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Abstract
For an infinity of number rings we express stable motivic invariants in terms of topological data determined
by the complex numbers, the real numbers and finite fields. We use this to extend Morel’s identification of the
endomorphism ring of the motivic sphere with the Grothendieck–Witt ring of quadratic forms to deeper base
schemes.
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1. Introduction

The mathematical framework for motivic homotopy theory has been established over the last 25 years
[47]. An interesting aspect witnessed by the complex and real numbers, C, R, is that Betti realisation
functors provide mutual beneficial connections between the motivic theory and the corresponding
classical and 𝐶2-equivariant stable homotopy theories [46], [29], [33], [14], [26], [39], [40]. We amplify
this philosophy by extending it to deeper base schemes of arithmetic interest. This allows us to understand
the fabric of the cellular part of the stable motivic homotopy category of Z[1/2] in terms of C, R and F3
– the field with three elements. If ℓ is a regular prime, a number theoretic notion introduced by Kummer
in 1850 to prove certain cases of Fermat’s last theorem [73], we show an analogous result for the ring
Z[1/ℓ].
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For context, recall that a scheme X – for example, an affine scheme Spec(𝐴) – has an associated
pro-space 𝑋�́�𝑡 , denoted by 𝐴�́�𝑡 in the affine case, called the étale homotopy type of X representing the
étale cohomology of X with coefficients in local systems; see [3] and [27] for original accounts and [38,
§5] for a modern definition. For specific schemes, 𝑋�́�𝑡 admits an explicit description after some further
localisation; see the work of Dwyer–Friedlander in [23, 24]. For example, they established the pushout
square

C∧�́�𝑡 −−−−−−→ R∧�́�𝑡⏐⏐� ⏐⏐�
(F3)

∧
�́�𝑡 −−−−−−→ Z[1/2]∧�́�𝑡

(1.1)

Here the completion (−)∧ takes into account the cohomology of the local coefficient systems Z/2𝑛 (𝑚).

Remark 1.1. If k is a field, then 𝑘 �́�𝑡 is a pro-space of type 𝐾 (𝜋, 1), where 𝜋 is the Galois group over
k of the separable closure of k. If S is a henselian local ring with residue class field k, then 𝑘 �́�𝑡 → 𝑆�́�𝑡
is an equivalence (by Galois descent, this reduces to the case S strictly henselian local, which is clear).
For instance, C�́�𝑡 � ∗ is contractible, R�́�𝑡 � RP∞ is equivalent to the classifying space of the group
𝐶2 of order 2 and (F𝑝)�́�𝑡 � (Z𝑝)�́�𝑡 is equivalent to the profinite completion of a circle. That is, up to
completion, (1.1) can be expressed more suggestively as Z[1/2]�́�𝑡 � 𝑆1 ∨ RP∞. For our generalisation
to stable motivic homotopy invariants, it will be essential to keep track of the fields and not just their
étale homotopy types.

The presentation of Z[1/2]∧�́�𝑡 has powerful consequences; for example, taking the 2-adic étale
K-theory of (1.1) yields a pullback square. Combined with the Quillen–Lichtenbaum conjecture for
the 2-primary algebraic K-theory of Z[1/2] (see [17], [74], [58], [34]), one obtains the pullback square

𝐾 (Z[1/2])∧2 −−−−−−→ 𝐾 (R)∧2⏐⏐� ⏐⏐�
𝐾 (F3)

∧
2 −−−−−−→ 𝐾 (C)∧2

(1.2)

We show that replacing algebraic K-theory in (1.2) by an arbitrary cellular motivic spectrum over
Z[1/2] still yields a pullback square. Let SH(𝑋) denote the motivic stable homotopy category of X;
see [42], [22], [54, §5], [11, §4.1]. We write SH(𝑋)cell ⊂ SH(𝑋) for the full subcategory of cellular
motivic spectra [20]; that is, the localising subcategory generated by the bigraded spheres 𝑆𝑝,𝑞 for all
integers 𝑝, 𝑞 ∈ Z. For simplicity we state a special case of Theorem 4.7; see Example 4.10.

Theorem 1.2. For every E ∈ SH(Z[1/2])cell there is a pullback square

E(Z[1/2])∧2 −−−−−−→ E(R)∧2⏐⏐� ⏐⏐�
E(F3)

∧
2 −−−−−−→ E(C)∧2

(1.3)

Here, for 𝑋 ∈ SchZ[1/2] , we denote by E(𝑋) the (ordinary) spectrum of maps from 1𝑋 to 𝑝∗E in SH(𝑋),
where 1𝑋 ∈ SH(𝑋) denotes the unit object and 𝑝 : 𝑋 → Z[1/2] is the structure map.

Example 1.3. The motivic spectra representing algebraic K-theory, KGL, hermitian K-theory, KO,
Witt-theory, KW, motivic cohomology or higher Chow groups, HZ, and algebraic cobordism, MGL,
are cellular (at least after localisation at 2) by respectively [20, Theorem 6.2], [62, Theorem 1], [36,
Proposition 8.1] and [69, Corollary 10.4], [20, Theorem 6.4]. We refer to [10, Proposition 8.12] for
cellularity of the corresponding (very effective or connective) covers kgl, ko, kw, in the sense of [70]
and Milnor-Witt motivic cohomology HZ̃, in the sense of [8], [6].
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In the case of E = KGL, Theorem 1.2 recovers the stable version of [34, Theorem 1.1], and for
E = KO it recovers [15, Theorem 1.1] (in fact, we extend these results to arbitrary 2-regular number
fields, not necessarily totally real). The squares for KW, HZ, HZ̃, MGL, kgl, ko, kw appear to be new.

A striking application of Theorem 1.2 is that it relates the universal motivic invariants over Z[1/2]
to the same invariants over C, R and F3. That is, applying (1.3) to the motivic sphere E = 1Z[1/2] enables
computations of the stable motivic homotopy groups of Z[1/2]. We identify, up to odd-primary torsion,
the endomorphism ring of 1Z[1/2] with the Grothendieck–Witt ring of quadratic forms of the Dedekind
domain Z[1/2] defined in [53, Chapter IV, §3]. This extends Morel’s fundamental computation of
𝜋0,0 (1) over fields [54, §6] to an arithmetic situation.

Theorem 1.4. The unit map 1Z[1/2] → KOZ[1/2] induces an isomorphism

𝜋0,0 (1Z[1/2] ) ⊗ Z(2) � GW(Z[1/2]) ⊗ Z(2) .

Remark 1.5. The étale homotopy types of various other rings and applications to algebraic K-theory
and group homology of general linear groups were worked out in [23], [24], [57], [34]. We show similar
generalisations of (1.3) with Z[1/2] replaced by O𝐹 [1/2], for F any 2-regular number field, or by
Z[1/ℓ], Z[1/ℓ, 𝜁ℓ], where ℓ is an odd regular prime and 𝜁ℓ is a primitive ℓth root of unity; to achieve
this, we slightly alter the other terms in (1.3). See Theorems 4.7, 4.11, 4.14, 5.2 for precise statements.

Another application, which will be explored elsewhere, is the spherical Quillen–Lichtenbaum prop-
erty saying the canonical map from stable motivic homotopy groups to stable étale motivic homotopy
groups is an isomorphism in certain degrees. Slice completeness is an essential input for showing the
spherical property; we deduce this for base schemes such as Z[1/2] in Proposition 11.

As a final comment, we expect that most of the applications we establish hold over more general
base schemes, where convenient reductions to small fields are not possible. The proofs will require
significantly different ideas.

Organisation

In Section 2 we give proofs for some more or less standard facts about nilpotent completions in stable
∞-categories with t-structures. While these results are relatively straightforward generalisations of
Bousfield’s pioneering work [18], we could not locate a reference in the required generality. These
nilpotent completions will be our primary tool throughout the rest of the article. In Section 3 we prove a
variant of Gabber rigidity. We show that, for example, if 𝐸 ∈ SH(𝑋)cell where X is essentially smooth
over a Dedekind scheme, then 𝐸 (𝑋ℎ

𝑥 )
∧
ℓ � 𝐸 (𝑥)∧ℓ for any point 𝑥 ∈ 𝑋 such that ℓ is invertible in 𝑘 (𝑥).

Here 𝑋ℎ
𝑥 denotes the henselisation of X along x. Our principal results are shown in Section 4. We

establish a general method for exhibiting squares as above and provide a criterion for cartesianess in
terms of étale and real étale cohomology; see Proposition 7. Next we verify this criterion for regular
number rings, reducing essentially to global class field theory – which is also how Dwyer–Friedlander
established (1.1). In Section 5 we discuss some applications, including a proof of Theorem 1.4.

Notation and conventions

We freely use the language of (stable) infinity categories, as set out in [48, 49]. Given a (stable)
∞-category C and objects 𝑐, 𝑑 ∈ C, we denote by Map(𝑐, 𝑑) = MapC(𝑐, 𝑑) (respectively map(𝑐, 𝑑) =
mapC(𝑐, 𝑑)) the mapping space (respectively mapping spectrum). Given a symmetric monoidal category
C, we denote the unit object by 1 = 1C. We assume familiarity with the motivic stable category SH(𝑆);
see, for example, [11, §4.1]. We write Σ𝑝,𝑞 = Σ𝑝−𝑞 ∧ G

∧𝑞
𝑚 for the bigraded suspension functor and

𝑆𝑝,𝑞 = Σ𝑝,𝑞1 for the bigraded spheres.
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2. Nilpotent completions

We axiomatise some well-known facts about nilpotent completions in presentably symmetric monoidal
stable ∞-categories with a t-structure. Our arguments are straightforward generalisations of [18] and
[50]. Theorems 2.1 and 2.2 are the main results in this section.

2.1. Overview

Throughout we let C be a presentably symmetric monoidal∞-category (i.e., the tensor product preserves
colimits in each variable separately) provided with a t-structure which is compatible with the symmetric
monoidal structure (i.e., C≥0 ⊗ C≥0 ⊂ C≥0) and weakly left complete, by which we mean that for 𝑋 ∈ C
we have 𝑋 � lim𝑛 𝑋≤𝑛. Given 𝐸 ∈ CAlg(C) and 𝑋 ∈ C, recall [51, Construction 2.7] the standard
cosimplicial resolution (or cobar construction)

Δ+ → C, [𝑛] ↦→ 𝑋 ⊗ 𝐸 ⊗𝑛+1

whose limit is (for us by definition) the E-nilpotent completion 𝑋∧
𝐸 .

We call 𝑋 ∈ C bounded below if 𝑋 ∈ ∪𝑛C≥𝑛. Recall that 𝑅 ∈ CAlg(C♥) is called idempotent if the
multiplication map 𝑅 ⊗♥ 𝑅 → 𝑅 ∈ C♥ is an equivalence.

Theorem 2.1. Let C be weakly left complete, 𝐸 ∈ CAlg(C≥0) and 𝑋 ∈ C. Suppose that 𝜋0𝐸 ∈ CAlg(C♥)
is idempotent and X is bounded below. Then the canonical map

𝑋∧
𝐸 → 𝑋∧

𝜋0𝐸

is an equivalence.

One way of producing idempotent algebras is by taking quotients of the unit. Given 𝐿1, . . . , 𝐿𝑛 ∈ C≥0
and maps 𝑥𝑖 : 𝐿𝑖 → 1, we set

𝑋/(𝑥𝑚1
1 , 𝑥𝑚2

2 , . . . , 𝑥𝑚𝑛
𝑛 ) = 𝑋 ⊗ cof(𝑥⊗𝑚𝑛

𝑛 : 𝐿⊗𝑚𝑛
𝑛 → 1) ⊗ · · · ⊗ cof (𝑥⊗𝑚1

1 : 𝐿⊗𝑚1
1 → 1).

The object 𝜋0 (1/(𝑥1, . . . , 𝑥𝑛)) ∈ CAlg(C♥) is idempotent. For varying m, the 1/𝑥𝑚𝑖 s form an inverse
system indexed on N in an evident way; by taking tensor products, the objects 𝑋/(𝑥𝑚1

1 , . . . , 𝑥𝑚𝑛
𝑛 ) form

an N𝑛-indexed inverse system. We define the x-completion of X as the limit

𝑋∧
𝑥1 ,...,𝑥𝑛 := lim

𝑚1 ,...,𝑚𝑛

𝑋/(𝑥𝑚1
1 , . . . , 𝑥𝑚𝑛

𝑛 ).

Theorem 2.2. Suppose each 𝐿𝑖 ∈ C≥0 is strongly dualisable with dual 𝐷𝐿𝑖 ∈ C≥0. If 𝑋 ∈ C is bounded
below and C is weakly left complete, then there is a canonical equivalence

𝑋∧
𝜋0 (1/(𝑥1 ,...,𝑥𝑛))

� 𝑋∧
𝑥1 ,...,𝑥𝑛 .

To apply Theorem 2.2 in motivic stable homotopy theory we consider, for a scheme S, the homotopy
t-structure on SH(𝑆); see, for example, [11, §B], [66, §1].

Theorem 2.3. Let S be a noetherian scheme of finite Krull dimension and suppose 𝑋 ∈ SH(𝑆) is
bounded below.

1. There is an equivalence 𝑋∧
MGL � 𝑋∧

𝜂 .
2. If 1/ℓ ∈ 𝑆, then there is an equivalence 𝑋∧

𝐻Fℓ
� 𝑋∧

𝜂,ℓ .
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Proof. The homotopy t-structure is weakly left complete by [66, Corollary 3.8].
(1) Owing to [36, Theorem 3.8, Corollary 3.9] we have MGL ∈ SH(𝑆)≥0 and 𝜋0 (MGL) � 𝜋0 (1/𝜂).
(2) We need to prove that HFℓ ∈ SH(𝑆)≥0 and 𝜋0 (HFℓ ) � 𝜋0 (1/(𝜂, ℓ)). Since 𝑥𝑖 ∈ 𝜋2𝑖,𝑖MGL and

Σ2𝑖,𝑖MGL = Σ𝑖G∧𝑖
𝑚 ∧ MGL ∈ SH(𝑆)≥𝑖 ⊂ SH(𝑆)>0, both of these claims follow from the Hopkins–

Morel isomorphism

HFℓ � MGL/(ℓ, 𝑥1, 𝑥2, . . . )

shown in [69, Theorem 10.3].1 �

Remark 2.4. Theorem 2.3 implies that a map 𝛼 : 𝐸 → 𝐹 ∈ SH(𝑆)≥0 is an (𝜂, ℓ)-adic equivalence if
and only if 𝛼 ∧ HFℓ is an equivalence, which is also easily seen by considering homotopy objects. This
weaker statement, however, cannot be used as a replacement for Theorem 2.3 in this work.

2.2. Proofs

Recall that C is a presentably symmetric monoidal ∞-category equipped with a compatible t-structure.

Definition 1.

1. Let 𝐸 ∈ CAlg(C). Then 𝑋 ∈ C is E-nilpotent if it lies in the thick subcategory generated by objects
of the form 𝐸 ⊗ 𝑌 for 𝑌 ∈ C.

2. Let 𝑅 ∈ CAlg(C♥) be idempotent. Then 𝐹 ∈ C♥ is strongly R-nilpotent if F admits a finite filtration
whose subquotients are R-modules.2 Moreover, 𝑋 ∈ C is strongly R-nilpotent if it is bounded in the
t-structure and all homotopy objects are strongly R-nilpotent.

Example 2.5. If 𝑋 ∈ C is an E-module in the homotopy category, then it is a summand of 𝑋 ⊗ 𝐸 and
thus X is E-nilpotent.

Lemma 2.6. Suppose 𝑅 ∈ CAlg(C♥) is idempotent.

1. Let

𝐴 → 𝐵 → 𝐶 → 𝐷 → 𝐸 ∈ C♥

be an exact sequence. If 𝐴, 𝐵, 𝐷, 𝐸 are strongly R-nilpotent, then so is C.
2. An object 𝑋 ∈ C is strongly R-nilpotent if and only if it is R-nilpotent and bounded in the t-structure.

Proof. (1) The proofs of [50, Lemmas 7.2.7–7.2.9] apply unchanged. (2) Example 2.5 implies that
strongly R-nilpotent objects are R-nilpotent, being finite extensions of homotopy R-modules. It thus
suffices to show that if X is R-nilpotent, then its homotopy objects 𝜋C

𝑖 (𝑋) ∈ C♥ are strongly R-nilpotent.
This is clear for free R-modules, and the property is preserved by taking summands and shifts and
cofibres by (1). The result follows. �

Definition 2.

1. If 𝐸 ∈ CAlg(C), 𝑋 ∈ C, a tower of the form

𝑋 → · · · → 𝑋2 → 𝑋1 → 𝑋0

is called an E-nilpotent resolution if each 𝑋𝑖 is E-nilpotent and for every E-nilpotent 𝑌 ∈ C, we have

colim
𝑛

[𝑋𝑛, 𝑌 ]
�
−→ [𝑋,𝑌 ] .

1This reference assumes S noetherian, but since the equivalence exists over Z[1/ℓ ] it persists after pullback to S.
2Note that R being idempotent is a property, not additional data.

https://doi.org/10.1017/fms.2021.76 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.76


6 Tom Bachmann and Paul Arne Østvær

2. If 𝑅 ∈ CAlg(C♥) is idempotent and 𝑋 ∈ C, a tower of the form

𝑋 → · · · → 𝑋2 → 𝑋1 → 𝑋0

is called a strongly R-nilpotent resolution if each 𝑋𝑖 is strongly R-nilpotent and for every strongly
R-nilpotent 𝑌 ∈ C, we have

colim
𝑛

[𝑋𝑛, 𝑌 ]
�
−→ [𝑋,𝑌 ] .

Proposition 3. For 𝑋,𝑌 ∈ C and 𝑋•, 𝑌•𝐸-nilpotent (respectively strongly R-nilpotent) resolutions,
we have

MapPro(C) (𝑋•, 𝑌•) � lim
𝑛

Map(𝑋,𝑌•).

Thus, any map 𝑋 → 𝑌 induces a canonical morphism of towers 𝑋• → 𝑌•. In particular, if 𝑋 � 𝑌 , then
𝑋• � 𝑌• ∈ Pro(C) and lim𝑛 𝑋𝑛 � lim𝑛 𝑌𝑛.

Proof. Essentially, by definition we have

Map(𝑋•, 𝑌•) � lim
𝑛

colim
𝑚

Map(𝑋𝑚, 𝑌𝑛).

The colimit is equivalent to Map(𝑋,𝑌𝑛) by the definition of a resolution. �

Lemma 2.7. Let 𝐸 ∈ CAlg(C) and 𝑋 ∈ C.

1. The tower of partial totalisations of the standard cosimplicial objects 𝑋 ⊗ 𝐸 ⊗• is an E-nilpotent
resolution of X.

2. Suppose that 𝐸 ∈ C≥0 and 𝜋0𝐸 is idempotent. Then if 𝑋 → 𝑋• is any E-nilpotent resolution by
bounded below objects (e.g., if X is bounded below, the one arising from (1)), then 𝑋 → 𝜏≤•𝑋• is a
strongly 𝜋0 (𝐸)-nilpotent resolution.

Proof. (1) Since partial totalisations are finite limits, they commute with ⊗𝑋 , by stability, and are thus
given by 𝑋𝑖 = 𝑋 ⊗ cof (𝐼⊗𝑖 → 1), where 𝐼 = fib(1 → 𝐸), see [51, Proposition 2.14]. In the notation
of loc. cit. we get cof (𝑋𝑖 → 𝑋𝑖−1) � Σcof(𝑇𝑖 (𝐸, 𝑋) → 𝑇𝑖−1 (𝐸, 𝑋)) and 𝑋0 = 0. This implies 𝑋𝑖 is
E-nilpotent by [51, Proposition 2.5(1)]. To conclude, it suffices to prove that if Y is E-nilpotent, then
colim𝑖 map(𝑋𝑖 , 𝑌 ) � map(𝑋,𝑌 ). The class of objects Y satisfying the latter equivalence is thick, so
we may assume that Y is an E-module. We are reduced to proving that colim𝑖 map(𝐼⊗𝑖 ⊗ 𝑋,𝑌 ) = 0.
But this is a summand of colim𝑖 map(𝐼⊗𝑖 ⊗ 𝑋 ⊗ 𝐸,𝑌 ), Y being an E-module, and the transition maps
𝐼 ⊗𝑖+1 ⊗ 𝐸 → 𝐼 ⊗𝑖 ⊗ 𝐸 are null by [51, Proposition 2.5(2)], so the colimit vanishes as desired.

(2) We first show that each 𝜏≤𝑛𝑋𝑛 is strongly R-nilpotent and, more generally, that if Y is E-nilpotent,
then each 𝜋𝑖 (𝑌 ) is strongly R-nilpotent. By Lemma 2.6(1) we may assume Y is a (free) E-module; in this
case, each 𝜋𝑖 (𝑌 ) is a 𝜋0 (𝐸)-module. Suppose 𝑌 ∈ C is strongly 𝜋0 (𝐸)-nilpotent. Then Y is E-nilpotent
since any 𝜋0 (𝐸)-module is an E-module. Finally, we have

colim
𝑛

[𝜏≤𝑛𝑋𝑛, 𝑌 ] � colim
𝑛

[𝑋𝑛, 𝑌 ] � [𝑋,𝑌 ] .

Here the first equivalence holds since Y is bounded above and the second because Y is E-nilpotent. �

Next we prove that the E-nilpotent completion only depends on 𝜋0 (𝐸).

Proof of Theorem 2.1. For 𝐸 ∈ CAlg(C≥0) and 𝑋 ∈ C, denote by 𝑅𝑛 (𝐸, 𝑋) the nth partial totalisation
of 𝑋 ⊗ 𝐸 ⊗•, so that 𝑋 → 𝑅•(𝐸, 𝑋) is a tower with limit 𝑋 → 𝑋∧

𝐸 . By left completeness and cofinality
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we have

𝑋∧
𝐸 � lim

𝑚,𝑛
𝜏≤𝑚𝑅𝑛 (𝑋, 𝐸) � lim

𝑛
𝜏≤𝑛𝑅𝑛 (𝑋, 𝐸).

By Lemma 2.7, the right-hand side is the limit of a strongly 𝜋0 (𝐸)-nilpotent resolution, which by
Proposition 3 only depends on X and 𝜋0 (𝐸). �

Remark 2.8. The proof also verifies that any strongly 𝜋0 (𝐸)-nilpotent resolution of X has limit 𝑋∧
𝜋0𝐸

.

We now turn to the study of x-completions.

Lemma 2.9. Let 𝐿1, . . . , 𝐿𝑛 ∈ C be strongly dualisable and 𝑥𝑖 : 𝐿𝑖 → 1. Let 𝑌 ∈ C and suppose that,
for every i, the map

𝑌 ⊗ 𝐿𝑖
𝑥𝑖
−→ 𝑌

is null. Then there is an equivalence

colim
𝑚1 ,...,𝑚𝑛

map(𝑋/(𝑥𝑚1
1 , . . . , 𝑥𝑚𝑛

𝑛 ), 𝑌 ) � map(𝑋,𝑌 ).

Proof. As a first observation, note that the maps 𝑌 ⊗ 𝐿𝑖
𝑥𝑖
−→ 𝑌 and 𝑌

𝐷𝑥𝑖
−−−→ 𝑌 ⊗ 𝐷𝐿𝑖 correspond under

the equivalence Map(𝑌 ⊗ 𝐿𝑖 , 𝑌 ) � Map(𝑌,𝑌 ⊗ 𝐷 (𝐿𝑖)). It follows that 𝐷𝑥𝑖 is null.
First consider the case 𝑛 = 1. By definition we have fib(𝑋 → 𝑋/𝑥𝑚) � 𝑋 ⊗ 𝐿⊗𝑚. Hence, it suffices

to prove colim𝑚 map(𝑋 ⊗ 𝐿⊗𝑚, 𝑌 ) = 0. This term can be identified with colim𝑚 map(𝑋, (𝐷𝐿)⊗𝑚 ⊗𝑌 ),
and the transition maps in this system are null by our first observation. In the general case, we note the
equivalence

𝑋/(𝑥𝑚1
1 , . . . , 𝑥𝑚𝑛

𝑛 ) � (𝑋/𝑥𝑚1
1 )/(𝑥𝑚2

2 , . . . , 𝑥𝑚𝑛
𝑛 ).

Hence, we get

colim
𝑚1 ,...,𝑚𝑛

map(𝑋/(𝑥𝑚1
1 , . . . , 𝑥𝑚𝑛

𝑛 ), 𝑌 ) � colim
𝑚1

colim
𝑚2 ,...,𝑚𝑛

map((𝑋/𝑥𝑚1
1 )/(𝑥𝑚2

2 , . . . , 𝑥𝑚𝑛
𝑛 ), 𝑌 )

� colim
𝑚1

map(𝑋/𝑥𝑚1
1 , 𝑌 )

� map(𝑋,𝑌 ).

The first equivalence holds since colimits commute and the other two hold by induction. �

Lemma 2.10. Suppose 𝐿 ∈ C≥0 is strongly dualisable with strong dual 𝐷𝐿 ∈ C≥0. Then, for all 𝑋 ∈ C,
there are equivalences

𝜋𝑖 (𝑋 ⊗ 𝐿) � 𝜋𝑖 (𝑋) ⊗ 𝐿 � 𝜋𝑖 (𝑋) ⊗
♥ 𝜋0 (𝐿).

Proof. By assumption we have C≥0 ⊗ 𝐿 ⊂ C≥0. The same holds for 𝐷𝐿, which implies C≤0 ⊗ 𝐿 ⊂ C≤0.
In other words, ⊗𝐿 : C → C is t-exact and hence 𝜋𝑖 (𝑋 ⊗ 𝐿) � 𝜋𝑖 (𝑋) ⊗ 𝐿. Being in the heart C♥, the
latter tensor product is equivalent to 𝜋𝑖 (𝑋) ⊗

♥ 𝜋0 (𝐿). �

Let us quickly verify that 𝜋0 (1/(𝑥1, . . . , 𝑥𝑛)) is indeed an idempotent algebra in C♥.

Lemma 2.11. Let 𝐿1, . . . , 𝐿𝑛 ∈ C≥0 and 𝑥𝑖 : 𝐿𝑖 → 1. Then 𝑅 = 𝜋0 (1/(𝑥1, . . . , 𝑥𝑛)) defines an
idempotent object of CAlg(C♥) and the multiplication maps 𝜋0 (𝐿𝑖) ⊗

♥ 𝑅
𝑥𝑖
−→ 𝑅 are null.
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Proof. Recall that idempotent commutative algebras in C♥ are the same as maps 𝜋0 (1) → 𝐴 ∈ C♥ such
that the induced map 𝐴 → 𝐴 ⊗♥ 𝐴 is an isomorphism [49, Proposition 4.8.2.9]. Note that

𝜋0 (1/(𝑥1, . . . , 𝑥𝑛)) � 𝜋0 (𝜋0 (1/(𝑥1, . . . , 𝑥𝑛−1))/𝑥𝑛).

More generally, let us prove that if 𝜋0 (1) → 𝐴 ∈ C♥ is an idempotent algebra and 𝐿 ∈ C≥0, 𝑥 :
𝐿 → 1, then 𝜋0 (𝐴/𝑥) is also an idempotent algebra on which multiplication by x is null. Consider the
commutative diagram of cofibre sequences

𝐿 ⊗ 𝐴 ⊗ 𝐴/𝑥
𝑒

−−−−−−→ 𝐴 ⊗ 𝐴/𝑥
𝑢

−−−−−−→ 𝐴/𝑥 ⊗ 𝐴/𝑥

𝑑

�⏐⏐ 𝑏

�⏐⏐
�⏐⏐

𝐿 ⊗ 𝐴 ⊗ 𝐴
𝑐

−−−−−−→ 𝐴 ⊗ 𝐴
𝑎

−−−−−−→ 𝐴/𝑥 ⊗ 𝐴

Here c and e ‘multiply L into the left factor A’ and all of the other maps are the canonical projections. Since
A is idempotent, 𝜋0 (𝐴⊗𝐴) � 𝐴 and 𝜋0 (𝐴⊗𝐴/𝑥) � 𝜋0 (𝐴/𝑥) � 𝜋0 (𝐴/𝑥⊗𝐴). Under these identifications
we have 𝜋0 (𝑎) = 𝜋0 (𝑏) and so 𝜋0 (𝑒𝑑) = 𝜋0 (𝑏𝑐) = 𝜋0 (𝑎𝑐) = 0. Since 𝜋0 (𝑑) is an epi we deduce
𝜋0 (𝑒) = 0, and hence 𝜋0 (𝑢) is an isomorphism. This concludes the proof since, under our identifications,
𝜋0 (𝑒) is multiplication by x on 𝜋0 (𝐴/𝑥) and 𝜋0 (𝑢) is 𝜋0 (𝐴/𝑥) → 𝜋0 (𝐴/𝑥) ⊗

♥ 𝜋0 (𝐴/𝑥). �

We can now identify x-completions as E-nilpotent completions for an appropriate E.

Proof of Theorem 2.2. Lemma 2.11 shows 𝑅𝑛 = 𝜋0 (1/(𝑥1, . . . , 𝑥𝑛)) is idempotent.
Step 1: The map 𝑅𝑛 ⊗ 𝐿𝑖

𝑥𝑖
−→ 𝑅𝑛 is null. Indeed, by Lemma 2.10, we have 𝑅𝑛 ⊗ 𝐿𝑖 � 𝑅𝑛 ⊗

♥ 𝜋0 (𝐿𝑖),
and so this follows from Lemma 2.11.

Step 2: We show the homotopy objects of 𝑋/(𝑥𝑒1
1 , . . . , 𝑥𝑒𝑛𝑛 ) are strongly 𝑅𝑛-nilpotent for all 𝑒𝑖 ≥ 1.

By an induction argument, using the octahedral axiom, 𝑋/𝑥𝑚 is a finite extension of copies of 𝑋/𝑥.
Hence, each 𝑋/(𝑥𝑒1

1 , . . . , 𝑥𝑒𝑛𝑛 ) is a finite extension of copies of 𝑋/(𝑥1, . . . , 𝑥𝑛); thus, we may assume
𝑒𝑖 = 1. By induction on n and Lemma 2.10, together with Lemma 2.6(1), it suffices to show that if
𝑀 ∈ C♥ is 𝑅𝑖-nilpotent, then both the kernel and cokernel of

𝑀 ⊗♥ 𝜋0 (𝐿𝑖+1)
𝑥𝑖+1
−−−→ 𝑀

are 𝑅𝑖+1-nilpotent. The proof given in [50, Lemma 7.2.10] goes through unchanged in our setting.
Step 3: We show that

{𝜏≤𝑚𝑋/(𝑥𝑒1
1 , . . . , 𝑥𝑒𝑛𝑛 )}𝑒1 ,...,𝑒𝑛;𝑚

is a strongly 𝑅𝑛-nilpotent resolution of X. Since we assume X is connected, step 2 shows

𝜏≤𝑚𝑋/(𝑥𝑒1
1 , . . . , 𝑥𝑒𝑛𝑛 )

is bounded with strongly 𝑅𝑛-nilpotent homotopy objects. Owing to Lemma 2.6(2), it is in fact strongly
𝑅𝑛-nilpotent. We thus need to show that if Y is strongly 𝑅𝑛-nilpotent, then

colim map(𝜏≤𝑚𝑋/(𝑥𝑒1
1 , . . . , 𝑥𝑒𝑛𝑛 ), 𝑌 ) � map(𝑋,𝑌 ).

Since Y is bounded above, we may remove 𝜏≤𝑚 in the above expression without changing the colimit.
We may assume that Y is an 𝑅𝑛-module in C♥. By step 1 the map 𝐿𝑖 ⊗ 𝑌 → 𝑌 is null, and so the claim
follows from Lemma 2.9.

Conclusion of proof : By left completeness we have

𝑋∧
𝑥1 ,...,𝑥𝑛 � lim

𝑒1 ,...,𝑒𝑛;𝑚
𝜏≤𝑚𝑋/(𝑥𝑒1

1 , . . . , 𝑥𝑒𝑛𝑛 ).
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According to step 3, this is the limit of a strongly 𝑅𝑛-nilpotent resolution of X, which coincides with
𝑋∧
𝑅𝑛

by Remark 2.8. �

3. Rigidity for stable motivic homotopy of henselian local schemes

In this section we prove results to the effect that if X is a suitable henselian local scheme with closed point
x and E is an appropriate motivic spectrum, then 𝐸 (𝑋) � 𝐸 (𝑥). Such results are known as ‘rigidity’.
Many instances have been proved before, mainly if X is essentially smooth over a field; see, for example,
[35, 1]. Our main novelty is that we replace the base by a Dedekind domain, at the cost of imposing
much stronger assumptions on E.

Given a presentably symmetric monoidal stable ∞-category C and a morphism 𝑎 : 𝐿 → 1 with L
strongly dualisable, we denote by C∧𝑎 the a-completion; that is, the localisation at maps which become
an equivalence after ⊗cof (𝑎). We refer to [7, §2.1], [10, §2.5] for more details; in particular, the
a-completion of X is given by the object 𝑋∧

𝑎 from the previous section.
Given a family of objects G ⊂ C (which for us will always be bigraded spheres Σ∗∗1), we write Ccell

for the localising subcategory generated by G. Noting that C∧𝑎 is equivalent to the localising tensor ideal
generated by cof (𝑎), by, for example, [7, Example 2.3], we see that if 𝐿 ∈ G, then these two operations
commute, and so we shall write

C∧cell
𝑎 := (C∧𝑎)cell � (Ccell)∧𝑎 .

Recall the element ℎ := 1 + 〈−1〉 ∈ 𝜋0,0 (1), where −〈−1〉 is the switch map on G𝑚 ∧ G𝑚, and the
element 𝜌 := [−1] ∈ 𝜋−1,−1 (1) corresponding to −1 ∈ O×.

Proposition 4. Suppose X is a henselian local scheme and essentially smooth over a Dedekind scheme.
Write 𝑖 : 𝑥 → 𝑋 for the inclusion of the closed point and let 𝑛 ∈ Z.

1. If 1/𝑛 ∈ 𝑋 , then 𝑖∗ : SH(𝑋)∧cell
𝑛 → SH(𝑥)∧cell

𝑛 is an equivalence.
2. If 1/2𝑛 ∈ 𝑋 , then 𝑖∗ : SH(𝑋)∧cell

𝑛ℎ → SH(𝑥)∧cell
𝑛ℎ is an equivalence.

3. 𝑖∗ : SH(𝑋) [𝜌−1]cell → SH(𝑥) [𝜌−1]cell is an equivalence.

Many proofs in the sequel will follow the pattern of this one. We spell out many details here, which
are suppressed in the following proofs.

Proof. If S is a quasi-compact quasi-separated scheme – for example, affine – the category SH(𝑆) is
compactly generated by suspension spectra of finitely presented smooth S-schemes [37, Proposition
C.12]. Thus, SH(𝑆)cell is compactly generated by the spheres, and for every 𝑎 ∈ 𝜋∗∗(1𝑆), the category
SH(𝑆)∧cell

𝑎 is compactly generated by Σ∗∗1/𝑎. Now let 𝑓 : 𝑆′ → 𝑆 be a morphism, where 𝑆′ is also
quasi-compact quasi-separated. We use 𝑓 ∗ to transport elements of 𝜋∗∗(1𝑆) to 𝜋∗∗(1𝑆′ ), and when no
confusion can arise, we denote them by the same letter. Thus, for example, we set

SH(𝑆′)∧𝑎 := SH(𝑆′)∧𝑓 ∗𝑎 .

The functor 𝑓 ∗ : SH(𝑆)∧cell
𝑎 → SH(𝑆′)∧cell

𝑎 preserves colimits and the compact generator. Therefore, it
admits a right adjoint 𝑓∗ preserving colimits. This implies that 𝑓 ∗ is fully faithful if and only if the map
1 → 𝑓∗ 𝑓

∗1 ∈ SH(𝑆)∧cell
𝑎 is an equivalence; see, for example, [4, Lemma 22]; in this case, the functor

is an equivalence since its essential image will be a localising subcategory containing the generator.
We can simplify this condition further. By a-completeness and Lemma 3.1, it follows that 1 → 𝑓∗ 𝑓

∗1
is an equivalence if and only if 1/𝑎 → 𝑓∗ 𝑓

∗(1/𝑎) is an equivalence; that is, if and only if

𝜋∗∗(1𝑆/𝑎) � 𝜋∗∗(1𝑆′/𝑎).
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If 𝑏 ∈ 𝜋∗∗(1), then in our compactly generated situations the b-periodisation E[𝑏−1] is given by the
colimit

E[𝑏−1] = colim
(
E 𝑏
−→ Σ∗∗E 𝑏

−→ . . .
)
.

Since 𝑓∗ preserves colimits, it commutes with b-periodisation by Lemma 3.1. We shall make use of the
fact that a map is an equivalence if and only if it is an equivalence after b-periodisation and b-completion;
see, for example, [10, Lemma 2.16]. Thus, to prove fully faithfulness it would also be sufficient, as well
as necessary, to prove

𝜋∗∗(1𝑆/(𝑎, 𝑏)) � 𝜋∗∗(1𝑆′/(𝑎, 𝑏)) and 𝜋∗∗(1𝑆 [𝑏−1]/𝑎) � 𝜋∗∗(1𝑆′ [𝑏−1]/𝑎).

We will use many different variants of these observations in the sequel.
(0) We claim the functor

SH(𝑋) [𝜂−1] → SH(𝑥) [𝜂−1]

is an equivalence provided 1/2 ∈ 𝑋 and that

SH(𝑋) [𝜂−1, 1/2] → SH(𝑥) [𝜂−1, 1/2]

is an equivalence without any assumptions on X. For the first claim, by the above remarks it suffices
to prove that 𝜋∗∗(1[𝜂−1]) satisfies the required rigidity, which via [6, Proposition 5.2] reduces to the
same statement for the Witt ring 𝑊 (−). This is true by [41, Lemma 4.1]. Since SH(𝑆) [𝜂−1, 1/2] �

SH(𝑆) [𝜌−1, 1/2] (see Lemma 3.2), the second claim reduces to (3).
(1) It suffices to establish an isomorphism on 𝜂-periodisation and 𝜂-completion. We first treat the

𝜂-complete case; that is, we need to show that 1 → 𝑖∗𝑖
∗1 ∈ SH∧cell

𝑛,𝜂 is an equivalence. By Theorem
2.3(2) with ℓ = 𝑛, we have

𝐸∧
𝑛,𝜂 � lim

Δ
𝐸 ∧ 𝐻Z/𝑛∧•+1

for any bounded below E in SH(𝑆). The cellularisation functor SH(𝑆) → SH(𝑆)cell preserves limits
and hence (𝑛, 𝜂)-completions. Moreover, HZ/𝑛 ∈ SH(𝑆)cell if 1/𝑛 ∈ 𝑆 by [69, Corollary 10.4]. Hence,
the above formula for 𝐸∧

𝑛,𝜂 also makes sense, and is true, in SH(𝑆)cell. Thus, we need to show the
map HZ/2∧𝑡 → 𝑖∗(HZ/2∧𝑡 ) ∈ SH(𝑋)cell is an equivalence, for 𝑡 ≥ 1. Lemma 3.1 implies that
𝑖∗(𝐸 ∧ 𝑖∗𝐹) � 𝑖∗(𝐸) ∧ 𝐹, for any 𝐸 ∈ SH(𝑥), 𝐹 ∈ SH(𝑋)cell. In this way, we reduce to 𝑡 = 1; that is, it
suffices to show

𝜋∗∗(HZ/𝑛𝑋 ) � 𝜋∗∗(HZ/𝑛𝑥).

Owing to [69, Theorem 3.9], 𝜋∗∗(HZ/𝑛𝑆) is given by the Zariski cohomology of S with coefficients
in a truncation of the étale cohomology of 𝜇⊗−

𝑛 . When 𝑆 = 𝑋 or 𝑆 = 𝑥, the scheme S is Zariski local,
so 𝜋∗∗(HZ/𝑛𝑆) is simply given by certain étale cohomology groups of S with coefficients in 𝜇⊗−

𝑛 .
The rigidity result follows now from [28, Theorem 1].

Next we treat the 𝜂-periodic case. If n is even, then 1/2 ∈ 𝑋 and so the result follows from (0). If n
is odd, then n-complete objects are 2-periodic and the result also follows from (0).

(2) Again it suffices to prove that we have an isomorphism after 𝜂-completion and 𝜂-periodisation;
(0) handles the 𝜂-periodic case. For the 𝜂-complete case, we use that 𝜋0 (1/(𝑛ℎ, 𝜂)) � 𝜋0 (1/(2𝑛, 𝜂))
(see Lemma 3.2), whence 1∧𝑛ℎ,𝜂 � 1∧2𝑛,𝜂 by Theorem 2.2; this reduces to (1).

(3) By [5, Theorem 35] we have SH(𝑆) [𝜌−1] � SH(𝑆𝑟 �́�𝑡 ), where the right-hand side denotes
hypersheaves on the small real étale site of S. In this situation we have a natural t-structure; see, for
example, [7, §2.2], such that the map 1𝑟 �́�𝑡 → H𝑟 �́�𝑡Z is a morphism of connective ring spectra inducing
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an isomorphism on 𝜋0, where by H𝑟 �́�𝑡Z we mean the constant sheaf of spectra. Hence, applying
Theorem 2.1 in this situation, and repeating the above discussion using that H𝑟 �́�𝑡Z is cellular and stable
under base change, essentially by definition, we find that in order to prove 1 → 𝑖∗𝑖

∗1 ∈ SH(𝑆) [𝜌−1]cell is
an equivalence, it suffices to prove H𝑟 �́�𝑡Z→ 𝑖∗H𝑟 �́�𝑡Z is an equivalence. In other words, we need to show

𝐻∗
𝑟 �́�𝑡 (𝑋,Z) � 𝐻∗

𝑟 �́�𝑡 (𝑥,Z).

Since the real étale and Zariski cohomological dimension coincide [65, Theorem 7.6], we are reduced
to 𝐻0

𝑟 �́�𝑡 , which follows from [2, Propositions II.2.2, II.2.4]. �

Lemma 3.1. Let 𝐹 : C → D be a symmetric monoidal functor between symmetric monoidal categories
admitting a right adjoint G, and let 𝑥 : 𝐴 → 1 be a morphism in C with A strongly dualisable. Then for
𝑋 ∈ D, there is a natural equivalence 𝐺 (𝑋 ⊗ 𝐹𝐴) � 𝐺 (𝑋) ⊗ 𝐴, and under this equivalence the map

𝐺 (𝑋 ⊗ 𝐹𝐴)
𝐺 (id ⊗𝐹𝑥)
−−−−−−−−→ 𝐺 (𝑋)

corresponds to

𝐺𝑋 ⊗ 𝐴
𝑥
−→ 𝐺𝑋.

Suppose that C,D are presentably symmetric monoidal stable∞-categories and G preserves colimits.
Write C′ for the localising subcategory of C generated by strongly dualisable objects. Then the above
result also holds for any 𝐴 ∈ C′.
Proof. Since F is symmetric monoidal, G is lax symmetric monoidal, and there is a canonical map
𝐺𝑋 ⊗𝐺𝐹𝐴 → 𝐺 (𝑋 ⊗ 𝐹𝐴). Composing with the unit 𝐴 → 𝐺𝐹𝐴, we obtain a natural map 𝐺𝑋 ⊗ 𝐴 →

𝐺 (𝑋 ⊗ 𝐹𝐴), which is an equivalence by the Yoneda lemma. Since this equivalence is natural in A as
well, the claim about x also follows.

For the second statement, the subcategory comprising 𝐴 ∈ C for which the natural transformation
𝐺𝑋 ⊗ 𝐴 → 𝐺 (𝑋 ⊗ 𝐹𝐴) is an equivalence for all 𝑋 ∈ D is localising since G preserves colimits and it
contains all strongly dualisable objects by the first part and hence all of C′. �

Lemma 3.2. In 𝜋∗,∗(1) we have the relations

𝜂ℎ = 0, ℎ = 2 + 𝜂𝜌, ℎ𝜌2 = 0.

It follows that

SH(𝑆) [1/2, 1/𝜂] � SH(𝑆) [1/2, 1/𝜌] .

Proof. By [19, Theorem 1.2], all of the Milnor–Witt relations hold in 𝜋∗,∗(1), including 𝜂ℎ = 0. Our
definition of h agrees with Druzhinin’s by [19, Lemma 3.10]. We now compute

ℎ𝜌2 = (2 + 𝜂[−1]) [−1] [−1] = 2[−1] [−1] + ([1] − [−1] − [−1]) [−1] = 0

using the logarithm relation [𝑎𝑏] = [𝑎] + [𝑏] + 𝜂[𝑎] [𝑏] as well as [1] = 0, which holds by definition.
For the last part, note that inverting either 𝜂 or 𝜌 kills h (by the first or third relation) and hence

makes 𝜂 and 𝜌 inverses of each other up to a factor of −1/2 (by the second relation). �

Example 3.3. Suppose that 1/2 ∈ 𝑋 , where X is henselian local and essentially smooth over a
Dedekind scheme. Applying Proposition 4(2) with 𝑛 = 1, we learn that SH(𝑋)∧cell

ℎ → SH(𝑥)∧cell
ℎ is

an equivalence. By Lemma 3.2, both the 𝜂-periodic and 𝜌-periodic objects are h-torsion. We conclude
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SH(𝑋)∧ℎ [𝜂
−1] � SH(𝑋) [𝜂−1] and similarly for 𝜌. Thus, there is an equivalence

SH(𝑋) [𝜂−1]cell � SH(𝑥) [𝜂−1]cell.

A similar equivalence holds for 𝜌. With reference to Proposition 4, this shows (2) implies (3).

Example 3.4. We have (𝐸∧
𝑎𝑏)

∧
𝑎 � 𝐸∧

𝑎 since 𝑎𝑏-periodic objects are a-periodic. Hence, in Proposition
4, (2) implies (1).

4. Topological models for stable motivic homotopy of regular number rings

We shall exhibit pullback squares describing SH(O𝐹 [1/ℓ])∧cell
ℓ for suitable number fields F and prime

numbers ℓ in terms of SH(𝑘)∧cell
ℓ for fields of the form 𝑘 = C,R, F𝑞 . To facilitate comparison with the

work of Dwyer–Friedlander [24], we formally dualise our terminology and exhibit pushout squares in
the opposite category.

4.1. Setup

Let ℓ be a prime (or, more generally, any integer, but we do not need or use this extra generality).
We shall use the notation ℓ′ = ℓ if ℓ is odd and ℓ′ = ℓℎ if ℓ = 2.

Definition 5.

1. We write

CM𝑆 ⊂ (CAlg(PrL)op)/SH(𝑆)cell

for the full subcategory comprising functors 𝐹 : SH(𝑆)cell → C, where C is generated under colimits
by 𝐹 (SH(𝑆)cell) (or, equivalently, by 𝐹 (𝑆𝑝,𝑞) for 𝑝, 𝑞 ∈ Z).

2. We denote by 𝑀ℓ′ the functor

SchZ[1/ℓ ] → CMZ[1/ℓ ] , 𝑋 ↦→ SH(𝑋)∧cell
ℓ′ , ( 𝑓 : 𝑋 → 𝑌 ) ↦→ ( 𝑓 ∗ : SH(𝑌 )∧cell

ℓ′ → SH(𝑋)∧cell
ℓ′ )op.

We also put CM = CMZ and, by abuse of notation, 𝑀 (𝑋) := 𝑀0 (𝑋) = SH(𝑋)cell ∈ CM. Note that
CM𝑆 = CM/𝑀0 (𝑆) and 𝑀ℓ′ (𝑋) = 𝑀 (𝑋)∧ℓ′ . Next, we clarify the meaning of colimits in CM𝑆 .

Lemma 4.1. Let 𝐹 : 𝐼 → CM𝑆 be a diagram and write 𝐹 ′ : 𝐼op → Cat∞ for the underlying diagram
of categories. Then lim𝐼 op 𝐹 ′ ∈ Cat∞ is presentably symmetric monoidal and admits a natural functor
from SH(𝑆)cell. Let C denote its subcategory generated under colimits by the image of SH(𝑆)cell. Then
there is an equivalence colim𝐼 𝐹 � C.

Proof. The forgetful functor

CAlg(PrL)SH(𝑆)cell/ → Cat∞

preserves limits [48, Propositions 5.5.3.13, 1.2.13.8], [49, Corollary 3.2.2.5], and hence the limit admits
a canonical functor from SH(𝑆)cell. For D ∈ CM we have

MapCM(C,D) � MapCAlg(PrL)SH(𝑆)cell/
(D, C) ⊂ MapCAlg(PrL)SH(𝑆)cell/

(D, lim
𝐼 op

𝐹 ′)

� lim
𝐼 op

MapCAlg(PrL)SH(𝑆)cell/
(𝐹 (−),D) � lim

𝐼 op
MapCM(𝐹 (−),D).

It remains to show the inclusion is an equivalence; that is, every map D → lim𝐼 op 𝐹 ′ in
CAlg(PrL)SH(𝑆)cell/ factors through C. This holds for the generators, by assumption, so we are done. �
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Next we reformulate and slightly extend our rigidity results from Section 3.

Lemma 4.2. Let 𝑥 be the spectrum of a separably closed field, 𝑋 ∈ SchZ[1/ℓ ] an essentially smooth
over a Dedekind domain, 𝑥 → 𝑋 a map and 𝑦 ∈ 𝑋 a specialisation of the image of x. In CMZ[1/ℓ ] there
is a commutative diagram

𝑀 (𝑥) 𝑀 (𝑦)

𝑀 (𝑋)

𝑠

Here the unlabelled maps are the canonical ones. In fact, there is a family of such commutative diagrams,
parametrised by the (nonempty) set 𝑋ℎ

𝑦 ×𝑋 𝑥.

Proof. Let 𝑋 ′ be the henselisation of X along y. By [71, Tags 03HV, 07QM(1)], the map 𝑋 ′ → 𝑋 hits
the image of 𝑥, and hence there exists a lift 𝑠′ in the commutative diagram

𝑥 𝑋 ′

𝑋

𝑠′

Applying M and using that 𝑀 (𝑦) → 𝑀 (𝑋 ′) is an equivalence by Proposition 4, the result follows. �

Corollary 6. The following hold under the assumptions in Lemma 4.2.

1. If 𝑦 ∈ 𝑋 is separably closed, then s is an equivalence.
2. If 𝑥, �̄� ∈ SchZ[1/ℓ ] are separably closed fields there is a (nonunique) equivalence 𝑀 (𝑥) � 𝑀 ( �̄�).

Proof. (1) We have constructed a symmetric monoidal cocontinuous functor 𝐹 : SH( �̄�)∧cell
ℓ′ →

SH(𝑥)∧cell
ℓ′ under SH(Z[1/ℓ])cell. Denote its right adjoint by G. Arguing as in the proof of Propo-

sition 4, it suffices to show E → 𝐺𝐹E is an equivalence. That is, E → 𝐺𝐹E induces an isomorphism on
𝜋∗∗ for E = HFℓ , E = H𝑟 �́�𝑡Z and, if ℓ is even, E = 1[𝜂−1]. For any separably closed field of character-
istic ≠ ℓ we have 𝜋∗∗(HFℓ ) � Fℓ [𝜏] (see, for example, [12, Corollary C.2(2)], [40, Theorem 18.2.7]),
𝑊 = Z/2 and H𝑟 �́�𝑡Z = 0 (the real spectrum being empty). Moreover, all of the maps are algebra maps
over the corresponding algebra for Z[1/ℓ]. Thus, the map for 𝜋∗∗H𝑟 �́�𝑡Z is trivially an isomorphism, and
the one for 𝜋∗∗1[𝜂−1] is an isomorphism because as an algebra it is determined by W according to [6,
Proposition 5.2]. The isomorphism for HFℓ will hold if and only if 𝐹 (𝜏) = 𝜏, which holds provided
𝐹 (𝜏𝑛) = 𝜏𝑛 for some 𝑛 ≥ 1. But, for 𝑛 � 0, 𝜏𝑛 exists over Z[1/ℓ] (if ℓ = 2, this holds with 𝑛 = 1 and
for ℓ odd; see, e.g., [9, §4.5(2)]).

(2) Let 𝑥, 𝑦 ∈ Spec(Z[1/ℓ]) be the images of 𝑥, �̄�. We may assume y is a specialisation of x. Let X
be the strict henselisation of Spec(Z[1/ℓ]) along y, with closed point 𝑦′. By (1) applied with 𝑋 = 𝑋 ′

we have 𝑀 (𝑦′) � 𝑀 (𝑥), and by applying it with (𝑋, 𝑥, 𝑦) = ({𝑦′}, �̄�, 𝑦′) we get 𝑀 (𝑦′) � 𝑀 ( �̄�). �

Remark 4.3. This common category 𝑀 (𝑥) � 𝑀 ( �̄�) is known as ℓ-complete MU-based (even) synthetic
spectra [59].

4.2. Criterion

Recall that for 𝑋 ∈ SchZ[1/ℓ ] the objects HFℓ ,H𝑟 �́�𝑡Z ∈ SH(𝑋) are cellular and stable under base
change. For HFℓ this is [69, Corollary 10.4, Theorem 8.22]. For H𝑟 �́�𝑡Z this follows from the expression
H𝑟 �́�𝑡Z � 𝑜(HZ) [1/𝜌] [5], where 𝑜 : SH → SH(𝑋) is the unique cocontinuous symmetric monoidal
functor. In particular, any morphism between 𝑀 (𝑋) and 𝑀 (𝑌 ) in CMZ[1/ℓ ] preserves these objects.
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Proposition 7. Let 𝑋0, 𝑋1, 𝑋2, 𝑋3 ∈ SchZ[1/ℓ ] be essentially smooth over Dedekind schemes and
consider a commutative square

𝑀 (𝑋3) −−−−−−→ 𝑀 (𝑋1)

⏐⏐� ⏐⏐�
𝑀 (𝑋2) −−−−−−→ 𝑀 (𝑋0)

(4.1)

in CMZ[1/ℓ ] . In order for (4.1) to be co-Cartesian, it suffices that the following conditions hold:

1. For each m, the square

mapSH(𝑋0) (Σ
0,∗1,HFℓ ) −−−−−−→ mapSH(𝑋1) (Σ

0,∗1,HFℓ)
⏐⏐� ⏐⏐�

mapSH(𝑋2) (Σ
0,∗1,HFℓ ) −−−−−−→ mapSH(𝑋3) (Σ

0,∗1,HFℓ)

is Cartesian.
2. The square

Γ𝑟 �́�𝑡 (𝑋0, F
′
ℓ) −−−−−−→ Γ𝑟 �́�𝑡 (𝑋1, F

′
ℓ)⏐⏐� ⏐⏐�

Γ𝑟 �́�𝑡 (𝑋2, F
′
ℓ) −−−−−−→ Γ𝑟 �́�𝑡 (𝑋3, F

′
ℓ)

is Cartesian. Here F′ℓ equals Fℓ if ℓ = ℓ′ and Z if ℓ′ = ℓℎ (i.e., when ℓ even).
3. If 2 | ℓ, then vcd2 (𝐾 (𝑋𝑖)) < ∞.

If 𝑋0 contains a primitive ℓth root of unity, then condition (1) can be replaced by

(1’) For each m, the square

ΓZar (𝑋0, 𝑅
𝑚𝜖∗Fℓ) −−−−−−→ ΓZar (𝑋1, 𝑅

𝑚𝜖∗Fℓ)

⏐⏐� ⏐⏐�
ΓZar (𝑋2, 𝑅

𝑚𝜖∗Fℓ) −−−−−−→ ΓZar (𝑋3, 𝑅
𝑚𝜖∗Fℓ)

is Cartesian.

Proof. To conclude that the square is co-Cartesian, it suffices, by Lemma 4.1, to prove the functor

SH(𝑋0)
∧cell
ℓ′ → SH(𝑋1)

∧cell
ℓ′ ×SH(𝑋3)

∧cell
ℓ′

SH(𝑋2)
∧cell
ℓ′

is fully faithful. Let us denote by 𝑝1∗ : SH(𝑋1)
∧cell
ℓ′ → SH(𝑋0)

∧cell
ℓ′ the right adjoint of the functor

corresponding to 𝑀 (𝑋1) → 𝑀 (𝑋0), and similarly for 𝑝2∗, 𝑝3∗. We need to prove that

𝜋∗∗(1∧ℓ′ ) � 𝜋∗∗(𝑝1∗(1∧ℓ′ ) ×𝑝3∗1∧ℓ′
𝑝2∗(1∧ℓ′ )).

Note that each of the left adjoints preserves the compact generators, which is true for any morphism
in CM, and hence 𝑝𝑖∗ preserves colimits and therefore it commutes with periodisation. Moreover,
𝑝𝑖∗ commutes with ∧E for every E ∈ SH(𝑋0)

∧cell
ℓ′ , and with completion at homotopy elements, by

Lemma 3.1. We may check the desired equivalence after completing at 𝜂 and after inverting 𝜂, and
similarly for other homotopy elements. For the 𝜂-periodic statement, we further invert 2 respectively
complete at 2. In the 2-complete (still 𝜂-periodic) case, either we have 2 � ℓ and the statement is vacuous
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or 1/2 ∈ 𝑋𝑖 and using the fundamental fibre sequence [6, Corollary 1.2, Proposition 5.7], it suffices
to establish the analogous equivalence for kw∧

2,ℓ′ . Recall that kw∧
2,ℓ′ is in fact cellular [6, Proposition

5.7]. In the 2-periodic (still 𝜂-periodic) case, arguing as in the proof of Proposition 4, it suffices to
establish the analogous equivalence for H𝑟 �́�𝑡F

′
ℓ . For the 𝜂-complete statement, arguing as in the proof

of Proposition 4, we have 1∧𝜂,ℓ′ � 1∧HFℓ and we see that it suffices to establish the analogous equivalence
for HFℓ . In summary, we need to prove the commutative square of ordinary spectra

mapSH(𝑋0)
(Σ0,∗1, E) −−−−−−→ mapSH(𝑋1)

(Σ0,∗1, E)
⏐⏐� ⏐⏐�

mapSH(𝑋2)
(Σ0,∗1, E) −−−−−−→ mapSH(𝑋3)

(Σ0,∗1, E)

is Cartesian for all ∗ ∈ Z and E one of kw∧
2,ℓ′ ,HFℓ ,H𝑟 �́�𝑡F

′
ℓ .

Before we start proving this, we need to make another preliminary remark. Suppose that

E(0)
• −−−−−−→ E(1)

•

⏐⏐� ⏐⏐�
E(2)
• −−−−−−→ E(3)

•

is a commutative diagram of filtered spectra such that E(𝑖)
𝑛 = 0 for n sufficiently small and the induced

diagrams of associated graded objects

𝑔𝑟𝑖E(0) −−−−−−→ 𝑔𝑟𝑖E(1)

⏐⏐� ⏐⏐�
𝑔𝑟𝑖E(2) −−−−−−→ 𝑔𝑟𝑖E(3)

are pullbacks for each i. Then the square

lim𝑖 E(0)
𝑖 −−−−−−→ lim𝑖 E(1)

𝑖⏐⏐� ⏐⏐�
lim𝑖 E(2)

𝑖 −−−−−−→ lim𝑖 E(3)
𝑖

is a pullback; indeed, an induction argument implies

E(0)
𝑖 −−−−−−→ E(1)

𝑖⏐⏐� ⏐⏐�
E(2)
𝑖 −−−−−−→ E(3)

𝑖

is a pullback for every i.
Next we show how the conditions (1)–(3) imply that the squares are Cartesian. The pullback square

for H𝑟 �́�𝑡F
′
ℓ is precisely condition (2), and the one for HFℓ is precisely condition (1). The condition in-

volving kw∧
2,ℓ′ is only nonvacuous if 2 | ℓ, whence 1/2 ∈ 𝑋𝑖 and kw∧

2 � kw∧
2,ℓ′ . Consider the filtration

of kw by powers of 𝛽, pulled back to 𝑋𝑖 . The Postnikov filtration gives rise to the said filtration, and so
it is complete, and H𝑊 gives all subquotients [6, Theorem 4.4, Lemma 4.3]. Since kw is connective,
the preliminary remark allows us to replace kw∧

2 by H𝑊∧
2 , which on mapping spectra yields Γ(−,𝑊∧

2 ),
where Γ denotes global sections of a Nisnevich sheaf of spectra. On mapping spectra the cellular
motivic spectrum 𝐾𝑊 [6, Proposition 5.7, Theorem 4.4] yields compatible filtrations of Γ(−,𝑊) by
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Γ(−, 𝐼𝑛) (see [6, Definition 2.6]), where I is the fundamental ideal of even dimensional quadratic forms.
Condition (3) together with [6, Proposition 2.3] implies lim𝑛 Γ(−, 𝐼𝑛/2) � 0. Thus, the filtration
Γ(−, (𝑊/𝐼𝑛)∧2 ) of Γ(−,𝑊∧

2 ) is exhaustive. Using the preliminary remark, we may replace Γ(−,𝑊∧
2 ) by

Γ(−, 𝐼∗/𝐼∗+1), which coincides with map(G∧∗
𝑚 , (HZ/2)/𝜏) according to [6, Theorem 2.1, Lemma 2.7].

For this, we may establish the pullback square for HFℓ , which implies the pullback square for HZ∧ℓ and
hence for HZ∧ℓ /2 � HZ/2 since 2 | ℓ.

Finally, suppose that 𝜁ℓ ∈ 𝑋0. This yields 𝜏 ∈ 𝜋0,−1 (HFℓ) (𝑋0) given by the Bockstein on [𝜁ℓ].
The cofibres of 𝜏-powers yield a filtration of HFℓ which pulls back to compatible filtrations on the
𝑋𝑖s. The explicit construction of the motivic complexes [69, Theorem 3.9] shows that these filtrations
are bounded, separated and exhaustive and have subquotients ΓZar (𝑋𝑖 , 𝑅

𝑚𝜖∗Fℓ). Via the preliminary
remark, the desired Cartesian square thus reduces to condition (1’). �

Remark 4.4.

◦ In all of our examples, the chain complexes in conditions (1’) and (2) will be concentrated in a
single degree.

◦ If 𝑥 is the spectrum of a separably closed field, then ΓZar (𝑥, 𝑅
𝑚𝜖∗Fℓ) = 0 for 𝑚 > 0, and similarly

Γ𝑟 �́�𝑡 (𝑥,Z) = 0.
◦ If the square (4.1) in Proposition 7 is co-Cartesian, then conditions (1) and (2) hold and (1’) holds

whenever 𝜁ℓ ∈ 𝑋0. Condition (3) is not necessary in general for the square to be co-Cartesian
(consider, for example, any square comprising identity maps).

4.3. Models for stable motivic homotopy types

4.3.1. Arithmetic preliminaries
Lemma 4.5. Suppose K is a global field with ring of integers O𝐾 and put 𝑈 = Spec(O𝐾 [1/ℓ]). If
𝜖 : 𝑈�́�𝑡 → 𝑈Zar is the change of topology functor, then

𝑅𝑖𝜖∗𝜇ℓ �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜇ℓ 𝑖 = 0
𝑎ZarO×/ℓ 𝑖 = 1
𝑎𝑟 �́�𝑡Z/(2, ℓ) ⊕ 𝑅 𝑖 = 2
𝑎𝑟 �́�𝑡Z/(2, ℓ) 𝑖 > 2

.

The sheaf R is determined by the exact sequence

0 → 𝑅 →
⊕

𝑥∈Spec(O𝐾 ) (1)

Fℓ → Fℓ ⊕
⊕
𝑥∈𝑈 (1)

𝑖𝑥∗Fℓ → 0.

Here the middle term is a constant sheaf, whereas the right-hand term is a sum of a constant sheaf and
skyscraper sheaves, and the map is given by addition in the first component and restriction in the others.

Proof. From [52, Remark II.2.2] we can read off the isomorphisms

𝑅0𝜖∗G𝑚 � G𝑚, 𝑅𝑖𝜖∗G𝑚 � 0 for 𝑖 odd, 𝑅𝑖𝜖∗G𝑚 � 𝑎𝑟 �́�𝑡R
× for 𝑖 ≥ 4 even

and the short exact sequence

0 → 𝑅2𝜖∗G𝑚 → 𝑎𝑟 �́�𝑡Z/2 ⊕
⊕

𝑥∈Spec(O𝐾 ) (1)

Q/Z→ Q/Z ⊕
⊕
𝑥∈𝑈 (1)

𝑖𝑥∗Q/Z→ 0.

For the exact sequence, recall 𝐵𝑟 (𝐾𝑣 ) = Z/2 if v is a real place, = 0 if v is a complex place and = Q/Z if
v is a non-Archimedean place [67, p. 163, 193]. Moreover, the kernel of the restriction map is precisely
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the sum over the non-Archimedean places missing in U. The Kummer short exact sequence

0 → 𝜇ℓ → G𝑚
ℓ
−→ G𝑚 → 0

on 𝑈�́�𝑡 yields a long exact sequence for 𝑅𝑖𝜖∗. Since 𝑅𝑖𝜖∗G𝑚 vanishes in odd degrees, 𝑅𝑖𝜖∗𝜇ℓ is given
by the kernel or cokernel of multiplication by ℓ. This immediately yields the desired results for 𝑖 ≠ 2, 3,
and the snake lemma produces an exact sequence

0 → 𝑅2𝜖∗𝜇ℓ → 𝑎𝑟 �́�𝑡Z/(2, ℓ) ⊕
⊕

𝑥∈Spec(O𝐾 ) (1)

Fℓ
𝑏
−→ Fℓ ⊕

⊕
𝑥∈𝑈 (1)

𝑖𝑥∗Fℓ → 𝑅3𝜖∗𝜇ℓ → 𝑎𝑟 �́�𝑡Z/(2, ℓ) → 0.

Since b is a surjection of Zariski sheaves, the result follows. �

Corollary 8. Suppose 𝑃𝑖𝑐(𝑈) is uniquely ℓ-divisible and 𝑘 (𝑈) has a unique place of characteristic ℓ.
Then 𝐻 𝑗 (𝑈, 𝑅𝑖𝜖∗𝜇ℓ) = 0 for 𝑗 > 0 and

𝐻0(𝑈, 𝑅𝑖𝜖∗𝜇ℓ) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝜇ℓ (𝑈) 𝑖 = 0
O×(𝑈)/ℓ 𝑖 = 1
(Z/(2, ℓ))Sper(𝐾 ) 𝑖 > 1.

Proof. Since 𝜇ℓ |𝑈Zar is constant and constant sheaves are flasque, the claims for 𝑖 = 0 are clear. The
claims about 𝑎𝑟 �́�𝑡Z/(2, ℓ) follow because 𝑅(𝑈) � Sper(𝑘) is discrete. Since the Zariski cohomological
dimension of U is 1, it remains to show that 𝐻0

Zar (𝑈,G𝑚/ℓ) � O×(𝑈)/ℓ, 𝐻1
Zar (𝑈,G𝑚/ℓ) = 0, and

𝐻∗
Zar (𝑈, 𝑅) = 0 for ∗ = 0, 1. Using the short exact sequences 0 → 𝜇ℓ → G𝑚 → ℓG𝑚 → 0 and

0 → ℓG𝑚 → G𝑚 → G𝑚/ℓ → 0, the first two claims are equivalent to unique ℓ-divisibility of 𝑃𝑖𝑐(𝑈).
The exact sequence defining R is, in fact, a flasque resolution, so its 𝐻0 and 𝐻1 are given by the kernel
and cokernel of the induced map on global sections. This induced map is an isomorphism as needed if
and only if Spec(O𝐾 ) \𝑈 consists of precisely one point, which holds by assumption. �

Lemma 4.6. Let ℓ be prime, K a global field and 𝑈 ⊂ 𝑆𝑝𝑒𝑐(O𝐾 ) open. Let 𝐻 ⊂ O×(𝑈)/ℓ be an
arbitrary subgroup. There exist 𝑥1, . . . , 𝑥𝑛 ∈ 𝑈 (1) such that the restriction

𝐻 ⊂ O×(𝑈)/ℓ →
∏
𝑖

𝑘 (𝑥)×/ℓ

is an isomorphism. If H is nontrivial, there exist infinitely many such choices.

Proof. First recall the following fact (see, e.g., [56, Exercise VI.1.2]): If 𝑎 ∈ O(𝑈) is an ℓth power in
𝑘 (𝑥) for all but finitely many 𝑥 ∈ 𝑈 (1) , then a is an ℓth power.

If H is nontrivial, pick 1 ≠ 𝑎 ∈ 𝐻. Since H is a Z/ℓ-vector space, we may write 𝐻 = 〈𝑎〉 × 𝐻 ′,
where 〈𝑎〉 � Z/ℓ is the subgroup generated by a. By the above fact, there exists 𝑥 ∈ 𝑈 (1) such that
the image of a in 𝑘 (𝑥)×/ℓ is nonzero and in fact infinitely many choices of x. Since 𝑘 (𝑥) is finite,
𝑘 (𝑥)×/ℓ � Z/ℓ � 〈𝑎〉. We are thus reduced to proving the result for 𝐻 ′ and conclude by induction since
O×(𝑈)/ℓ is finite according to Dirichlet’s unit theorem [56, Corollary 11.7]. �

In [30], Gras introduced the narrow tame kernel 𝐾+
2 (O𝐹 ) as the subgroup of 𝐾2(O𝐹 ) where the

regular symbols on all of the real embeddings of F vanish; that is, there is an exact sequence

0 → 𝐾+
2 (O𝐹 ) → 𝐾2(O𝐹 ) →

𝑟⊕
Z/2 → 0.

We refer to [31, Definition 7.8.1] for the arithmetic notion of ℓ-regular number fields.

Definition 9. Let ℓ be a prime number. A number field F is called ℓ-regular if the ℓ-Sylow subgroup of
the narrow tame kernel 𝐾+

2 (O𝐹 ) is trivial.
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See [30], [32], [60], [15] for complementary results about these families of number fields. For
example, the field of rational numbers Q is ℓ-regular for every prime ℓ, and Q(𝜁ℓ) is ℓ-regular if ℓ is a
regular prime number in the sense of Kummer [73]. In [68], Siegel conjectured there are infinitely many
regular prime numbers.

We have the following explicit characterisation of ℓ-regular number fields.

Proposition 10. Let F be a number field. We write O′
𝐹 for the ring of ℓ-integers O𝐹 [1/ℓ].

1. F is 2-regular if and only if the prime ideal (2) does not split in 𝐹/Q and the narrow Picard group
𝑃𝑖𝑐+(O′

𝐹 ) has odd order.
2. Let ℓ be an odd prime number and assume 𝜇ℓ ⊂ 𝐹. Then F is ℓ-regular if and only if the prime ideal

(ℓ) does not split in 𝐹/Q and the ℓ-Sylow subgroup of the Picard group 𝑃𝑖𝑐(O′
𝐹 ) is trivial.

3. Let ℓ be an odd prime number. Assume 𝜇ℓ ⊄ 𝐹 and F contains the maximal real subfield of Q(𝜁ℓ).
Then F is ℓ-regular if and only if the prime ideals above (ℓ) in F do not split in the quadratic extension
𝐹 (𝜁ℓ )/𝐹 and the ℓ-Sylow subgroups of the Picard groups 𝑃𝑖𝑐(O𝐹 ) and 𝑃𝑖𝑐(O𝐹 (𝜁ℓ ) ) are isomorphic.

Proof. This is a reformulation of [30, Corollary on pp. 328-329]. See also [60, Proposition 2.2] when
ℓ = 2. �

For further reference, we recall that a commutative square of abelian groups

𝐴1
𝑖1

−−−−−−→ 𝐴2

𝑖2
⏐⏐� ⏐⏐�𝑝1

𝐴3
𝑝2

−−−−−−→ 𝐴4

is called bi-Cartesian if it is a pullback when viewed as a commutative square of spectra.

4.3.2. Stable motivic homotopy types of 2-regular number fields
Theorem 4.7. Suppose F is a 2-regular number field with r real and c pairs of complex embeddings.
Let 𝑥, 𝑦1, . . . , 𝑦𝑐 ∈ Spec(O′

𝐹 ) be closed points.

1. There is a canonical commutative square in CM

𝑀2ℎ (C
𝑐+𝑟 ) −−−−−−→ 𝑀2ℎ (R

𝑟 ) �
∐

𝑖 𝑀2ℎ (𝑦𝑖)

⏐⏐� ⏐⏐�
𝑀2ℎ (𝑥) −−−−−−→ 𝑀2ℎ (O′

𝐹 )

2. The square in (1) is a pushout if and only if there is a naturally induced isomorphism

(O′
𝐹 )

×/2 � (R×/2)𝑟 × 𝑘 (𝑥)×/2 ×
∏
𝑖

𝑘 (𝑦𝑖)
×/2 (� (Z/2)1+𝑟+𝑐).

3. There exist infinitely many choices of 𝑥, 𝑦1, . . . , 𝑦𝑐 such that the map in (2) is an isomorphism.

Proof. To simplify notation, throughout this proof we put 𝑀 := 𝑀2ℎ .
(1) For 𝑧 ∈ Spec(O′

𝐹 ) and 𝛼 : 𝐾 ↩→ C, Lemma 4.2 furnishes a map 𝑓𝑧,𝛼 : 𝑀 (C) → 𝑀 (𝑧) and a
homotopy between 𝑀 (C) → 𝑀 (𝑧) → 𝑀 (O′

𝐹 ), and the map 𝑀 (C) → 𝑀 (O′
𝐹 ) induced by 𝛼. In (1),

the bottom and right-hand maps are the canonical ones. Write 𝛼1, �̄�1, . . . , 𝛼𝑐 , �̄�𝑐 , 𝛽1, . . . , 𝛽𝑟 for the
complex and real embeddings. Let 𝛼𝑐+𝑖 = 𝜄 ◦ 𝛽𝑖 , where 𝜄 : R → C is the canonical embedding. The
left-hand map is 𝑓𝑥,𝛼𝑖 on component i. The top map is 𝑓𝑦𝑖 ,𝛼𝑖 on the ith component if 𝑖 ≤ 𝑐 and induced
by 𝜄 on the remaining components. In all cases, the induced composite map 𝑀 (C) → 𝑀 (O′

𝐹 ) is either
equal or homotopic to the map induced by 𝛼𝑖 . Thus, the square commutes.
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(2) We use the criterion from Proposition 7. Condition (3) holds since the fields are finitely generated.
For condition (2), the square

(Z/2)𝑟 −−−−−−→ 0
⏐⏐� ⏐⏐�

(Z/2)𝑟 −−−−−−→ 0

is clearly bi-Cartesian because the map O′
𝐹 → R𝑟 induces an isomorphism on real spectra.

Next we check condition (1’). Owing to [15, Proposition 2.1(5)] the 2-regularity assumption implies
𝑃𝑖𝑐(O′

𝐹 ) has odd order, so it is uniquely 2-divisible, and F has only one place of characteristic 2. Thus,
Corollary 8 applies and it remains to check the bicartesianess of three squares. The first one is

Z/2 −−−−−−→ (Z/2)𝑟+𝑐

⏐⏐� ⏐⏐�
Z/2 −−−−−−→ (Z/2)𝑟+𝑐

Observe that if 𝑋,𝑌 are connected schemes and 𝑓 : 𝑀 (𝑋) → 𝑀 (𝑌 ) is any map in CMZ[1/2] , then
𝑓 ∗ : 𝐻0(𝑌,Z/2) → 𝐻0(𝑋,Z/2) is an isomorphism. Indeed, this reduces to the case of the structure
map 𝑀 (𝑋) → 𝑀 (Z[1/2]), where it is obvious. Thus, the square for 𝑚 = 0 is bi-Cartesian because the
vertical maps are isomorphisms. When 𝑚 = 2, the square is the same as in condition (2) above and
hence it is bi-Cartesian. The remaining square for 𝑚 = 1 takes the form

(O′
𝐹 )

×/2 −−−−−−→ 𝑘 (𝑥)×/2
⏐⏐� ⏐⏐�

(R×/2)𝑟 ×
∏

𝑖 𝑘 (𝑦𝑖)
×/2 −−−−−−→ (C×/2)𝑟+𝑐 = 0

Since the inclusion of abelian groups into spectra preserves finite products, this square is bi-Cartesian
if and only if the stated condition holds.

(3) Dirichlet’s unit theorem [56, Corollary 11.7] implies (O′
𝐹 )

× � 𝜇(O′
𝐹 ) × Z

𝑟+𝑐; here 𝜇(O′
𝐹 ) is

the finite abelian group of roots of unity in O′
𝐹 . It is cyclic, being a finite multiplicative subgroup of a

field, and since {±1} ∈ 𝜇(O′
𝐹 ), the group has even order. It follows that (O′

𝐹 )
×/2 � Z/2 × (Z/2)𝑟+𝑐 .

Moreover, 2-regularity implies the naturally induced map (O′
𝐹 )

×/2 → (R×/2)𝑟 � (Z/2)𝑟 is surjective
[15, Proposition 2.1(5)]; we write 𝑈+ � (Z/2)1+𝑐 for its kernel. The condition in part (2) holds if and
only if the induced map𝑈+ → 𝑘 (𝑥)×/2×

∏
𝑖 𝑘 (𝑦𝑖)

×/2 is an isomorphism. Lemma 4.6 implies the latter
is true for infinitely many choices of 𝑥, 𝑦𝑖 . �

Remark 4.8. As in Examples 3.3 and 3.4, Theorem 4.7(1) implies similar pushout squares with respect
to completions at 2, h and with respect to periodisations at 𝜌, 𝜂. For example, we have a pushout square
in CM

𝑀 (C𝑐+𝑟 ) [𝜂−1] −−−−−−→ 𝑀 (R𝑟 ) [𝜂−1] �
∐

𝑖 𝑀 (𝑦𝑖) [𝜂
−1]

⏐⏐� ⏐⏐�
𝑀 (𝑥) [𝜂−1] −−−−−−→ 𝑀 (O′

𝐹 ) [𝜂
−1]

Remark 4.9. The various embeddings 𝛼𝑖 : 𝐾 → C differ by automorphisms of C. It follows that one
may choose the maps 𝑓𝑥,𝛼𝑖 to be of the form 𝜎𝑖◦ 𝑓𝑥,𝛼1 . Thus, applying an automorphism of 𝑀2ℎ (C

𝑟+𝑠) in
the square of Theorem 4.7, we may assume that all of the left-hand vertical maps 𝑀2ℎ (C) → 𝑀2ℎ (𝑥) are
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the same. The square being a pushout now is equivalent to saying that there are lifts of 𝑀2ℎ (𝑥), 𝑀2ℎ (𝑦𝑖)
to CM𝑀2ℎ (C)/ and an equivalence

𝑀2ℎ (O′
𝐹 ) �

𝑟∨
𝑀2ℎ (R) ∨ 𝑀2ℎ (𝑥) ∨

𝑐∨
𝑀2ℎ (𝑦𝑖).

Here ∨ denotes the coproduct in CM𝑀 (C)/.

Example 4.10. When 𝐹 = Q, we consider Z[1/2]× � {±1} × {(1/2)𝑛} and Z[1/2]×/2 � Z/2{−1, 2}.
Here Z/2{2} is the kernel of the surjection Z[1/2]×/2 → R×/2. We need to find a closed point
𝑥 ∈ Spec(Z[1/2]) such that 2 is not a square in 𝑘 (𝑥). This holds when 𝑘 (𝑥) = Spec(F𝑞), where
𝑞 ≡ ±3 mod 8. In particular, the canonical map

SH(Z[1/2])∧cell
2 → SH(R)∧cell

2 ×SH(C)∧cell
2

SH(F3)
∧cell
2

is fully faithful. To deduce Theorem 1.2 from the introduction, let E ∈ SH(Z[1/2])∧cell
2 and compute

map(1, E) using the above square.

4.3.3. Stable motivic homotopy types of ℓ-regular number fields
Theorem 4.11. Let F be a number field with c pairs of complex embeddings and ℓ be an odd prime
number. Suppose F is ℓ-regular and 𝜇ℓ ⊂ 𝐹. Let 𝑥, 𝑦1, . . . , 𝑦𝑐 ∈ Spec(O′

𝐹 ) be closed points.

1. There is a canonical commutative square in CM

𝑀ℓ (C
𝑐) −−−−−−→

∐𝑐 𝑀ℓ (𝑦𝑖)

⏐⏐� ⏐⏐�
𝑀ℓ (𝑥) −−−−−−→ 𝑀ℓ (O′

𝐹 )

2. The square is a pushout if and only if there is a naturally induced isomorphism

(O′
𝐹 )

×/ℓ � 𝑘 (𝑥)×/ℓ ×
∏
𝑖

𝑘 (𝑦𝑖)
×/ℓ (� (Fℓ)

1+𝑐).

3. There exist infinitely many choices of 𝑥, 𝑦1, . . . , 𝑦𝑐 satisfying (2).

Proof. The proof is essentially the same as that of Theorem 4.7. The maps 𝑥, 𝑦𝑖 → Spec(O′
𝐹 ) together

with choices of embeddings of K into C induce, via Lemma 4.2, the maps 𝑀ℓ (C) → 𝑀ℓ (𝑥), 𝑀ℓ (𝑦𝑖)
in the commutative square. One verifies, using Corollary 8 and Z/(2, ℓ) = 0, that condition (1’) of
Proposition 7 reduces to the condition stated in (2). The other conditions hold trivially; since K contains
a primitive ℓth root of unity, the real spectrum Sper(O′

𝐹 ) = ∅. The existence of infinitely many choices
in (3) follows from Lemma 4.6. �

Remark 4.12. Arguing as in Remark 4.9, we find that there are lifts of 𝑀ℓ (𝑥), 𝑀ℓ (𝑦𝑖) to CM𝑀ℓ (C)/ and
an equivalence

𝑀ℓ (O′
𝐹 ) �

𝑐∨
𝑀ℓ (𝑦𝑖) ∨ 𝑀ℓ (𝑥).

Example 4.13. Theorem 4.11 applies to 𝐹 = Q(𝜁ℓ) if ℓ is regular – we note that (ℓ) is totally ramified
in F and 𝐾2(Z[𝜁ℓ ])/ℓ ≡ 𝜇ℓ ⊗ 𝑃𝑖𝑐(Z[𝜁ℓ ]). In this case, O′

𝐹 = Z[1/ℓ, 𝜁ℓ] and 𝑘 (𝑥) = F𝑝 , where p is a
prime number which is congruent to 1 mod ℓ but is not congruent to 1 mod ℓ2 by [24, Example 1.9].
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Theorem 4.14. Let ℓ be an odd regular prime and 𝑝 ≠ ℓ a prime number. There is a commutative
square in CMZ[1/ℓ ]

𝑀ℓ (C) −−−−−−→ 𝑀ℓ (R)

⏐⏐� ⏐⏐�
𝑀ℓ (F𝑝) −−−−−−→ 𝑀ℓ (Z[1/ℓ])

The square is a pushout if p generates the multiplicative group of units (Z/ℓ2)×.

Proof. We get the square from Lemma 4.2 and proceed by verifying the conditions in Proposition 7.
Since Z[1/ℓ] has a unique real embedding, condition (2) holds. Condition (3) is vacuous. Next we verify
condition (1). Let us write Γ(𝑋, Fℓ (𝑖)) for the motivic complex and Γ�́�𝑡 (𝑋, Fℓ (𝑖)) � Γ�́�𝑡 (𝑋, 𝜇⊗𝑖

ℓ ) for its
étale version. If 𝐴 = Z[1/ℓ, 𝜁ℓ], then 𝐻0

�́�𝑡 (𝐴, Fℓ) = Fℓ , 𝐻
1
�́�𝑡 (𝐴, Fℓ) = 𝐴×/ℓ and 𝐻∗

�́�𝑡 (𝐴, Fℓ) = 0 else;
see [52, Remark II.2.2]. Corollary 8 implies that Γ(𝐴, Fℓ (𝑖)) � Γ�́�𝑡 (𝐴, Fℓ (𝑖))≥−𝑖 . A transfer argument
shows Γ(Z[1/ℓ], Fℓ (𝑖)) is a summand of Γ(𝐴, Fℓ (𝑖)), and similarly for Γ�́�𝑡 . We deduce the equivalence

Γ(Z[1/ℓ], Fℓ (𝑖)) � Γ�́�𝑡 (Z[1/ℓ], Fℓ (𝑖))≥−𝑖 .

The same is true for C,R, F𝑝 since they are Nisnevich local. Consequently, condition (1) will hold if the
square

Γ�́�𝑡 (Z[1/ℓ], Fℓ (𝑖)) −−−−−−→ Γ�́�𝑡 (F𝑝 , Fℓ (𝑖))

⏐⏐� ⏐⏐�
Γ�́�𝑡 (R, Fℓ (𝑖)) −−−−−−→ Γ�́�𝑡 (C, Fℓ (𝑖))

is Cartesian and the maps

𝐻𝑖
�́�𝑡 (R, Fℓ (𝑖)) ⊕ 𝐻𝑖

�́�𝑡 (F𝑝 , Fℓ (𝑖)) → 𝐻𝑖
�́�𝑡 (C, Fℓ (𝑖))

are surjective for every i. The first condition holds by [24, Theorem 2.1]. The second condition is
vacuous when 𝑖 > 0 and easily verified for 𝑖 = 0. �

Remark 4.15. By adjoining an ℓth root of unity, one obtains the commutative square

𝑀ℓ (C ⊗ Z[𝜁ℓ]) −−−−−−→ 𝑀ℓ (R ⊗ Z[𝜁ℓ ])

⏐⏐� ⏐⏐�
𝑀ℓ (F𝑝 ⊗ Z[𝜁ℓ]) −−−−−−→ 𝑀ℓ (Z[1/ℓ, 𝜁ℓ])

This induces a Cartesian square in étale cohomology but not in motivic cohomology (since, e.g., the
group 𝐻1,0(Z[1/ℓ, 𝜁ℓ], Fℓ) = 0 but the corresponding map on 𝐻0,0 is not surjective).

4.3.4. Relation to étale homotopy types
Corresponding to the squares in Theorems 4.7, 4.11 and 4.14, there are analogous squares of étale
homotopy types; in fact, Lemma 4.2, the only nonformal input in the construction of the said squares,
also holds for étale homotopy types. Due to the equivalence

H�́�𝑡Z/ℓ
𝑛 � HZ/ℓ𝑛 [(𝜏)−1] ∈ SH(𝑆)∧cell

ℓ

from, for example, [9, Theorem 7.4], our co-Cartesian squares in CMZ[1/ℓ ] induce Cartesian
squares in étale cohomology with Z/ℓ𝑛 (𝑖)-coefficients. By Dwyer–Friedlander [24, Theorem 2.1]
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[23, pp. 144–145], the resulting squares of étale homotopy types become pushouts after appropriate
homological localisation.

By analysing the proof of Theorem 4.14, one sees that condition (1) in Proposition 7 is satisfied if
the following hold:

◦ dim 𝑋0 ≤ 1, dim 𝑋𝑛 = 0 else.
◦ The induced square of étale cohomology with Fℓ (𝑖)-coefficients is Cartesian.
◦ The induced square of Zariski cohomology with Fℓ-coefficients is Cartesian.
◦ The group 𝐻1

Zar (𝑋0, 𝑅
𝑖𝜖∗Fℓ (𝑖)) = 0 for 𝑖 ≥ 0.

5. Applications to slice completeness and universal motivic invariants

We apply the results in Section 4 to show slice completeness and compute the endomorphism ring of
the motivic sphere over regular number rings. Our completeness result for Voevodsky’s slice filtration
[72] is motivated by applications such as motivic generalisations of Thomason’s étale descent theorem
for algebraic K-theory in [25] and [9], convergence of the slice filtration [45], the solution of Milnor’s
conjecture on quadratic forms in [61], computations of universal motivic invariants in [64] and of
hermitian K-groups in [43].

For the standard nomenclature associated with the slice filtration, such as the effective covers 𝑓𝑞
and the effective cocovers 𝑓 𝑞 , and the slice completion sc we refer to [63, §3, (3.1), (3.3), (3.10)]. Let
SH(𝑆)≥0 denote the connective motivic spectra with respect to the homotopy t-structure on SH(𝑆)
[36, §2.1]. The notion of a cell presentation of finite type is defined in [64, §3.3]. We shall say
that a completeness property requiring a map 𝐸 → 𝐹 to be an equivalence holds ‘on homotopy’ if
𝜋∗∗𝐸 → 𝜋∗∗𝐹 is an isomorphism.

Proposition 11. Suppose F is a 2-regular number field and set O′
𝐹 := O𝐹 [1/2].

1. Let E• ∈ SH(O′
𝐹 )

∧cell
2 be a tower such that lim𝑛 𝑝∗𝑖 (E𝑛) � 0, where 𝑝∗𝑖 denotes the pullback to any

of the fields in Theorem 4.7(1). Then lim𝑛 E𝑛 � 0 is contractible.
2. If E ∈ SH(O′

𝐹 )
veff ∩ SH(O′

𝐹 )
cell is cellular and very effective, then E/2 is 𝜂-complete on homotopy.

3. Let E ∈ SH(O′
𝐹 )≥0 ∩ SH(O′

𝐹 )
cell and assume the slices of E are cellular and stable under base

change. Then there is an isomorphism

𝜋∗,∗(lim
𝑛

𝑓 𝑛 (E)/(2, 𝜌)) � 𝜋∗,∗(E/(2, 𝜌)).

4. Let E ∈ SH(O′
𝐹 )

eff ∩SH(O′
𝐹 )

cell be cellular and effective. Assume E/2 has a Z(2) -cell presentation
of finite type and its slices are cellular and stable under base change. Then E/(2, 𝜂) is slice complete
on homotopy and

𝜋∗,∗(sc(E)∧2 ) � 𝜋∗,∗(E∧2,𝜂).

In particular, there is an isomorphism

𝜋∗,∗(sc(1)∧2 ) � 𝜋∗,∗(1∧2 ).

Proof. (1) Let 𝐼 = {∗ → ∗ ← ∗} be the category so that lim𝐼 means pullback. For all 𝑋 ∈ SH(O′
𝐹 )

∧cell
2

we compute

Map(𝑋, lim
𝑛

E𝑛) � lim
𝑛

Map(𝑋, E𝑛) � lim
𝑛

lim
𝑖∈𝐼

Map(𝑝∗𝑖 (𝑋), 𝑝
∗
𝑖 (E𝑛))

� lim
𝑖

lim
𝑛

Map(𝑝∗𝑖 (𝑋), 𝑝
∗
𝑖 (E𝑛)) � lim

𝑖
Map(𝑝𝑖 (𝑋), lim

𝑛
𝑝∗𝑖 (E𝑛)) � 0.

The result follows.
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(2) Recall that E is 𝜂-complete if and only if

lim
[
· · ·

𝜂
−→ Σ2,2E 𝜂

−→ Σ1,1E 𝜂
−→ E

]
� 0.

Thus, by (1) it suffices to check 𝑝∗𝑖 (E/2) is 𝜂-complete for each i, which holds by [10, Theorem 5.1].
(3) The claim holds if and only if lim𝑛 𝑓𝑛 (E)/(2, 𝜌) � 0 on homotopy groups or, equivalently, when

computed in SH(O′
𝐹 )

cell. The assumptions imply 𝑓𝑛 (E) ∈ SH(O′
𝐹 )

cell and 𝑝∗𝑖 𝑓𝑛E � 𝑓𝑛𝑝
∗
𝑖 E. Hence, by

(1) it suffices to note that lim𝑛 𝑓 𝑛 (𝑝∗𝑖 E)/(2, 𝜌) � 𝑝∗𝑖 (E)/(2, 𝜌) owing to [10, Proposition 5.2].
(4) For the first statement we need to prove lim𝑛 𝑓𝑛 (E/(2, 𝜂)) � 0 on homotopy groups. As in (3),

this reduces to the same statement over fields, which holds by [64, Proposition 3.49]. For the second
statement we need to show sc(E/2) � E∧𝜂/2, which holds by the proof of [64, Lemma 3.13]: sc(E/2) is
𝜂-complete since E/2 is effective, and sc(E/2)/𝜂 � sc(E/(2, 𝜂)) � E/(2, 𝜂) – the first equivalence holds
by inspection of the slices. The final statement follows since the slices of 1(2) over O′

𝐹 are known and
have the desired properties by [64, Remark 2.2, Theorem 2.12]. �

Remark 5.1. We expect that analogs of Proposition 11 hold over more general base schemes. Moreover,
we expect that these results hold without the qualification ‘on homotopy’. Both shortcomings are a result
of our specific technique for accessing global sections of cellular spectra over arithmetic base schemes.

Recall that any unit 𝑎 ∈ O(𝑆)× gives rise to a map [𝑎] : 1 → 𝑆1,1 ∈ SH(𝑆) and hence an element

〈𝑎〉 := 1 + 𝜂[𝑎] ∈ 𝜋0,0 (1𝑆).

This turns 𝜋0,0 (1) into an Z[O(𝑆)×]-algebra. We made use of the algebra structure in the formulation
of Theorem 1.4 for Z[1/2]. The generalisation to 2-regular number rings takes the following form.

Theorem 5.2. Suppose F is a 2-regular number field with r real embeddings and c pairs of complex
embeddings. For the endomorphism ring of the motivic sphere over the base scheme O′

𝐹 := O𝐹 [1/2]
there is an isomorphism of Z[(O′

𝐹 )
×]-algebras

𝜋0,0 (1O′
𝐹
) ⊗ Z(2) � GW(O′

𝐹 ) ⊗ Z(2)

induced by the unit map 1 → KO. Moreover, we have the vanishing result

𝜋∗,0 (1O′
𝐹
) ⊗ Z(2) = 0. for ∗ < 0

Proof. The presentation of Grothendieck–Witt rings of fields of characteristic ≠ 2 by generators and
relations given in [44, Theorem 4.1] implies there are Z[(O′

𝐹 )
×]-algebra isomorphisms

GW(R) � Z ⊕ Z{〈−1〉},GW(C) � Z,GW(F𝑞) � Z ⊕ Z/2.

In the isomorphism for GW(F𝑞), the right-hand side has trivial multiplication on the square class
group F×𝑞/(F×𝑞)2 � Z/2. As such, every n-dimensional form in GW(F𝑞) can be written as either 𝑛〈1〉
or (𝑛 − 1)〈1〉 ⊕ 〈𝑎〉, where a is a nonsquare element in F×𝑞 (we may choose 𝑎 = −1 if and only if
𝑞 ≡ 3 mod 4). Moreover, by [15, Proposition 2.1(7)] and the proof of [13, Theorem 5.8], one deduces
the Z[(O′

𝐹 )
×]-algebra isomorphism

GW(O′
𝐹 ) � Z

1+𝑟 ⊕ (Z/2)1+𝑐 .
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Thus, for the closed points 𝑥, 𝑦1, . . . , 𝑦𝑐 ∈ Spec(O′
𝐹 ) in the notation of Theorem 4.7, there is a pullback

square of Z[(O′
𝐹 )

×]-algebras

GW(O′
𝐹 ) −−−−−−→

⊕𝑟 GW(R) ⊕
⊕𝑐 GW(𝑦𝑖)

⏐⏐� ⏐⏐�
GW(𝑥) −−−−−−→

⊕𝑟+𝑐 GW(C)

(5.1)

The Grothendieck–Witt rings appearing in (5.1) are quotients of Z[(O′
𝐹 )

×]. Thus, the maps in (5.1)
are unique as Z[(O′

𝐹 )
×]-algebra maps. Since 2-adic completion is exact on finitely generated abelian

groups, this square remains Cartesian after 2-adic completion.
Consider the long exact sequence of homotopy groups associated with the pullback square

map(1O′
𝐹
, 1∧2 ) −−−−−−→ map(

⊕𝑟 1R ⊕
⊕𝑐 1𝑦𝑖 , 1∧2 )⏐⏐� ⏐⏐�𝑎

map(1𝑥 , 1∧2 ) −−−−−−→ map(
⊕𝑟+𝑐 1C, 1∧2 )

(5.2)

We have 𝜋∗,0(1∧2 ) (C) � (𝜋𝑠
∗)

∧
2 by [46, Corollary 2]. It follows that the right vertical map in (5.2) is

surjective on homotopy groups. Indeed, recall that SH 𝑓 𝑖𝑛 is the initial stable symmetric monoidal
∞-category according to [16, Theorem 3.1]. Thus, for any symmetric monoidal stable ∞-category C
and symmetric monoidal functor 𝐹 : C → SH(C)∧2 , there exists a factorisation

(𝜋𝑠∗)
∧
2 → 𝜋∗(𝑐

∧
2 )

𝐹
−→ 𝜋∗,0 ((1C)∧2 )

and the composite is surjective by Levine’s result. Thus, using [55, Corollary 6.43], we deduce the
pullback square of rings

𝜋0,0 (1∧2 ) (O
′
𝐹 ) −−−−−−→

⊕𝑟 GW(R)∧2 ⊕
⊕𝑐 GW(𝑦𝑖)

∧
2⏐⏐� ⏐⏐�

GW(𝑥)∧2 −−−−−−→
⊕𝑟+𝑐 GW(C)∧2

(5.3)

Note that (5.3) comes from a diagram in CMO′
𝐹

. Hence, the maps in (5.3) are 𝜋0,0 (1∧2 ) (O
′
𝐹 )-algebra

maps, so a fortiori Z[(O′
𝐹 )

×]-algebra maps. The Grothendieck–Witt rings in (5.3) are quotients of
Z[(O′

𝐹 )
×]∧2 ; thus, the lower horizontal and right-hand vertical maps in (5.3) are unique Z[(O′

𝐹 )
×]-

algebra maps. Thus, (5.3) is the 2-adic completion of (5.2) and there is an isomorphism of Z[(O′
𝐹 )

×]-
algebras

𝜋0,0 (1∧2 ) (O′
𝐹 ) � GW(O′

𝐹 )
∧
2 .

There is a similar pullback square for 𝜋1,0 (−) ⊗Q. Since the vanishing 𝜋1,0 (1∧2 ) (𝑘) ⊗Q = 0 holds for
𝑘 = R [21, Figure 4], 𝑘 = C [46, Corollary 2] and 𝑘 = F𝑞 [75, Theorem 1.3], we deduce the vanishing

𝜋1,0 (1∧2 ) (O′
𝐹 ) ⊗ Q = 0.
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Inserted into the fracture square long exact sequence we get a pullback square of Z[(O′
𝐹 )

×]-algebras

𝜋0,0 (1) (O′
𝐹 ) ⊗ Z(2) −−−−−−→ 𝜋0,0 (1) (O′

𝐹 ) ⊗ Q⏐⏐� ⏐⏐�
𝜋0,0 (1∧2 ) (O

′
𝐹 ) −−−−−−→ 𝜋0,0 (1∧2 ) (O

′
𝐹 ) ⊗ Q��� ���

GW(O′
𝐹 )

∧
2 GW(O′

𝐹 )
∧
2 ⊗ Q.

(5.4)

By inspection there are isomorphisms of Z[(O′
𝐹 )

×]-algebras

𝜋0,0 (1) (O′
𝐹 ) ⊗ Q � 𝐻0

𝑟 �́�𝑡 (O′
𝐹 ,Q) × 𝐻0(O′

𝐹 ,Q)

� Q𝑟 × Q

� GW(O′
𝐹 ) ⊗ Q.

We refer to [7, Theorem 7.2] for a proof of the first isomorphism. Since 𝜋0,0 (1) (O′
𝐹 ) ⊗ Q is a quotient

of Z[(O′
𝐹 )

×] ⊗ Q, in (5.4), the right-hand vertical map

𝜋0,0 (1) (O′
𝐹 ) ⊗ Q � GW(O′

𝐹 ) ⊗ Q→ 𝜋0,0 (1∧2 ) (O′
𝐹 ) ⊗ Q � GW(O′

𝐹 )
∧
2 ⊗ Q

is the unique Z[(O′
𝐹 )

×]-algebra map. This shows we can identify the square of Z[(O′
𝐹 )

×]-algebras
(5.4) with the corresponding fracture square for GW(O′

𝐹 ) ⊗ Z(2) . It also follows that the unit map to
KO induces an isomorphism, since 𝜋0,0 (KOO𝐹 ) = GW(O′

𝐹 ) is a quotient of Z[O′×
𝐹 ].

Next we show the vanishing 𝜋∗,0 (1O′
𝐹
) ⊗ Z(2) = 0 for ∗ < 0. From (5.2), since a is surjective on 𝜋∗

and all terms except possibly the top left vanish on 𝜋∗ for ∗ < 0, we deduce that 𝜋∗,0 ((1O′
𝐹
)∧2 ) = 0 for

∗ < 0. Since GW(O′
𝐹 ) is finitely generated, the map

GW(O′
𝐹 ) ⊗ Q × GW(O′

𝐹 )
∧
2 → GW(O′

𝐹 )
∧
2 ⊗ Q

is surjective. Considering the fracture square for 𝜋∗,0 (1O′
𝐹
) ⊗ Z(2) , it thus remains to prove 𝜋∗,0 (1O′

𝐹
) ⊗

Q = 0 for ∗ < 0. This follows from the identification of these groups with subquotients of the rational
gamma filtration and rational real étale cohomology, both of which vanish in these degrees, as above. �

Applying the same proof method establishes the following odd-primary analog of Theorem 5.2.

Theorem 5.3. Let ℓ be an odd prime number. Suppose F is ℓ-regular and 𝜇ℓ ⊂ 𝐹. For the endomorphism
ring of 1O′

𝐹
over the base scheme O′

𝐹 := O𝐹 [1/ℓ] there is an isomorphism of Z[(O′
𝐹 )

×]-algebras

𝜋0,0 (1O′
𝐹
) ⊗ Z(ℓ) � GW(O′

𝐹 ) ⊗ Z(ℓ) .

Moreover, we have the vanishing result

𝜋∗,0 (1O′
𝐹
) ⊗ Z(ℓ) = 0 for ∗ < 0.

The same results hold for the motivic sphere over the base scheme Z[1/ℓ] when ℓ is a regular prime.
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