Clinical Cytometry
and Histometry

Edited by

G. Burger
Institut für Strahlenschutz, Neuherberg, FRG

J. S. Ploem
University of Leiden, The Netherlands

and

K. Goerttler
Deutches Krebsforschungszentrum, Heidelberg, FRG

1987

ACADEMIC PRESS
Harcourt Brace Jovanovich, Publishers
London San Diego New York Berkeley
Boston Sydney Tokyo Toronto
Contents

Contributors v
Preface xi

Part 1: Instrumentation and Software Requirements for Cytometry

1.1 Image Cytometry

Required facilities for image analysis at the microscope in biological and medical applications: the “SAMBA” image processor
G. Brugal 3

FAZYTAN – IPS – prescreening system
W. H. Bloss, W. Greiner, W. Kringler, W. Schlipf, P. Schwarzmann and B. Straub 18

LEYTAS – A cytology screening system using the new Modular Image Analysis Computer (MIAC) from Leitz
J. S. Ploem, A. M. J. van Driel-Kulker and N. P. Verwoerd 24

Hard- and software requirements of a multipurpose image analysis system
P. Gais and K. Rodenacker 36

A strategy for flexible cell analysis
H. Jaschul 39

Rapid diagnostic DNA-image-cytometry with an automatic microscope and a TV-image-analysis system
A. Böcking and R. Chatelain 43

Image acquisition microscopy using CCD area cameras
P. J. S. Hutzler, H. Seidlitz and S. Berber 46

Laser hard-copy reproduction of cytologic images
P. A. Benedetti and V. Evangelista 49

1.2. Flow Thru Cytometry

A digital video device for flow cytometrically triggered direct imaging of biological cells
V. Kachel and W. Päffgen 55

Automated diagnosis of malignant and other abnormal cells by flowcytometry using the DIAGNOS 1 program system
G. Valet, H. H. Warnecke and H. Kahle 58

Spectral analysis in flow: the fourier transform flow cytometer
T. N. Buican 66

Quantification of cell size, refractive index, shape and internal structure by flowcytometry using two laser beams different in wavelength and geometry
H. -W. Schrader and W. G. Eisert 72
Photodamage cell sorting
 H. Herweijer, G. J. Pronk, W. Stokdijk and J. W. M. Visser 75

Multiple wavelength excitation with an arc lamp based flow cytometer: signal averaging and measurement of excitation spectra in flow
 B. G. de Grooth, M. van Dam, T. Ploegmakers and J. Greve 78

The use of a robot-arm for automated sample preparation in flow-cytometry
 V. Manta, J. Treumer and G. Valet 81

DNA analysis with the FACS analyzer: applications in pathology and parasitology
 P. H. van Vianen, C. J. Janse, J. P. Overdulve, H. J. van der Kaay and H. J. Tanke 84

1.3. Software, Featuring, Decision Making and 3D-Representation

Featuring of cellular objects
 K. Rodenacker 91

Segmenting tissue specimens with multifocal, multicolor computer methods
 H. Harms and H. M. Aus 97

Texture and color image processing methods in image cytometry: high resolution prerequisites
 H. M. Aus and H. Harms 103

BIP – Biomedical Image Processing – software for cytometry and histometry
 E. Mannweiler, W. Wild and W. Abmayr 106

Using cluster analysis as a method for building a cell and smear classifier
 M. W. Katzko, M. M. Pahlplatz, P. S. Oud and G. P. Vooijs 109

Hierarchical decomposition techniques in pattern classification
 B. B. Chaudhuri 112

On optimal classification of mixtures with univariate normal component densities
 F. G. Boese 115

On the decomposition of finite normal mixtures by maximum likelihood estimation
 F. G. Boese 118

Quantitative analysis of object distribution
 M. Oberholzer, M. Buser, H. Christen, R. Ettlin and Ph. U. Heitz 121

Stereological considerations concerning benign and malignant squamous cells in cell-block and smear methods
 L. P. Kok and M. E. Boon 124

BIO3D software
 J. C. Bisconte, O. Lebel, C. Méchoulam, M. B. Cornu and S. Margules 127

3D reconstruction of histological serial sections
 R. Wiechell, U. Heinzmann, C. Soppa and W. Abmayr 130

Histometry and pseudo-3D-presentation of prenatal induced alterations in the ventricular system of the mouse
 U. Heinzmann, R. Wiechell and W. Abmayr 133
Part II: Sampling, Preparation and Staining Methods

2.1. Specimen Sampling

An automated culturing and harvesting system for cytogenetics

Instrumentation for the preparation of cytological specimens for image cytometry
P. S. Oud and G. P. Vooijs 143

A simple method to select specific tumor areas in paraffin blocks for cytometry
M. J. Eijsackers and J. S. Ploem 146

A double staining method for the cytometric quantitation of DNA and thiol groups
G. Mazzini, P. A. Giordano, C. Pellicciari, A. Costa and G. Marchese 149

The theory of the Romanowsky-Giemsa (RG) stain and high resolution image analysis
D. Wittekind and E. Schulte 153

Investigation on the dye-substrate interaction of Azur B-Eosin Y
E. Schulte 156

Nucleic acid and non-histone protein specific microscopy of wet unfixed clinical cell material
S. Witte and G. Strässle 159

Quantitative analysis of a rapid gallocyanin chromic potassium sulphate technique
K. C. Watts, O. A. N. Husain and F. Lorriman 162

Automated Feulgen staining with a temperature controlled Varistain 24
A. Böcking and R. Chatelain 164

The rate of chromatin staining in single leukocytes
C. Winzek, P. Plieninger, R. Nothelfer and H. Baumgärtel 167

New possibilities of differentiation and quantification in metachromatic staining
R. Nothelfer, R. Schürmann, C. Winzek and H. Baumgärtel 170

Breast cancer cytometry on Pappenheim and on Feulgen stained specimens

Advantages and limitations of retrospective DNA cytometry by flow and image analysis

2.2. New Probes and Immunochemical Markers

The proportion of R- and G-band chromatin determined by comparison of replication patterns and FCM-Analysis
W. Vogel and A. Reisacher 183

AT/GC ratio of various species and cell lines restudied by Hoechst 33258 and Mithramycin/Ethidiumbromid staining and FCM measurements
A. Reisacher and W. Vogel 186
Determination of base pair ratio and DNA content in mammalian species using flow cytometry
F. Teitz, R. Friedl, H. Höehn and M. Kubbies 189
Flow cytometry with INDO-1 reveals variation in intracellular free calcium within T-cell subsets and between donors after mitogen stimulation
A. Grossmann and P. S. Rabinovitch 192
The flow-cytometric determination of intracellular calcium in vital cells with the INDO-1 dye
A. Raffael and G. Valet 195
The role of flow cytometry in evaluating the clinical usefulness of MoAbs to human tumor associated antigens
G. Badaracco, G. Starace, M. Cuomo, M. Mottolese, M. R. Nicotra and P. G. Natali 198
Flow-cytometric test systems in immunology
C. Th. Nebe and B. Bohn 201
Flow cytometric determination of peroxidase activity and peroxide formation in hematopoetic cells using 2', 7'-dichlorofluorescin-diacetate
S. Burow and G. Valet 205
Combined injury induced expression of OX8 antigens on rat monocytes
W. Kaffenberger, D. F. Gruber and T. J. MacVittie 208
The evaluation of propidium iodide for flow cytometry of blastogenesis
J. T. Thornthwaite, F. J. Hornicek, D. A. Vazquez and D. Seckinger 211
Fluorescein-di-β-galactopyranoside: a new cytometric fluorochromasia substrate for β-galactosidase in viable cells
J. F. Jongkind and A. Verkerk 216
Localization of DNA sequences by non-radioactive in situ hybridization
A. K. Raap, M. van der Ploeg, A. H. N. Hopman, J. E. Landegent and P. van Duijn 221

Part III: Biological Cytometric Applications

3.1. Cell Cycle Analysis

Flow cytometric analysis of cell cycle kinetics in a mouse ehrlich ascites tumor in vivo and in vitro using a monoclonal antibody to bromodeoxyuridine
M. Nüsse and L. Jüling-Pohlit 229
Anti-BURD monoclonal antibody labelling – a comparison between BURD, 3H-TDN and flow cytometry data
E.-M. Langer, J. Hemmer, H. R. Röttgers and W. Göhde 232
An improved method for bivariate BrdUrd/DNA analysis using flow-cytometry
B. Schutte, M. Reynders, C. van Assche, P. Hupperets, F. Bosman and G. Blijham 235
Human tumour cell kinetics measured by bromodeoxyuridine incorporation in vivo and in vitro
G. D. Wilson, N. J. McNally, S. Dische, E. Dunphy, A. A. Lewis and H. Karcher 237
Determination of the fraction of cycling S-phase cells in human tumors using anti-BURD monoclonal antibody labelling technique
J. Hemmer, E.-M. Langer, G. Kleinhans, J. Schumann and W. Göhde 240
Contents

BrdU/Hoechst cell cycle analysis applied to Fanconi anemia and inhibitory agents
 M. Kubbies, D. Schindler, H. Hoehn, R. Friedl and P. S. Rabinovitch 243

Comprehensive kinetic analysis using BrdU Hoechst-ethidium bromide two parameter flow cytometry
 M. Kubbies, H. Hoehn and P. S. Rabinovitch 246

Kinetic and biochemical evidence for G1 phase heterogeneity in mouse fibroblasts
 E. Martegani, L. Toschi, R. Zippel, L. Alberghina and E. Sturani 249

Scatter-related cell cycle analysis of viable cells using a single laser flow cytometer
 J. Boezeman, T. Beumer, C. Massen, J. Poulis and C. Haanen 252

Three dimensional quantitative morphological analysis of proliferation and differentiation of multi-tumor-cell-spheroids using an image analysis system
 F. Hofstätter, E. Rammal, G. Jakse, J. H. Selbach and A. Böcking 255

Changes of nuclear chromatin pattern during cell cycle progression revealed by automated image analysis
 F. Giroud 258

3.2. Chromosome Analysis

Counting dicentric chromosomes by flow cytometry
 D. K. Green and J. A. Fantes 263

Quantification of dicentric chromosomes by dual parameter slit-scan flow cytometry
 H.-U. Weier and W. G. Eisert 269

Flow cytometric analysis of chromosome aberrations in irradiated V-79-cells: I. Preparation and measurement of chromosome suspensions of irradiated cells
 H. J. Egner, M. Nüsse and M. Krämer 273

Flow cytometric analysis of chromosome aberrations in irradiated V79-cells. II: analysis and simulation of chromosome fluorescence distributions of irradiated cells
 M. Krämer, M. Nüsse and H. J. Egner 276

Flow cytometric discrimination of mitotic nuclei by forward and orthogonal light scatter
 J. K. Larsen and J. Christiansen 279

Flow karyotyping of animal chromosomes

Distances between two chromosomes in interphase nuclei as determined with digital image analysis
 P. Loos, T. Cremer, M. Hausmann, A. Jauch, P. Emmerich, W. Schlegel and C. Cremer 285

3.3. Germ Cell Cytometry and Motility Measurements

Determination of RBE values for acute 14 MeV-neutrons using murine testis and small intestine
Automatic analysis of radiation induced alterations of flow cytometric DNA distributions of mouse testis cells
F. Lampariello, F. Mauro, F. Pacchierotti, R. Uccelli and M. Spano 294

Flow cytogenetic studies in germ cells
F. J. Otto 297

Cellular effects of heat on mouse spermatogenesis
R. de Vita, A. Calugi, D. Forte, C. Chiarantano, R. Uccelli, A. Vizzone and F. Mauro 300

Image analysis for the characterization of the dynamic properties of cultured cells

Part IV: Clinical Applications of Image and Flow Thru Cytometry

4.1. General Considerations

Tasks, results and problems in clinical image cytometry
G. Burger 309

Clinical applications of SAMBA 200 cell image processor
D. Seigneurin 318

Morphometry in clinical pathology

Computer aided diagnostics – the new task for image analysis in clinical pathology

4.2. Cervix

Diagnosis of prospective malignancy in borderline lesions of the uterine cervix with DNA-image-cytometry
A. Böcking 345

Human papilloma virus changes and CIN-I; a quantitative study of differences in chromatin pattern
M. E. Boon, L. P. Kok, U. Jütting, K. Rodenacker and P. Gais 348

Development trials of the CERVIFIP automated cervical cell scanner

Intermediate cell analysis for classification of carcinoma in situ specimens
M. M. M. Pahlplatz, M. W. Katzko, P. S. Oud and G. P. Vooijs 356

Classification of normal and malignant endometrium using DNA and nuclear protein features
P. S. Oud, W. M. Katzko, M. M. M. Pahlplatz and G. P. Vooijs 359

Malignant potential of human cervical carcinoma estimated by histopathologic grading and flow cytometric DNA analysis
P. Bichel and A. Jakobsen 362

Prognostic relevance of DNA-index of human cervical carcinomas
D. H. Rutgers and H. A. van Peperzeel 365
Automated image analysis of cervical specimens; frequency distributions of selected events
A. M. J. van Driel-Kulker and J. S. Ploem 369
Quantitative DNA analysis of low grade cervical neoplasia and HPV infection using microspectrophotometry, image analysis and flow cytometry
K. C. Watts, F. Lorriman and O. A. N. Husain 380
Imaging microscopy with artificial intelligence for automatic analysis of Papanicolaou smears
B. Stenkvist 385

4.3. Breast

Morphometry of breast cancer cells in cytological and histological specimens
Malignancy diagnosis of breast tumors by means of cytometry
E. Sprenger, S. Kowal, U. Jütting, G. Burger and K. Rodenacker 399
Quantitative image analysis on immunocytochemically labelled cells
Visual and cytometric grading of breast carcinoma specimens: correlations with the hormone receptor status
An image cytometric marker of proliferation for the prognosis of breast cancer
W. Giaretti, U. Jütting, S. Bruno and G. Burger 411
Image cytometry of duct cells from benign and malignant breast disease
Cytochemical malignancy grading of mammary adenocarcinoma
A. Fallenius, U. Askensten and G. Auer 420
Systematical errors in evaluation of S-phase fractions from DNA-distributions of solid tumors
D. Haag, G. Feichter and K. Goerttler 426
Relevance of DNA flow cytometry in tumour characterization of human mammary carcinomas
D. H. Rutgers and P. M. van der Linden 429
Static and flow cytometric DNA measurements in breast cancer
U. Askensten, A. Fallenius and G. Auer 435

4.4. Bladder

A new concept in the natural history of human bladder cancer based on genetic instability of tumors as evidenced by flow cytometric DNA analysis
M. Devonec and A. Hijazi 441
Flow cytometric DNA measurements in paraffin embedded bladder carcinoma tissue before precystectomy radiotherapy. A preliminary report
A. B. Jacobsen, S. D. Fossa, S. Lunde, J. E. Melvik and E. O. Pettersen 447
Cellular DNA content as a marker for disease involvement in human bladder carcinoma
O. D. Laerum, T. Farsund and J. Høstmark 450
Automatic detection of nuclei in histological sections of bladder tumours using an IBAS-II array processor
C. Sowter, G. Slavin and D. Rosen 453
Automated prescreening of urinary specimens
P. Schwarzmann and R. Dörrer 456
Feulgen DNA cytophotometry (image cytometry) from paraffin embedded specimens: a method for standardization of urothelial atypia and carcinoma in situ of the bladder

4.5. Blood and Lymphatic Systems

Somatic cell mutations in humans detected by image analysis of immuno-fluorescently stained erythrocytes
A computer-assisted image analysis system for the measurement of leukocyte chemotaxis
R. M. Donovan, Y. Kim, E. Goldstein, A. T. Cheung and M. E. Miller 470
Nucleic acids content of blood mononuclear cells (PBM) of renal allograft recipients
Flow-cytometric determination of granulocyte functions in patients developing sepsis (phagocytosis, intracellular pH and cell volume)
G. Rothe, W. Kellermann and G. Valet 477
DNA and limitations of normal cytology in leukaemias
A. Guerci, J. Pierrez and O. Guerci 480
Discrimination of human eosinophilic granulocytes from neutrophilic granulocytes using depolarized orthogonal light scattering
L. W. M. M. Terstappen, B. G. de Grooth, C. J. Puppels and J. Greve 483
A new way to distinguish human cytotoxic lymphocytes from regulatory and B-lymphocytes
L. W. M. M. Terstappen and B. G. de Grooth 486
DNA-grading of malignant lymphomas
A. Böcking and R. Chatelain 489
Quantitative cytological analysis of in vitro differentiation of HL60 human leukemic cells
J. Dufer, D. Biakou and H. Benoist 492

4.6. Miscellaneous Applications

Flow cytometric analysis of human myocardium. The effects of age and hypertrophy on polyploidization
H. W. Vliegend, A. van der Laarse, F. Eulderink, A. M. Vossepoel and C. J. Cornelisse 497
Prognostic significance of DNA distribution in lung and ovarian carcinoma
M. Volm, P. Drings, W. Kleine, J. Mattern, J. Sonka, M. Vogt-Schaden and K. Wayss 500
Contents

Heterogeneity and genetic instability in malignant melanomas as revealed by flow cytometry
 J. Schumann, Th. Heiden and W. Göhde 504
Karyotype and DNA content of human ovarian cancer
 A. Jakobsen and B. Pedersen 507
Rapid 4-parameter characterisation of activated T-Cell subsets in the lung of sarcoidotic patients
 G. Cordier, J. Pages, M. Blanc and J. F. Mornex 512
Objective discrimination of non-malignant hepatocytes and hepatoma cells
 C. Sowter, R. Jagoe and G. Slavin 515
Morphometric investigation of kidney biopsy: benefits and potentials
 Y. Collan 520
Which is the best ultrastructural morphometric parameter differentiating between intraepidermal melanocytic cells of benign nevi and malignant melanomas?
 W. Stolz, J. Gross, C. Schmoeckel, W. Abmayr and O. Braun-Falco 523
Sorting of heterogeneous cell lines from biopsies of malignancies
 Th. Heiden, J. Schumann and W. Göhde 526

4.7. Histometry

Tissue section analysis of cervical intraepithelial neoplasias
 G. Burger, M. Oberholzer, K. Rodenacker and U. Jütting 531
Use of syntactic structure analysis in immuno-histology
 K. Kayser, M. Fitzer, W. Ebert and G. Strauch 534
Histometry of nerve fibres and nerve fibre autoradiographs
Crystallographic image processing of electron micrographs
 G. W. Farrants, S. Hovmöller and A. Stadhouders 541

Author index 543

Subject index 547
DISTANCES BETWEEN TWO CHROMOSOMES IN INTERPHASE NUCLEI AS DETERMINED WITH DIGITAL IMAGE ANALYSIS.

P. Loos1, T. Cremer2, M. Hausmann1, A. Jauch2,
P. Emmerich2, W. Schlegel3, C. Cremer

1) Institute of Applied Physics I
2) Institute of Anthropology and Human Genetics
3) Institute of Nuclear Medicine, German Cancer Research Center
Heidelberg, F.R. Germany

In the interphase nuclei the individual chromosomes are located in distinct areas: they are not spread over the whole nucleus (1). Recently it has become possible to stain certain interphase chromosomes with specific markers (1,2). This suggests to determine distribution functions of distances between certain chromosomes by investigating many nuclei (2).

After staining two chromosomes with specific markers, two separate colored areas can be recognized in the nucleus. Now it is possible to analyse the distances between these areas. In this case only the projection of the nuclei is examined.

Due to the large number of nuclei the manual investigation is time consuming. An approach to solve the problem with digital image analysis is presented hereby.

The digitized picture of the cell preparation, which can contain several nuclei, is presegmented with a threshold selection method (3). Then the nuclear edge in the single segments is identified after transforming the segments into the polar-coordinate-system with the centre of the nuclei as origin (4). Finally the locations of the stained chromosomes are determined.

By investigating a large number of nuclei it is possible to perform a statistical analysis of the distance between two chromosomes or the distances between one chromosome and the centre of the nuclei.

It is assumed that the nuclei have the shape of ellipsoids or cylinders with an elliptic basis. Therefore the distribution of the axes propor-
tions B/A (B<A) of the nuclei of the preparation is determined by adapting ellipses to the projection of the nuclei. A, B, C are the main axes of the ellipsoids and C is parallel to the optical axis.

In order to get the theoretical curves (distances in case of a random distribution), the distribution functions for a) ellipsoids or b) cylinders with an elliptic basis with the same axes proportions as the nuclei are calculated by using a Monte-Carlo-procedure (N=10000). The distribution functions do not depend on the length of the C axis.

Two curves are determined:

a) The distance between the projection of randomly distributed points and the centre of the ellipsoid or the cylinder (Fig.1).

b) The distance between the projection of two randomly distributed points in the ellipsoid or the cylinder (Fig.2).

These theoretical curves are compared with the experimental curves (310 nuclei of amnion cells, chromosome 15 labeled) as obtained by digital image analysis. Fig.1 and 2 show both curves.

Fig.1 Distribution of distances between the projection of one chromosome and the centre.
In both cases, a large deviation of the experimental curves from the theoretical curves was found, indicating a non-random distribution.

The experimental curves were obtained by digital image analysis of camera lucida drawings of the specimen displaying the edge of the nuclei and the labeled sites, respectively.

Digitization and analysis was performed on a VAX 11/780 computer. It took the computer two hours to investigate the 310 nuclei; manual investigation had taken several days.