected group of genera, including Christensenellaceae
and Ruminococcaceae, for whom we rejected the no differential abundance hypothesis, we per-

formed an exploratory data analysis to investigate taxa-serum lipid measurements associations.

Four lipids were measured in blood serum samples of our study population from the KORA

cohort: total, HDL, and LDL, cholesterol, as well as triglyceride levels. Fig 5A shows the corre-

lation between these lipids and the genera we discovered in our hypothetical experiments.

Tendencies similar to those reported in previous studies can be observed in our data.

For instance, in the smoking prevention dataset, we observed a positive correlation of

Christensenellaceae R-7-group and Ruminococcaceae (UCG-005) genus abundances (under

centered log-ratio transformation) with HDL cholesterol and negative correlation with triglyc-

eride levels, respectively (see Fig 5B). Similar correlation patterns were also found for the other

genera for whom we rejected the no differential abundance hypothesis (see second and forth

column in Fig 5A). Our findings were also in line with recently reported correlation results in

Vojinovic et al. [65] using the Dutch LifeLines-DEEP cohort [13] and the Rotterdam Study

[14].

3.6 Sensitivity analysis

To assess whether the pair-matching strategy chosen for the design stage influenced the con-

clusions of this study, we conducted a sensitivity analysis (see Sensitivity Analysis section in S1

Text). For that, we implemented the more commonly-used propensity score matching algo-

rithm [97] and obtained matched samples of: 1) 158 participants living in low PM2.5 areas and

158 participants living in higher PM2.5 areas, and 2) 290 smokers and 290 never smokers (see

Table D and Figs T-Y in S1 Text for the balance diagnostics). For both hypothetical
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randomized experiments, using propensity score matching at the design stage results in ana-

lyzing more matched samples. The microbial diversity analyses lead to the same conclusion for

both experiments despite different design stages (see Fig Z and Tables E-F in S1 Text). Overall,

we also observe small approximate Fisherian p-values after performing the propensity score

matching, in the same way we observe small approximate Fisherian p-values with our pair-

matching strategy. The test statistics have the same direction and magnitude. For the air pollu-

tion reduction experiment, the adjusted p-values are higher when performing propensity score

matching when checking for differential abundances, i.e., we cannot reject the sharp null

hypothesis of no differential abundance for the Marvinbryantia genus. For the smoking pre-

vention experiment, we can reject the sharp null of no differential abundance for the same taxa

and additional ones when performing propensity score matching compared to pair-matching

(see Table C and Table G in S1 Text).

Table 7. Differential associations of genera. Smallest five adjusted two-sided randomization-based p-values for

10,000 permutations of the intervention assignment following a matched-pair design.

Air pollution

Genus-genus associations (-: disappearance after intervention) p-valueadj

Succinivibrio/Slackia (-) 0.0661

Ruminiclostridium/Cloacibacillus (-) 0.1063

Cloacibacillus/Lachnospiraceae-FCS020-group 0.2795

Megasphaera/Alistipes 0.4147

Bacteroidales (Genus: unknown)/Prevotella-2 0.4753

Smoking

Genus-genus associations (-: disappearance after intervention) p-valueadj

Christensenellaceae-R-7/Ruminiclostridium-6 (-) 0.1585

Ruminococcaceae-UCG-010/Ruminiclostridium-6 (-) 0.1585

Ruminococcaceae-UCG-014/Flavonifractor 0.2031

Clostridiales-vadinBB60/Ruminiclostridium-6 0.2376

Ruminococcaceae-UCG-013/Faecalibacterium 0.2492

https://doi.org/10.1371/journal.pcbi.1010044.t007

Fig 5. Lipid metabolites exploration. (A) Lipid metabolites correlation with selected genera from the smoking

prevention experiment (green). (B) Scatterplots of high-density lipoprotein (HDL) cholesterol and triglycerides vs.

centered log-ratio transformed relative abundances of the genera Ruminococcaceae-UCG-005 and Christensenellaceae-
R-7-group.

https://doi.org/10.1371/journal.pcbi.1010044.g005
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4 Discussion

We first discuss the results presented above, then elaborate on the statistical framework we

used for our analyses, and suggest statistical and epidemiological extensions of our work.

In the air pollution (PM2.5) reduction hypothetical experiment, we reject the sharp null

hypotheses of no richness, no α-diversity, no β-diversity, and no high-dimensional mean dif-

ferences. We also reject the no differential abundance hypothesis for the Marvinbryantia

genus, and the no differential association hypothesis between: the Succinivibrio and Slackia
genera, as well as the Ruminiclostridium and Cloacibacillus genera. Experiments exposing mice

to PM2.5 resulted in mixed findings concerning difference in microbial richness and diversity.

This might be due to regional differences in the chemical composition of PM2.5 as well as dif-

ferences in the duration of exposure [29]. Thus far, only one human study estimated associa-

tions between PM2.5 exposure and the gut microbiome, and investigated the pathway of

diabetes induction associated with PM exposure [28]. One of their key findings was that PM2.5

exposure reduced α-diversity (measured by Chao1 and Shannon indices), which is consistent

with our observations.

In the smoking prevention hypothetical experiment, we rejected the sharp null hypotheses

of no richness, no α-diversity, no β-diversity, and no high-dimensional mean differences. We

also rejected the no differential abundance hypothesis for eleven genera (five of the Rumino-
coccaceae family, three of the Lachnospiraceae family, one of the Christensenellaceae family,

and two of the Mollicutes class), and the no differential association hypothesis between the

Ruminiclostridium-6 and Ruminococcaceae-UCG-010 genera, and between the Ruminiclostri-
dium-6 and Christensenellaceae R-7-group genera. Interestingly, the associations of Ruminococ-
caceae-UCG-010 and Christensenellaceae R-7-group with Ruminiclostridium-6 were also found

to be worth further scrutiny. Their positive associations in the genus-genus network of smok-

ers was absent in the genus-genus network of the never-smokers. The one study comparing

the gut microbiome of smokers (n = 203) and never-smokers (n = 288) with similar sample

size has a men-only study population [44]. They did not find any differences in α-diversity

(measured with the Shannon index), whereas we conclude that α-diversity analyses are worth

further scrutiny. Lee et al.’s PERMANOVA analyses for β-diversity differences, measured with

Jaccard and weighted UniFrac distances, suggested differences. We reject the sharp null

hypothesis at the between-subject differences analysis level. In their analysis of bacterial taxa

on the phylum level, smokers had an increased proportion of Bacteroidetes with decreased Fir-

micutes and Proteobacteria compared with never-smokers. When we compare these phyla, we

do not observe the same differences (see Fig S in S1 Text). Also, our compositional difference

analyses do not result in the same set of differentially abundant genera that were reported by

Lee et al. [44]. These conflicting findings could be due to the fact that their study was done on

Korean men only. Nonetheless, it shows that there is a lack of knowledge on the effects of

smoking on the human gut microbiome and that additional scientific investigations are neces-

sary to make causal conclusions.

Throughout the extensive statistical analyses presented in this paper, we have tested sharp

null hypotheses of no effect of an intervention on a wide range of gut microbiome outcomes,

ranging from high-level microbial diversity estimates to differential genus-genus associations.

To do so, we have performed randomization-based inference based on 10,000 permutations.

This mode of inference has been motivated by two reasons: (i) it is difficult to postulate a joint

model for the potential outcomes, and thereby provide an estimate of (and uncertainty

around) a causal estimand, and (ii) it has been shown that using the actual randomization pro-

cedure that led to the observed data helps to report valid Fisher-exact p-values as opposed to

p-values relying on approximating null randomization distributions [46]. As an example, in
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our mean difference analyses, we found some differences between the null randomization dis-

tribution of the test statistic when approximated by permuting the intervention assignment

vector and when drawn from the approximating asymptotic distribution (see Figs J-K in S1

Text). A natural extension of this study would be to use a Neymanian or Bayesian mode of

inference to tackle the same research questions. There, simulations should support evidence

whether the approach can indeed recover the then estimated causal effects. Simulating micro-

biome data requires effort so that the common properties, such as compositionality and zero-

inflation, can be preserved, but re-sampling approaches [98] and generative models [99] have

been developed to achieve this end.

An important component of our randomization-based procedure is that the permutations

of the intervention assignment vector conserves the matched-pair design of the hypothetical

randomized experiment. This strategy has been advocated by Rubin [100] in the context of

randomized trials, and more recently by Bind and Rubin [46] in the context of hypothetical

randomized experiments, because assumptions on the underlying distribution of the data are

not required. Only few R packages were built to perform randomization-based inference while

conserving the design of the intervention assignment. Therefore, for every analysis in our

study, we imported a matrix of 10,000 unique randomized intervention assignments to calcu-

late our p-values (see https://github.com/AliceSommer/Causal_Microbiome_Tutorial for a

reproducible example on the American Gut Data [16, 101]). Nonetheless, the DACOMP and

NetCoMi R packages provide flexible functions enabling the calculation of randomization-

based p-values for our study design to test sharp null hypotheses of no difference in taxa abun-

dance and associations, respectively. We advocate for more development of such user-friendly

software functions permitting flexibility and accountability of the design stage of observational

studies. P-value adjustments for multiple comparison also follow a fully randomization-based

procedure, while preserving the design of the experiment. The method has proven to be more

powerful while maintaining the family-wise error rate [91].

Notice that when presenting our results, we never accepted alternative hypotheses but only

rejected sharp nulls when unadjusted and adjusted p-values were small, i.e., indicating the

hypotheses warrants further scrutiny [82]. In the field of microbiome data analysis, the terms

differential abundance and associations are frequently used. Researchers report “differentially

abundant” and “differentially associated” sets of taxa after testing sharp null hypotheses of no

effect of an intervention. This terminology implicitly implies acceptance of the alternative

hypotheses. However, when testing sharp null hypotheses we assess the amount of evidence

against them in the observed data, which does not prove the alternative hypothesis to be true.

During the design stage, the outcome variable was ignored and only pre-exposure covari-

ates were considered. The chosen balanced data is a sub-sample of units that can be used to

estimate the effects of an intervention. Omitting the outcome data until the analysis avoids

“model cherry-picking”, because the effect of the intervention is estimated once, after a suc-

cessful design stage. Nonetheless, at the design stage, we can only consider the observed pre-

exposure variables but the assignment mechanism could depend on unobserved pre-exposure

variables. In gut microbiome studies, diet is often an unobserved confounder. For example, in

this study, dietary intake data was collected for only 1,469/2,033 (i.e., 72%) participants. We

verified balance in dietary intake for our balanced data subset (see Figs H-I in S1 Text). Even

though we made sure that the observed potential confounding covariates are fairly balanced,

there could still be imbalances in other unobserved background covariates, which could have

an effect on our results. In such cases, Rosenbaum [102] has recommended to consider sensi-

tivity analyses of how the Fisher-exact p-value would change, had the intervention assignment

been plausibly different, see also Bind and Rubin [46]. Subject-matter knowledge on the proba-

bility of the binary exposure (i.e., smoking or air pollution) given the observed and unobserved
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background covariates should guide the plausible range of “sensitivity” p-values and the reason

why they could deviate from the p-value calculated based on the assumed hypothetical inter-

vention assignment. This idea provides material for an extension of the framework presented

in this study.

The framework suggested in this paper facilitates a more transparent interpretation of results

than standard approaches directly modeling the observed outcome. First, interpretation is only

valid within the range of the background covariates of the study population in the respective

hypothetical experiment (see their detailed characteristics in Table 4 and Figs B-I in S1 Text).

The data do not provide direct information for the “unmatched” units. In addition to our pair-

matching strategy, we conducted a sensitivity analysis using a propensity score matching algo-

rithm at the design stage, which led to more matched pairs, and thus a broader range of back-

ground covariates values (see Table D in S1 Text). Both matching algorithms do not lead to

conflicting results in the smoking prevention experiments. In the air pollution reduction experi-

ment, only the differential abundance analysis does not lead to the same overall conclusion. At

this stage, the researcher can decide between a larger number of units or more similar groups of

units to compare. When designing our hypothetical experiment, we chose a pair-matching

strategy, because it creates similar pairs of participants based on subject-matter knowledge. For

example, the number of females and males in the intervention and control groups is identical

after pair-matching, whereas with propensity score matching, these numbers slightly differ (see

Table 4 and Table D in S1 Text). Note that the matching algorithm considerations should be a
priori specified before any statistical analysis is performed. Ideally, the design stage should be

conducted by a statistician who is not involved in the subsequent statistical analysis stage. Sec-

ond, the assumed assignment mechanism and underlying assumptions have to be clearly stated

to obtain meaningful p-values. Standard approaches usually make strong assumptions (e.g., lin-

earity), whose discussions are often neglected. Modeling the observed data and solely adjusting

for confounders by including them in a regression, without a design stage, can be unreliable,

especially when the pre-exposure covariates distributions of the control and intervention units

are not similar. For instance, Cochran and Rubin [47], Heckman et al. [103], and Rubin [104]

have shown that regression models can estimate biased treatment effects when the true relation-

ship between the covariates and the outcome is not modeled accurately. Dehejia and Wahba

have also shown that standard nonexperimental estimators such as regression are sensitive to

the specification used in the regression [105]. This is another reason why we opted for an infer-

ence method that does not rely on parametric assumptions.

In contrast to other studies interested in the effect of air pollution exposures on health out-

comes, this study does not provide any estimation of an exposure-response curve. Instead, we

examine the effect of interventions and provide results that can directly contribute to policy

recommendations. Until now, relationships between inhaled environmental exposures and the

human gut microbiome were not examined with causal inference methods, so a first step to

make advances in the field is to test, whether air pollution and smoking have no effect on the

units of our study. If so, a potential next step would be to work with a dataset adequate for bal-

ancing covariates along different doses of the exposure such as suggested in [106] and estimate

a causal dose-response in order to protect populations at risk.

In the smoking prevention experiment, the subset of genera retained at the differential

abundance analysis step was linked to the serum markers triglycerides and high-density lipo-

protein in previous studies [65, 95, 96]. In our data, we observe correlations between these gen-

era and metabolites in the same direction than previously found by Vojinovic [65] (see Fig 5).

Serum triglycerides and high-density lipoprotein play a role in metabolic syndrome, and asso-

ciations between smoking and metabolic syndrome have also been found previously [107].

Therefore, we suggest further investigation on the pathway of cigarette smoke impacting the
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gut, which in turn has effects on circulating metabolites (and metabolic syndrome). A logical

next step would be to apply our framework to other cohorts with similar amplicon data pre-

processing and available pre-exposure covariates such as the Dutch LifeLines-DEEP [13] and

Rotterdam Studies [14], and observe whether our results replicate.

Supporting information

S1 Text. Fig A: Gut microbiome data description. Number of observed ASV per sample (top

left), sequencing depth per sample (top right), number of sequences per ASV (bottom left),

number of zero count per ASV (bottom right). Fig B: Empirical distributions of the matched

covariates among the subjects under the intervention vs. not in the original (left panel) and the

balanced (right panel) data for the air pollution reduction hypothetical experiment. Fig C:

Empirical distributions of the disease covariates among the subjects under the intervention vs.

not in the original (left panel) and the balanced (right panel) data for the air pollution reduc-

tion hypothetical experiment. Fig D: Empirical distributions of the medication covariates

among the subjects under the intervention vs. not in the original (left panel) and the balanced

(right panel) data for the air pollution reduction hypothetical experiment. Fig E: Empirical dis-

tributions of the matched covariates among the subjects under the intervention vs. not in the

original (left panel) and the balanced (right panel) data for the smoking prevention hypotheti-

cal experiment. Fig F: Empirical distributions of the diseases covariates among the subjects

under the intervention vs. not in the original (left panel) and the balanced (right panel) data

for the smoking prevention hypothetical experiment. Fig G: Empirical distributions of the

medication covariates among the subjects under the intervention vs. not in the original (left

panel) and the balanced (right panel) data for the smoking prevention hypothetical experi-

ment. Fig H: Empirical distributions of the nutrition covariates among the subjects under the

intervention vs. not in the balanced data for the air pollution reduction hypothetical experi-

ment. Fig I: Empirical distributions of the nutrition covariates among the subjects under the

intervention vs. not in the balanced data for the smoking prevention hypothetical experiment.

Fig J: Permutation-based (grey) and asymptotic (blue) null randomization distributions for

the air pollution reduction hypothetical experiment. Fig K: Permutation-based (grey) and

asymptotic (blue) null randomization distributions for the smoking prevention hypothetical

experiment. Fig L: Reference set selection in the air pollution reduction experiment. A taxa

enters the set R = (r1, . . ., rF) if it has low variance (< 2) and high prevalence (> 90%). For the

analyses at the ASV level, we chose the variance to be < 3 and the prevalence to be > 40% as

thresholds in order the have at least one reference per subject. Fig M: Reference set selection in

the smoking prevention experiment. A taxa enters the set R = (r1, . . ., rF) if it has low variance

(< 2) and high prevalence (> 90%). For the analyses at the ASV level, we chose the variance to

be < 3 and the prevalence to be > 40% as thresholds in order the have at least one reference

per subject. Fig N: Distribution of number of ASVs per sample when data is filtered at different

ASV prevalence thresholds (0%, 5%, 10%, 15%) in the air pollution reduction experiment. Red

value: minimum observed ASVs per sample. Fig O: Distribution of the total ASV counts per

sample when data is filtered at different ASV prevalence thresholds (0%, 5%, 10%, 15%) in the

air pollution reduction experiment. Red value: minimum ASV counts per sample. Fig P: Dis-

tribution of number of ASVs per sample when data is filtered at different ASV prevalence

thresholds (0%, 5%, 10%, 15%) in the smoking prevention reduction experiment. Red value:

minimum observed ASVs per sample. Fig Q: Distribution of the total ASV counts per sample

when data is filtered at different ASV prevalence thresholds (0%, 5%, 10%, 15%) in the smok-

ing prevention experiment. Red value: minimum ASV counts per sample. Fig R: Genus-genus

associations for subject under the air pollution reduction experiment vs. not (n = 99, p = 149).
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(A) Visualization of the between genera partial correlations estimated with the SPIEC-EASI

method. Edges thickness is proportional to partial correlation, and color to direction: red: nega-

tive partial correlation, green: positive partial correlation. Node size is proportional to the cen-

tered log ratio of the genus abundances, and color is according to phyla. Triangle shaped nodes

are differentially abundant (see Fig 3). (B) Zoom in largest connected component and differen-

tial associations (bold genera). Fig S: Phyla comparison. Fig T: Sensitivity analysis—Empirical

distributions of the matched covariates among the subjects under the intervention vs. not in the

original (left panel) and the balanced (right panel) data for the air pollution reduction hypothet-

ical experiment. Fig U: Sensitivity analysis—Empirical distributions of the diseases covariates

among the subjects under the intervention vs. not in the original (left panel) and the balanced

(right panel) data for the air pollution reduction hypothetical experiment. Fig V: Sensitivity

analysis—Empirical distributions of the medication covariates among the subjects under the

intervention vs. not in the original (left panel) and the balanced (right panel) data for the air

pollution reduction hypothetical experiment. Fig W: Sensitivity analysis—Empirical distribu-

tions of the matched covariates among the subjects under the intervention vs. not in the original

(left panel) and the balanced (right panel) data for the smoking prevention hypothetical experi-

ment. Fig X: Sensitivity analysis—Empirical distributions of the diseases covariates among the

subjects under the intervention vs. not in the original (left panel) and the balanced (right panel)

data for the smoking prevention hypothetical experiment. Fig Y: Sensitivity analysis—Empirical

distributions of the medication covariates among the subjects under the intervention vs. not in

the original (left panel) and the balanced (right panel) data for the smoking prevention hypo-

thetical experiment. Fig Z: Sensitivity analysis—Richness and α-diversity. Boxplots (with

median), values of the test-statistics from the betta regression, and one-sided randomization-

based p-values for 10,000 permutations of the intervention assignment following a matched-

pair design. Table A: Gut microbiome data description. Number of observed ASV per sample,

sequencing depth per sample, number of sequences per ASV, number of zero count per ASV.

Table B: Air pollutiion reduction experiment results. Differentially abundant taxa and adjusted

Fisher p-values for 10,000 iterations at 5% prevalence filtering. Selected adjusted p-values � 0.2

(sign of abundance difference: y(1)—y(0)). Table C: Smoking prevention experiment results.

Differentially abundant taxa and adjusted Fisher p-values for 10,000 iterations at 5% prevalence

filtering. Selected adjusted p-values � 0.2 (sign of abundance difference: y(1)—y(0)). Table D:

Sensitivity analysis—Baseline characteristics of the study population in the air pollution reduc-

tion (left table) and smoking prevention experiments (right table). Continuous variables: mean

and standard deviation (St. d.). Categorical variables: number of samples per category (N) and

proportion of category (%). Table E: Sensitivity analysis—β-diversity. Microbiome Regression-

based Kernel Association Test (MiRKAT), unadjusted and adjusted one-sided randomization-

based p-values for 10,000 permutations of the intervention assignment following a matched-

pair design. Table F: Sensitivity analysis—Compositional equivalence test. Test statistic for

high-dimensional data and one-sided randomization-based p-values for 10,000 permutations

of the intervention assignment following a matched-pair design. Table G: Sensitivity analysis—

Smoking prevention experiment results. Differentially abundant taxa and adjusted Fisher p-val-

ues for 10,000 iterations at 5% prevalence filtering. Selected adjusted p-values � 0.2 (sign of

abundance difference: y(1)—y(0)).

(PDF)
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