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Abstract
Bishop’s presentation of his informal system of constructive mathematics BISH was on purpose closer
to the proof-irrelevance of classical mathematics, although a form of proof-relevance was evident in the
use of several notions of moduli (of convergence, of uniform continuity, of uniform differentiability,
etc.). Focusing on membership and equality conditions for sets given by appropriate existential formulas,
we define certain families of proof sets that provide a BHK-interpretation of formulas that correspond
to the standard atomic formulas of a first-order theory, within Bishop set theory (BST), our minimal
extension of Bishop’s theory of sets. With the machinery of the general theory of families of sets, this
BHK-interpretation within BST is extended to complex formulas. Consequently, we can associate to many
formulas φ of BISH a set Prf(φ) of “proofs” or witnesses of φ. Abstracting from several examples of total-
ities in BISH, we define the notion of a set with a proof-relevant equality, and of a Martin-Löf set, a special
case of the former, the equality of which corresponds to the identity type of a type in intensional Martin-
Löf type theory (MLTT). Through the concepts and results of BST notions and facts of MLTT and its
extensions (either with the axiom of function extensionality or with Vooevodsky’s axiom of univalence)
can be translated into BISH. While Bishop’s theory of sets is standardly understood through its translation
to MLTT, our development of BST offers a partial translation in the converse direction.
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1. On Bishop’s Theory of Sets
The theory of sets underlying Bishop-style constructive mathematics (BISH) was only sketched
in Chapter 3 of Bishop’s seminal book (Bishop 1967). Since Bishop’s central aim in Bishop (1967)
was to show that a large part of advanced mathematics can be done within a constructive and
computational framework that does not contradict the classical practice, the inclusion of a detailed
account of the set-theoretic foundations of BISH could possibly be against the effective delivery of
his message.

The Bishop-Cheng measure theory, developed in Bishop and Cheng (1972), was very different
from the measure theory of Bishop (1967), and the inclusion of an enriched version of the former
into Bishop and Bridges (1985), the book on constructive analysis that Bishop co-authored with
Bridges later, affected the corresponding Chapter 3 in two main respects. First, the inductively
defined notion of the set of Borel sets generated by a given family of complemented subsets1 of
a set X with respect to a set of real-valued functions on X, was excluded, as unnecessary, and,
second, the operations on the complemented subsets of a set X were defined differently, and in
accordance to the needs of the new measure theory.
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2 I. Petrakis

Yet, in both books, many issues were left untouched, a fact that often was a source of confusion.
In many occasions, especially in the measure theory of Bishop and Cheng (1972) and Bishop and
Bridges (1985), the powerset was treated as a set, while in the measure theory of Bishop (1967),
Bishop generally avoided the powerset by using appropriate families of subsets instead. In later
works of Bridges and Richman, like Bridges and Richman (1987) and Mines et al. (1988), the
powerset was clearly used as a set, in contrast though, to the predicative spirit of Bishop (1967).

The concept of a family of sets indexed by a (discrete) set was asked to be defined in Bishop
(1967, Exercise 2, p. 72), and a definition, attributed to Richman, was given in Bishop and Bridges
(1985, Exercise 2, p. 78). An elaborate study though, of this concept within BISH, was missing,
despite its central character in the measure theory of Bishop (1967), its extensive use in the the-
ory of Bishop spaces (Petrakis 2015a,b, 2016a,b, 2019a,b, 2020a,b, 2021, to appear, 2022a) and in
abstract constructive algebra (Mines et al. 1988). Actually, in Mines et al. (1988) Richman intro-
duced the more general notion of a family of objects of a category indexed by some set, but the
categorical component in the resulting mixture of Bishop’s set theory and category theory was not
explained in constructive terms.2

The type-theoretic interpretation of Bishop’s set theory into the theory of setoids (see especially
the work of Palmgren 2005, 2012a, 2012b, 2013, 2014, 2017; Palmgren and Wilander 2014) has
become nowadays the standard way to understand Bishop sets (as far as I know, this is a term due
to Palmgren). A setoid is a type A in a fixed universe U equipped with a term �: A→A→ U
that satisfies the properties of an equivalence relation. The identity type of Martin-Löf ’s inten-
sional type theory (MLTT) (seeMartin-Löf 1998), expresses, in a proof-relevant way, the existence
of the least reflexive relation on a type, a fact with no counterpart in Bishop’s set theory. As a con-
sequence, the free setoid on a type is definable (see Palmgren 2014, p. 90), and the presentation
axiom in setoids is provable. Moreover, in MLTT, the families of types over a type I are the type
I → U , which belongs to the successor universe U ′ of U . In Bishop’s set theory though, where
only one universe of sets is implicitly used, the set character of the totality of all families of sets
indexed by some set I is questionable from the predicative point of view (see our comment after
Definition 11).

2. On Bishop Set Theory (BST)
Bishop set theory (BST), elaborated in Petrakis (2020c), is an informal, constructive theory of
totalities and assignment routines that serves as a “completion” of Bishop’s theory of sets. Its first
aim is to fill in the “gaps,” or highlight the fundamental notions that were suppressed by Bishop in
his account of the set theory underlying BISH. Its second aim is to serve as an intermediate step
between Bishop’s theory of sets and an adequate and faithful formalisation of BISH in Feferman’s
sense (Feferman 1979). To assure faithfulness, we use concepts or principles that appear, explicitly
or implicitly, in BISH. Next we describe briefly the features of BST that “complete” Bishop’s theory
of sets in Petrakis (2020c).

1. Explicit use of a universe of sets. Bishop used a universe of sets only implicitly. For example,
he “roughly” describes in Bishop (1967, p. 72), a set-indexed family of sets as

. . . a rule which assigns to each t in a discrete set T a set λ(t).

Every other rule, or assignment routine mentioned by Bishop is from one given totality, the
domain of the rule, to some other totality, its codomain. The only way to make the rule of a
family of sets compatible with this pattern is to employ a totality of sets. In the unpublished
manuscript (Bishop 1968), Bishop explicitly used a universe in his formulation of dependent-
type theory as a formal system for BISH. Here we use the totalityV0 of sets, which is defined in an
open-ended way, and it contains the primitive set N and all defined sets. V0 itself is not a set, but

https://doi.org/10.1017/S0960129522000159 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000159


Mathematical Structures in Computer Science 3

a class. It is a notion instrumental to the definition of dependent operations and of a set-indexed
family of sets.

2. Clear distinction between sets and classes. A class is a totality defined through a membership
condition in which a quantification over V0 occurs. The powerset P(X) of a set X, the totality
P��(X) of complemented subsets of a set X, and the totality F (X, Y) of partial functions from a
set X to a set Y are characteristic examples of classes. A class is never used here as the domain of
an assignment routine, only as a codomain of an assignment routine.

3. Explicit use of dependent operations. The standard view, even among practicioners of Bishop-
style constructive mathematicians, is that dependency is not necessary to BISH. Dependent
functions though, do appear explicitly in Bishop’s definition of the intersection

⋂
t∈T λ(t) of a

family λ of subsets of some set X indexed by an inhabited set T (see Bishop 1967, p. 65, and
Bishop and Bridges 1985, p. 70). As we try to show in Petrakis (2021, 2019c) and (2020c), the
elaboration of dependency within BISH is only fruitful to it. Dependent functions are not only
necessary to the definition of products of families of sets indexed by an arbitrary set, but in many
areas of constructive mathematics. As already mentioned, dependency is formulated in Bishop’s
type theory (Bishop 1968). The somewhat “silent” role of dependency within Bishop’s set theory
is replaced by a central role within BST.

4. Elaboration of the theory of families of sets. With the use of the universe V0, of the notion
of a non-dependent assignment routine λ0 from an index-set I to V0, and of a certain dependent
operation λ1, we define explicitly in Definition 11 the notion of a family of sets indexed by I.
Although an I-family of sets is a certain function-like object, it can be understood also as an object
of a one level higher than that of a set. The corresponding notion of a “function” from an I-family
� to an I-familyM is that of a family-map. Operations between sets generate operations between
families of sets and their family-maps. If the index-set I is a directed set, the corresponding notion
of a family of sets over it is that of a direct family of sets. Families of subsets of a given set X over
an index-set I are special I-families that deserve an independent treatment. Families of equiva-
lence classes, families of partial functions, families of complemented subsets, and direct families
of subsets are some of the variations of set-indexed families of subsets that are studied in Petrakis
(2020c) with many applications in Bishop-style constructive mathematics.

Here we apply the general theory of families of sets, in order to reveal proof-relevance in BISH.
Classical mathematics is proof-irrelevant, as it is indifferent to objects that “witness” a relation
or a more complex formula. On the other extreme, Martin-Löf type theory is proof-relevant,
as every element of a type A is a proof of the “proposition” A. Bishop’s presentation of BISH
was on purpose closer to the proof-irrelevance of classical mathematics, although a form of
proof-relevance was evident in the use of several notions of moduli (of convergence, of uniform
continuity, of uniform differentiability, etc.). Focusing on membership and equality conditions
for sets given by appropriate existential formulas, we define certain families of proof-sets that
provide a BHK-interpretation within BST of formulas that correspond to the standard atomic
formulas of a first-order theory. With the machinery of the general theory of families of sets, this
BHK-interpretation within BST is extended to complex formulas. Consequently, we can associate
to many formulas φ of BISH a set Prf(φ) of “proofs” or witnesses of φ. Abstracting from several
examples of totalities in BISH, we define the notion of a set with a proof-relevant equality, and
of a Martin-Löf set, a special case of the former, the equality of which corresponds to the iden-
tity type of a type in intensional MLTT. Through the concepts and results of BST notions and
facts of MLTT and its extensions (either with the axiom of function extensionality (FunExt), or
with Voevodsky’s axiom of univalence (UA)) can be translated into BISH.While Bishop’s theory of
sets is standardly understood through its translation to MLTT (see e.g., Coquand et al. 2005), the
development of BST offers a partial translation in the converse direction.
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4 I. Petrakis

3. Outline of this Paper
(1) In Section 4, we present the fundamental notions of BST that are used in the rest of the

paper.
(2) In Section 6, we define within BST the notion of a set-indexed family of sets and its cor-

responding
∑

- and
∏
-sets. Moreover, we provide all new set-indexed families of sets

constructed from given ones that are used in the following sections.
(3) In Section 7, we define the notion of a set-relevant family of sets, a generalisation of a family

of sets over a set with a proof-relevant equality, introduced in Section 11.
(4) In Section 9, we provide a BHK-interpretation of a large part of BISHwithin BST, including

many motivating examples.
(5) In Section 10, we present interesting totalities in BISH equipped with a proof-relevant

equality.
(6) In Section 11, we introduce the notion of a Martin-Löf set in BST, an abstract version of a

set in BST with a proof-relevant equality, and we prove some first fundamental properties
of Martin-Löf sets.

(7) In Section 12, we translate results on contractible sets and subsingletons from Homotopy
Type Theory into BST.

4. Fundamental Notions of BST
The logical framework of BST is first-order intuitionistic logic with equality (see Schwichtenberg
and Wainer 2012, Chapter 1). This primitive equality between terms is denoted by s := t, and it is
understood as a definitional, or logical, equality. That is, we read the equality s := t as “the term s is
by definition equal to the term t.” If φ is an appropriate formula, for the standard axiom for equal-
ity [a := b& φ(a)]⇒ φ(b), we use the notation [a := b& φ(a)] :⇒ φ(b). The equivalence notation
:⇔ is understood in the same way. The set (N=N, 	=N ) of natural numbers, where its canonical
equality is given by m=N n :⇔m := n, and its canonical inequality by m 	=N n :⇔ ¬(m=N n), is
primitive. The standard Peano-axioms are associated to N.

A global operation (·, ·) of pairing is also considered primitive. That is, if s, t are terms, their
pair (s, t) is a new term. The corresponding equality axiom is (s, t) := (s′, t′) :⇔ s := s′ & t := t′.
The n-tuples of given terms, for every n larger than 2, are definable. The global projection routines
pr1(s, t) := s and pr2(s, t) := t are also considered primitive. The corresponding global projection
routines for any n-tuples are definable.

An undefined notion of mathematical construction, or algorithm, or of finite routine is consid-
ered as primitive. The main primitive objects of BST are totalities and assignment routines. Sets
are special totalities and functions are special assignment routines, where an assignment routine is
a a special finite routine. All other equalities in BST are equalities on totalities defined though an
equality condition. A predicate on a set X is a bounded formula P(x) with x a free variable ranging
over X, where a formula is bounded, if every quantifier occurring in it is over a given set.

Definition 1. (i) A primitive setA is a totality with a given membership x ∈A, and a given equality
x=A y, that satisfies axiomatically the properties of an equivalence relation. The set N of natural
numbers is the only primitive set considered here.
(ii) A (noninductive)defined totality X is defined by a membership condition x ∈ X :⇔ MX(x),
where MX is a formula with x as a free variable.
(iii) There is a special “open-ended” defined totality V0, which is called the universe of (predicative)
sets. V0 is not defined through a membership-condition, but in an open-ended way. When we say
that a defined totality X is considered to be a set we “introduce” X as an element of V0. We do not
add the corresponding induction, or elimination principle, as we want to leave open the possibility
of adding new sets in V0.

https://doi.org/10.1017/S0960129522000159 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000159


Mathematical Structures in Computer Science 5

(iv) A defined preset X, or simply, a preset, is a defined totality X the membership condition MX of
which expresses a construction. No quantification over V0 occurs in MX.
(v) A defined totality X with equality, or simply, a totality X with equality is a defined totality X
equipped with an equality condition x=X y :⇔ EX(x, y), where EX(x, y) is a formula with free vari-
ables x and y that satisfies the conditions of an equivalence relation.
(vi) A defined set is a preset with a given equality.
(vii) A set is either a primitive set or a defined set.
(viii)A totality is a class, if it is the universeV0, or if quantification overV0 occurs in its membership
condition.

Definition 2. A bounded formula on a set X is called an extensional property on X, if

∀x,y∈X
(
[x=X y & P(x)]⇒ P(y)

)
.

The totality XP generated by P(x) is defined by x ∈ XP :⇔ x ∈ X & P(x),

x ∈ XP :⇔ x ∈ X & P(x),

and the equality of XP is inherited from the equality of X. We also write XP := {x ∈ X | P(x)}, XP is
considered to be a set, and it is called the extensional subset of X generated by P.

Using the properties of an equivalence relation, it is immediate to show that an equality con-
dition EX(x, y) on a totality X is an extensional property on the product X × X, i.e., [(x, y)=X×Y
(x′, y′) & x=X y]⇒ x′ =X y′. Let the following extensional subsets of N:

111 := {x ∈N | x=N 0} := {0},
222 := {x ∈N | x=N 0 ∨ x=N 1} := {0, 1}.

Since n=N m :⇔ n :=m, the property P(x) :⇔ x=N 0 ∨ x=N 1 is extensional.

Definition 3. If (X,=X ) is a set, its diagonal is the extensional subset of X × X

D(X,=X ) := {(x, y) ∈ X × X | x=X y}.
If =X is clear from the context, we just write D(X).

Definition 4. Let X, Y be totalities. A nondependent assignment routine f from X to Y, in symbols
f : X� Y, is a finite routine that assigns an element y of Y to each given element x of X. In this case,
we write f (x) := y. If g : X� Y, let

f := g :⇔ ∀x∈X
(
f (x) := g(x)

)
.

If f := g, we say that f and g are definitionally equal. If (X,=X ) and (Y ,=Y ) are sets, an operation
from X to Y is a nondependent assignment routine from X to Y, while a function from X to Y, in
symbols f : X → Y, is an operation from X to Y that respects equality, i.e.,

∀x,x′∈X
(
x=X x′ ⇒ f (x)=Y f (x′)

)
.

If f : X� Y is a function from X to Y, we say that f is a function, without mentioning the expression
“from X to Y.” A function f : X → Y is an embedding, in symbols f : X ↪→ Y, if

∀x,x′∈X
(
f (x)=Y f (x′)⇒ x=X x′).

Let X, Y be sets. The totality O(X, Y) of operations from X to Y is equipped with the following
canonical equality:

f =O(X,Y) g :⇔ ∀x∈X
(
f (x)=Y f (x)

)
.
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6 I. Petrakis

The totalityO(X, Y) is considered to be a set. The set F(X, Y) of functions from X to Y is defined by
separation onO(X, Y) through the extensional property P(f ) :⇔ ∀x,x′∈X

(
x=X x′ ⇒ f (x)=Y f (x′)

)
.

The equality =F(X,Y) is inherited from =O(X,Y).

The canonical equality on V0 is defined by

X =V0 Y :⇔ ∃f∈F(X,Y)∃g∈F(Y ,X)
(
g ◦ f = idX & f ◦ g = idY

)
.

In this case, we write (f , g) : X =V0 Y . If X, Y ∈V0 such that X =V0 Y , we define the set

PrfEql0(X, Y) :=
{
(f , g) ∈ F(X, Y)× F(Y , X) | (f , g) : X =V0 Y

}
of all objects that “witness,” or “realise,” or prove the equality X =V0 Y . The equality of
PrfEql0(X, Y) is the canonical one, i.e., (f , g)=PrfEql0(X,Y) (f

′, g′) :⇔ f =F(X,Y) f ′ & g =F(Y ,X)
g′. Notice that, in general, not all elements of PrfEql0(X, Y) are equal. As in The
Univalent Foundations Program (2013), Example 3.1.9, if X := Y := 222 := {0, 1}, then (id222, id222) ∈
PrfEql0(222, 222), and if sw222 : 222→ 222 maps 0 to 1 and 1 to 0, then (sw222, sw222) ∈ PrfEql0(222, 222), while
sw222 	= id222.

It is expected that the proof-terms in PrfEql0(X, Y) are compatible with the properties of
the equivalence relation X =V0 Y . This means that we can define a distinguished proof-term
refl(X) ∈ PrfEql0(X, X) that proves the reflexivity of X =V0 Y , an operation −1, such that if
(f , g) : X =V0 Y , then (f , g)−1 : Y =V0 X, and an operation of “composition” ∗ of proof-terms, such
that if (f , g) : X =V0 Y and (h, k) : Y =V0 Z, then (f , g) ∗ (h, k) : X =V0 Z. Let

refl(X) := (
idX , idX

)
& (f , g)−1 := (g, f ) & (f , g) ∗ (h, k) := (h ◦ f , g ◦ k).

It is immediate to see that these operations satisfy the groupoid laws:
(i) refl(X) ∗ (f , g)=PrfEql0(X,Y) (f , g) and (f , g) ∗ refl(Y)=PrfEql0(X,Y) (f , g).
(ii) (f , g) ∗ (f , g)−1 =PrfEql0(X,X) refl(X) and (f , g)−1 ∗ (f , g)=PrfEql0(Y ,Y) refl(Y).
(iii)

(
(f , g) ∗ (h, k)

) ∗ (s, t)=PrfEql0(X,W) (f , g) ∗
(
(h, k) ∗ (s, t)

)
.

Moreover, the following compatibility condition is satisfied:
(iv) If (f , g), (f ′, g′) ∈ PrfEql0(X, Y) and (h, k), (h′, k′) ∈ PrfEql0(Y , Z), then if
(f , g)=PrfEql0(X,Y) (f

′, g′) and (h, k)=PrfEql0(Y ,Z) (h
′, k′), then (f , g) ∗ (h, k)=PrfEql0(X,Z)

(f ′, g′) ∗ (h′, k′).

Definition 5. Let (X,=X ) be a set.
(i) X is inhabited, if ∃x∈X

(
x=X x

)
.

(ii) X is a singleton, or contractible, or a (− 2)-set, if ∃x0∈X∀x∈X
(
x0 =X x

)
. In this case, x0 is called a

centre of contraction for X.
(iii) X is a subsingleton, or a mere proposition, or a (− 1)-set, if ∀x,y∈X

(
x=X y

)
.

(iv) The truncation of (X,=X ) is the set (X, ||=X ||), where

x ||=X || y :⇔ x=X x & y=X y.

We use the symbol ||X|| to denote that the set X is equipped with the truncated equality ||=X ||.

Clearly, x ||=X || y, for every x, y ∈ X, and (X, ||=X ||) is a subsingleton.

Definition 6. A function f : X → Y is called surjective, if ∀y∈Y∃x∈X
(
f (x)=Y y

)
. A function g : Y →

X is called a modulus of surjectivity for f , if f ◦ g =F(Y ,Y) idY . If g is a modulus of surjectivity for f ,
we also say that f is a retraction and Y is a retract of X. If y ∈ Y, the fiber fibf (y) of f at y is the
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following extensional subset of X

fibf (y) := {x ∈ X | f (x)=Y y}.
A function f : X → Y is contractible, if fibf (y) is contractible, for every y ∈ Y.

Proposition 7. Let X, Y be sets, f ∈ F(X, Y) and g ∈ F(Y , X). If (f , g) : X =V0 Y, then the set
fibf (y) is contractible, for every y ∈ Y.

Proof. If y ∈ Y , then g(y) ∈ fibf (y), as f (g(y))=Y idY (y) := y. If x ∈ X, x ∈ fibf (y) :⇔ f (x)=Y y,
and x=X g(f (x))=X g(y), i.e., g(y) is a center of contraction for fibf (y).

Definition 8. Let I be a set and λ0 : I�V0 a nondependent assignment routine from I to V0. A
dependent operation� over λ0, in symbols

� :
�

i∈I
λ0(i),

is an assignment routine that assigns to each element i in I an element�(i) in the set λ0(i). If i ∈ I, we
call �(i) the i-component of �, and we also use the notation �i :=�(i). An assignment routine is
either a nondependent assignment routine or a dependent operation over some nondependent assign-
ment routine from a set to the universe. If� : �

i∈I λ0(i),� :=� :⇔ ∀i∈I
(
�i :=�i

)
. If� :=�, we

say that � and � are definitionally equal. Let A(I, λ0) be the totality of dependent operations over
λ0, equipped with the canonical equality �=A(I,λ0) � :⇔ ∀i∈I

(
�i =λ0(i) �i

)
. The totality A(I, λ0)

is considered to be a set.

If f : X → Y , let fibf : Y�V0 be defined by y �→ fibf (y), for every y ∈ Y . If f is contractible,
then by Definition 6 every fiber fibf (y) of f is contractible. Amodulus of centers of contraction for
a contractible function f is a dependent operation centref : �

y∈Y fibf (y), such that centrefy :=
centref (y) is a center of contraction for f .

5. Subsets
Definition 9. Let X be a set. A subset of X is a pair (A, iXA), where A is a set and ıXA : A ↪→ X is an
embedding. If (A, iXA) and (B, iXB ) are subsets of X, then A is a subset of B, in symbols (A, iXA)⊆ (B, iXB ),
or simpler A⊆ B, if there is f : A→ B such that the following diagram commutes

A B

X.

f

iXA iXB

In this case we use the notation f : A⊆ B. Usually we write A instead of (A, iXA). The totality of the
subsets of X is the powerset P(X) of X, and it is equipped with the equality

(A, iXA)=P(X) (B, iXB ) :⇔A⊆ B & B⊆A.
If f : A⊆ B and g : B⊆A, we write (f , g) : A=P(X) B.

Since the membership condition forP(X) requires quantification overV0, the totalityP(X) is
a class. Clearly, (X, idX)⊆ X. If XP is an extensional subset of X (see Definition 2), then (XP, iXP )⊆
X, where iXP : XP� X is defined by iXP (x) := x, for every x ∈ XP.
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8 I. Petrakis

Proposition 10. If A, B⊆ X, and f , h :A⊆ B, then f is an embedding, and f =F(A,B) h

A B

X.

f

h
iXA iXB

Proof. If a, a′ ∈A such that f (a)=B f (a′), then iXB (f (a))=X iXB (f (a′))⇔ iXA(a)=X iXA(a′), which
implies a=A a′. Moreover, if iXB (f (a))=X iXA(a)=X iXB (h(a)), then f (a)= h(a).

The “internal” equality of subsets implies their “external” equality as sets, i.e., (f , g) :A=P(X)
B⇒ (f , g) :A=V0 B. If a ∈A, then iXA(g(f (a)))=X iXB (f (a))= iXA(a), hence g(f (a))=A a, and then
g ◦ f =F(A,A) idA. Similarly, we get f ◦ g =F(B,B) idB. Let the set

PrfEql0(A, B) :=
{
(f , g) ∈ F(A, B)× F(B,A) | f : A⊆ B & g : B⊆A

}
,

equipped with the canonical equality of pairs as in the case of PrfEql0(X, Y). Because of
Proposition 10, the set PrfEql0(A, B) is a subsingleton, i.e.,

(f , g) : A=P(X) B & (f ′, g′) : A=P(X) B⇒ (f , g)= (f ′, g′).

If f ∈ F(A, B), g ∈ F(B,A), h ∈ F(B, C), and k ∈ F(C, B), let refl(A) := (
idA, idA

)
and (f , g)−1 :=

(g, f ), and (f , g) ∗ (h, k) := (h ◦ f , g ◦ k), and the groupoid properties (i)–(iv) for PrfEql0(A, B)
hold by the equality of all their elements.

6. Set-Indexed Families of Sets
Roughly speaking, a family of sets indexed by some set I is an assignment routine λ0 : I�V0 that
behaves like a function i.e., if i=I j, then λ0(i)=V0 λ0(j). Next follows an exact formulation of this
description that reveals the witnesses of the equality λ0(i)=V0 λ0(j).

Definition 11. If I is a set, a family of sets indexed by I, or an I-family of sets, is a pair� := (λ0, λ1),
where λ0 : I�V0, and λ1, a modulus of function-likeness for λ0, is given by

λ1 :
�

(i,j)∈D(I)
F
(
λ0(i), λ0(j)

)
, λ1(i, j) := λij, (i, j) ∈D(I),

such that the transport maps λij of� satisfy the following conditions:
(a) For every i ∈ I, we have that λii := idλ0(i).
(b) If i=I j and j=I k, the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λjk

λij λik
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I is the index-set of the family �. If X is a set, the constant I-family of sets X is the pair CX :=
(λX0 , λ

X
1 ), where λ0(i) := X, for every i ∈ I, and λ1(i, j) := idX, for every (i, j) ∈D(I). The pair�222 :=

(λ2220, λ
222
1), where λ

222
0 : 222�V0 with λ2220(0) := X, λ2220(1) := Y, and λ2221(0, 0) := idX and λ2221(1, 1) := idY ,

is the 222-family of X and Y. The nnn-family �nnn of the sets X1, . . . Xn, where n≥ 1, and the N-family
�N := (λN0 , λ

N
1 ) of the sets (Xn)n∈N are defined similarly. Let � := (λ0, λ1) and M := (μ0,μ1) be

I-families of sets. A family-map from � to M, in symbols � : �⇒M is a dependent operation
� : �

i∈I F
(
λ0(i),μ0(i)

)
such that for every (i, j) ∈D(I) the following diagram commutes

μ0(i) μ0(j).

λ0(j)λ0(i)

μij

λij

�i �j

Let MapI(�,M) be the totality of family-maps from� to M, which is equipped with the equality
� =MapI(�,M) � :⇔ ∀i∈I

(
�i =F(λ0(i),μ0(i)) �i

)
.

The composition family-map and the identity family-map Id� are defined in the expected way. Let
Fam(I) be the totality of I-families, equipped with the canonical equality

�=Fam(I) M :⇔ ∃�∈MapI(�,M)∃�∈MapI(M,�)
(
(�,�) : �=Fam(I) M

)
,

(�,�) : �=Fam(I) M :⇔ (
� ◦�= idM & � ◦�= id�

)
.

The dependent operation λ1 in the definition of an I-family of sets should have been written as

λ1 :
�

z∈D(I)
F
(
λ0(pr1(z)), λ0(pr2(z))

)
,

but, for simplicity, we avoid the use of the primitive projections pr1, pr2. Condition (a) of
Definition 11 could have been written as λii =F(λ0(i),λ0(i)) idλ0(i). If i=I j, then by conditions
(b) and (a) of Definition 11 we get idλ0(i) := λii = λji ◦ λij and idλ0(j) := λjj = λij ◦ λji , i.e.,
(λij, λji) : λ0(i)=V0 λ0(j). In this sense, λ1 is a modulus of function-likeness for λ0. It is natural
to accept the totality Map(�,M) as a set. If Fam(I) was a set though, the constant I-family with
value Fam(I) would be defined though a totality in which it belongs to. From a predicative point of
view, this cannot be accepted. The membership condition of the totality Fam(I) though does not
depend on the universe V0, therefore it is also natural not to consider Fam(I) to be a class. Hence,
Fam(I) is a totality “between” a (predicative) set and a class. For this reason, we say that Fam(I) is
an impredicative set.

Definition 12. Let� := (λ0, λ1),M := (μ0,μ1) be I-families of sets.
(i) The product family of� and M is the pair�×M := (λ0 ×μ0, λ1 ×μ1), where

(λ0 ×μ0)(i) := λ0(i)×μ0(i); i ∈ I,(
λ1 ×μ1

)
ij : λ0(i)×μ0(i)→ λ0(j)×μ0(j); (i, j) ∈D(I),(

λ1 ×μ1
)
ij
(
x, y

) := (
λij(x),μij(y)

)
; x ∈ λ0(i) & y ∈μ0(i).
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(ii) The function space family from� to M is the pair F(�,M) := (
F(λ0,μ0), F(λ1,μ1)

)
where[

F(λ0,μ0)
]
(i) := F

(
λ0(i),μ0(i)

)
; i ∈ I,

F(λ1,μ1) :
�

(i,j)∈D(I)
F

(
F
(
λ0(i),μ0(i)

)
, F

(
λ0(j),μ0(j)

))

F(λ1,μ1)ij := F(λ1,μ1)(i, j) : F
(
λ0(i),μ0(i)

) → F
(
λ0(j),μ0(j)

)
; (i, j) ∈D(I),

F(λ1,μ1)ij(f ) :=μij ◦ f ◦ λji

λ0(j) μ0(j).

μ0(i)λ0(i)

F(λ1,μ1)ij(f )

f

λji μij

Definition 13. Let� := (λ0, λ1) be an I-family of sets. The exterior union, or disjoint union, or the∑
-set

∑
i∈I λ0(i) of�, and its canonical equality are defined by

w ∈
∑
i∈I
λ0(i) :⇔ ∃i∈I∃x∈λ0(i)

(
w := (i, x)

)
,

(i, x)=∑
i∈I λ0(i) (j, y) :⇔ i=I j & λij(x)=λ0(j) y.

The
∑

-set of the 222-family�222 of the sets X and Y is the coproduct of X and Y, and we write

X + Y :=
∑
i∈222

λ2220(i).

Let � := (λ0, λ1),M := (μ0,μ1) be I-families of sets. The coproduct family of � and M is the pair
�+M := (λ0 +μ0, λ1 +μ1), where (λ0 +μ0)(i) := λ0(i)+μ0(i), for every i ∈ I, and the map(
λ1 +μ1

)
ij : λ0(i)+μ0(i)→ λ0(j)+μ0(j) is defined by

(
λ1 +μ1

)
ij(w) :=

{(
0, λij(x)

)
, w := (0, x)(

1,μij(y)
)
, w := (1, y)

; w ∈ λ0(i)+μ0(i).

Definition 14. Let � := (λ0, λ1) be an I-family of sets. The first projection on
∑

i∈I λ0(i) is the
operation pr�1 : ∑

i∈I λ0(i)� I, defined by pr�1 (i, x) := pr1(i, x) := i, for every (i, x) ∈ ∑
i∈I λ0(i).

We write pr1, if� is clearly understood from the context.

By the definition of the canonical equality on
∑

i∈I λ0(i), we get that pr�1 is a function.

Definition 15. Let � := (λ0, λ1) be an I-family of sets. The
∑

-indexing of � is the pair 	� :=
(σ�0 , σ�1 ), where σ�0 : ∑

i∈I λ0(i)�V0 is defined by σ�0 (i, x) := λ0(i), for every (i, x) ∈ ∑
i∈I λ0(i),

and σ�1
(
(i, x), (j, y)

) := λij, for every
(
(i, x), (j, y)

) ∈D
( ∑

i∈I λ0(i)
)
.

Clearly,	� is a family of sets over
∑

i∈I λ0(i).
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Definition 16. Let � := (λ0, λ1) be an I-family of sets. The second projection on
∑

i∈I λ0(i) is
the dependent operation pr�2 : �

(i,x)∈∑
i∈I λ0(i) λ0(i), defined by pr�2 (i, x) := pr2(i, x) := x, for every

(i, x) ∈ ∑
i∈I λ0(i). We write pr2, when the family of sets� is clearly understood from the context.

Definition 17. Let � := (λ0, λ1) be an I-family of sets. The totality
∏

i∈I λ0(i) of dependent
functions over�, or the

∏
-set of�, is defined by

� ∈
∏
i∈I
λ0(i) :⇔� ∈A(I, λ0) & ∀(i,j)∈D(I)

(
�j =λ0(j) λij(�i)

)
,

and it is equipped with the canonical equality and the canonical inequality of the set A(I, λ0). If X
is a set and�X is the constant I-family X (see Definition 11), we use the notation

XI :=
∏
i∈I

X.

Remark 18. If � := (λ0, λ1) is an I-family of sets and 	� := (σ�0 , σ�1 ) is the
∑

-indexing of �,
then pr�2 is a dependent function over	�.

Proof. By Definition 16 the second projection pr�2 of � is the dependent assignment
pr�2 : �

(i,x)∈∑
i∈I λ0(i) λ0(i), such that pr�2 (i, x) := x, for every (i, x) ∈ ∑

i∈I λ0(i). It suffices to
show that if (i, x)=∑

i∈I λ0(i) (j, y) :⇔ i=I j & λij(x)=λ0(j) y, then

pr�2 (j, y) := y=λ0(j) λij(x) := σ�1
(
(i, x), (j, y)

)(
pr�2 (i, x)

)
.

Next we define new families of sets generated by a given family of sets indexed by the product
X × Y of X and Y .

Definition 19. Let X, Y be sets, and let R := (ρ0, ρ1) be an (X × Y)-family of sets.
(i) If x ∈ X, the x-component of R is the pair Rx := (ρx0 , ρ

x
1 ), where the assignment routines ρx0 : Y�

V0 and ρx1 : �
(y,y′)∈D(Y) F

(
ρx0 (y), ρ

x
0 (y′)

)
are defined by ρx0 (y) := ρ0(x, y), for every y ∈ Y, and

ρx1 (y, y′) := ρxyy′ := ρ(x,y)(x,y′), for every (y, y′) ∈D(Y).

(ii) If y ∈ Y, the y-component of R is the pair Ry := (ρy0, ρ
y
1), where the assignment routines ρy0 : Y�

V0 and ρy1 : �
(x,x′)∈D(X) F

(
ρ
y
0(x), ρ

y
0(x′)

)
are defined by ρy0(x) := ρ0(x, y), for every x ∈ X, and

ρ
y
1(x, x′) := ρ

y
xx′ := ρ(x,y)(x′,y), for every (x, x′) ∈D(X).

(iii) Let
∑1 R := (

∑1
ρ0,

∑1
ρ1), where

∑1
ρ0 : X�V0 and

1∑
ρ1 :

�

(x,x′)∈D(X)
F

(( 1∑
ρ0

)
(x),

( 1∑
ρ0

)
(x′)

)
are defined by

( 1∑
ρ0

)
(x) :=

∑
y∈Y

ρx0 (y) :=
∑
y∈Y

ρ0(x, y); x ∈ X,

( 1∑
ρ1

)
(x, x′) :=

( 1∑
ρ1

)
xx′

:
∑
y∈Y

ρ0(x, y)→
∑
y∈Y

ρ0(x′, y); (x, x′) ∈D(X),

( 1∑
ρ1

)
xx′
(y, u) := (

y, ρ(x,y)(x′,y)(u)
)
; (y, u) ∈

∑
y∈Y

ρ0(x, y).
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(iv) Let
∑2 R := (

∑2
ρ0,

∑2
ρ1), where

∑2
ρ0 : Y�V0 and

2∑
ρ1 :

�

(y,y′)∈D(X)
F

(( 2∑
ρ0

)
(y),

( 2∑
ρ0

)
(y′)

)
are defined by

( 2∑
ρ0

)
(y) :=

∑
x∈X

ρ
y
0(x) :=

∑
x∈X

ρ0(x, y); y ∈ Y ,

( 2∑
ρ1

)
(y, y′) :=

( 2∑
ρ1

)
yy′

:
∑
x∈X

ρ0(x, y)→
∑
x∈X

ρ0(x, y′); (y, y′) ∈D(Y),

( 2∑
ρ1

)
yy′
(x,w) := (

x, ρ(x,y)(x,y′)(w)
)
; (x,w) ∈

∑
x∈X

ρ0(x, y).

(v) Let
∏1 R := (

∏1
ρ0,

∏1
ρ1), where

∏1
ρ0 : X�V0 and

1∏
ρ1 :

�

(x,x′)∈D(X)
F

(( 1∏
ρ0

)
(x),

( 1∏
ρ0

)
(x′)

)
are defined by

( 1∏
ρ0

)
(x) :=

∏
y∈Y

ρx0 (y) :=
∏
y∈Y

ρ0(x, y); x ∈ X,

( 1∏
ρ1

)
(x, x′) :=

( 1∏
ρ1

)
xx′

:
∏
y∈Y

ρ0(x, y)→
∏
y∈Y

ρ0(x′, y); (x, x′) ∈D(X),

[( 1∏
ρ1

)
xx′
(�)

]
y
:= ρ(x,y)(x′,y)(�y)

)
; � ∈

∏
y∈Y

ρ0(x, y), y ∈ Y .

(vi) Let
∏2 R := (

∏2
ρ0,

∏2
ρ1), where

∏2
ρ0 : Y�V0 and

2∏
ρ1 :

�

(y,y′)∈D(X)
F

(( 2∏
ρ0

)
(y),

( 2∏
ρ0

)
(y′)

)
are defined by

( 2∏
ρ0

)
(y) :=

∏
x∈X

ρ
y
0(x) :=

∏
x∈X

ρ0(x, y); y ∈ Y ,

( 2∏
ρ1

)
(y, y′) :=

( 2∏
ρ1

)
yy′

:
∏
x∈X

ρ0(x, y)→
∏
x∈X

ρ0(x, y′); (y, y′) ∈D(Y),

[( 2∏
ρ1

)
yy′
(�)

]
x
:= ρ(x,y)(x,y′)(�x)

)
; � ∈

∏
x∈X

ρ0(x, y), x ∈ X.

It is easy to show that Ry,
∑1 R,

∏1 R ∈ Fam(X) and Rx,
∑2 R,

∏2 R ∈ Fam(Y).
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7. Set-Relevant Families of Sets
In general, we may want to have more than one transport maps from λ0(i) to λ0(j), if i=I j. In this
case, to each (i, j) ∈D(I) we associate a set of transport maps.

Definition 20. If I is a set, a set-relevant family of sets indexed by I, is a triplet �∗ := (
λ0, ελ0 , λ2),

where λ0 : I�V0, ελ0 :D(I)�V0, and

λ2 :
�

(i,j)∈D(I)

�

p∈ελ0 (i,j)
F
(
λ0(i), λ0(j)

)
, λ2

(
(i, j), p

) := λ
p
ij, (i, j) ∈D(I), p ∈ ελ0 (i, j),

such that the following conditions hold:
(i) For every i ∈ I there is p ∈ ελ0 (i, i) such that λpii =F(λ0(i),λ0(i)) idλ0(i).
(ii) For every (i, j) ∈D(I) and every p ∈ ελ0 (i, j) there is some q ∈ ελ0 (j, i) such that the following left
diagram commutes

λ0(j) λ0(i)

λ0(i)

λ0(j)

λ0(i)

λ0(k).
λ
q
ji

λ
p
ij idλ0(i) λ

p
ij λrik

λ
q
jk

(iii) If i=I j=I k, then for every p ∈ ελ0 (i, j) and every q ∈ ελ0 (j, k) there is r ∈ ελ0 (i, k) such that the
above right diagram commutes.

We call�∗ function-like, if ∀(i,j)∈D(I)∀p,p′∈ελ0 (i,j)
(
p=ελ0 (i,j)

p′ ⇒ λ
p
ij =F(λ0(i),λ0(j)) λ

p′
ij
)
.

It is immediate to show that if � := (λ0, λ1) ∈ Fam(I), then � generates a set-relevant family
over I, where ελ0 (i, j) := 111, and λ2

(
(i, j), 0)

) := λij, for every (i, j) ∈D(I).

Definition 21. Let �∗ := (λ0, ελ0 , λ2) and M := (μ0, εμ0 ,μ2) be set-relevant families of sets over
I. A covariant set-relevant family-map from �∗ to M∗, in symbols � : �∗ ⇒M∗, is a dependent
operation � : �

i∈I F
(
λ0(i),μ0(i)

)
such that for every (i, j) ∈D(I) and for every p ∈ ελ0 (i, j) there is

q ∈ εμ0 (i, j) such that the following diagram commutes

μ0(i) μ0(j).

λ0(j)λ0(i)

μ
q
ij

λ
p
ij

�i �j

A contravariant set-relevant family-map is defined by the property: for every q ∈ εμ0 (i, j), there is
p ∈ ελ0 (i, j) such that the above diagram commutes. Let MapI(�∗,M∗) be the totality of covari-
ant set-relevant family-maps from �∗ to M∗, which is equipped with the pointwise equality. If
� :M∗ ⇒N∗, the composition set-relevant family-map� ◦� : �∗ ⇒N∗ is defined, for every i ∈ I,
by (� ◦�)i :=�i ◦�i. Let Fam∗(I) be the totality of set-relevant I-families, equipped with the
obvious canonical equality.
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Definition 22. Let�∗ := (
λ0, ελ0 , λ2

) ∈ Fam∗(I). The exterior union
∑∗

i∈I λ0(i) of�∗ is the totality∑
i∈I λ0(i), equipped with the following equality

(i, x)=∑∗
i∈I λ0(i) (j, y) :⇔ i=I j & ∃p∈ελ0 (i,j)

(
λ
p
ij(x)=λ0(j) y

)
.

The totality
∏∗

i∈I λ0(i) of dependent functions over�∗ is defined by

� ∈
∗∏
i∈I
λ0(i) :⇔� ∈A(I, λ0) & ∀(i,j)∈D(I)∀p∈ελ0 (i,j)

(
�j =λ0(j) λ

p
ij(�i)

)
,

and it is equipped with the pointwise equality.

A motivation for the definitions of
∑∗

i∈I λ0(i) and
∏∗

i∈I λ0(i) is provided, respectively, by
Theorem 2.7.2 of book-HoTT (The Univalent Foundations Program 2013), where if w,w′ ∈∑

i : I P(i), then

w=w′ �
∑

p : pr1(w)=pr1(w′)
p∗(pr2(w))= pr2(w′),

and by Lemma 2.3.4 of book-HoTT, where if� : ∏
i∈I P(i), there is a term

apd� :
∏
p : i=j

(
p∗(�i)=�j

)
.

8. Set-Indexed Families of Subsets
Roughly speaking, a family of subsets of a set X indexed by some set I is an assignment routine
λ0 : I�P(X) that behaves like a function, i.e., if i=I j, then λ0(i)=P(X) λ0(j). The following
definition is a formulation of this rough description that reveals the witnesses of the equal-
ity λ0(i)=P(X) λ0(j). This is done “internally,” through the embeddings of the subsets into X.
The equality λ0(i)=V0 λ0(j), which in the previous chapter is defined “externally” through the
transport maps, follows, and a family of subsets is also a family of sets.

Definition 23. Let X and I be sets. A family of subsets of X indexed by I, or an I-family of subsets
of X, is a triplet�(X) := (λ0, E X , λ1), where λ0 : I�V0,

E X :
�

i∈I
F
(
λ0(i), X

)
, E X(i) := E X

i ; i ∈ I,

λ1 :
�

(i,j)∈D(I)
F
(
λ0(i), λ0(j)

)
, λ1(i, j) := λij; (i, j) ∈D(I),

such that the following conditions hold:
(a) For every i ∈ I, the function E X

i : λ0(i)→ X is an embedding.
(b) For every i ∈ I, we have that λii := idλ0(i).
(c) For every (i, j) ∈D(I), we have that E X

i = E X
j ◦ λij and E X

j = E X
i ◦ λji
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λ0(i) λ0(j)

X.

λij

λji
E X
i E X

j

E X is a modulus of embeddings for λ0, and λ1 a modulus of transport maps for λ0. Let� := (λ0, λ1)
be the I-family of sets that corresponds to�(X). If (A, iA) ∈ P(X), the constant I-family of subsets A
is the pair CA(X) := (λA0 , E

X,A, λA1 ), where λ0(i) :=A, E X,A
i := iA, and λ1(i, j) := idA, for every i ∈ I

and (i, j) ∈D(I) (see the left diagram in Definition 25).

Proposition 24. Let X and I be sets, λ0 : I�V0, E X a modulus of embeddings for λ0, and λ1 a
modulus of transport maps for λ0. The following are equivalent.
(i)�(X) := (λ0, E X , λ1) is an I-family of subsets of X.
(ii)� := (λ0, λ1) ∈ Fam(I) and E X : �⇒ CX, where CX is the constant I-family X.

Proof. (i)⇒(ii) First, we show that � ∈ Fam(I). If i=I j=I k, then E X
k ◦ (λjk ◦ λij)= (E X

k ◦ λjk) ◦
λij = E X

j ◦ λij = E X
i and E X

k ◦ λik = E X
i

λ0(i) λ0(j) λ0(k)

X,

λik

λij λjk

E X
i E X

kE X
j

hence E X
k ◦ (λjk ◦ λij)= E X

k ◦ λik, and since E X
k is an embedding, we get λjk ◦ λij = λik. If

E X : �⇒ CX , the following squares are commutative

X X

λ0(j)λ0(i)

X

λ0(j)

X

λ0(i)

idX

λij

E X
i E X

j

idX

λji

E X
j E X

i

X

λ0(i) λ0(j) λ0(j)

X

λ0(i)

E X
i E X

j

λij

E X
iE X

j

λji

if and only if the above triangles are commutative. The implication (ii)⇒(i) follows immediately
from the equivalence between the commutativity of the above pairs of diagrams.
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Definition 25. Let X be a set and (A, iXA), (B, iXB )⊆ X. The triplet �222(X) := (λ2220, E
X , λ2221), where

�222 := λ2220, λ
222
1 is the 222-family of A, B, E X

0 := iXA, and E X
1 := iXB

X

A A B

X

B

iXA iXA

idA

iXBiXB

idB

is the 222-family of subsets A and B of X. The n-family�n(X) of the subsets (A1, i1), . . . , (An, in) of X,
and the N-family of subsets (An, in)n∈N of X are defined similarly.

Definition 26. If �(X) := (λ0, E X , λ1),M(X) := (μ0,Z X ,μ1) and N(X) := (ν0,H X , ν1) are I-
families of subsets of X, a family of subsets-map � : �(X)⇒M(X) from �(X) to M(X) is a
dependent operation � : �i∈I F

(
λ0(i),μ0(i)

)
, where �(i) :=�i, for every i ∈ I, such that, for every

i ∈ I, the following diagram commutes

X.

λ0(i) μ0(i)

E X
i Z X

i

�i

The totality MapI(�(X),M(X)) of family of subsets-maps from �(X) to M(X) is equipped with the
pointwise equality. If� : �(X)⇒M(X) and� : M(X)⇒N(X), the composition family of subsets-
map � ◦� : �(X)⇒N(X) is defined by (� ◦�)(i) :=�i ◦�i,

λ0(i) μ0(i) ν0(i)

X,

Ei Zi Hi

�i �i

(� ◦�)i

for every i ∈ I. The identity family of subsets-map Id�(X) : �(X)⇒�(X) is defined, as expected.

Definition 27. If �(X),M(X) ∈ Fam(I, X), let �(X)≤M(X), if there is a family of subsets-map
� : �(X)⇒M(X). In this case, we also write � : �(X)≤M(X). Let � ∈ MapI(�(X),M(X)),� ∈
MapI(M(X),�(X)),�′ ∈ MapI(M(X),N(X)),� ′ ∈ MapI(N(X),M(X)). Then we define

PrfEql0(�(X),M(X)) := MapI(�(X),M(X))× MapI(M(X),�(X))

i.e., (�,�) : �(X)=Fam(I,X) M(X) :⇔� : �(X)≤M(X) & � : M(X)≤�(X). Moreover, let
refl(�(X)) := (

Id�(X), Id�(X)
)
, (�,�)−1 := (� ,�), and (�,�) ∗ (�′,� ′) := (�′ ◦�,� ◦� ′).

We see no obvious reason, like the one for Fam(I), not to consider Fam(I, X) to be a set. In
the case of Fam(I), the constant I-family Fam(I) would be in Fam(I), while the constant I-family
Fam(I, X) is not clear how could be seen as a family of subsets of X. If ν0(i) := Fam(I, X), for every
i ∈ I, we need to define a modulus of embeddings N X

i : Fam(I, X) ↪→ X, for every i ∈ I. From the
given data one could define the assignment routine N X

i by the rule N X
i

(
�(X)

) := E X
i (ui), if it is
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known that ui ∈ λ0(i). Even in that case, the assignment routine N X
i cannot be shown to satisfy

the expected properties. Clearly, if N X
i was defined by the rule N X

i
(
�(X)

) := x0 ∈ X, then it
cannot be an embedding.

Proposition 28. Let�(X) := (λ0, E X , λ1),M(X) := (μ0,Z X ,μ1) ∈ Fam(I, X).
(i) If� : �(X)⇒M(X), then� : �⇒M.
(ii) If� : �(X)⇒M(X) and� : �(X)⇒M(X), then�=MapI(�(X),M(X)) �.

Proof. (i) By the commutativity of the following inner diagrams

λ0(i) μ0(i)

X

λ0(j) μ0(j),

λij

�i

E X
i Z X

i

�j

E X
j Z X

j

μij

we get the required commutativity of the above outer diagram. If x ∈ λ0(i), then
(Z X

j ◦�j)
(
λij(x)

) = E X
j

(
λij(x)

) = E X
i (x)= (Z X

i ◦�i)(x)= Z X
j

(
μij(�i(x))

)
.

Since Z X
j

(
�j(λij(x))

) = Z X
j

(
μij(�i(x))

)
, we get�j(λij(x)=μij(�i(x)).

(ii) If i ∈ I, then�i : λ0(i)⊆μ0(i),�i : λ0(i)⊆μ0(i)

λ0(i) μ0(i)

X,

�i

�i
Ei Ei

hence by Proposition 10 we get�i =F(λ0(i),μ0(i)) �i.

Because of Proposition 28(ii) all the elements of PrfEql0(�(X),M(X)) are equal to each
other, hence the groupoid properties (i)-(iv) for PrfEql0(�(X),M(X)) hold trivially. Of course,
�(X)=Fam(I,X) M(X) :⇔�(X)≤M(X) &M(X)≤�(X).

9. On the BHK-interpretation of BISH within BST
In the next naive definition of the BHK-interpretation of BISH, the notion of “proof ” is not under-
stood in the proof-theoretic sense. Although we agree with Streicher in Streicher (2018) that the
term “witness” is better, we use the symbol Prf(φ) for traditional reasons. We could have used
the symbol Wtn(φ) instead. We choose not to reduce the rule for φ ∨ψ to the other ones, as
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for example is done in Beeson (1981, p. 156). The rule for ¬φ is usually reduced to the rule for
implication.

Definition 29. (Naive BHK-interpretation of BISH). Let φ,ψ be formulas in BISH, such that it is
understood what it means “q is a proof (or witness, or evidence) of φ” and “r is a proof of ψ .”
(∧ ) A proof of φ ∧ψ is a pair (p0, p1) such that p0 is a proof of φ and p1 is a proof of ψ .
(⇒ ) A proof of φ⇒ψ is a rule r that associates to any proof p of φ a proof r(p) of ψ .
(∨ ) A proof of φ ∨ψ is a pair (i, pi), where if i := 0, then p0 is a proof of φ, and if i := 1, then p1 is
a proof of ψ .
(⊥) There is no proof of ⊥.
For the next two rules let φ(x) be a formula on a set X, such that it is understood what it means “q is
a proof of φ(x),” for every x ∈ X.
(∀) A proof of ∀x∈Xφ(x) is a rule R that associates to any given x ∈ X a proof Rx of φ(x).
(∃) A proof of ∃x∈Xφ(x) is a pair (x, q), where x ∈ X and q is a proof of φ(x).

The notions of “rule” in the clauses for (⇒ ) and (∀) are unclear. The nature of a proof or a
witness is also unclear. The interpretation of atomic formulas is also not included. In Aczel and
Rathjen (2010, p. 12), the following criticism to the naive BHK-interpretation is given:

Many objections can be raised against the above definition. The explanations offered
for implication and universal quantification are notoriously imprecise because the notion
of function (or rule) is left unexplained. Another problem is that the notions of set and
set membership are in need of clarification. But in practice, these rules suffice to codify
the arguments that mathematicians want to call constructive. Note also that the above
interpretation (except for ⊥) does not address the case of atomic formulas.

A formal version of the above naive BHK-interpretation of BISH is a corresponding realis-
ability interpretation (see Section 13). Following Feferman (1979), Beeson declared in Beeson
(1981, p. 158) that “the fundamental relation in constructive set theory is not membership but
membership-with-evidence” (MwE). All examples given by Feferman are certain extensional sub-
sets of some set X. In MLTT, this kind of (MwE) is captured by the type

∑
x:A P(x), where

P : A→ U is a family of types over A : U . Here we explain how we can talk about (MwE) for
extensional subsets of some set X within BST, showing that BISH, as MLTT, is capable of express-
ing (MwE). As all such examples known to us are extensional subsets, we do not consider the
notion of a completely presented set X∗, for every set X, as it is done in the formal systems T∗

0
of Feferman in Feferman (1979), and in Beeson’s system, found in Beeson (1981). In the system
of Beeson (1981), proof-relevance is even more stressed, as to any formula φ a formula Prfφ(p) is
associated by a certain rule, expressing that “p proves formula φ.” The resulting formal set theory
though, is, in our opinion, not attractive. The problem of the totality of proofs being a definite
preset, hence the problem of quantifying over it (see Beeson 1981, p. 177) is solved by our “inter-
nal” treatment of MwE within BST. Consequently, questionable principles, like Beeson’s “(MwE)
is self-evident” (see Beeson 1981, p. 159), are avoided.

Proposition 30. (Membership-with-Evidence I (MwE-I)). Let X, Y be sets, and let P(x) be a
property on X of the form

P(x) :⇔ ∃p∈Y
(
Q(x, p)

)
,
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where Q(x, p) is an extensional property on X × Y i.e.,
[
x=X x′ & p=Y p′ & Q(x, p)

] ⇒Q(x′, p′),
for every x, x′ ∈ X and every p, p′ ∈ Y. Let PrfMembP0 : X�V0, defined by

PrfMembP0 (x) := {p ∈ Y |Q(x, p)},
for every x ∈ X, and let PrfMembP1 : �(x,x′)∈D(X) F

(
PrfMembP0 (x), PrfMembP0 (x′)

)
, where

PrfMembPxx′ := PrfMembP1 (x, x′) : PrfMembP0 (x)→ PrfMembP0 (x′) is defined by the identity
map-rule PrfMembPxx′(p) := p, for every p ∈ PrfMembP0 (x) and every (x, x′) ∈D(X).
(i) The property P(x) is extensional.
(ii) The pair PrfMembP := (

PrfMembP0 , PrfMembP1
) ∈ Fam(X).

Proof. (i) Let x=X x′ and p ∈ Y such that Q(x, p). Since p=Y p, by the extensionality of Q we get
Q(x′, p), and hence P(x′).
(ii) First we show that the dependent operation PrfMembP1 is well defined. If x=X x′ and p ∈
PrfMembP0 (x), i.e., Q(x, p), by the extensionality of Q, we get Q(x′, p). Clearly, the operation
PrfMembPxx′ is a function. As PrfMembPxx′ is given by the identity map rule, the properties of a
family of sets for PrfMembP1 are trivially satisfied.

Actually, PrfMembP can be seen as a family of subsets of Y over X, but now we want to
work externally, and not internally.3 For the previous result, it suffices to suppose that Q is X-
extensional, i.e.,

[
x=X x′ & Q(x, p)

] ⇒Q(x′, p), for every x, x′ ∈ X and every p ∈ Y . Notice that
the extensionality of P alone does not imply neither the X-extensionality ofQ nor the extensional-
ity of Q, and it is not enough to define a function from PrfMembP0 (x) to PrfMembP0 (x′). If XP is the
extensional subset of X generated by P, we write p : x ∈ XP :⇔Q(x, p). The following proposition
follows immediately from (MwE-I).

Proposition 31. (Membership-with-Evidence II (MwE-II)). Let X, Y , Z be sets, and let R(x) be a
property on X of the form

R(x) :⇔ ∃p∈Y∃q∈Z
(
Q(x, p, q)

)
,

where Q(x, p, q) is an extensional property on X × Y × Z, i.e.,
[
x=X x′ & p=Y p′ & q=Z

q′ & Q(x, p, q)
] ⇒Q(x′, p′, q′), for every x, x′ ∈ X, p, p′ ∈ Y, and every q, q′ ∈ Y. Let PrfMembR0 :

X�V0, defined by the rule

PrfMembR0 (x) := {(p, q) ∈ Y × Z |Q(x, p, q)},
for every x ∈ X, and let PrfMembR1 : �(x,x′)∈D(X) F

(
PrfMembR0 (x), PrfMembR0 (x′)

)
, where

PrfMembRxx′ := PrfMembR1 (x, x
′) : PrfMembR0 (x)→ PrfMembR0 (x

′),

PrfMembRxx′(p, q) := (p, q); (p, q) ∈ PrfMembR0 (x), (x, x
′) ∈D(X).

(i) The property R(x) is extensional.
(ii) The pair PrfMembR := (

PrfMembR0 , PrfMembR1
) ∈ Fam(X).

Again, PrfMembR can be seen as a family of subsets of Y over X. If XR is the extensional subset
of X generated by R, we write

(p, q) : x ∈ XR :⇔Q(x, p, q).

Clearly, the schema MwE-II can be generalised to a property S(x) on X of the form

S(x) :⇔ ∃p1∈X1 . . . ∃pn∈Xn

(
T(x, p1, . . . , pn)

)
,
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for some extensional property T(p1, . . . , pn) on X1 × . . .× Xn. The following scheme of defining
functions on extensional subsets of sets given by existential formulas is immediate to prove.

Proposition 32. Let X, Y , X′, Y ′ be sets, and let P(x) and P(x′) properties on X and X′, respectively,
of the form

P(x) :⇔ ∃p∈Y
(
Q(x, p)

)
& P′(x′) :⇔ ∃p′∈Y ′

(
Q′(x′, p′)

)
,

where Q(x, p) and Q′(x′, p′) are extensional properties on X × Y and on X′ × Y ′, respectively.
(i) Let f : X� X′ and �f : �

x∈X
�

p∈PrfMembP0 (x)
PrfMembP′

0 (f (x)). Then the operation fPP′ : XP�
X′

P′ , defined by the rule XP � x �→ f (x) ∈ X′
P′ , is well defined. If f is a function, then fPP′ is a func-

tion.
(ii) Let g : X� X′ and �g : �

x∈X PrfMembP′
0 (g(x)). Then the operation gP′ : X� X′

P′ , defined by
the rule X � x �→ g(x) ∈ X′

P′ , is well defined. If g is a function, then gP′ is a function.

The schemataMwE-I andMwE-II are useful when amathematical concept is defined as a prop-
erty on a given set, and not as an element of the set together with some extra data. For example,
in Bishop and Bridges (1985, p. 38), and in Bishop (1967, p. 34), a function f : [a, b]→R is called
continuous, if there is a function ωf : R+ →R+, where R+ is the set of positive real numbers,
such that

∀ε>0∀x,y∈[a,b]
(|x− y| ≤ωf (ε)⇒ |f (x)− f (y)| ≤ ε) :⇔ωf : Cont(f ).

It is also mentioned that the function ω, the so-called modulus of (uniform) continuity of f is “an
indispensable part of the definition of a continuous function.’. The same concept can be defined
though, through a property on the set F([a, b])= F

(
[a, b],R

)
, given by an existential formula, i.e.,

Cont(f ) :⇔ ∃
ωf ∈F

(
R+,R+

)(ωf : Cont(f )
)
.

It is this kind of definition of a mathematical notion that facilitates the definition of a set of
witnesses to the membership condition of an extensional subset of a set.

Example 9.1 (Convergent sequences at x ∈R). Let X := F(N,R), Y := F(N+,N+). If x ∈R, let,
for every (xn)n∈N ∈ F(N,R)

Convx
(
(xn)n∈N

) :⇔ ∃C∈F(N+,N+)
(
C : xn n−→ x

)
,

C : xn n−→ x :⇔ ∀k∈N+∀n≥C(k)

(
|xn − x| ≤ 1

k

)
.

If C : xn n−→, we say that C is a modulus of convergence of (xn)n∈N at x ∈R.

By the compatibility of the operation −, the function |.|, and the relation ≤ with the equality of
R, we get the extensionality of

Qx
(
(xn)n∈N, C) :⇔ C : xn n−→ x

on F(N,R)× F(N+,N+), as[
(xn)n∈N =F(N+ ,N+) (yn)n∈N & C : xn n−→ x

] ⇒ C : yn n−→ x.

By Proposition 30 PrfMembConvx := (
PrfMembConvx0 , PrfMembConvx1

) ∈ Fam
(
F(N,R)

)
, where

PrfMembConvx0
(
(xn)n∈N

) := {
C ∈ F(N+,N+) | C : xn n−→ x

)}
.
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Example 9.2. (Cauchy sequences). If X := F(N,R), Y := F(N+,N+), (xn)n∈N ∈ F(N,R), let
Cauchy

(
(xn)n∈N

) :⇔ ∃C∈F(N+,N+)
(
C : Cauchy((xn)n∈N)

,

C : Cauchy((xn)n∈N) :⇔ ∀k∈N+∀n,m≥C(k)

(
|xn − xm| ≤ 1

k

)
.

If C : Cauchy((xn)n∈N)
, we say that C is a modulus of Cauchyness for (xn)n∈N.

The extensionality of R
(
(xn)n∈N, C) :⇔Cauchy

(
(xn)n∈N

)
follows as above. By Proposition 30

PrfMembCauchy := (
PrfMembCauchy0 , PrfMembCauchy1

) ∈ Fam
(
F(N,R)

)
, where

PrfMembCauchy0
(
(xn)n∈N

) := {
C ∈ F(N+,N+) | C : Cauchy((xn)n∈N)}

.

Example 9.3 (Convergent sequences). If X := F(N,R), Y :=R, Z := F(N+,N+), (xn)n∈N ∈
F(N,R), let

Conv
(
(xn)n∈N

) :⇔ ∃x∈R∃C∈F(N+,N+)
(
(x, C) : Conv((xn)n∈N)

.

(x, C) : Conv((xn)n∈N :⇔ (
C : xn n−→ x

)
,

If (x, C) : Conv((xn)n∈N)
, we say that (x, C) is a modulus of convergence of (xn)n∈N.

The extensionality of S
(
(xn)n∈N, x, C) :⇔ C : xn n−→ x on F(N,R)×R× F(N+,N+) follows

from the compatibility of convergence with equality, i.e.,[
(xn)n∈N =F(N+ ,N+) (yn)n∈N & x=R y & C : xn n−→ x

] ⇒ C : yn n−→ y.

By Proposition 31 PrfMembConv := (
PrfMembConv0 , PrfMembConv1

) ∈ Fam(F(N,R)
)
, where

PrfMembConv0
(
(xn)n∈N

) := {
(x, C) ∈R× F(N+,N+) | (x, C) : Conv((xn)n∈N)}

.
Similar PrfMemb-sets can be defined for the set C([a, b]) of (uniformly) continuous real-valued

functions on a compact interval [a, b] and for the set D([a, b]) of (uniformly) differentiable func-
tions on a compact interval [a, b]. In this framework, the Riemann-integral is not a mapping∫ b
a : C([a, b])→R, given by the rule f �→ ∫ b

a f . As the definition of
∫ b
a f depends on the modu-

lus of continuity ωf for f (see Bishop and Bridges 1985, pp. 51–52), the Riemman-integral is a
dependent operation ∫ b

a
:

�

f∈F([a,b])
F

(
PrfMembCont(f )

0 ,R
)
.

The standard writing ∫ b

a
f :=

∫ b

a
(f ,ωf )

expresses the independence of the integral from the choice of a modulus of continuity, i.e.,∫ b

a
(f ,ωf )=R

∫ b

a
(f ,ω′

f ),

for every ωf ,ω′
f ∈ PrfMembCont(f )

0 , but it is not the accurate writing of a function from C([a, b])
to R, only a notational convention compatible with the classical one. The following obvious gen-
eralisation (MwE-III) of (MwE-II) to relations an a set given by an existential formula is shown
similarly. A variation of (MwE-III) concerns relations on finitely many different sets.
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Proposition 33 (Membership-with-Evidence III (MwE-III)). Let X, Y , Z be sets, and let S(x, y) be
a relation on X of the form

S(x, y) :⇔ ∃p∈Y
(
Q(x, y, p)

)
,

where Q(x, y, p) is an extensional property on X × X × Y. Let PrfRelR0 : X × X�V0, where

PrfEqlS0(x, y) := {p ∈ Y |Q(x, y, p)},
for every x ∈ X, and let PrfRelS1 : �

((x,x′),(y,y′)∈D(X×X) F
(
PrfRelS1(x, x′), PrfRelS1(x′, y′)

)
, where

PrfRelS1((x, x′)(y, y′)) : PrfRelS1(x, x′)→ PrfRelS1(x′, y′) is defined by the identity map-rule[
PrfRelS1(x, x′)

]
(p) := p, for every p ∈ PrfRelS1(x, x′).

(i) The property S(x, y) is extensional.
(ii) The pair

(
PrfRelS0, PrfRelS1

) ∈ Fam(X × X).

The “extension” of the BHK-interpretation to what usually corresponds to atomic formulas
like the equality formulas is the first part of the following definition.

Definition 34 (BHK-interpretation of BISH in BST – Part I). Let membership conditions x ∈ XP
and x ∈ XR as e.g., in Propositions 30 and 31, respectively. We define

Prf(x ∈ XP) := PrfMembP0 (x),

Prf(x ∈ XR) := PrfMembR0 (x).
Let a relation S(x, y) on a set X, as, e.g., in Proposition 33. We define

Prf
(
S(x, y)

) := PrfRelS0(x, y).
Let φ,ψ be formulas in BISH such that Prf(φ) and Prf(ψ) are already defined. We define

Prf(φ & ψ) := Prf(φ)× Prf(ψ),

Prf(φ ∨ψ) := Prf(φ)+ Prf(ψ),

Prf(φ⇒ψ) := F
(
Prf(φ), Prf(ψ)

)
.

Let φ(x) be a formula on a set X, and let Prfφ := (
Prfφ0 , Prfφ1

) ∈ Fam(X), where Prfφ0 : X�V0 is
given by the rule x �→ Prfφ0 (x) := Prf

(
φ(x)

)
, for every x ∈ X. The Prf-sets of the formulas ∀x∈Xφ(x)

and ∃x∈Xφ(x) with respect to the given family Prfφ , where ∃x∈Xφ(x) is a formula that does not
express a membership condition or a relation, are defined by

Prf
(

∀x∈Xφ(x)
)

:=
∏
x∈X

Prfφ0 (x) :=
∏
x∈X

Prf
(
φ(x)

)
,

Prf
(

∃x∈Xφ(x)
)

:=
∑
x∈X

Prfφ0 (x) :=
∑
x∈X

Prf
(
φ(x)

)
.

Due to the definition of the coproduct in Definition 13, the Prf-sets for ∃x∈Xφ(x) and for
∀x∈Xφ(x) are generalizations of Prf-sets for φ ∨ψ and for φ & ψ , respectively.

Example 9.4. Let the fact: if (xn)n∈N+ ∈ F(N+,R) and x0 ∈R, then

xn
n−→ x0 ⇒ (xn)n∈N+ is Cauchy.

https://doi.org/10.1017/S0960129522000159 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000159


Mathematical Structures in Computer Science 23

If χ(xn, x0) is the above implication, then χ(xn, x0) of the form φ(xn, x0)⇒ψ(xn). Its proof
(see Bishop and Bridges 1985, p. 29) can be seen as a rule that sends a modulus of conver-
gence C : xn n−→ x0 of (xn)n∈N+ at x0 to a modulus of Cauchyness D : Cauchy((xn)n∈N+

)
for

(xn)n∈N+ , where D(k) := C(2k), for every k ∈N+. This operation from PrfMembConvx00
(
(xn)n∈N+

)
to PrfMembCauchy0

(
(xn)n∈N+

)
is a function, and

Prf(χ(xn, x0)) := F

(
Prf

(
φ(xn, x0)

)
, Prf

(
ψ(xn)

))
,

Prf
(
φ(xn, x0)

) := PrfMembConvx00
(
(xn)n∈N+

)
,

Prf
(
ψ(xn)

) := PrfMembCauchy0
(
(xn)n∈N+

)
.

Example 9.5. Let the fact: if x0 ∈R, then

∀(xn)n∈N+∈F(N+,R)
(
xn

n−→ x0 ⇒ (xn)n∈N+ is Cauchy
)
.

The formula corresponding to this proposition is

χ∗(x0) :⇔ ∀xn∈F(N+,R)χ(xn, x0),

where the Prf-set of χ(xn, x0) :⇔
(
φ(xn, x0)⇒ψ(xn)

)
is determined in the previous example. To

determine the Prf-set of χ∗(x0), we need to determine first a family of Prf-sets over F(N+,R).
Using Definition 12(ii), let

Prfχ
∗(x0) := F

(
Prfφ(xn,x0), Prfψ(xn)

)
,

and by Definition 34, we get

Prf
(
χ∗(x0)

) :=
∏

xn∈F(N+,R)
Prf

(
χ(xn, x0)

)
.

Example 9.6. Let the fact: if (xn)n∈N+ ∈ F(N+,R), then

(xn)n∈N+ is Cauchy⇒ ∃y∈R
(
xn

n−→ y
)
.

The formula corresponding to this proposition is

θ(xn) :⇔
[
ψ(xn)⇒ ∃y∈Y

(
φ(xn, y)

)]
.

Its proof generates a rule that associates to every C :Cauchy((xn)n∈N+
)
a pair (y,D), where

y ∈R and D : xn n−→ y, and y is defined by the rule yk := [
xD(k)]2k, and D(k) := 3k∨ C(2k), for

every k ∈N+. The use of the modulus of Cauchyness in the definition of a Cauchy sequence is
responsible for the avoidance of choice in the proof. Clearly, the rule C �→ (y,D) of the proof
of θ(xn) determines a function from Prf(ψ(xn)) to the Prf-set of the formula ∃y∈Rφ(xn, y).
Since Prf(φ(xn, y) is already determined above, and as a corresponding family over F(N+,R)
is determined in Example 9.1, then, using Definition 19(iii), from Definition 34 we get

Prf(θ(xn)) :=
∑
y∈R

PrfMembConvy(xn).

From the last two examples, we see how the schemes of defining new families of sets from given
ones can be used in order to define canonical families of Prf-sets from given such families. These
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canonical families of Prf-sets are determined in the second part of our definition of the BHK-
interpretation of BISH within BST. As we have already seen in the previous two examples, the
following extension of Definition 34 refers to Definitions 12 and 19.

Definition 35 (BHK-interpretation of BISH in BST – Part II). Let X, Y be sets. Let φ1(x), φ2(x)
be formulas in BISH such that Prfφ1 := (

Prfφ10 , Prfφ11
) ∈ Fam(X) and Prfφ2 := (

Prfφ20 , Prfφ21
) ∈

Fam(X) are given. To the formulas

(φ1 & φ2)(x) :⇔ φ1(x) & φ2(x),

(φ1 ⇒ φ2)(x) :⇔ φ1(x)⇒ φ2(x),

(φ1 ∨ φ2)(x) :⇔ φ1(x)∨ φ2(x),
on X we associate in a canonical way the following families of sets over X, respectively:

Prfφ1&φ2 := Prfφ1 × Prfφ2 ,

Prfφ1⇒φ2 := F
(
Prfφ1 , Prfφ2

)
,

Prfφ1∨φ2 := Prfφ1 + Prfφ2 .

Let θ(x, y) be a formula on X × Y and Prfθ := (
Prfθ0 , Prfθ1

) ∈ Fam(X × Y) i.e., Prfθ0 : X × Y�
V0, with (x, y) �→ Prfθ0(x, y) := Prf

(
θ(x, y)

)
, for every (x, y) ∈ X × Y. To the formulas(∀yθ)(x) :⇔ ∀y∈Yθ(x, y),(∃yθ)(x) :⇔ ∃y∈Yθ(x, y),

on X we associate in a canonical way the following families of sets over X, respectively:

Prf∀yθ :=
1∏

Prfθ ,

Prf∃yθ :=
1∑

Prfθ .

By Definitions 12 and 19, we get

Prf∀yθ :=
( 1∏

Prfθ0 ,
1∏

Prfθ1

)
,

( 1∏
Prfθ0

)
(x) :=

∏
y∈Y

Prfθ0(x, y) :=
∏
y∈Y

Prf
(
θ(x, y)

)
,

Prf∃yθ :=
( 1∑

Prfθ0 ,
1∑

Prfθ1

)
,

( 1∑
Prfθ0

)
(x) :=

∑
y∈Y

Prfθ0(x, y) :=
∑
y∈Y

Prf
(
θ(x, y)

)
.
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10. Examples of Totalities with a Proof-Relevant Equality
The universe V0, the powerset P(X) of a set X, the impredicative set Fam(I) of families of sets
indexed by I, the set Fam(I, X) of families of subsets of X indexed by I are some of the many
examples of totalities studied in Petrakis (2020c) equipped with an equality defined through an
existential formula. Here we describe some more motivating examples.

10.1 The Richman ordinals
The equality on the totality of Richman ordinals, as this is defined in Mines et al. (1988, pp. 24–
28), behaves similarly to the equality on the powerset. Notice that the following definition of a
well-founded relation is impredicative, as it requires quantification over the powerset of a set. If<
is a binary relation on a setW, a subset H ofW is called hereditary, if

∀w∈W
(

∀u∈W
(
u<w⇒ u ∈H

) ⇒w ∈H
)
.

The relation< is well-founded, if

∀H∈P(X)
(
H is hereditary ⇒H =W

)
.

A Richman ordinal is a pair (α,≤ ), where α is a discrete set, ≤ is a linear order (i.e., x≤ y∨ y≤ x,
for every x, y ∈ α), and < is well founded, where x< y :⇔ x≤ y & x 	=α y. If α, β are ordinals, an
injection ρ : α ≤ β from α to β is a function ρ : α→ β such that
(i) ∀x,y∈α

(
x< y⇒ ρ(x)<ρ(y)

)
.

(ii) ∀z∈β∀y∈α
(
z<ρ(y)⇒ ∃x∈α(ρ(x)=β z)

)
.

In this case, we write α ≤ β . In Mines et al. (1988, p. 28), it is shown that there is at most one
injection from α to β . If OrdR is the totality (class) of Richman ordinals and α, β ∈OrdR, we show
the following.

Proposition 36. If ρ : α ≤ β and σ : α ≤ β, then ρ is an embedding, and ρ =F(α,β) σ .

Proof. Let x, y ∈ α such that ρ(x)=β ρ(y). If x 	=α y, by the linearity of ≤ either x≤ y or y≤ x. In
the first case, we get x< y, hence ρ(x)<ρ(y), and in the second , we get y< x, hence ρ(y)<ρ(x)
i.e., in both cases we get a contradiction. Hence, x=α y. For the rest, one shows that the set H :=
{x ∈ α | ρ(x)=β σ (x)} is hereditary (see Mines et al. 1988, p. 28).

As in the case of P(X), we define α =OrdR β :⇔ α ≤ β & β ≤ α, and
PrfEql0(α, β) := {(ρ, σ ) ∈ F(α, β)× F(β , α) | ρ : α ≤ β & σ : β ≤ α}.

Since the composition of injections is an injection, let

refl(α) := (
idα , idα

)
& (ρ, σ )−1 := (σ , ρ) & (ρ, σ ) ∗ (τ , v) := (τ ◦ ρ, σ ◦ v),

and the groupoid properties for PrfEql0(α, β) hold trivially by the equality of all its elements.

10.2 The direct sum of a direct family of sets
Next we define the

Definition 37. Let (I,�I ) be a directed set, and D�(I) := {
(i, j) ∈ I × I | i�I j

}
the diagonal of

�I . A direct family of sets (I,�I ), or an (I,�I )-family of sets, is a pair �� := (λ0, λ�1 ), where
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λ0 : I�V0, and λ�1 , a modulus of transport maps for λ0, is defined by

λ
�
1 :

�

(i,j)∈D�(I)

F
(
λ0(i), λ0(j)

)
, λ

�
1 (i, j) := λ

�
ij , (i, j) ∈D�(I),

such that the transport maps λ≺
ij of�� satisfy the following conditions:

(a) For every i ∈ I, we have that λ�ii := idλ0(i).
(b) If i�I j and j�I k, the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λ
�
jk

λ
�
ij λ

�
ik

If X ∈V0, the constant (I,�I )-family X is the pair C�,X := (λX0 , λ
�,X
1 ), where λX0 (i) := X, and

λ
�,X
1 (i, j) := idX, for every i ∈ I and (i, j) ∈D�(I).

Since in general �I is not symmetric, the transport map λ�ij does not necessarily have an
inverse. Hence, λ�1 is only a modulus of transport for λ0, in the sense that it determines the
transport maps of��, and not necessarily a modulus of function-likeness for λ0.

Definition 38. If�� := (λ0, λ�1 ) andM� := (μ0,μ�
1 ) are (I,�I )-families of sets, a direct family-

map� from�� to M�, denoted by� : �� ⇒M�, their set Map(I,�I)(�
�,M�), and the totality

Fam(I,�I ) of (I,�I )-families are defined in the expected way. The direct sum
∑�

i∈I λ0(i) over ��
is the totality

∑
i∈I λ0(i) equipped with the equality

(i, x)=∑�
i∈I λ0(i)

(j, y) :⇔ ∃k∈I
(
i�I k & j�I k & λ�ik (x)=λ0(k) λ

�
jk (y)

)
.

The totality
∏�

i∈I λ0(i) of dependent functions over�� is defined by

� ∈
�∏
i∈I
λ0(i) :⇔� ∈A(I, λ0) & ∀(i,j)∈D�(I)

(
�j =λ0(j) λ

�
ij (�i)

)
,

and it is equipped with the equality of A(I, λ0).

If�� := (
λ0, λ�1

) ∈ Fam(I,�I ), and if i, x), (j, y) ∈ ∑�
i∈I λ0(i), and since by Definition 38

(i, x)=∑�
i∈I λ0(i)

(j, y) :⇔ ∃k∈I
(
i�I k & j�I k & λ�ik (x)=λ0(k) λ

�
jk (y)

)
,

let

PrfEql0
(
(i, x), (j, y)

) := {
m ∈ Iij | λ�im(x)=λ0(m) λ

�
jm(y)

}
,

Iij := {k ∈ I | i�I k & j�I k}.
To show the extensionality of PrfEql0

(
(i, x), (j, y)

)
, let m′ =Iij m :⇔m′ =I m and λ�im(x)=λ0(m)

λ
�
jm(y). As �I is extensional and reflexive, m�I m′, and by Definition 37(b) λ�im′(x)=
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λ
�
mm′

(
λ
�
im(x)

) = λ
�
mm′

(
λ
�
jm(y)

) = λ
�
jm′(y). To define an operation of composition, we work with

directed sets equipped with a modulus of directedness δ. In the case of a partial order like the
standard relation ≤ on R, the functions δ(x, y) := x∨ y :=max{x, y} is such a modulus.

Definition 39. Let (I,�I ) be a poset, i.e., a preorder such that
[
i�I j & j�I i

] ⇒ i=I j, for every
i, j, ∈ I. A modulus of directedness for I is a function δ : I × I → I, such that for every i, j, k ∈ I the
following conditions are satisfied:
(δ1) i�I δ(i, j) and j�I δ(i, j).
(δ2) If i�I j, then δ(i, j)=I δ(j, i)=I j.
(δ3) δ

(
δ(i, j), k

) =I δ
(
i, δ(j, k)

)
.

Proposition 40. Let δ be a modulus of directedness on a poset (I,�I ), and let�� := (λ0, λ�1 ) be a
family of sets over (I,�I ).
(i) δ(i, i)=I i, for every i ∈ I.
(ii) δ(i, j)=I δ(j, i), for every i, j ∈ I.
(iii) If (i, x)=∑�

i∈I λ0(i)
(j, y)=∑�

i∈I λ0(i)
(k, z), then

m ∈ PrfEql0
(
(i, x), (j, y)

)
& l ∈ PrfEql0

(
(j, y), (k, z)

) ⇒ δ(m, l) ∈ PrfEql0
(
(i, x), (k, z)

)
.

Proof. (i) Since i�I i, we use the definitional clause (δ1) of a modulus of directedness.
(ii) By (δ3) we have that δ

(
δ(i, j), i

) =I δ
(
i, δ(j, i)

)
. By (δ1) and (δ2), we get δ

(
δ(i, j), i

) =I δ(i, j) and
δ
(
i, δ(j, i)

) =I δ(j, i).
(iii) If m ∈ PrfEql0

(
(i, x), (j, y)

) ⇔m ∈ Iij & λ
�
im(x)=λ0(m) λ

�
jm(y), and l ∈

PrfEql0
(
(j, y), (k, z)

) ⇔ l ∈ Ijk & λ
�
jl (y)=λ0(l) λ

�
kl (z), we show that δ(m, l) ∈ Iik and

λ
�
iδ(m,l)(x)=λ0(δ(m,l) λ

�
kδ(m,l)(z). By our hypotheses, i�I m�I δ(m, l) and k�I l�I δ(m, l).

Moreover,

λ
�
iδ(m,l)(x)

i�Im�Iδ(m,l)= λ
�
mδ(m,l)

(
λ
�
im(x)

)
= λ

�
mδ(m,l)

(
λ
�
jm(y)

)
j�Im�Iδ(m,l)= λ

�
jδ(m,l)(y)

j�I l�Iδ(m,l)= λ
�
lδ(m,l)

(
λ
�
jl (y)

)
= λ

�
lδ(m,l)

(
λ
�
kl (z)

)
k�I l�Iδ(m,l)= λ

�
kδ(m,l)(z).

Ifm ∈ PrfEql0
(
(i, x), (j, y)

)
and l ∈ PrfEql0

(
(j, y), (k, z)

)
, it is natural to define

refl(i, x) := i & m−1 :=m & m ∗ l := δ(m, l).

Then, refl(i, x) ∗m := i ∗m := δ(i,m)=I m, and similarly m ∗ refl(i, x)=I m, for every m ∈
PrfEql0

(
(i, x), (j, y)

)
. The associativity (m ∗ l) ∗ n=I m ∗ (l ∗ n) is just the condition (δ3), and

if m,m′ ∈ PrfEql0
(
(i, x), (j, y)

)
and l ∈ PrfEql0

(
(j, y), (k, z)

)
such that m=I m′ and l=I l′, then

m ∗ l=I m′ ∗ l′ is reduced to δ(m, l)= δ(m′, l′), which follows from the fact that δ is a function.
If m ∈ PrfEql0

(
(i, x), (j, y)

)
, to show m ∗m−1 = refl(i, x) := i, we need to use as equality on
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PrfEql0
(
(i, x), (i, x)

)
not the equality inherited from I, but the equality

m=
PrfEql0

(
(i,x),(i,x)

) m′ :⇔ i=I i,

according to which all elements of PrfEql0
(
(i, x), (i, x)

)
are equal to each other. Similarly,

we get m−1 ∗m := δ(m−1,m)=
PrfEql0

(
(i,x),(i,x)

) j := refl(j, y). Hence, the equality on

PrfEql0
(
(i, x), (j, y)

)
is defined as above, if i := j and x := y, and it is inherited from I oth-

erwise. In order to make such a distinction though, we need to know that the previous equalities
are possible, something which is not always the case without some further assumptions on the
general equality :=. Of course, all aforementioned groupoid properties of ∗ and −1 hold, if we
define all elements of any set PrfEql0

(
(i, x), (j, y)

)
to be equal.

10.3 The set of reals
In Bishop and Bridges (1985, p. 18), the set of reals R is defined as an extensional subset of
F(N+,Q). Specifically,

R :=
{
x ∈ F(N+,Q) | ∀m,n∈N+

(
|xm − xn| ≤ 1

m
+ 1

n

)}
,

where N+ is the set of non-zero natural numbers. The equality on R is defined as follows:

x=R y :⇔ ∀n∈N+
(

|xn − yn| ≤ 2
n

)
.

To prove though that x=R y is transitive, one needs the following characterization:

x=R y⇔ ∀j∈N+∃Nj∈N+∀n≥Nj

(
|xn − yn| ≤ 1

j

)
.

Using countable choice, we get the equivalence

x=R y⇔ ∃ω∈F(N+,N+)∀j∈N+∀n≥ω(j)
(

|xn − yn| ≤ 1
j

)
.

If ω :N+ →N+ witnesses the equality x=R y, then ω ∨ idN+ , where (ω ∨ idN+)(j) :=ω(j)∨
idN+(j) :=max{ω(j), idN+(j)}, for every j ∈N+, also witnesses the equality x=R y. Hence, without
loss of generality, we can assume that ω≥ idN+ . We define

PrfEql0(x, y) :=
{
ω ∈ F(N+,N+) |ω : x=R y

}
,

ω : x=R y :⇔ω≥ idN+ & ∀j∈N+∀n≥ω(j)
(

|xn − yn| ≤ 1
j

)
.

If ω ∈ PrfEql0(x, y) and δ ∈ PrfEql0(y, z), we define

refl(x) := idN+ & ω−1 :=ω & (ω ∗ δ)(j) :=ω(2j)∨ δ(2j),
for every j ∈N+. In this case, ω ∗ δ ∈ PrfEql0(x, z), since if n≥ω(2j)∨ δ(2j), then

|xn − zn| ≤ |xn − yn| + |yn − zn| ≤ 1
2j

+ 1
2j

= 1
j
.

It is easy to see that ∗ is associative, and it also compatible with the canonical equality of the sets
PrfEql0(x, y), the one inherited from F(N+,N+). The rest of the groupoid properties of ∗ and −1

do not hold if we keep the canonical equality of the sets PrfEql0(x, y). In other words, the set
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PrfEqlR0 (x, y), equipped with its canonical equality, is not a (− 1)-set. It becomes, if we truncate
it, i.e., if we equip PrfEqlR0 (x, y) with the equality

ω ||=
F(N+ ,N+)|| δ :⇔ω=F(N+,N+) ω & δ =F(N+,N+) δ.

If (X, d) is a metric space, hence x=X y⇔ d(x, y)= 0, for every x, y ∈ X, we define
PrfEql0(x, y) := PrfEql0

(
d(x, y), 0

)
.

If F is a set of real-valued functions on a set X, like a Bishop topology on X (see Petrakis 2015a),
that separates the points of X i.e., x=X y⇔ ∀f∈F

(
f (x)=R f (y)

)
, we define

PrfEql0(x, y) :=
�

f∈F
PrfEql0

(
f (x), f (y)

)
.

If φ :R→R, let a dependent operation

φ1 :
�

x,y∈R

�

ω∈PrfEql0(x,y)
PrfEql0(φ(x), φ(y).

For example, let [φ1(x, y,ω)](j) := 2j, for every j ∈N+. This element of PrfEql0
(
f (x), f (y)

)
though does not depend on ω, and it is not compatible with ∗ and −1.

10.4 Sets of integrable andmeasurable functions in Bishop–Chengmeasure theory
In Bishop–Cheng measure theory (BCMT), Bishop and Cheng define the set of integrable
functions of an integration space L := (X, L,

∫
) (see Bishop and Bridges 1985, p. 222) as the

totality
L1 := {f ∈ F(X) | f has a representation in L},

where F(X) is the totality of real-valued partial functions on the set X, which are strongly
extensional, i.e., if f (x) 	=R f (x′), then x 	=X x′, for every x, x′ ∈ X. An element f of F(X) has a
representation in L, if there is a sequence (fn)∞n=1 of partial functions in L such that∑

n∈N+

∫
|fn|<+∞, and

∀x∈X
( ∑

n∈N+
|fn(x)|<+∞ ⇒ f (x)=

∑
n∈N+

fn(x)
)
.

A subset F of X is full, if there is g ∈ L1 such that the domain of (the partial function) g is included
in F. The equality on L1 is defined in Bishop and Bridges (1985, p. 224) by

f =L1 g :⇔ ∃F∈P(X)
(
F is full & f|F = g|F

)
.

Unfortunately, this presentation of L1 within BCMT is highly problematic from a predicative
point of view. The totality L1 is defined through separation on F(X), which, because of the defi-
nition of a partial function from X to R, is a class, like P(X), and not a set (see Petrakis 2020c,
Section 7.4). Moreover, the above equality f =L1 g requires quantification over the class P(X).
The impredicative character of BCMT hinders its computational content (see Petrakis 2020c
Chapter 7, Zeuner 2019, and Petrakis and Zeuner 2022). Within this impredicative theory BCMT
though, one can define

PrfEql0(f , g) := {F ∈ P(X) | F is full & f|F = g|F}.
If f , g, h ∈ L1, F ∈ PrfEql0(f , g), and G ∈ PrfEql0(g, h), it is natural to define

refl(f ) := dom(f ) & F−1 := F & F ∗G := F ∩G,
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since the intersection of full sets is a full set, and f|F = g|F & g|G = h|G ⇒ f|F∩G = h|F∩G. It is not
hard to see that if we equip the sets PrfEql0(f , g) with the equality inherited from P(X), we get
the same groupoid properties of ∗ and −1 as in the case of R in the previous example. If

∫
is a

completely extended (see Bishop and Bridges 1985, p. 223), and σ -finite integral on X (see Bishop
and Bridges 1985, p. 269), and if p≥ 1, the set Lp is defined as follows (see Bishop and Bridges
1985, p. 315):

L1 := {f ∈ F(X) | f is measurable & |f |p ∈ L1},
where a partial function f : X⇀R is measurable, if its domain dom(f ) is a full set, and it is appro-
priately approximated by elements of L1 (for the exact definition see Bishop and Bridges 1985,
p. 259). Similarly to L1, f =Lp g :⇔ ∃F∈P(X)

(
F is full & f|F = g|F

)
. If

∫
is a σ -finite integral on X,

the set L∞ is defined as follows (see Bishop and Bridges 1985, p. 346):
L∞ := {

f ∈ F(X) | f is measurable and essentially bounded relative to
∫ }

,
where a real-valued function defined on a full subset of X is essentially bounded relative to a
σ -finite integral

∫
on X, if there are c> 0 and a full set F, such that |f ||F ≤ c (see Bishop and

Bridges 1985, p. 346). The equality on L∞ is defined as in Lp, for p≥ 1, and the corresponding sets
PrfEql0(f , g) behave analogously. A complemented subsetA := (A1,A0) ofX (see Petrakis 2020c,
Section 2.8) is called integrable, if its characteristic function χA is in L1, and then the measure on
A is defined by μ(A) := ∫

χA. If A is the totality of integrable sets with positive measure, =A
is defined in Bishop and Bridges (1985, p. 346), by A=A B :⇔ χA =L1 χB, and one can define
PrfEql0(A, B) := PrfEql0(χA, χB). All these totalities though are defined impredicatively.

11. Martin-Löf Sets
We give an abstract description of the previous examples of totalities (sets) with a proof-relevant
equality. The introduced Martin-Löf sets give us the opportunity to transfer results and concepts
from MLTT or HoTT into BST. So far, only the transition of results and concepts from BISH to
MLTT was considered. This aspect of Martin-Löf sets is one of the major reasons behind their
study in this paper

Definition 41. Let Y be a set, and (X,=X ) a set with an equality condition of the form
x=X x′ :⇔ ∃p∈Y

(
p : x=X x′),

where θxx′(p) :⇔ p : x=X x′ is an extensional property on Y. Let also the nondependent assignment
routine PrfEqlX0 : X × X�V0 defined by

PrfEqlX0 (x, x
′) := {p ∈ Y | p : x=X x′}; (x, x′) ∈ X × X,

together with dependent operations

reflX :
�

x∈X
PrfEqlX0 (x, x),

−1X :
�

x,x′∈X
F

(
PrfEqlX0 (x, x

′), PrfEqlX0 (x
′, x)

)
,

∗X :
�

x,x′,x′′∈X
F

(
PrfEqlX0 (x, x

′)× PrfEqlX0 (x
′, x′′), PrfEqlX0 (x, x

′′)
)
.

We call the structure X̂ := (X,=X , PrfEqlX0 , reflX ,−1X , ∗X) a set with a proof-relevant equality.
If X is clear from the context, we may omit the subscript X from the above dependent operations. We
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call X̂ a Martin-Löf set, if the following conditions hold:
(ML1) reflx ∗ p=PrfEqlX0 (x,x′) p and p ∗ refly =PrfEqlX0 (x,x′) p, for every p ∈ PrfEqlX0 (x, x′).

(ML2) p ∗ p−1 =PrfEqlX0 (x,x)
reflx and p−1 ∗ p=PrfEqlX0 (y,y)

refly, for every p ∈ PrfEqlX0 (x, x′).

(ML3) (p ∗ q) ∗ r =PrfEqlX0 (x,x′′′) p ∗ (q ∗ r), for every p ∈ PrfEqlX0 (x, x′), q ∈ PrfEqlX0 (x′, x′′) and
r ∈ PrfEqlX0 (x′′, x′′′).
(ML4) If p, q ∈ PrfEqlX0 (x, x′) and r, s ∈ PrfEqlX0 (x′, x′′) such that p=PrfEqlX0 (x,x′) q and
r =PrfEqlX0 (x′,x′′) s, then p ∗ r =PrfEqlX0 (x,x′′) q ∗ s.

If X̂ is a set with a proof-relevant equality, by Definition 34, we get

Prf(x=X x′) := PrfEqlX0 (x, x
′).

Conditions (ML1)-(ML3) express that the proof-relevant equality of X has a groupoid-structure,
see Palmgren (2012a), while condition (ML4) expresses the extensionality of the composition ∗X .

Example 11.1. A nontrivial example of a Martin-Löf set is Fam(I, X) the set of families of subsets
of the set X indexed by the set I (see Definition 23), while the proof that Fam(I, X) satisfies prop-
erties (ML1)− (ML4) follows from Definition 27. Similarly, one can show that Fam(I,X), the set
of families of complemented subsets of the set X indexed by the set I (see Section 4.9 in Petrakis
2020c) and Fam(I, X, Y), the set of families of partial functions4 from the set X to the set Y indexed
by the set I (see Section 4.8 in Petrakis 2020c) are Martin-Löf sets. We get trivial examples of
Martin-Löf sets by using the truncation of a set (see also our remark in Subsection 10.3 on getting
the groupoid properties of the proof sets of reals by truncating them).

Next proposition is straightforward to show.

Proposition 42. Let X̂ be a Martin-Löf set, x, x′ ∈ X, and p, q ∈ PrfEql0(x, x′).
(i) refl−1

x =PrfEql0(x,x) reflx.
(ii) (p−1)−1 =PrfEql0(x,x′) p.
(iii) If p=PrfEql0(x,x′) q, then p−1 =PrfEql0(x′,x) q−1.

Definition 43. Let X̂, Ŷ be sets with proof-relevant equalities. A map from X̂ to Ŷ is a pair f̂ :=
(f , f1), where f : X → Y and

f1 :
�

x,x′∈X
F

(
PrfEqlX0 (x, x

′), PrfEqlY0 (f (x), f (x
′))

)
.

We write f̂ : X̂ → Ŷ to denote a map from X̂ to Ŷ. We call the dependent operation f1 the first
associate of f̂ . If, for every x, x′ ∈ X and every p, p′ ∈ PrfEqlX0 (x, x′), we have that

p=PrfEqlX0 (x,x′) p
′ ⇒ f1(x, x′, p)=PrfEqlY0 (f (x),f (x′)) f1(x, x

′, p′),

we say that f1 is a function-like first associate of f̂ . If X̂ and Ŷ are Martin-Löf sets, a map f̂ : X̂ → Ŷ
is a Martin-Löf map, if the following conditions hold:
(i) f1(x, x, reflx)=PrfEqlY0 (f (x),f (x))

reflf (x), for every x ∈ X.
(ii) If x=X x′ =X x′′, then f1(x, x′′, p ∗ q)=PrfEqlY0 (f (x),f (x′′)) f1(x, x′, p) ∗ f1(x′, x′′, q), for every
p ∈ PrfEqlX0 (x, x′) and q ∈ PrfEqlX0 (x′, x′′).
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Definition 44. Let Î be a set with a proof-relevant equality. A family of sets over Î is a triplet
�̂ := (λ0, PrfEqlI0, λ2), where λ0 : I�V0, and

λ2 :
�

(i,j)∈D(I)

�

p∈PrfEqlI0(i,j)

F
(
λ0(i), λ0(j)

)
, λ2

(
(i, j), p

) := λ
p
ij, (i, j) ∈D(I), p ∈ PrfEqlI0(i, j),

such that the following conditions hold:
(i) For every i ∈ I, we have that λrefli

ii = idλ0(i).
(ii) If i=I j=I k, for every p ∈ PrfEqlI0(i, j) and q ∈ PrfEqlI0(j, k), the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λ
q
jk

λ
p
ij λ

p∗q
ik

(iii) If i=I j, then for for every p ∈ PrfEqlI0(i, j), the following diagrams commute

λ0(j) λ0(i)

λ0(i)

λ0(i)

λ0(j)

λ0(i).
λ
p−1

ji

λ
p
ij idλ0(i) λ

p−1

ji idλ0(j)

λ
p
ij

A family-map� : �̂⇒ M̂ is defined as in Definition 21. We denote by Fam(̂I) the totality of families
of sets over Î, which is equipped with the obvious equality. We call �̂ proof-irrelevant, if for every
(i, j) ∈D(I) and p, p′ ∈ PrfEqlI0(i, j), we have that λ

p
ij =F(λ0(i),λ0(j)) λ

p′
ij .

If �̂ ∈ Fam(̂I), then �̂ ∈ Fam∗(I) (see Definition 20). If �̂ is function-like family over Î, con-
dition (iii) of the previous definition is provable, while if �̂ is proof-irrelevant, then �̂ is
function-like. Following Definition 22, we denote the

∑
-set of �̂ by

∑̂
i∈Iλ0(i), where

(i, x)=∑̂
i∈Iλ0(i)

(j, y) :⇔ i=I j & ∃p∈PrfEqlI0(i,j)
(
λ
p
ij(x)=λ0(j) y

)
,

and we denote the
∏
-set of �̂, equipped with the pointwise equality, by

∏̂
i∈Iλ0(i), where

� ∈
∏̂

i∈Iλ0(i) :⇔� ∈A(I, λ0) & ∀p∈PrfEqlI0(i,j)
(
�j =λ0(j) λ

p
ij(�i)

)
.

Proposition 45. If �̂ := (λ0, PrfEqlI0, λ2) is a function-like family of sets over the Martin-Löf set
Î, then a structure of a Martin-Löf set is defined on

∑̂
i∈Iλ0(i).

Proof. Since �̂ is function-like, the property Qxy
ij (p) :⇔ λ

p
ij(x)= y is extensional on the set

PrfEqlI0(i, j), and we can define by separation its subset

PrfEql
∑̂
0

(
(i, x), (j, y)

) := {
p ∈ PrfEqlI0(i, j) | λpij(x)= y

}
.
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Let refl(i, x) := refli, for every (i, x) ∈ ∑̂
i∈Iλ0(i). If p ∈ PrfEql

∑̂
0

(
(i, x), (j, y)

)
, then by the con-

dition (iii) of Definition 44 we get p−1 ∈ PrfEql
∑̂
0

(
(j, y), (i, x)

)
. If r ∈ PrfEql

∑̂
0

(
(j, y), (k, z)

)
,

then by condition (iii) of Definition 44 we have that p ∗ r ∈ PrfEqlI0
∑̂(

(i, x), (k, z)
)
. The

clauses of Definition 41 for PrfEql
∑̂
0

(
(i, x), (j, y)

)
follow from the corresponding clauses for

PrfEqlI0(i, j).

If Î and
∑̂

i∈Iλ0(i) are Martin-Löf sets as above, it is straightforward to show that the pair
p̂r1 := (

pr�̂1 ,�1
)
is a map from

∑̂
i∈Iλ0(I) to Î, where

pr�̂1 :
∑̂

i∈Iλ0(i)→ I, (i, x) �→ i; i ∈ I, and

�1 :
�

(i,x),(j,y)∈∑̂
i∈Iλ0(i)

F

(
PrfEql

∑̂
0

(
(i, x), (j, y)

)
, PrfEqlI0(i, j)

)
,

[
�1

(
(i, x), (j, y)

)]
(p) := p; p ∈ PrfEql

∑̂
0

(
(i, x), (j, y)

)
,

is a function-like first associate of p̂r1.

Lemma 46. Let X̂ be a Martin-Löf set, x0 ∈ X and let PrfEqlx00 : X�V0 be defined by x �→
PrfEqlX0 (x, x0), for every x ∈ X. Moreover, let

PrfEqlx01 :
�

(x,y)∈D(X)

�

p∈PrfEqlX0 (x,y)

F
(
PrfEqlX0 (x, x0), PrfEqlX0 (y, x0)

)
,

be defined, for every (x, y) ∈D(X), p ∈ PrfEqlX0 (x, y) and r ∈ PrfEqlX0 (x, x0), by

PrfEqlx01
(
(x, y), p

) := PrfEqlx0xy : PrfEqlX0 (x, x0)→ PrfEqlX0 (y, x0)

r �→ p−1 ∗ r.

Then ̂PrfEqlx0 := (PrfEqlx00 , PrfEqlx01 ) is a function-like family of sets over X̂.

Proof. If x ∈ X, then PrfEqlreflx
xx (r) := refl−1

x ∗ r = reflx ∗ r = r, for every r ∈ PrfEqlX0 (x, x0).
If x=X y=X z, p ∈ PrfEqlX0 (x, y), q ∈ PrfEqlX0 (y, z), then for every r ∈ PrfEqlX0 (x, x0) we have
that(

PrfEqlqyz ◦ PrfEqlpxy
)
(r) := q−1 ∗ (p−1 ∗ r)= (q−1 ∗ p−1) ∗ r = (p ∗ q)−1 ∗ r := PrfEqlp∗qxz (r).

If p=PrfEqlX0 (x,y)
p′, then by Proposition 42(iii) and condition (ML4) we get PrfEqlpxy(r) := p−1 ∗

r = (p′)−1 ∗ r := PrfEqlp
′
xy(r), for every r ∈ PrfEqlX0 (x, x0).

Theorem 1. Let X̂ be a proof-relevant set, x0 ∈ X and let ̂PrfEqlx0 := (PrfEqlx00 , PrfEqlx01 ) be
the function-like family of sets over X̂ from Lemma 46. Let

∑̂
x∈XPrfEqlX0 (x, x0) be equipped with

its canonical structure of a Martin-Löf set, according to Proposition 45. Then for every (x, p) ∈∑̂
x∈XPrfEqlX0 (x, x0), we have that

(x, p)=∑̂
x∈XPrfEqlX0 (x,x0)

(
x0, reflx0

)
.
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Proof. By the definition of equality on the
∑

-set of some �̂ ∈ Fam(̂I), we have that

(x, p)=∑̂
x∈XPrfEqlX0 (x,x0)

(
x0, reflx0 )

) :⇔ x=X x0 & ∃q∈PrfEqlX0 (x,x0)
(
PrfEqlqxx0 (p)= reflx0

)
.

If (x, p) ∈ ∑̂
x∈XPrfEqlX0 (x, x0), then p ∈ PrfEqlX0 (x, x0), hence x=X x0. If we take q := p, then

PrfEqlpxx0 (p) := p−1 ∗ p= reflx0 .

Theorem 1 is a translation of the type-theoretic contractibility of the singleton type
(see Coquand 2014) into BST. If M is the judgment (or the term) expressing this contractibil-
ity (see also Petrakis 2019d), Martin-Löf ’s J-rule trivially impliesM, and it is equivalent toM and
the transport (see Coquand 2014). In BISH, we do not have the J-rule, but we have transport in
a definitional way only. As Theorem 1 indicates, a definitional form of M is provable in BST,
although there is no translation of the J-rule in BST. A map between Martin-Löf sets can generate
the family of its fibers over its codomain.

Theorem 2. Let X̂, Ŷ be Martin-Löf sets, and f̂ := (f , f1) : X̂ → Ŷ a map from X̂ to Ŷ with a
function-like first associate f1.
(i) If y ∈ Y, the pair PrfEqlf := (

PrfEqlf y0 , PrfEqlf y1
)
, where PrfEqlf y0 : X�V0 is defined by

the rule x �→ PrfEqlY0 (f (x), y),, for every x ∈ X, and

PrfEqlf y1 :
�

(x,x′)∈D(X)

�

p∈PrfEqlX0 (x,x′)
F
(
PrfEqlY0 (f (x), y), PrfEqlY0 (f (x

′), y)
)
,

PrfEqlf y1
(
(x, x′), p) := PrfEqlf y,pxx′ : PrfEqlY0 (f (x), y)→ PrfEqlY0 (f (x

′), y),

r �→ [f1(x, x′, p)]−1 ∗ r; r ∈ PrfEqlY0 (f (x), y),

is a function-like family of sets over X̂.
(ii) The pair Prfib := (Prfib0, Prfib1), where Prfib0 : Y�V0 is defined by the rule

y �→
∑̂

x∈XPrfEqlY0 (f (x), y); y ∈ Y , and

Prfib1 :
�

(y,y′)∈D(Y)

�

q∈PrfEqlY0 (y,y′)
F

(∑̂
x∈XPrfEqlY0 (f (x), y),

∑̂
x∈XPrfEql0(Yf (x), y′)

)
,

Prfiby1
(
(y, y′), q) := Prfibqyy′ :

∑̂
x∈XPrfEql0(f (x), y)→

∑̂
x∈XPrfEqlY0 (f (x), y

′),

(x, p) �→ (x, p ∗ q); (x, p) ∈
∑̂

x∈XPrfEqlY0 (f (x), y),

is a function-like family of sets over Ŷ.

Proof. (i) If r ∈ PrfEqlY0 (f (x), y), then by Proposition 42(iii) we get

PrfEql0f
y,reflx
xx′ (r) := [f1(x, x, reflx)]−1 ∗ r = [

refl
(
f (x)

)]−1 ∗ r = refl
(
f (x)

) ∗ r = r.
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If p ∈ PrfEqlX0 (x, x′) and p′ ∈ PrfEqlX0 (x′, x′′), then for every r ∈ PrfEqlY0 (f (x), y), we get

PrfEql0f
y,p′
x′x′′

(
PrfEql0f

y,p
xx′ (r)

)
= [f1(x′, x′′, p′)]−1 ∗ (

[f1(x, x′, p)]−1 ∗ r
)

= (
[f1(x′, x′′, p′)]−1 ∗ [f1(x, x′, p)]−1) ∗ r

= [f1(x, x′, p) ∗ f1(x′, x′′, p′)]−1 ∗ r
= [f1(x, x′′, p ∗ q)]−1 ∗ r

:= PrfEql0f
y,p∗p′
xx′′ (r).

If p=PrfEqlX0 (x,x′) s, and if r ∈ PrfEqlY0 (f (x), y), by the function-likeness5 of f1, we get

PrfEql0f
y,p
xx′ (r) := [f1(x, x′, p)]−1 ∗ r = [f1(x, x′, s)]−1 ∗ r := PrfEql0f

y,s
xx′(r).

(ii) First, we show that for every p, p′ ∈ PrfEqlY0 (f (x), y), we have that

p=PrfEqlY0 (f (x),y) p′ ⇒ (x, p)=∑̂
x∈XPrfEqlY0 (f (x),y) (x, p′), (1)

since

PrfEql0f
y,reflx
xx (p) := [f1(x, x, reflx)]−1 ∗ p= [reflf (x)]−1 ∗ p= reflf (x) ∗ p= p= q.

If y ∈ Y , then by (1), for every (x, p) ∈ ∑̂
x∈XPrfEqlY0 (f (x), y), we get

Prfibrefly
yy (x, p) := (

x, p ∗ refly
) =∑̂

x∈XPrfEqlY0 (f (x),y) (x, p).

If q ∈ PrfEqlY0 (y, y′ and q′ ∈ PrfEqlY0 (y′, y′′), then for every (x, p) ∈ ∑̂
x∈XPrfEqlY0 (f (x), y)

Prfibq
′
y′y′′

(
Prfibqyy′(x, p)

)
:= Prfibq

′
y′y′′(x, p ∗ q) := (x, (p ∗ q) ∗ q′)

(1)= (x, p ∗ (q ∗ q′) := Prfibq∗q
′

yy′′ (x, p).

If q=PrfEqlY0 (y,y′) s, then Prfibqyy′ = Prfibsyy′ , since for every (x, p) ∈
∑̂

x∈XPrfEqlY0 (f (x), y)

Prfibqyy′(x, p) := (x, p ∗ q) (1)= (x, p ∗ s) := Prfibsyy′(x, p).

12. Contractible Sets and Subsingletons in BST
Next follow some results on contractible sets and subsingletons in BST that translate results from
Chapters 3 and 4 of book-HoTT. According to Definition 5(iv), in BST, the truncation ||X|| of a
set X is the same totality X equipped with a new equality, while in HoTT is a higher inductive
type.

Proposition 47. If (f , g) : X =V0 Y, then (f ∗, g∗) : F(Z, X)=V0 F(Z, Y), where the operations
f ∗ : F(Z, X)� F(Z, Y) and g∗ : F(Z, Y)� F(Z, X) are defined, respectively, by the commutativity
of the following diagrams

Y

XZ

X.

Y Z

f

h

f ∗(h) g

k

g∗(k)
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Proof. Clearly, the operations f ∗ and g∗ are functions. If k ∈ F(Z, Y) and h ∈ F(Z, X), then
f ∗(g∗(k)) := f ∗(g ◦ k) := f ◦ (g ◦ k) := (f ◦ g) ◦ k := idY ◦ k := k, and g∗(f ∗(h)) := g∗(f ◦ h) := g ◦
(f ◦ h) := (g ◦ f ) ◦ h := idX ◦ h := h.

Proposition 47 is an example of a result in BST the analogue of which in HoTT is shown with
the axiom of univalence UA in The Univalent Foundations Program (2013) (the axiom FunExt can
also be used instead).

Proposition 48. If X is a set, the following are equivalent:
(i) X is contractible.
(ii) X is an inhabited subsingleton.
(iii) X =V0 111.

Proof. (i)⇒(ii) If x0 is a centre of contraction for X, then x0 inhabits X. If x, y ∈ X, then x=X x0
and y=X x0, hence x=X y.
(ii)⇒(iii) Let f : X� 111, defined by f (x) := 0, for every x ∈ X, and g : 111 : X, defined by g(0) := x0,
where x0 inhabits X. Clearly, these operations are functions, and (f , g) : X =V0 111.
(iii)⇒(i) Let f ∈ F(X, 111) and g ∈ F(111, X) such that (f , g) : X =V0 111. If x ∈ X, then x=X g(f (x)) :=
g(0) ∈ X. hence g(0) is a center of contraction for X.

Remark 49. As any set can be truncated and become a subsingleton (see Definition 5(iv)), the
previous proposition provided numerous examples of contractible sets. Namely, any inhabited set
can be turned into a contractible set through the truncation of its equality.

Proposition 50. Let� := (λ0, λ1) ∈ Fam(I).
(i) If � : �

i∈I λ0(i) is a modulus of centres of contraction for λ0, i.e., �i is a center of contraction
for λ0(i), then� ∈ ∏

i∈I λ0(i) is a center of contraction for
∏

i∈I λ0(i) and
∑

i∈I λ0(i)=V0 I.
(ii) If i0 ∈ I is a center of contraction for I, then

∑
i∈I λ0(i)=V0 λ0(i0).

Proof. (i) If i=I j, then�j =λ0(j) λij(�i), as�j is a centre of contraction for λ0(j). If� ∈ ∏
i∈I λ0(i),

then �i =λ0(i) �i, for every i ∈ I, hence �=∏
i∈I λ0(i) �. Let f : I�∑

i∈I λ0(i), defined by f (i) :=
(i,�i), for every i ∈ I. It is immediate to show that f is a function, and

(
pr�1 , f

) : ∑
i∈I λ0(i)=V0 I.

(ii) Let g : λ0(i0)�∑
i∈I λ0(i), defined by g(x) := (i0, x), for every x ∈ λ0(i0), and h : ∑

i∈I λ0(i)�
λ0(i0), defined by h(i, x) := λii0 (x), for every (i, x) ∈

∑
i∈I λ0(i). It is straightforward to show that

g, h are functions and (g, h) : ∑
i∈I λ0(i)=V0 λ0(i0).

Proposition 51. Let� := (λ0, λ1) ∈ Fam(I),� : �
i∈I λ0(i) a modulus of centers of contraction for

λ0, and X, Y sets.
(i) If h : I�∑

i∈I λ0(i) is defined by h(i) := (
i,�i

)
, for every i ∈ I, then h is a function and

(pr�1 , h) :
∑

i∈I λ0(i)=V0 I.
(ii) F

(
I,

∑
i∈I λ0(i)

) =V0 F(I, I).
(iii) If X is contractible and Y is a retract of X, then Y is contractible.

Proof. The proof of (i) is straightforward and (ii) follows from (i) and Proposition 47. For the
proof of the next theorem though, we write explicitly the witnesses of the required equality in V0,
which are the witnesses provided by the proof of Proposition 47. Let φ : F(I,∑i∈I λ0(i))� F(I, I),
defined by the rule f �→ φ(f ), where φ(f ) := pr�1 ◦ f
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I
∑

i∈I λ0(i) I I
∑

i∈I λ0(i).
f pr�1

φ(f )

g h

θ(g)

Clearly, φ is a function. Let θ : F(I, I)� F(I,
∑

i∈I λ0(i)), defined by the rule g �→ θ(g), where
θ(g) := h ◦ g, where h is defined in case (i). Clearly, θ is a function. It is straightforward to show
that (φ, θ) : F(

I,
∑

i∈I λ0(i)
) =V0 F(I, I).

(iii) Let r : X → Y and s : Y → X such that r ◦ s= idY . It is immediate to show that if x0 ∈ X is a
center of contraction for X, then r(x0) is a center of contraction for Y .

Theorem 3. Let � := (λ0, λ1) ∈ Fam(I), and let � : �
i∈I λ0(i) be a modulus of centers of con-

traction for λ0. If (φ, θ) : F
(
I,

∑
i∈I λ0(i)

) =V0 F(I, I), where φ and θ are defined in the proof of
Proposition 51(ii), then

∏
i∈I λ0(i) is a retract of fibφ(idI).

Proof. By Definition 6, we have that

fibφ(idI) :=
{
f ∈ F

(
I,

∑
i∈I
λ0(i)

) | φ(f )=F(I,I) idI
}
.

We need to find functions rφ : fibφ(idI)→ ∏
i∈I λ0(i) and sφ : ∏

i∈I λ0(i)→ fibφ(idI) such that
the following diagram commutes

∏
i∈I λ0(i) fibφ(idI)

∏
i∈I λ0(i).

sφ rφ

id∏
i∈I λ0(i)

Let the operation rφ : fibφ(idI)�
∏

i∈I λ0(i), defined by the rule f �→ rφ(f ), where

rφ(f ) :
�

i∈I
λ0(i),

[
rφ(f )

]
i := λpr�1 (f (i))i

(
pr�2

(
f (i)

))
; i ∈ I.

As φ(f ) := pr�1 ◦ f = idI , we get [φ(f )](i) := pr�1 (f (i))=I i, hence
[
rφ(f )

]
i ∈ λ0(i), for every i ∈ I.

Next we show that rφ(f ) ∈ ∏
i∈I λ0(i). If i=I j, then f (i)=∑

i∈I λ0(i) f (j), and hence

pr�1 (f (i))=I pr�1 (f (j)) & λpr�1 (f (i))pr�1 (f (j))
(
pr�2 (f (i))=λ0(pr�1 (f (j))) pr�2 (f (j)).

Therefore,

λij
([
rφ(f )

]
i
) := λij

(
λpr�1 (f (i))i

(
pr�2

(
f (i)

)))
= λpr�1 (f (i))j

(
pr�2

(
f (i)

))
= λpr�1 (f (j))j

(
λpr�1 (f (i))pr�1 (f (j))

(
pr�2 (f (i))

))
= λpr�1 (f (j))j

(
pr�2 (f (j))

)
:= [

rφ(f )
]
j.
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Next we show that rφ is a function. If f = g and i ∈ I, then f (i)=∑
i∈I λ0(i) g(i), i.e.,

pr�1 (f (i))=I pr�1 (g(i)) & λpr�1 (f (i))pr�1 (g(i))
(
pr�2 (f (i))=λ0(pr�1 (g(i))) pr�2 (g(i)).

Therefore, [
rφ(f )

]
i : = λpr�1 (f (i))i

(
pr�2

(
f (i)

))
= λpr�1 (g(i))i

(
λpr�1 (f (i))pr�1 (g(i))

(
pr�2 (f (i))

))
= λpr�1 (g(i))i

(
pr�2 (g(i))

)
:= [

rφ(g)
]
i.

Let the operation sφ : ∏
i∈I λ0(i)� fibφ(idI), defined by the rule� �→ sφ(�), where

sφ(�) : I�
∑
i∈I
λ0(i),

[
sφ(�)

]
(i) := (i,�i); i ∈ I.

First we show that sφ(�) is a function. If i=I j, then (i,�i)=∑
i∈I λ0(i) (j,�j), as the equality

�j =λ0(j) λij(�) follows from the hypothesis � ∈ ∏
i∈I λ0(i). To show sφ(�) ∈ fibφ(idI), let i ∈ I,

and then
(
φ
(
sφ(�)

)]
(i) := pr�1 (i,�i) := i. To show that sφ is a function, let �=∏

i∈I λ0(i) �
′. If

i ∈ I, then [sφ(�)](i) := (i,�i)= (i,�′i) := [sφ(�′)](i). Finally, we show the commutativity of the
initial diagram in the proof. If i ∈ I, then[

rφ
(
sφ(�)

)]
i := λ

pr�1
(
[sφ(�)](i)

)
i

(
pr�2

([
sφ(�)

]
(i)

))
:= λpr�1 (i,�i)i

(
pr�2 (i,�i)

)
:= λii(�i)
:=�i.

Theorem 3 is the translation of Theorem 4.9.4 in book-HoTT, where in the hypothesis of the
latter the universe is univalent.

Corollary 52. If � := (λ0, λ1) ∈ Fam(I) and � : �
i∈I λ0(i) is a modulus of centers of contraction

for λ0, then� is center of contraction for
∏

i∈I λ0(i).

Proof. Since (φ, θ) : F
(
I,

∑
i∈I λ0(i)

) =V0 F(I, I), by Proposition 7 the set fibφ(idI) is con-
tractible and θ(idI) := h ◦ idI := h is a center of contraction for fibφ(idI), where h is defined in
Proposition 51(i). As rφ : fibφ(idI)→ ∏

i∈I λ0(i) is a retraction, by the proof of Proposition 51(iv)
we have that

∏
i∈I λ0(i) is contractible and rφ(h) is a center of contraction for

∏
i∈I λ0(i). If i ∈ I,

then
[
rφ(h)

]
I := λpr�1 (h(i))i

(
pr�2 (h(i))

) := λii(�i) :=�i, hence rφ(h) :=�.

Corollary 52 is the translation in BST of the fact that UA implies the principle of weak function
extensionality.

Proposition 53. Let ||X|| be the truncation of X, Y , Z subsingletons, and E a set.
(i) If f ∈ F(Y , Z) and g ∈ F(Z, Y), then (f , g) : Y =V0 Z.
(ii) If X is inhabited, then ||X|| is inhabited.
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(iii) If f : X → E, there is ||f || : ||X|| → ||E||, such that ||f ||(x) := f (x), for every x ∈ X.
(iv) Y =V0 ||Y||.

Proof. (i) and (ii) follow immediately from cases (iv) and (i) of Definition 5. For the proof of (iii),
we define the operation ||f || : ||X||� ||E|| by the rule ||f ||(x) := f (x), for every x ∈ X. As ||E|| is
a subsingleton, if x ||=X || x′, then ||f ||(x) := f (x) ||=E|| f (x′) := ||f ||(x′), and ||f || is a function. For
the proof of (iv), it is straightforward to show that the operations of type Y → ||Y|| and ||Y|| →
Y , defined by the identity map rule, respectively, are functions that witness the equality Y =V0||Y||.

Corollary 54. Let� := (λ0, λ1) ∈ Fam(I).
(i) ||�|| := (||λ0||, ||λ1||) ∈ Fam(I), where ||λ0||(i) : I�V0 is defined by

||λ0||(i) := ||λ0(i)||; i ∈ I, and

||λ1||(i, j) := ||λ||ij : ||λ0(i)|| → ||λ0(j)||, ||λ||ij := ||λij||; (i, j) ∈D(I).

(ii) If λ0(i) is a subsingleton, for every i ∈ I, and� : ∏
i∈I ||λ0(i)||, then� : ∏

i∈I λ0(i).
(iii) If λ0(i) is a subsingleton, for every i ∈ I, then

∏
i∈I λ0(i) is a subsingleton.

Proof. (i) To show that ||λ||ij is well defined, we use Proposition 53(iii). To show the properties of
a family of sets over I for ||�||, we use the corresponding properties for�.
(ii) By case (i), if i=I j, then�j ∈ ||λ0(j)||. As ||λ0(j)|| is the set λ0(j), we get�j ∈ λ0(j). Since λ0(j)
is a subsingleton, we get�i)=λ0(j) λij(�i).
(iii) It follows immediately from the definition of the canonical equality on

∏
i∈I λ0(i).

13. Concluding Comments
According to Feferman (see Feferman 1979, p. 207), the formal, or internal realisability interpre-
tation of the language L(T) of a formal theory T in the language L(T′) of a formal theory T′, is an
assignment φ �→ f r φ of any formula φ of L(T) to a formula φr :⇔ f r φ in L(T′), where φr has at
most one additional free variable f . This interpretation is sound if

T � φ⇒ ∃τ∈Term(L(T′))
(
T′ � τ r φ)

,

for every formula φ of L(T). The added axiom-scheme (A−r) “to assert is to realize”

φ⇔ ∃f
(
f r φ

)
,

which expresses the equivalence of the assertion of φ with its realizability, reflects the basic tenet of
constructive reasoning that a statement is to be asserted only if it is proved. Note that in Feferman’s
refined theory with MwE, the axiom-scheme (A−r) implies the principle of dependent choice DC
and the presentation axiom! (see Feferman 1979, pp. 214–215). It is also expected that one can
show inductively that the scheme (A−r) is itself realisable in some theory S, i.e.,

∀φ∃τ
(
S� τ r [

φ⇔ ∃f
(
f r φ

)])
.

In the informal, or external realisability interpretation of L(T), one defines a relation R(f , φ)
between mathematical objects f of some sort and a formula φ. For example, Kleene defined such
a relation for f ∈N and φ a formula of arithmetic. External realisability interpretations can often
be regarded as the reading of a formal f r φ in a specific model.
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Here we described an external realizability interpretation of some part of the language of the
informal theory BISH in itself, where the corresponding realisability relation is

Prf(p, φ) :⇔ p ∈ Prf(φ).

Why one would choose to work within an informal framework? Maybe because to realise some
formula φ does not necessarily imply that φ is constructively acceptable. For example, in Feferman
(1979, pp. 207–208), Feferman defined a formal realisability interpretation of L(T0) in itself such
that the corresponding axiom scheme (A−r) implies the full axiom of choice. Moreover, even if
one works with a realisability interpretation that avoids the realisability of the full AC, it is not cer-
tain that whatever this theory realises is constructively acceptable, or faithful to some motivating
informal constructive theory like BISH. For example, the realisability of the presentation axiom
in T∗

0 , which holds also in the setoid-interpretation of Bishop sets in intensional MLTT, does not
make it necessarily constructively acceptable. In the informal level of BISH, there is no reason to
accept it.

If the main philosophical question regarding Bishop-style constructive mathematics (BCM),
in general, is “what is constructive?,” an answer provided from a formal treatment of BCM that
cannot be “captured” by BISH itself, is not necessarily the “right” answer.

In Feferman (1979, p. 177), Feferman criticises Bishop for a “certain casualness about men-
tioning the witnessing information. . . . one is looser in practice in order to keep that from getting
too heavy. Practice then looks very much like everyday analysis and it is hard to see what the
difference is unless one takes the official definitions seriously.” In our opinion, Feferman is right
on spotting this casualness in Bishop’s account, which is though on purpose, as Bishop’s crucial
comment in Bishop (1970, p. 67) shows. One could also say that, if the difference between con-
structive analysis and everyday, classical analysis is difficult to see, then this is an indication of
the success of Bishop’s way of writing. What we find that is missing when some official definitions
are not taken seriously is the proof-relevant character of Bishop’s analysis and its proximity to
proof-relevant mathematical analysis, like analysis within MLTT. An important consequence of
revealing the witnessing information is the avoidance of choice.

The use of the axiom of choice in constructivemathematics is an indication ofmissing data.
As we have seen already in many cases, and also in Example 9.6, the inclusion of witnessing data,
like a modulus of some sort, facilitates the avoidance of choice in the corresponding constructive
proof. The standard view regarding the use of choice in BISH is that some weak form of choice,
countable choice, or dependent choice is necessary. This is certainly true when the witnessing
data are ignored. Richman criticised the use of countable choice in BISH (see Richman 2001,
and also Schuster 2004). The revealing of witnessing data or not in BISH “oscillates” between the
two extremes, regarding proof-relevance, which are also the two extremes, regarding choice. The
first extreme is classical mathematics based on ZFC, where the complete lack of proof-relevance
is combined with the use of a powerful choice axiom, and the second extreme is type-theoretic
mathematics based on intensionalMLTT, where proof-relevance is “everywhere” and the axiom of
choice,i.e., the distributivity of

∑
over

∏
, is provable!When the witnessing data are ignored, then

some form of weak choice is necessary for BISH, while when the witnessing data are highlighted,
then choice is avoided. A similar phenomenon occurs in univalent type theory. The univalent
version of the axiom of choice, in the formulation of which truncation is involved, is not provable.
And what truncation does is to suppress the evidence.

Next follow some topics related to the proof-relevant character of BISH that need to be
addressed in the future.

(1) A BHK-interpretation of a negated formula ¬φ is missing from Definitions 34 and 35.
As negated formulas are rare in BISH (see Petrakis 2022b; Petrakis and Wessel toappear),
we find safer at the moment to exclude them from our account of a BHK-interpretation
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of BISH. If Prf(φ) is given, and we apply the rule of implication for ¬φ :⇔ φ⇒ ⊥, then
Prf(¬φ) := F

(
Prf(φ), Prf(⊥)

)
. If we accept the clause of the naive BHK-interpretation

that ⊥ has no witness, then we need to state Prf(⊥) := ∅, and then we get Prf(¬φ) :=
F
(
Prf(φ), ∅)). As the use of the empty (sub) set6 in BISH is problematic (see Bishop and

Bridges 1985, p. 69), so is the status of the object F
(
Prf(φ), ∅)).

(2) Through the notion of set with a proof-relevant equality, Voevodsky’s notion of 0-set can be
formulated in BST. We need the notion of Martin-Löf set with an inhabited proof-relevant
structure to translate some basic facts fromVoevodsky’s theory of 0-sets in BST. A first step
in this direction is taken in Petrakis (2020c, Section 5.6).

(3) Further results from book-HoTT can be translated in BISH through BST. For example,
Lemmata 4.8.1 and 4.8.2 in book-HoTT take the following form in BST. If �̂ := (λ0, λ1) ∈
Fam(̂I), where Î is a Martin-Löf set, then, for every i ∈ I, we have that fibpr�̂1 (i)=V0 λ0(i),
while if f̂ : X̂ → Ŷ , then X =V0

∑̂
y∈Yfibf (y). Following the book-HoTT, we can use the

translation of the “left universal property of identity types” in BST, namely the equality( ∑
j∈I

∑
p∈PrfEqlI0(j,i)

λ0(j)
)

=V0 λ0(i).

(4) Martin-Löf sets need to be studied further.7 For example, families of Martin-Löf set over
some Martin-Löf set Î can be studied within BST.

As we have tried to show in this paper, the proof-relevance of BISH is not a priori part of it, but
it can be revealed a posteriori. In MLTT and its univalent extensions though, proof-relevance is
a priori part of them, and many facts are generated or hold automatically by the presence of the
J-rule, or the univalence axiom of Voevodsky.8 Through BST interesting “parts” of type-theoretic
concepts and results can be translated to BISH in a “definitional,” nonaxiomatic way.
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Notes
1 A complemented subset of a set X is a pair of subsets (A1,A0) of X such that every element ofA1 is apart from every element
of A0 with respect to a given apartness relation (positively defined inequality) on X (see Petrakis 2020c, Section 2.8).
2 As it was done e.g., in the the formulation of category theory in homotopy type theory (Chapter 9 in The Univalent
Foundations Program 2013).
3 In Petrakis (2020c, Chapter 4), the theory of set-indexed families of subsets of a set is developed, and the “internal” concepts
of union and intersection of such a family correspond to the “external” concepts the

∑
- and

∏
-set of a set-indexed family of

sets.
4 For the definition of a partial function and their set-indexed families, we refer to Petrakis (2020c). We avoid to include
these definitions here, in order to save some space.
5 The function-likeness of f1 is also needed in the proof of condition (iii) of Definition 44.
6 Notice that Bishop never defined the empty set, only the empty subset of a set X.
7 The exact relation of Martin-Löf sets to setoids is also a topic of further investigation, suggested by one of the anonymous
referees. Notice while the presentation axiom holds for setoids, it is not expected to hold for Martin-Löf sets, as the proof
of the presentation axiom for setoids relies on the J-rule and its consequence that the equality of a type is the least reflexive
relation on it (see also Note 1.3.2 in Petrakis 2020c).
8 As it was pointed out to me by Coquand, this feature of MLTT and HoTT was criticised by Deligne in his talk at the
memorial meeting of Voevodsky.
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