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Abstract

This work focuses on analyzing how do different methods of solving sequential
decision problems can compare to each other when trying to solve simplified versions
of the game of poker. Mainly two common methods of solving a sequential decision
problem are the normal form method and the extensive form method. Both methods
need some sort of optimality criteria to be able to define preference orders, so in
total there were seven optimality criteria chosen to make the comparison, which
were the Maximax criterion, Maximin criterion, Hurwicz criterion, Laplace criterion,
Minimax Regret criterion, the Bernoulli principle and the Hodges and Lehmann
criterion.

A couple of differences between the usage of the same criterion with the two
different methods were able to be identified and talked about in the poker problem,
while still trying to understand how different scenarios can be advantageous for a
certain method in comparison to the other. Another point discussed was how the
different optimality criteria would be influenced by not only the methods but also
different situations such as outlier value reward leaves.
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Chapter 1

Introduction

What is a decision? According to the Cambridge dictionary a decision is: a
choice that you make about something after thinking about several possibilities
(Cambridge, n.d.). But if one thinks about real life situations, one does not nec-
essarily have to think to make decisions. How much do we actually think when
brushing our teeth or using deodorant right after waking up as it has already be-
come a routine in our lives? One can argue that decisions are choices every living
being must take which leads to some sort of action or inaction, not necessarily
thought about. From simple amoeboid organism solving different problems (Reid et
al., 2016), to which prey will a lion go after, to whether we will play in the lottery in
the end of the year, decisions are natural occurrences of the nature of living beings.

Since the first developments of statistics as a subject, games of chance have been
of utter importance and curiosity for mathematicians. Bernoulli describing the toss
of a coin has had a significant impact in probability theory and how we see the
entire dynamics of these sorts of games. While Bernoulli was trying to describe
mathematically the game itself, other areas which have been of great interest are
the different decision possibilities, as well as different strategies used. While John
von Neumann and Oskar Morgenstern would develop the basis of what we know
nowadays as utility theory and game theory, L. J Savage would have his work focused
on utility theory and decisions itself. What would be later referenced as normative
theory of decision (Morgenstern & Von Neumann, 1953; Luce & Raiffa, 1957, chapter
1).

While decision theory might be segmented into different areas, such as descrip-
tive, normative and prescriptive decision theory, this bachelor thesis will only deal
with normative decision theory. It can be defined as behavioral rules which deal with
how decisions should be taken to maximize the well-being of the different decision
makers.(Bacci & Chiandotto, 2019, chapter 1)

Expanding on what Von Neumann, Morgenstern, Savage and other mathemati-
cians and researchers developed in decision theory, the idea of this bachelor thesis
is to examine decision theory, more specifically sequential decision theory. Having
as main objective to use all the classical and Bayesian sequential decision tools to
describe a real-life example which has always interested me personally: poker.

Before going deeper into specific decision theory details in Chapter 2, there are
some important introductory concepts that need to be laid out. In the decision the-
ory field, there are some different classifications for problems, for example whether a
decision is made by an individual or a group, as well as if it is affected by conditions

3



of certainty, risk or uncertainty. (Luce & Raiffa, 1957, chapter 2)
This bachelor thesis will deal with individual decisions made under risk or uncer-

tainty, in the sense that they appear in the work of Luce and Raiffa. As defined in
games and decisions, an individual decision is a decision made by a single decision
maker, either a human being or an organization, which can be seen as a collective
with a unified purpose and no conflicting directions within the individuals that form
it. While decisions under risk will have a set of specific outcomes for which the
probabilities are known by our decision maker, decisions made under uncertainty
will relate to whether an action of one party or even both will lead to a set of end
results, for which the probabilities are unknown or not even meaningful. (Luce &
Raiffa, 1957, chapter 2)

The structure of this thesis was chosen to highlight the theoretic nature of the
topic in chapters two and three. In the second chapter the decision problem will
be explained, as well as how will it be structured with mathematical notation, also
establishing some important concepts and talking about the different approaches
seen in the literature to solve single decision problems. In the third chapter it
will be further investigated the structure of sequential decision, more specifically
the decision trees format and the different possible solution approaches to them.
Building on which approaches we saw for non-sequential decision problems in chapter
2 and using much of what was established in the previous chapter.

The fourth chapter will use the developments of the second and third to try to
firstly solve analytically Kuhn Poker, which is a simplified version of poker, with the
normal and the extensive methods. After that an expanded Kuhn Poker version will
be explored, where there will 5 cards being played instead of the original Kuhn Poker
with three. Further, it will be discussed what the possible different approaches from
Kuhn Poker and expanded Kuhn Poker might mean to a Texas hold ‘em game. How
we could possibly transfer knowledge. Lastly in the fifth chapter some conclusions
will be drawn. It will be discussed where these different problem approaches might
be useful in different real-life situations and not only games per say.
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Chapter 2

Decision Theory

Throughout this chapter the focus will be on solving single decision problems
with different approaches. In section 2.1 it will be explained the overall structure of
a decision problem, while also introducing some important concepts, such as acts,
states, utilities, together with the mathematical notation that will be used. Sec-
tion 2.2 has as main objective going through different classical solution approaches
and explaining different criteria, such as the minimax, minimax regret, maximin,
Hurwicz and principle of insufficient reason. Similarly, Section 2.3 will also present
how to solve the single decision problems but with the Bernoulli approach. The
last chapter will explain other possible approaches, which are common in decision
theory, but won’t necessarily be the focal point of this project.

2.1 Structuring Decision Problems
When talking about decision problems one of the main difficulties is to structure

it in a way, which enables the analysis of the different possibilities, the occurrences of
the decision and be able to define possible strategies. The first important aspect of
this process is naming the single entity, which will make the decision, as the decision
maker.

To better illustrate such a problem, Savage presents us with an example that
can help lay down the main structures of a decision problem. The example tries to
explain the dilemma of a decision maker, who is trying to make a six-egg omelet.
His wife has already broken five eggs into a bowl and now he must decide between
three possible decisions. The first being if he will break the sixth egg in the bowl
with the five other eggs, if he will break it in a separate saucer or lastly if he will
completely discard it without even breaking it. The problem here is that there is
always the possibility that an egg is rotten and the only way to discover it is opening
it. Therefore, if the sixth egg is rotten and it is broken in the bowl, all the eggs will
be wasted. While if it is broken in a saucer, the decision maker will have one more
utensil to wash afterwards. If he simply decides to discard it, the decision maker
might just be wasting a good egg. (Savage, 1954).

In this entire problem, there are basically three possible decisions for the decision
maker, which will be from now on called acts. The two different conditions of the
sixth egg (rotten or good) will be named the state of nature. Lastly the results
of a decision being made together with the discovery of the true state of nature
will induce a consequence. All the above-mentioned concepts are commonly seen
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in literature around decision theory (Luce & Raiffa, 1957; Berger, 1985, chapter 1
and chapter 1) and will be better developed later in this section. Still, for the sake
of this example, it is important to already have the nomenclature for the following
elucidative table around the decision makers dilemma:

Acts States
Rotten Good

Break into bowl No omelet, and five
good eggs destroyed

Six-egg omelet

Break into saucer Five-egg omelet and a
saucer to wash

Six-egg omelet and a
saucer to wash

Throw away Five-egg omelet Five-egg omelet, and
one good egg waster

Table 2.1: Savage’s Dilemma towards breaking the sixth egg

The table illustrates well how one decision together with all possible states of
nature will give us different consequences, but what kind of action should the decision
maker take in this case? Mostly the best strategy for this decision maker depends
on what kind of personal preferences he has. For example, if he absolutely hates
washing the dishes, he might not choose breaking the egg into a saucer, if he doesn’t
mind the dishes and doesn’t want the risk of spoiling five other eggs, he might just
choose to break it in a saucer or throw it away entirely. There is a relative “value”
to the different possible consequences. Even when there are clear monetary payoffs
as consequences, a scale measuring the “value” of the consequences might not be as
obvious as only using the monetary gains. An example for that is when one decision
maker has no money and must do an unpleasant choir to earn 200e, while another
decision maker is a billionaire and can also earn 200e doing the same unpleasant
choir. In this case, 200e might have a completely different significance depending
on the decision maker’s financial situation.

To be able to work mathematically with these “values”, numbers indicating such
values need to be assessed. These numbers will basically be called utilities and utility
theory deals exactly with how these numbers are established. (Berger, 1985, chapter
2). Although how to get these utilities and utility theory have a vast literature, every
detail will neither be thoroughly explained, nor be the main focus of this bachelor
thesis.

Continuing this chapter, some basic notation needs to be established for the
different important concepts already introduced. Individual actions, which can be
chosen by the decision maker, will be defined as a and the set of all these actions will
be A = {a1, a2, ..., an}. While the states of nature will be defined as θ (a parameter)
and the set of all possible states of nature will be denoted as Θ = {θ1, θ2, ..., θp}
(a parameter space). When talking about states of nature, it is important to clear
that it does not really relate to nature in itself, but it might just be anything that
is out of the control of the decision maker. Examples of this might be as simple
as an actual natural event, such as a hurricane, to a decision from other players,
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that might not necessarily follow a logical or known strategy to the decision maker.
The combination of a specific (θi, aj) will generate a certain utility, represented by
U(θi, aj) or uij . In a more general setting U(θ, a)1. The following table 2.2 with a
finite set of actions, a discrete set of states of nature and the corresponding utilities
might help visualize the relation between ideas:

Acts States
θ1 ... θj ... θp

a1 u11 ... u1j ... u1p
...

...
...

...
...

...
ak uk1 ... ukj ... ukp
...

...
...

...
...

...
an un1 ... unj ... unp

Table 2.2: Acts x States table

Even though through many economics papers often it is seen the usage of utilities,
statistician also use loss as a parameter. The idea is that the loss will be minimized,
instead of a utility being maximized. This is an advantage because expected loss
is the correct measure for loss in random occurrences(Berger, 1985, chapter 2).
Therefore, expected loss will be used as a criterion when relating to randomized
rules, such as risks, Bayesian expected loss and Bayes risks (Berger, 1985, chapter
2). If there is an existing utility U(θ, a), the loss can be defined as:

L(θ, a) = −U(θ, a) (2.1)

To be able to define some preferences, these following ideas need to be estab-
lished. Suppose ai and ak are two different acts in a decision problem. Further
notation seen in the works of Luce and Raiffa will be used to help us define some
ideas.(Luce & Raiffa, 1957, chapter 13):

i. ai ∼ ak: represents that they are equivalent acts, this means that they will
have the same utility in each different state of nature.

ii. ai ≻ ak: represents that ai strong dominates ak, this means that ai is preferred
in each different state of nature.

iii. ai ⪰ ak: represents that ai weakly dominates ak, this means that for at least
one state of nature ai is preferred to ak and ai is preferred or indifferent to ak
for all the other states of nature.

In the following table 2.3, it is possible to exemplify these relations better. It
is possible to see that the first action is equivalent to the fourth (a1 ∼ a4), at the
same time the first action strongly dominates the last action (a1 ≻ a6), while the
first also only weakly dominates the fifth(a1 ⪰ a5).

But the important question is how to choose when there is no action that is
clearly dominating over all the other possible actions. This will be discussed in
the following chapters, how to define preferences when there is no clear “winning”
strategy.

1The mathematical notations are based on the works of Berger(Berger, 1985, chapter 1, chapter
2) and Luce and Raiffa(Luce & Raiffa, 1957, chapter 13)
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Acts States
θ1 θ2 θ3 θ4 θ5

a1 25 10 12 15 40
a2 26 7 15 18 35
a3 13 25 37 13 35
a4 25 10 12 15 40
a5 25 10 12 15 37
a6 23 8 10 8 33

Table 2.3: Example of a possible finite decision problem

2.2 Classical decision theory
The classical school of decision theory will mainly deal with making decisions

under uncertainty. For the sake of this bachelor, it will be mostly dealing with
decisions under ignorance. This means that the states of nature and their utilities are
known, but no other information about these states of nature or prior probabilities
about them are known(Savage, 1951; Luce & Raiffa, 1957, chapter 13).

It is important to start restricting the number of actions that might be choosen.
Due to the nature of poker as a game (which will be talked about in chapter 4), this
thesis will be mostly dealing with finite single decision problems. Still, finite single
decision problems might have an enormous number of possible actions, therefore re-
ducing the number of actions is still necessary. For this reason, the “non-domination
principle” is useful, as it prohibits the choice of a dominated act. The though be-
hind it is that a decision maker will not choose an action that is completely worse
than another in all other states of nature. Therefore, it is possible to discard this
dominated action and only stay with those actions that aren’t clearly dominated by
no other. Actions that are equivalent will also be taken into account only once in
classical single decision problems, as they are virtually the same(Szaniawski, 1960).

In table 2.3 it is possible to see these relations. a1 is equivalent a4(a1 ∼ a4), while
it is also weakly dominating a5 (a1 ⪰ a5)and dominating a6(a1 ≻ a6). Therefore,
based on beforehand explained principles, it would be able to simplify table 2.3 and
the result would be the following modified table 2.4.

To be able to define a preference order one of the methods is using “rational”
criteria, which basically are rules that define certain preference orders depending on
what is optimal according to the criterion(Luce & Raiffa, 1957, chapter 13).These
are the different criteria chosen to be used and discussed further on:

Acts States
θ1 θ2 θ3 θ4 θ5

a1 25 10 12 15 40
a2 26 7 15 18 35
a3 13 25 37 13 35

Table 2.4: Example of a decision problem without dominated acts or repeated acts
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Maximax

As the maximax/max-max criterion goes, the idea is that the maximum utility
of each action will be compared and the optimal actions are the ones with the
maximum overall maximum value. This will result in the chosen ai. It is described
as being an extremely optimistic criterion.(Bacci & Chiandotto, 2019, chapter 5)

max
j

uij = max
k

max
j

ukj (2.2)

Maximin/Wald criterion

As the maximin criterion goes, the idea is that the minimum utility of each action
will be compared and the optimal actions are the ones with the maximum overall
minimum value. This will result in the chosen ai(Wald, 1945). It is considered as a
pessimistic criterion(Luce & Raiffa, 1957, chapter 13).

min
j

uij = max
k

min
j

ukj (2.3)

Principle of insufficient reason/Laplace criterion

As the Laplace criterion goes, the idea is that each action will be compared as
the average of all the action’s utilities and the optimal actions are the ones with
maximum overall average. This will result in the chosen ai.(Luce & Raiffa, 1957,
chapter 13)

1

p

p∑
1

uij = max
k

1

p

p∑
1

ukj (2.4)

Hurwicz criterion

As the Hurwicz goes, the idea is that each action will be compared through
αminj ukj + (1 − α)maxj ukj. Basically comparing together, the maximum and
minimum utilities of each action. Where alpha is the “pessimism” parameter (0 ≤
α ≤ 1). The optimal actions are the maximum overall results from the above
formula. This will result in the chosen ai.(Hurwicz, 1951)

αmin
j

uij + (1− α)max
j

uij = max
k

[αmin
j

ukj + (1− α)max
j

ukj] (2.5)

Minimax Regret criterion

As the minimax regret criterion goes, the idea is that firstly the regret will be
calculated, the regret is basically the amount that must be added to the utility for it
to equal the maximum utility in their respective state of nature column. What will
be compared here are the maximum risks of each action and the actions with the
minimum maximum risk will be chosen. This will result in the chosen as.(Savage,
1951) The criterion is considered to be pessimistic.(Luce & Raiffa, 1957, chapter 13)

max
j

(max
k

uij − uij) = min
k

max
j

(max
k

ukj − uij) (2.6)
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Bernoulli principle

The Bernoulli principle is described in the literature as using the expected util-
ity to compare and establish a preference relation between the different possible
actions. This method uses the possible utilities of each action and multiplies it
by the prior probability of their corresponding state of nature. The main objec-
tive is identifying and choosing the action which has the biggest overall expected
utility.2(Rommelfanger & Eickemeier, 2013, chapter 3.2)

(2.7)
p∑

j =1

uijpθ(θj) = max
k

p∑
j=1

ukjpθ(θj)

Hodges and Lehmann criterion

The Hodges and Lehmann criterion is a mixture of two different combinations
of criteria. The first part is the Bernoulli principle together with originally the
minimax criterion. Although the original paper uses risk and loss for the criteria, as
in this bachelor utilities are being used here, then the Bernoulli part of the criterion
will be the expected utility, while the minimax will actually be the maximin for the
utility, as what will be used is the best utility out of the worst possible utilities of
the action(which corresponds to the minimax of the loss).(Jr. & Lehmann, 1952)

(2.8)λ0

∑
uijpθ(θj) + (1− λ0)min

j
uij = max

k
(λ0

∑
ukjpθ(θj) + (1− λ0)min

j
ukj)

2.3 Examples
The aim of tables 2.5 and 2.6 are to exemplify how the former mentioned classical

criteria work in the practical sense. To show how each of them might choose a
different action depending on their definition of “optimal” action. Mainly this will
happen due to the different focuses of each criterion. In both tables the numbers
in bold from the section criterion will be the chosen optimal action according to
the criterion. In table 2.5 the criteria being showed are the Maximax, Maximin,
Laplace and Hurwicz, where, after the first part of each criteria is calculated and
displayed, the chosen action in all of them is their maximum value. The Maximax
“optimal” action will be a1. While for both the Wald and Laplace it will be a3 and
it is possible to observe that there are for the Hurwicz criteria, in this example, two
possible “optimal” actions, a1 and a3. An example for the preference order of the
Maximax would be: a1 over a3 over a2. For the other criterion the preference of
order would be analogously determined.

In table 2.6 the criterion being shown is the Minimax regret criterion, for which
firstly the regrets need to be calculated, afterwards the action which has the lowest
maximum is chosen. In this case it will be a3.

Although classical criteria might be useful in many different problems, it is not
possible to consider data or posterior probabilities of certain situations. Therefore,
it is required different criteria such as the Bernoulli and the Hodges and Lehmann

2In the literature, from which the principle is cited, the author uses the E for the expected
utility notation, while here it is simply the extended version with the utilities being multiplied by
the states of nature with the max notation in order to make all criterion having an uniform style.
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Acts States Criterion
θ1 θ2 θ3 θ4 θ5 maxj uij minj uij

1
p

∑p
1 uij αminj uij + (1− α)maxj uij

a1 25 10 12 15 40 40 10 20.4 25
a2 26 7 15 18 35 35 7 20.2 21
a3 13 25 37 14 35 37 13 24.8 25

Table 2.5: Maximax, Wald, Laplace and Hurwicz criteria approaches to solving a
single decision problem

Acts Sates Regret values Criterion
θ1 θ2 θ3 θ4 θ5 26− ui1 25− ui2 37− ui3 18− ui4 40− ui5 maxj

a1 25 10 12 15 40 1 15 25 3 0 25
a2 26 7 15 18 35 0 18 22 0 5 22
a3 13 25 37 14 35 13 0 0 4 5 13

Table 2.6: Example of a decision problem without dominated acts or repeated acts

criterion. In table 2.7 it is possible to see how the example would be solved with
the Bernoulli principle. It is important to note that in the example some prior
probabilities of the state of nature had to be assumed. The assumed values are
Pθ(θ1) = Pθ(θ2) = Pθ(θ5) = 0.2, Pθ(θ3) = 0.3 and Pθ(θ4) = 0.1. These prior
probabilities will be multiplied with the corresponding utility and the sum of all the
expected utilities of that action will define different expected utilities of each action.
The action with the highest utility will be chosen, in the table 2.7 that would be
action a3.

Acts Calculating Bernoulli principle Bernoulli Criterion

a1 25 ∗ 0.2 + 10 ∗ 0.2 + 12 ∗ 0.3 + 15 ∗ 0.1 + 40 ∗ 0.2 20.1
a2 26 ∗ 0.2 + 7 ∗ 0.2 + 15 ∗ 0.3 + 18 ∗ 0.1 + 35 ∗ 0.2 19.9
a3 13 ∗ 0.2 + 25 ∗ 0.2 + 37 ∗ 0.3 + 14 ∗ 0.1 + 35 ∗ 0.2 27.1

Table 2.7: Bernoulli principle solution example

The last table of this section has the example of the Hodges and Lehmann
criterion. As already described, this criterion could be portrayed as a combination
of the Bernoulli and the maximin criterion. As it is seen in the table, the Bernoulli
part multiplied by the parameter(λ = 0.5) plus the smallest value possible of that
action multiplied by one minus the parameter will represents a certain value. The
action with the biggest combined value will be the choosen action, in the case of
this example a3.
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Acts λBernoulli+ (1− λ)Minimax
Hodges and Lehmann

a1 0.5(25 ∗ 0.2 + 10 ∗ 0.2 + 12 ∗ 0.3 + 15 ∗ 0.1 + 40 ∗ 0.2) + 0.5(10) 15.05
a2 0.5(26 ∗ 0.2 + 7 ∗ 0.2 + 15 ∗ 0.3 + 18 ∗ 0.1 + 35 ∗ 0.2) + 0.5(7) 13.45
a3 0.5(13 ∗ 0.2 + 25 ∗ 0.2 + 37 ∗ 0.3 + 14 ∗ 0.1 + 35 ∗ 0.2) + 0.5(13) 20.05

Table 2.8: Hodges and Lehman example with λ = 0.5
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Chapter 3

Sequential Decision

3.1 Decision Trees
In the last section single decision problems were vastly discussed, but how do

we solve problems that have multiple actions from our decision maker and multiple
different states of nature, as these occur sequentially to define possible utilities?
This will be the focus of this section. The idea of sequential decision problems will
be introduced through the usage of decision trees and the two different approaches
on how to solve them. Although there are many discussions about which is the
best way to solve these problems, the decision tree solution with normal form and
extensive form are the chosen methods for this bachelor thesis. The approach, which
will be used going forward in this thesis, is based on the framework established by
Huntley’s and Troffaes’ works.(Augustin, Coolen, De Cooman, & Troffaes, 2014;
Huntley & Troffaes, 2011, 2012a, 2012b)

As it was also done in chapter two, firstly the basis structure and notation for
our decision trees needs to be introduced. In this thesis, a decision tree is a graphical
representation of a decision problem with more than one iteration between decision
maker, the different possibilities of states of nature and utilities. The decision graph
will be basically assembled by decision nodes, chance nodes and reward leaves, that
will contain the corresponding utilities. Visually the decision nodes will be repre-
sented by rectangles, the chance nodes will be represented by circles and reward
leaves are symbolized by hexagons. The following branches after decision nodes and
chances nodes are, respectively, acts and states of natures.

An example that might be useful is of whether the decision maker will go to a
party (act a1) or if he will stay at home and listen to his radio (act a2). In both
situations the music that is playing might be good (state E1) or might be bad (state
E2). If the decision maker decides to go to the party, his friends, that are already
there, might be in the first floor (state S1) or in the second floor (state S2) of the
club. In each floor there are two dj areas and the decision maker will need to decide
whether he will go to area 1(act b1) or area 2(act b2). On the other hand if the
decision maker decided to stay at home, he must firstly choose a radio station, he
can decide between radio 1(act c1), radio 2 (act c2) or radio 3(act c3). This example
can be visualized in Figure 3.1.

Using Huntley’s and Troffaes’ notations(Huntley & Troffaes, 2011), a decision
tree will be considered here as the combination of smaller trees. Therefore, if
T1, . . . , Tn are different decision trees and T is composed by these trees, in the end
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Figure 3.1: Example of a decision problem without dominated acts or repeated acts
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T will be described with the usage of the notations in formulas 3.1 and 3.2:

T =
n⊔

i=1

Ti (3.1)

If E1, . . . , En is a part of the space of the states of nature and the subtrees Ti

are connected at chance nodes, by our event Ei, to form T then:

T =
n⊙

i=1

EiTi (3.2)

For example figure 3.1, could be described as:

(S1(T1 ⊔ T2)⊙ S2(T3 ⊔ T4)) ⊔ (U1 ⊔ U2 ⊔ U3) (3.3)

With:
T1 = E110⊙ E211 T2 = E18⊙ E212 T3 = E16⊙ E22
T4 = E15⊙ E23 U1 = E111⊙ E24 U2 = E110⊙ E211
U3 = E110⊙ E215

One very important aspect of our subtrees is that even though there might be
subtrees, which are virtually the same (they have the same structure of nodes and
arcs), these might be originated by different preceding events. For this reason, they
should be treated differently. These intersection of these preceding events of the
decision tree on chance nodes will be denoted as ev(T ).(Huntley & Troffaes, 2011)

Instances

Although the strategies for solving sequential decision problems depend strongly
on the decisions of the decision maker, the utility that comes from these choices and
validate these strategies are, obviously, also very dependent of the combination of the
different states of nature. For this reason, it is needed a notation, which will exactly
represent these possible states of nature. In this case, Ω will be the possibility space,
which represent the set of all possible states of nature. The elements of Ω will be
portrayed as ω, while the different subsets of Ω will be the events. 1

The Ω permits us to have the instance X : Ω → U , which is a function that
defines the utility that will be the outcome of the set of different states of nature.
When ω ∈ Ω is observed, then X(ω) will yield a utility value. Huntley and Troffaes
define this idea as a gamble(Huntley & Troffaes, 2011), but due to the main example
of this bachelor thesis being a game of poker, the word gamble might be used later
in a different context, which might cause confusion.

Choice functions

In the approach that will be followed in this thesis, which is based on Huntley’s
and Troffaes’ works(Huntley & Troffaes, 2011) with a few modifications, both the
normal form and extensive form solutions to the decision trees use a choice function

1The entire idea of possibility spaces, events and their respective notation comes directly from
Huntley’s and Troffaes works(Huntley & Troffaes, 2011). These will be very useful concepts, mostly
when solving sequential decision problems with the normal form.
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opt. The idea behind this function is that it will compare the different instances,
mainly through the different criteria established in section 2.3, and then find the
corresponding optimal normal or extensive decision solution. The definition to the
choice function will be taken directly from Huntley’s and Troffaes’ defition 5(Huntley
& Troffaes, 2011)

Definition 5. A choice function opt maps, for any non-empty event A, each
non- empty finite set X of instances to a non-empty subset of this set:

∅ ≠ opt(X|A) ⊆ X (3.4)

3.2 Normal Form
A normal form solution can be summarized as a kind of representation, where

every decision must be previously stated before any action or state of nature has
even occurred(Augustin et al., 2014, chapter 8). A good analogy for these kinds of
solutions are recipes, which should be thoroughly followed by the decision maker.
Another important property is that each decision node must specify only one decision
arc to choose from. Two possible normal form solutions for the preceding decision
tree example can be seen in Figure 3.2. In the first possible solution would choose
to stay at home and listen to radio(act a2) and then afterwards choose radio 1(act
c1). The other possible solution would be choose going to the club (act a1), then
if your friends are in the first floor (state S1) go to the area 1 (act b1) and if your
friends are in the second floor (state S2) go to are 2 (act b2).

As in Huntley and Troffaes paper, here as well the set of all the different combi-
nations of normal form decisions for a decision tree will be denoted as nfd(T) and a
normal form solution will simply be a subset of nfd(T)(Huntley & Troffaes, 2011).
Normally solutions with normal form decisions involve sorting all the different possi-
ble combinations of actions and choosing the combination, which will be considered
the optimal normal form decisions(Huntley & Troffaes, 2012a). To be able to find
this optimal normal form solution from all of these possible normal form decisions,
a normal form operator is needed. The normal form operator will be a function,
which is able to map each decision tree to a normal form solution. Even though for
traditional normal form solution the expected utility is used to find this optimal de-
cision, in this case, the optimal decision will not only be defined by expected utility
but also be defined by some sort of optimal criteria.(Huntley & Troffaes, 2011)

Normal Form instances

As already explained, the two components that decide the outcome of the decision
trees are: the decisions taken by the decision maker and the different states of nature
that might occur, which were established as the instances. Therefore, for every
possible normal form decision, there is a corresponding normal form instance, that
will together generate the utility of the decision process. The set of all instances
will be denoted as Inst(T).

Using our preceding decision tree as an example, if the chance node N11 and
decision node N12 are choosen and then two paths are decided for these nodes, there
will be two corresponding instances. At the chance node N11, for both states S1 and
S2, there are the two possible normal form decisions: b1 or b2. While for the decision
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Figure 3.2: Example of two possible normal form solutions

node N12 there are three possible normal form decisions: c1, c2 or c3. If the decision
maker at N11 decides for b1 in case of S1 and b2 if S2 and at N12 for c2, then we will
have the following normal form instances:

S1(E110⊕ E211)⊕ S2(E15⊕ E23)

E110⊕ E29

The ⊕ operator will signalize the integration of two partial maps defined on
disjoint domains. The multiplication with a state of nature will mean restriction.
In the first example the partial map E110 is a constant map restricted on E1 and
E211 is a constant map restricted on E2, while the partial map S1(E110⊕ E211) a
constant map restricted on S1 and the rest can be analogously described.

The instances permit that we tabulate these outcome possibilities, which will be
very useful to compare the different normal form decisions and instances. The
creation of a table is possible through the usage of the possibility space Ω =
{ω1, ω2, ω3, ω4}, as well as denoting E1 = {ω1, ω2} and S1 = {ω1, ω3}. If there
is no S1 partial map in the instance, then it simply corresponds to E1 = {ω1, ω2}
and E2 = {ω3, ω4}. This can be seen in the following table:

Instances
ω1 ω2 ω3 ω4

S1(E110⊕ E211)⊕ S2(E15⊕ E23) 10 5 11 3
E110⊕ E29 10 10 9 9

Table 3.1: Normal form instances example tabulated

The inner brackets of the first normal form instance is also another smaller
instance in itself and it is possible to observe how there is a recursive component to
the different instances. There are two very important recursive definitions(definition
2 and 3) from Huntley and Troffaes(Huntley & Troffaes, 2011), that will be used for
the instances operator:

Definition 2. For any events E1, ..., En which form a partition, and any finite
family of sets of instances X1, ..., Xn, we define the following set of instances:
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n⊕
i=1

EiXi =

{ n⊕
i=1

EiXi : Xi ∈ X

}
(3.5)

Definition 3. With any decision tree T , we associate a set of instances inst(T ),
recursively defined through:

• If T consists of only a leaf with utility u ∈ U , then

inst(T ) = {u} (3.6)

• If T has a chance node as root, that is, T =
⊙n

i=1EiTi, then

inst

( n⊙
i=1

EiTi

)
=

n⊕
i=1

Eiinst(Ti) (3.7)

• If T has a decision node as root, that is, if T =
⊔n

i=1 Ti, then

inst

( n⊔
i=1

Ti

)
=

n⋃
i=1

inst(Ti) (3.8)

Notation for normal decision solving

Further notation will describe how our normal form operator can induce our
normal form solution through a choice function. In this case definition 6 and theorem
7 from Huntley’s and Troffaes’ paper(Huntley & Troffaes, 2011) will be used. The
idea is that as there are normal form decisions, it is possible to treat these as a single
decision problem through the comparisons of the different instances. The optimal
instance can be mapped to the decisions and this will be our normal form solution.

As they are being treated as a single decision problem, it enables us to use the
optimality criteria introduced in section 2.2. The biggest difference here is that the
instead of having separate states of nature, the idea of the possibility space will be
used. Mainly this will be of great importance because not necessarily every decision
path has the same state of nature, which will influence it. Therefore, an operator
that makes it possible to tabulate without damages to the comparison will be very
useful.

Definition 6. Given any choice function opt, and any decision tree T with
ev(T ) ̸= ∅, we define

normopt(T ) = {D ∈ nfd(D) : inst(D) ⊆ opt(inst(T )|ev(T ))} (3.9)

Theorem 7 will relate to strategic equivalence, if two subtrees have the same
instance configuration, they will both have the same solution. This is a very useful
property, because when there are bigger trees, it is often seen that some subtrees
have exactly the same instance configuration and one does not need to solve the
same problem multiple times.

Theorem 7. If T1 and T2 are strategically equivalent and ev(T1) = ev(T2) ̸= ∅,
then inst(normopt(T1)) = inst(normopt(T2))
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3.2.1 Example of solving within the normal form

Although there will be seven criteria, which this bachelor thesis is interested for
the next chapter, in this example only two of them will be used. This is the case
because although the seven criteria have their own specificities, the form by which
they are used will not necessarily dramatically change, as they are not deciding our
method of problem solution, but rather giving us a definition of optimality that will
be useful for the method. The main difference for the normal form will be in the
case of Bernoulli principle. This difference will be explained further on.

As the notation has already been established, now it is possible to approach the
practical part of actually solving different decision trees. The first normal form solu-
tion step would be finding all possible normal form decision paths and then sorting
out their instances. A possibility space must be defined, in our upcoming exam-
ple the possibility space Ω = {ω1, ω2, ω3, ω4} will be adopted, as well as denoting
E1 = {ω1, ω2} and S1 = {ω1, ω3}. After this step, it is possible to tabulate the
instances as it was done in the previously introduced table 3.1. With the defined
instances and their corresponding utility with the possibility space, it is possible to
use the different classical criteria to sort which is the optimal instance and its cor-
responding decision. The last step would be delete any arcs that do not correspond
to the normal form decision, which is optimal according to the criterion. If there are
more than one optimal action that can be taken, then there will be more than one
possible normal form solution. These different solutions will be segregated in two,
instead of having both in the same solution(which would correspond to an extensive
form solution).

Table 3.2 shows exactly all the normal form decisions together with their in-
stances and possible utilities.

Decisions Instances
ω1 ω2 ω3 ω4

a1, if S1 then b1, if S2 then b1 S1(E110⊕ E211)⊕ S2(E16⊕ E22) 10 6 11 2
a1, if S1 then b2, if S2 then b1 S1(E18⊕ E212)⊕ S2(E16⊕ E22) 8 6 12 2
a1, if S1 then b1, if S2 then b2 S1(E110⊕ E211)⊕ S2(E15⊕ E23 10 5 11 3
a1, if S1 then b2, if S2 then b2 S1(E18⊕ E212)⊕ S2(E15⊕ E23) 8 5 12 3

a2 then c1 E111⊕ E24 11 11 4 4
a2 then c2 E110⊕ E29 10 10 9 9
a2 then c3 E114⊕ E23 14 14 3 3

Table 3.2: All normal form instances for our decision tree example 3.1

In table 3.2 the minimax criterion is being used to define which is the optimal
instance. In this case, after getting the minimun of each action and the maximun
between all the minimun utilites to each action, the optimal instance would E110⊕
E29. The corresponding decision can be seen from table 3.2 and it would be decide
to stay at home(act a2) and then decide for radio 2 (act c2).The normal for decision
tree solution with the minimax criterion can be seen in upcoming figure 3.3.

The other criterion that is going to be analysed in this example is the Bernoulli
principle. The biggest motivation for this is that the criterion won’t deal directly
with utilities, but it will deal with the expected utility of each instance. For this
reason, instead of using the framework of tables 3.2 and 3.3, table 3.4 will be a bit
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Instances Id Instances Criteria
ω1 ω2 ω3 ω4 minj uij

isnt(1) S1(E110⊕ E211)⊕ S2(E16⊕ E22) 10 6 11 2 2
isnt(2) S1(E18⊕ E212)⊕ S2(E16⊕ E22) 8 6 12 2 2
isnt(3) S1(E110⊕ E211)⊕ S2(E15⊕ E22) 10 5 11 3 3
isnt(4) S1(E18⊕ E212)⊕ S2(E15⊕ E22) 8 5 12 3 3
isnt(5) E111⊕ E24 11 11 4 4 4
isnt(6) E110⊕ E29 10 10 9 9 9
isnt(7) E114⊕ E23 14 14 3 3 3

Table 3.3: Normal form instances with maximin criteria

n1 n12 n122

a2 c1

E2

E1

9

10

Figure 3.3: Normal form solution for the minimax criterion

different, where the middle will show how the action’s expected utility is calculated.
Basically the prior probabilities of the different states will be multiplied with the
different rewards possible and the sum of all the combination of the strategies that
form that instance will define how good is that strategy. For this example, it will
be firstly arbitrarily assumed, for the sake of the example, that the state of nature
S1 has prior probability value of Pθ(S1) = 0.6 and S2 has prior probability value
of Pθ(S2) = 0.4, while E1 has prior probability Pθ(E1|S1) = 0.5 and E2 has prior
probability Pθ(E1|S2) = 0.5. After these prior probabilities are assumed, it is possi-
ble to calculate the expected utility of each instance. In this case, the first instance
is composed of the rewards 10 and 11, 6 and 2, this rewards will be multiplied by
the prior probability of the states of nature that need to happen for it occur, so
(10Pθ(E1|S1) + 11Pθ(E2|S1))Pθ(S1) + (6Pθ(E1|S2) + 2Pθ(E2|S2))Pθ(S2). The idea is
that the combination of strategies and possible instances that generate the highest
expected utility is the optimal decision solution. In the example of table 3.4 it would
be E110⊕ E29.

Id Criteria
Bernoulli calculation

∑p
i=1 Eθ(u)

ins(1) (10 ∗ 0.5 + 11 ∗ 0.5) ∗ 0.6 + (6 ∗ .5 + 2 ∗ .5) ∗ 0.4 7.9
ins(2) (8*0.5+12*0.5)*0.6+(6*.5+2*0.5)*0.4 7.6
ins(3) (10*0.5+11*0.5)*0.6+(5*0.5+2*0.5)*0.4 7.7
ins(4) (8*0.5+12*0.5)*0.6+(5*0.5+2*0.5)*0.4 7.4
ins(5) (11*0.5+4*0.5) 7.5
ins(6) (10*0.5+9*0.5) 9.5
ins(7) (14*0.5+3*0.5) 8.5

Table 3.4: Normal form Bernoulli calculation
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3.3 Extensive Form
In Raiffa and Schlaifer works(Schlaifer & Raiffa, 1961), the definition of extensive

form is well established with backward induction and expected utility. As the name
already suggests, the entire idea of this method is to start from the last decision
node and solve it in parts, as if each partition of the bigger tree was a unique
single decision problem. After solving the last decision nodes, then the penultimate
decision nodes will be solved and so on and so forth, until the entire tree is solved
and there is an extensive form solution.

Expanding this definition for situations in which there is no fixed utility, Huntley
and Troffaes will talk about another property of the extensive form, which is that the
decision arc must only be specified as it is achieved by our decision maker(Huntley
& Troffaes, 2011). This will be a direct difference to the normal form and will also
be part of the definition for the extensive form here. It is an important property
because if there are acts that are both optimal according to the criterion used,
then there is no need to choose between one of them or have two different possible
solutions as it would be the case for the normal form.

Another important aspect of the extensive form is that the extensive form solu-
tion might also induce normal form solution(mainly because of how they are defined).
If the extensive form solution form a solution where every decision node is followed
by a single act, then it might also be called a normal form solution. Another pos-
sibility is if an extensive form has at a specific act two possible arcs, this solution
can be simply segregated in to two different normal form solutions. For this reason,
it is possible to understand there are an equal or greater amount of normal form
solutions.

Notation for extensive form decision solving

To enable the usage of the backwards induction method as a form of getting the
extensive form solution, then extra definitions will be needed together with small
modifications to the original method introduced by Huntley and Troffaes. First, the
definitions 23 and 24 from Huntley’s and Troffaes’ works(Huntley & Troffaes, 2011)
will need to be introduced as they will be of immense importance to the extensive
form used here.

Definition 23. Given a choice function opt and any set T of consistent decision
trees, where ev(T ) = A for all Ti ∈ T

normopt(T ) = {D ∈ nfd(T ) : inst(D) ⊆ opt(inst(T )|A)} (3.10)

Definition 24. The normal form operator backopt is defined for any consistent
decision tree T through:

• If T consists of only a leaf with utility u ∈ U , then

backopt(T ) = {T} (3.11)

• If T has a chance node as root, that is, T =
⊙n

i=1EiTi, then

backopt

( n⊙
i=1

EiTi

)
= normopt

( n⊙
i=1

Eibackopt(Ti)

)
(3.12)
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• If T has a decision node as root, that is, if T =
⊔n

i=1 Ti, then

backopt

( n⊔
i=1

Ti

)
= normopt

( n⊔
i=1

backopt(Ti)

)
(3.13)

The idea of this method is to find normal form solutions to every possible subtree,
eliminating from the decision tree non optimal paths and eliminating the correspond-
ing instances. Definition 23 is exactly denoting the application of the normal form
opt to sets of the tree. While the definition 24 introduces the back opt notation,
which denotes solving with the norm opt solution every stage of the tree.

The main difference to the approach in this thesis and the algorithm above is
that in this thesis, even though there will be normal form optimal solutions chosen
at each stage, if the same decision node has two possible normal form optimal
solutions at that specific decision node, both of them will be situated in the decision
tree solution. This will give us the extensive form solution through the usage of
the back opt and norm opt at each part of the tree. To be able to continue solving
the tree, then both of the paths will be used separately with the normal form opt,
instead of one being chosen over the other.

It is also of vital importance to differentiate between normal form solutions and
normal form optimal solutions, mainly because an extensive form solution might also
induce a normal form solution but not necessarily a normal form optimal solution.
If all the decision nodes of the extensive form solution have only one action possible
after the opt choice function was used with the backward induction method, then the
solution is also considered a normal form solution. Still, this does not necessarily
mean that if the normal form method of solving the decision tree were used the
normal form solutions given by it would be the same as the one induced by the
extensive form. Therefore, normal form optimal solutions will simply be the optimal
solutions induced by the normal form method, while normal forms solutions are any
solutions with just one possible action chosen after every decision node. For this
reason, it is also possible to get one extensive form that has just one decision node
with two possible optimal decision and every other decision with one and segregate
it into two different normal form solutions. Being able to translate the extensive
form into multiple normal form solutions will be very important later on, mostly
when comparing the usage of different criteria with normal form and extensive form
methods.

3.3.1 Example of solving within the extensive form

As it was also done for the normal form section, in this subsection the focus
will be put into actually solving the decision tree with the extensive form. The two
optimality criteria chosen to ne used as example will also be the minimax and the
Bernoulli principle. The entire idea of the backward induction is to solve the last
subtree, which can be solved as a single decision problem, then after that is solved,
one can solve the penultimate subtree as a single decision problem and so on and so
forth, until the entire tree is solved:

These ideas can be exactly seen through Figures 3.4, 3.5 and table 3.5. Starting
by the maximin example, the criteria gets the minimum of the states of nature and
then chooses the maximum out of it. This can exactly be seen in figure 3.4. For the
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Figure 3.4: Example of a Maximin criterion with the backward induction

upper b1 and b2 decisions of node n111, the b1 path has as rewards leaves E1 10 and
E2 11 and b2 has as rewards leaves E1 8 and E2 12. The minimum between these
rewards for b1 is 10, which for a practical reason will be put as the node n1111, while
for b2 the rewards leaves E1 and E2 have a minimun of 8, so the node n1112 will
be 8. After that, the decision maker chooses the biggest possible minimun, which
is obviously 10, then n111 will "receive" that value again and after every different
problem at this height of the tree is solved, then it goes one step backwards and the
decision maker can finally choose between a1 and a2.

In the second example it is quite a similar process with the biggest difference
being that instead of using the minimum of each chance node with the rewards leaves,
the method uses the expected utility of that chance node and then the decision maker
decides for the path with the maximum expected utility.
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Acts States Criterion
E1 E2 minj uij

b1 10 11 10
b2 8 12 8

Table 3.5: Solving node n111 with maximin criteria
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Figure 3.5: Example of a Bernoulli principle with the backward induction
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Chapter 4

Sequential Decision Theory Applied
to Poker

In this section it will be discussed how can poker be solved with the different
sequential decision approaches that were beforehand introduced. As a game, Texas
hold ’em poker, the most played and known version of poker, can be quite complex.
The number of combinations together with how the cards are drawn makes it a game
with quite a few rules, which elevates the difficulty of describing and solving it with
decision theoretic approach, at least in this bachelor level. For this reason, it was
decided that two different modified versions of poker would be used as examples.
Even though these versions have less cards and are considerably simpler, the essence
of the game, that means using bluffs to be able to get a better payout, will still be
very much present. The main objective of this section is to be able to firstly compare
the different approaches and optimality criterion with themselves and afterwards try
to talk about how these different approaches might transcend to a Texas hold ’em
game or if it would transcend at all.

4.1 Kuhn poker
The first version of poker that will be used as an example is called Kuhn Poker.

It was created in 1950 by the mathematician Harold W. Kuhn. The idea is that only
two players are facing one another and they are playing with only three cards (jack,
queen and king). Each of them must put one coin down to be able to play and they
will each receive a card. After evaluating their cards, the first player can decide to
either check or raise, adding one more coin to the pot. In case he checks, the other
player has also the option to check or raise. If then the second player raises, the first
player would be able to fold or check again. In case the first player folded the other
would automatically win and in case he checked, then the cards would be revealed
and the player with the highest card would earn the entire pot. If the first player
decided to raise instead of check, then the second player would only have the option
to fold or check. If the second player folded, he would just automatically lose one
coin, but if he checked, the cards would be revealed as in the last example(Kuhn,
2016).

The game was structured like this mainly for it to be simpler but also for it to be
a zero-sum game, that could more easily be analyzed for game-theoretic purposes.
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In this bachelor thesis it is not necessary that the game used be a zero-sum game.
Therefore, some modifications will be done to the original Kuhn poker. The purpose
of these modifications is to make the game more similar to poker, even though at
first the three-card deck will be maintained. The first change will be that there is
always the possibility to fold, as it normally is in Poker, even if it doesn’t really
make much sense strategically. The second main modification is that both players
have the option to raise once and this doesn’t depend on the action of the other
player. If the second player decides to raise, then the first will be asked again what
his action will be and then he has the possibility again to fold or check. Each raise
still means an addition of one coin to the pot.

First, some notation will have to be given to this decision problem to be able to
solve it. The notation is based on the previously introduced ideas from chapter 3
about subtrees, instances and etc. In the first occurrence of this decision process,
the decision maker can receive a king, a queen or a jack. These will be the first
states of nature and they will be denoted as: Aking, Aqueen and Ajack. The following
node in this problem will be a decision node, where the decision maker will have
to decide if he will either raise, check or fold. This will be denoted as: braise, bcheck
and bfold. The next node will be a chance node, which will portray the decision
from the opponent of the decision maker. This will be written as: Braise, Bcheck and
Bfold. Although in some games another player wouldn’t be considered as a state of
nature, in this problem this is the case because players are, more often than not,
bluffing and not playing rationally the entire game. After our opponent has decided,
there are different occurrences that might happen. Independent of the first state of
nature, if the opponent decides to raise after a raise or a check from the decision
maker, then the decision maker will have to make another decision. This decision
node will be composed of two possible decisions, whether he will check or fold. These
two decisions will be portrayed by ccheck or craise. In case the first state of nature
is a queen (Aqueen), if the decision maker decides to check after a raise from his
opponent, there is still one more state of nature that will decide the outcome. This
state of nature will be if the card from the opponent is a king or a jack. This will be
noted as: Dking and Djack. The following decision tree 4.1 introduces visually the
problem and notation previously described.

The first important aspect that needs to be highlighted are the dashed lines in
our decision tree 4.1. These were allocated for the decision ccheck in case the first
state of nature is Ajack and cfold in case the first state of nature is Aking. As it was
also used in the last chapter, the dashed lines will symbolize that a decision has
been made and that this dashed line decisions are not part of the wanted/chosen
path. There are mainly two reasons why this has already been done for these four
decision nodes. The first is that all of these decisions are made under certainty. In
both occasions(with Aking and Ajack) the decision maker already knows if he will
win or lose, as there are only three cards in the deck. The second motive is that the
objective of the decision maker is to maximize his utility if there are clear dominant
strategies and in both cases one act strongly dominates over the other. For the state
of nature Aking, it will be seen ccheck ≻ cfold and for Ajack, cfold ≻ ccheck. Therefore,
Braise for these two specific states of nature (Aking and Ajack) will in the practical
sense be a reward leave, with the utility of the non-dashed line decision. It will also
be treated as just a reward leave when defining the notation for the subtrees and
instances.

26



n1

n13

n132

n1321

n131

n1311

n12

n122

n1222

n1221

n12211

n121

n1212

n1211

n12111

n11

n112

n1121

n111

n1111

Ajack

bfold

bcheck

Bfold

Bcheck

Braise

cfold

ccheck

braise

Bfold

Bcheck

Braise

cfold

ccheck

Aqueen

bfold

bcheck

Bfold

Bcheck

Djack

Dking

Braise

cfold

ccheck

Djack

Dking

braise

Bfold

Bcheck

Djack

Dking

Braise

cfold

ccheck

Djack

Dking

Aking

bfold

bcheck

Bfold

Bcheck

Braise

cfold

ccheck

braise

Bfold

Bcheck

Braise

cfold

ccheck

-1 +1

-1
-1

-2
+1

-2
-2

-3

-1
+1

+1

-1

-1

+2||0.5

-2||0.5+1

+2

-2

-1

+3||0.5

-3||0.5
-1 +1

+1
-1

+2
+1

+2
-2

+3

Figure 4.1: Kuhn poker decision problem with small modifications
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Subtrees
As it was also done in the last section, here the Kuhn poker decision tree will

be described as the combination of its subtrees. This is quite useful for a couple of
different reasons. The first one is that the subtree notation facilitates the process of
getting all the instances, through the direct visualization of the different possibilities
of the tree, together with a closer notation to the one used for instances. The second
is that it is easier to deal with solving the different subtrees with the backward
induction.

(4.1)Aking(T1 ⊔ T2 ⊔ T3)⊙ Aqueen(T4 ⊔ T5 ⊔ T3)⊙ Ajack(T6 ⊔ T7 ⊔ T3)

With:
T1 = Braise3⊙Bcheck2⊙Bfold1 T2 = Braise2⊙Bcheck1⊙Bfold1 T3 = −1
T4 = Braise(R1 ⊔ T3)⊙Bcheck(R2)⊙Bfold1
T5 = Braise(R2 ⊔ T3)⊙Bcheck(R3)⊙Bfold1
T6 = Braise(−2)⊙Bcheck(−2)⊙Bfold1 T7 = Braise(−1)⊙Bcheck(−1)⊙Bfold1
And:
R1 = Dking(−3)⊙Djack3 R2 = Dking(−2)⊙Djack2 R3 = Dking(−1)⊙Djack1

Decisions and Instances
In this subsection both the different possible decisions, as well all the correspond-

ing instances, will be laid out in table 4.1 and 4.2, respectively. There are some
differences between how these are going to presented in chapter 4 in comparison to
chapter 3. These differences are mostly due to practicality reasons, mainly because
the modified Kuhn poker decision tree is a bit more complex than the example in
chapter 3.

One of these modifications is that, although the subtrees may represent different
decision possibilities and multiple instances, whenever a subtree represents only a
certain specific instance, instead of two possibilities of strategic paths, then it will be
used as the notation instead of deriving the long representation for the instance. For
example, instead of writing Aking(Braise3⊕Bcheck2⊕Bfold1) for a possible instance,
it will be simply written Aking(T1). This is not possible in the case of T4 and
T5, because there are two possible instances for each of them. Another important
aspect is that ,for example, T1 won’t represent Braise3⊙Bcheck2⊙Bfold1, but whether
Braise3 ⊕ Bcheck2 ⊕ Bfold1. This small difference in notation has to be beforehand
made explicit, for there to be no confusion, as the instances’ different utilities will
be partially mapped by others.

The second important aspect is that as both the decisions and the instances
are quite long pieces of information, it will be quite a big task to write the full
corresponding decision or instance whenever the normal form is being solved with a
certain criterion. Therefore, each decision and instance will be referenced through
a certain identification symbol, which will be ηi and i is the index for the decision
or instance. It makes sense to use one only one symbol for both, because, as it was
already explained last chapter, a decision has it’s corresponding instance.

28



Id Decisions

η1 If Aking then braise; if Aqueen then braise and if Braise then ccheck; if Ajack then braise
η2 If Aking then braise; if Aqueen then braise and if Braise then cfold; if Ajack then braise
η3 If Aking then braise; if Aqueen then bcheck and if Braise then ccheck; if Ajack then braise
η4 If Aking then braise; if Aqueen then bcheck and if Braise then cfold; if Ajack then braise
η5 If Aking then braise; if Aqueen then bfold; if Ajack then braise
η6 If Aking then braise; if Aqueen then braise and if Braise then ccheck ; if Ajack then bcheck
η7 If Aking then braise; if Aqueen then braise and if Braise then cfold ; if Ajack then bcheck
η8 If Aking then braise; if Aqueen then bcheck and if Braise then ccheck ; if Ajack then bcheck
η9 If Aking then braise; if Aqueen then bcheck and if Braise then cfold ; if Ajack then bcheck
η10 If Aking then braise; if Aqueen then bfold ; if Ajack then bcheck
η11 If Aking then braise; if Aqueen then braise and if Braise then ccheck ; if Ajack then bfold
η12 If Aking then braise; if Aqueen then braise and if Braise then cfold; if Ajack then bfold
η13 If Aking then braise; if Aqueen then bcheck and if Braise then ccheck ; if Ajack then bfold
η14 If Aking then braise; if Aqueen then bcheck and if Braise then cfold; if Ajack then bfold
η15 If Aking then braise; if Aqueen then bfold; if Ajack then bfold
η16 If Aking then bcheck; if Aqueen then braise and if Braise then ccheck; if Ajack then braise
η17 If Aking then bcheck; if Aqueen then braise and if Braise then cfold; if Ajack then braise
η18 If Aking then bcheck; if Aqueen then bcheck and if Braise then ccheck ; if Ajack then braise
η19 If Aking then bcheck; if Aqueen then bcheck and if Braise then cfold; if Ajack then braise
η20 If Aking then bcheck; if Aqueen then bfold; if Ajack then braise
η21 If Aking then bcheck; if Aqueen then braise and if Braise then ccheck ; if Ajack then bcheck
η22 If Aking then bcheck; if Aqueen then braise and if Braise then cfold ; if Ajack then bcheck
η23 If Aking then bcheck; if Aqueen then bcheck and if Braise then ccheck ; if Ajack then bcheck
η24 If Aking then bcheck; if Aqueen then bcheck and if Braise then cfold ; if Ajack then bcheck
η25 If Aking then bcheck; if Aqueen then bfold ; if Ajack then bcheck
η26 If Aking then bcheck; if Aqueen then braise and if Braise then ccheck; if Ajack then bfold
η27 If Aking then bcheck; if Aqueen then braise and if Braise then cfold; if Ajack then bfold
η28 If Aking then bcheck; if Aqueen then bcheck and if Braise then ccheck ; if Ajack then bfold
η29 If Aking then bcheck; if Aqueen then bcheck and if Braise then cfold; if Ajack then bfold
η30 If Aking then bcheck; if Aqueen then bfold ; if Ajack then bfold
η31 If Aking then bfold; if Aqueen then braise and if Braise then ccheck; if Ajack then braise
η32 If Aking then bfold; if Aqueen then braise and if Braise then cfold ; if Ajack then braise
η33 If Aking then bfold; if Aqueen then bcheck and if Braise then ccheck; if Ajack then braise
η34 If Aking then bfold; if Aqueen then bcheck and if Braise then cfold; if Ajack then braise
η35 If Aking then bfold; if Aqueen then bfold; if Ajack then braise
η36 If Aking then bfold; if Aqueen then braise and if Braise then ccheck ; if Ajack then bcheck
η37 If Aking then bfold; if Aqueen then braise and if Braise then cfold ; if Ajack then bcheck
η38 If Aking then bfold; if Aqueen then bcheck and if Braise then ccheck ; if Ajack then bcheck
η39 If Aking then bfold; if Aqueen then bcheck and if Braise then cfold ; if Ajack then bcheck
η40 If Aking then bfold; if Aqueen then bfold ; if Ajack then bcheck
η41 If Aking then bfold; if Aqueen then braise and if Braise then ccheck ; if Ajack then bfold
η42 If Aking then bfold; if Aqueen then braise and if Braise then cfold; if Ajack then bfold
η43 If Aking then bfold; if Aqueen then bcheck and if Braise then ccheck ; if Ajack then bfold
η44 If Aking then bfold; if Aqueen then bcheck and if Braise then cfold; if Ajack then bfold
η45 If Aking then bfold ; if Aqueen then bfold ; if Ajack then bfold

Table 4.1: All the combination of normal form decision possible for the poker decision
tree example 4.1
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Decision number Instances

η1 Aking(T1)⊕ Aqueen(Braise(R1)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T6)
η2 Aking(T1)⊕ Aqueen(Braise(T3)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T6)
η3 Aking(T1)⊕ Aqueen(Braise(R2)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T6)
η4 Aking(T1)⊕ Aqueen(Braise(T3)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T6)
η5 Aking(T1)⊕ Aqueen(T3)⊕ Ajack(T6)
η6 Aking(T1)⊕ Aqueen(Braise(R1)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T7)
η7 Aking(T1)⊕ Aqueen(Braise(T3)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T7)
η8 Aking(T1)⊕ Aqueen(Braise(R2)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T7)
η9 Aking(T1)⊕ Aqueen(Braise(T3)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T7)
η10 Aking(T1)⊕ Aqueen(T3)⊕ Ajack(T7)
η11 Aking(T1)⊕ Aqueen(Braise(R1)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T3)
η12 Aking(T1)⊕ Aqueen(Braise(T3)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T3)
η13 Aking(T1)⊕ Aqueen(Braise(R2)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T3)
η14 Aking(T1)⊕ Aqueen(Braise(T3)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T3)
η15 Aking(T1)⊕ Aqueen(T3)⊕ Ajack(T3)
η16 Aking(T2)⊕ Aqueen(Braise(R1)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T6)
η17 Aking(T2)⊕ Aqueen(Braise(T3)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T6)
η18 Aking(T2)⊕ Aqueen(Braise(R2)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T6)
η19 Aking(T2)⊕ Aqueen(Braise(T3)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T6)
η20 Aking(T2)⊕ Aqueen(T3)⊕ Ajack(T6)
η21 Aking(T2)⊕ Aqueen(Braise(R1)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T7)
η22 Aking(T2)⊕ Aqueen(Braise(T3)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T7)
η23 Aking(T2)⊕ Aqueen(Braise(R2)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T7)
η24 Aking(T2)⊕ Aqueen(Braise(T3)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T7)
η25 Aking(T2)⊕ Aqueen(T3)⊕ Ajack(T7)
η26 Aking(T2)⊕ Aqueen(Braise(R1)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T3)
η27 Aking(T2)⊕ Aqueen(Braise(T3)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T3)
η28 Aking(T2)⊕ Aqueen(Braise(R2)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T3)
η29 Aking(T2)⊕ Aqueen(Braise(T3)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T3)
η30 Aking(T2)⊕ Aqueen(T3)⊕ Ajack(T3)
η31 Aking(T3)⊕ Aqueen(Braise(R1)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T6)
η32 Aking(T3)⊕ Aqueen(Braise(T3)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T6)
η33 Aking(T3)⊕ Aqueen(Braise(R2)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T6)
η34 Aking(T3)⊕ Aqueen(Braise(T3)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T6)
η35 Aking(T3)⊕ Aqueen(T3)⊕ Ajack(T6)
η36 Aking(T3)⊕ Aqueen(Braise(R1)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T7)
η37 Aking(T3)⊕ Aqueen(Braise(T3)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T7)
η38 Aking(T3)⊕ Aqueen(Braise(R2)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T7)
η39 Aking(T3)⊕ Aqueen(Braise(T3)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T7)
η40 Aking(T3)⊕ Aqueen(T3)⊕ Ajack(T7)
η41 Aking(T3)⊕ Aqueen(Braise(R1)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T3)
η42 Aking(T3)⊕ Aqueen(Braise(T3)⊕Bcheck(R2)⊕Bfold1)⊕ Ajack(T3)
η43 Aking(T3)⊕ Aqueen(Braise(R2)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T3)
η44 Aking(T3)⊕ Aqueen(Braise(T3)⊙Bcheck(R3)⊙Bfold1)⊕ Ajack(T3)
η45 Aking(T3)⊕ Aqueen(T3)⊕ Ajack(T3)

Table 4.2: All normal form instances for the poker decision tree example 4.1
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4.2 Solving Kuhn poker with decision tree normal
form

The first step to be able to successfully use the different criterion together with
the normal form, after the different instances are already found, is to define an
accurate possibility space for these instances. For this normal form problem solving
the possibility space will be defined by possibility space:

Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9, ω10, ω11} (4.2)

as well as denoting:
Aking = {ω1, ω2, ω3}, Aqueen = {ω4, ω5, ω6, ω7, ω8}, Ajack = {ω9, ω10, ω11},
Braise = {ω1, ω4, ω5, ω9}, Bcheck = {ω2, ω6, ω7, ω10}, Bfold = {ω3, ω8, ω11}
Dking = {ω4, ω6} and Djack = {ω5, ω7}

For example, if the instance η1(which corresponds to Aking(Braise3 ⊕ Bcheck2 ⊕
Bfold1)⊕Aqueen(Braise(Dking(−3)⊕Djack3)⊕Bcheck(Dking(−2)⊕Djack2)⊕Bfold1)⊕
Ajack(Braise(−2)⊕Bcheck(−2)⊕Bfold1)) is used as a small example, then the normal
form mapping would look like:

Instance
ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11

η1 3 2 1 -3 3 -2 2 1 -2 -2 1

Maximax

It is observable through table 4.3 that there are quite a few optimal Maximax
criterion normal form solutions. To be more specific, there are 21 possible normal
form solutions with the Maximax criterion, which is short of half of all possible
strategies. As it was already explained in part 2.3, the Maximax criterion is quite
optimistic, but what is also observed is how it might be described as even more
overly optimistic, while solving a sequential problem with normal form. This is
the case because it might focus too much on only one specific reward leaf of one
possible chance node. As our problem has three different chance nodes in the be-
ginning (Aking, Aqueen and Ajack), if there is a maximum which is specific to one of
the paths, for example Aking, strategies for the other possible paths, in this case
Aqueen and Ajack, are completely neglected. This can be better exemplified with
decision/instance η41, where the Maximax(3) happens in one of the reward leaves
from the path of Aqueen. For this decision strategy, if the decision maker receives
a queen he might receive the best reward possible, at the same time if he receives
either king or jack he will definitely lose money. In the instances η1, η6 and η11,
even though the Maximax is seen in both Aking and Aqueen, the path for Ajack is
completely neglected.

If the Maximax criterion would be combined with some sort of prior knowledge
about the chance node paths or if the different paths were segregated and then com-
bined afterwards, the Maximax criterion would possibly be able to filter strategies
that are more balanced and not so dependent on single rewards. Still, this would
modify the the Maximax choice function(through the usage of prior information)
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or it wouldn’t be the traditional definition of normal form solution, modifying the
purpose of the normal form solution with Maximax choice function. For this reason,
it is difficult to see how the plain normal form problem solving with the Maximax
choice function can help to find useful solution for this specific problem, in a practical
sense, where the main objective of the player is winning.

Maximin criterion

A similar problematic to the Maximax can also be observed in the Maximin cri-
terion in table 4.3, but now with a pessimistic approach. Although there are way
less possible normal form solutions to the modified Kuhn poker problem with the
Maximin than with Maximax, it can still be observed how this optimality criterion
can neglect some aspects of the decision tree. In this case, because of the char-
acteristics of the Maximin, it might induce a somewhat overly pessimistic decision
combination. It won’t "allow" that any of the possible rewards are lower than a
certain threshold, but if all of the rewards are very close to the Maximin and one is
Maximin or are all Maximin, then the criterion might simply neglect, from a logical
standpoint, better strategies. This can be better seen through the optimal solution
η45, where although the strategy is Maximin optimal, all of the possible rewards are
negative utilities. How much would a strategy, where the player is certainly going
to lose money in every scenario, actually be useful to him? If a decision maker
receives a king, from a human perspective, he would probably not tend to go to a
strategy(η45), where he loses money with the best card in the game. Of course, there
are still possible strategies that might be quite useful, for example, η9 or η10. But
the conclusion for the normal form with Maximin criterion in a modified Kuhn poker
setting has to be that only establishing as a condition a lower bound for rewards
might just neglect better strategies from a gambling stance.

Laplace criterion

Through table 4.4 it is possible to analyse the different Laplace criterion normal
form solutions. It is quite interesting how the number of solutions is significantly
lower for the Laplace normal form solution in comparison to Maximax and Maximin.
There are only two possible normal form solutions, which are n6 and n8. In the first
solution the decision maker will braise with a king, while with a queen he will braise
and if the opponent raises ccheck and with a jack he will simply bcheck. This makes a
lot of sense from a heuristic point of view. When the decision maker has a king, he
knows he will win, therefore it makes sense to take the strategy that will maximize
his gains. When the decision maker has a queen, he might decide to go for the riskier
strategy, where his payout might be bigger but his loss might also be bigger, if the
opponent has a king and not a jack. In case the decision maker has a jack, then he
will just try to minimize his probable loss if the game reaches the end.

In the second solution the decision maker will braise with a king, while with a
queen he will bcheck, if the opponent raises then ccheck and with a jack he will simply
bcheck. This is quite a similar decision strategy to n6 with the main difference being
that with a queen he will check instead of raise. This is less riskier strategy but the
payout is a bit smaller in case the decision maker wins with a queen. At the same
time his loss is also a bit smaller if his opponent has a king. This strategy seems
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Instance Criterion
ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 Maximax Maximin

η1 3 2 1 -3 3 -2 2 1 -2 -2 1 3 -3
η2 3 2 1 -1 -1 -2 2 1 -2 -2 1 3 -2
η3 3 2 1 -2 2 -1 1 1 -2 -2 1 3 -2
η4 3 2 1 -1 -1 -1 1 1 -2 -2 1 3 -2
η5 3 2 1 -1 -1 -1 -1 -1 -2 -2 1 3 -2
η6 3 2 1 -3 3 -2 2 1 -1 -1 1 3 -3
η7 3 2 1 -1 -1 -2 2 1 -1 -1 1 3 -2
η8 3 2 1 -2 2 -1 1 1 -1 -1 1 3 -2
η9 3 2 1 -1 -1 -1 1 1 -1 -1 1 3 -1
η10 3 2 1 -1 -1 -1 -1 -1 -1 -1 1 3 -1
η11 3 2 1 -3 3 -2 2 1 -1 -1 -1 3 -3
η12 3 2 1 -1 -1 -2 2 1 -1 -1 -1 3 -2
η13 3 2 1 -2 2 -1 1 1 -1 -1 -1 3 -2
η14 3 2 1 -1 -1 -1 1 1 -1 -1 -1 3 -1
η15 3 2 1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1
η16 2 1 1 -3 3 -2 2 1 -2 -2 1 3 -3
η17 2 1 1 -1 -1 -2 2 1 -2 -2 1 2 -2
η18 2 1 1 -2 2 -1 1 1 -2 -2 1 2 -2
η19 2 1 1 -1 -1 -1 1 1 -2 -2 1 2 -2
η20 2 1 1 -1 -1 -1 -1 -1 -2 -2 1 2 -2
η21 2 1 1 -3 3 -2 2 1 -1 -1 1 3 -3
η22 2 1 1 -1 -1 -2 2 1 -1 -1 1 2 -2
η23 2 1 1 -2 2 -1 1 1 -1 -1 1 2 -2
η24 2 1 1 -1 -1 -1 1 1 -1 -1 1 2 -1
η25 2 1 1 -1 -1 -1 -1 -1 -1 -1 1 2 -1
η26 2 1 1 -3 3 -2 2 1 -1 -1 -1 3 -3
η27 2 1 1 -1 -1 -2 2 1 -1 -1 -1 2 -2
η28 2 1 1 -2 2 -1 1 1 -1 -1 -1 2 -2
η29 2 1 1 -1 -1 -1 1 1 -1 -1 -1 2 -1
η30 2 1 1 -1 -1 -1 -1 -1 -1 -1 -1 2 -1
η31 -1 -1 -1 -3 3 -2 2 1 -2 -2 1 3 -3
η32 -1 -1 -1 -1 -1 -2 2 1 -2 -2 1 2 -2
η33 -1 -1 -1 -2 2 -1 1 1 -2 -2 1 2 -2
η34 -1 -1 -1 -1 -1 -1 1 1 -2 -2 1 1 -2
η35 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 1 1 -2
η36 -1 -1 -1 -3 3 -2 2 1 -1 -1 1 3 -3
η37 -1 -1 -1 -1 -1 -2 2 1 -1 -1 1 2 -2
η38 -1 -1 -1 -2 2 -1 1 1 -1 -1 1 2 -2
η39 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1
η40 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1
η41 -1 -1 -1 -3 3 -2 2 1 -1 -1 -1 3 -3
η42 -1 -1 -1 -1 -1 -2 2 1 -1 -1 -1 2 -2
η43 -1 -1 -1 -2 2 -1 1 1 -1 -1 -1 2 -2
η44 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1
η45 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Table 4.3: Solving the normal form with Maximax and Maximin choice function
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quite reasonable, but it is important to highlight that a sensible way of playing
might involve using both n6 and n8 solutions and not just one, mainly because if
the decision maker only braises with a king, then his opponent might find him quite
easy to read and predictable in his way of playing. The normal form with Laplace
criterion, in comparison to the Maximax and Maximin, is better able to actually
take into account all the rewards and not neglect certain parts of the modified Kuhn
poker decision tree. It is possible to see how it is able in this example to maximize
when the decision maker has an advantage(when he gets a king) and minimizes when
the decision maker has a disadvantage(when he draws a jack), while also giving the
decision maker two possibilities when there are two equally interesting options(when
he draws a queen).

Hurwicz criterion

In table 4.4 the normal form solution for Hurwicz criterion with "pessimism"
parameter λ = 0.5 can be analysed. There are two more solutions than the solution
with the Laplace method. It is also possible to recognize the impact of having the
combination of both Maximax and Maximin as a criterion in itself, through common
characteristics already discussed in the respective sections talking about these two
criteria. It is observable in this example that when the decision maker is playing
with the king, then he will choose the path with the best possible reward, which is
raising. On the other hand, if the decision maker draws a queen or a jack he is just
trying to play safe, through either checking or folding and having a lower bound
reward which combined will form the optimal action.

It is possible to describe this method as being somewhat balanced for the specific
example of the modified Kuhn Poker, this is mainly because the values of the dif-
ferent reward leaves aren’t diametrically different. But as the criterion is dependent
of only two values, there might be cases where the entirety of the action will not
necessarily be as good as the conjunction of the best combined upper and lower
bound rewards. For example, there might cases where the the combination of the
upper and lower bound give out the optimal solution, but all the other reward’s from
that action are negative(either a bit higher than the lower bound value or the same
as). It is a question of how useful an action which has so many "losing" rewards
leaves is while playing. There might also be similar cases to the Maximax, in the
sense that outlier rewards might be so influential, that they will either influence
the entire optimal action to be too optimistic or too pessimistic and although the
"pessimism" parameter might correct this a bit, one single reward leaf might have
a very big influence in the entirety of whether that specific action is an optimal
Hurwicz solution.

Minimax Regret criterion

In table 4.5 it is possible to see the four different normal form solutions with
the Minimax regret. As the reward leaves are integer values, the lowest possible
integer that the Minimax regret can take is 1(if it were 0, then that action would be
at least weakly dominating all the other and the other actions could be discarded).
Therefore, in these solutions where the Minimax regret is 1, the rewards leaves will
have either the best regret(0) or (1), which is the second best reward leaf possible
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Instance Criterion
ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 Laplace Hurwicz

η1 3 2 1 -3 3 -2 2 1 -2 -2 1 0.36 0
η2 3 2 1 -1 -1 -2 2 1 -2 -2 1 0.18 0.5
η3 3 2 1 -2 2 -1 1 1 -2 -2 1 0.36 0.5
η4 3 2 1 -1 -1 -1 1 1 -2 -2 1 0.18 0.5
η5 3 2 1 -1 -1 -1 -1 -1 -2 -2 1 -0.18 0.5
η6 3 2 1 -3 3 -2 2 1 -1 -1 1 0.55 0.5
η7 3 2 1 -1 -1 -2 2 1 -1 -1 1 0.36 0.5
η8 3 2 1 -2 2 -1 1 1 -1 -1 1 0.55 0.5
η9 3 2 1 -1 -1 -1 1 1 -1 -1 1 0.36 1
η10 3 2 1 -1 -1 -1 -1 -1 -1 -1 1 0 1
η11 3 2 1 -3 3 -2 2 1 -1 -1 -1 0.36 0
η12 3 2 1 -1 -1 -2 2 1 -1 -1 -1 0.18 0.5
η13 3 2 1 -2 2 -1 1 1 -1 -1 -1 0.36 0.5
η14 3 2 1 -1 -1 -1 1 1 -1 -1 -1 0.18 1
η15 3 2 1 -1 -1 -1 -1 -1 -1 -1 -1 -0.18 1
η16 2 1 1 -3 3 -2 2 1 -2 -2 1 0.18 0
η17 2 1 1 -1 -1 -2 2 1 -2 -2 1 0 0
η18 2 1 1 -2 2 -1 1 1 -2 -2 1 0.18 0
η19 2 1 1 -1 -1 -1 1 1 -2 -2 1 0 0
η20 2 1 1 -1 -1 -1 -1 -1 -2 -2 1 -0.36 0
η21 2 1 1 -3 3 -2 2 1 -1 -1 1 0.36 0
η22 2 1 1 -1 -1 -2 2 1 -1 -1 1 0.18 0
η23 2 1 1 -2 2 -1 1 1 -1 -1 1 0.36 0
η24 2 1 1 -1 -1 -1 1 1 -1 -1 1 0.18 0.5
η25 2 1 1 -1 -1 -1 -1 -1 -1 -1 1 -0.18 0.5
η26 2 1 1 -3 3 -2 2 1 -1 -1 -1 0.18 0
η27 2 1 1 -1 -1 -2 2 1 -1 -1 -1 0 0
η28 2 1 1 -2 2 -1 1 1 -1 -1 -1 0.18 0
η29 2 1 1 -1 -1 -1 1 1 -1 -1 -1 0 0.5
η30 2 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -0.36 0.5
η31 -1 -1 -1 -3 3 -2 2 1 -2 -2 1 -0.45 0
η32 -1 -1 -1 -1 -1 -2 2 1 -2 -2 1 -0.64 0
η33 -1 -1 -1 -2 2 -1 1 1 -2 -2 1 -0.45 0
η34 -1 -1 -1 -1 -1 -1 1 1 -2 -2 1 -0.64 -0.5
η35 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 1 -1 -0.5
η36 -1 -1 -1 -3 3 -2 2 1 -1 -1 1 -0.27 0
η37 -1 -1 -1 -1 -1 -2 2 1 -1 -1 1 -0.45 0
η38 -1 -1 -1 -2 2 -1 1 1 -1 -1 1 -0.27 0
η39 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -0.45 0
η40 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -0.82 0
η41 -1 -1 -1 -3 3 -2 2 1 -1 -1 -1 -0.45 0
η42 -1 -1 -1 -1 -1 -2 2 1 -1 -1 -1 -0.64 0
η43 -1 -1 -1 -2 2 -1 1 1 -1 -1 -1 -0.45 0
η44 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -0.64 0
η45 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Table 4.4: Solving the normal form with Laplace and Hurwicz(λ = 0.5) criteria
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of that possibility space reward. This means that the normal form solutions for
the Minimax regret have quite constant reward leaves, which will bring out, for the
modified Kuhn Poker, quite balanced strategies. For example, one of the optimal
solutions was the already discussed η8. Which maximizes our advantage(drawn
king), decides for a safer strategy when there is no clear strategy(drawn queen) and
minimizes the loss of money in the disadvantageous scenario(jack drawn). Because
of the choices with queen, the Minimax can be described as a more conservative
criterion.

Another aspect of the normal form with the Minimax regret is that one could
think that the more 0’s the possibility space has, the better the solution will be, but
this might not necessarily be the case. If the actions, where there are more regrets
with value one are overly compensated by the 0’s of the regrets of that action, then
one could argument that heuristically that action might be better. Still, both of
these actions would be considered optimal normal form solutions with the Minimax
regret. It is important to repeat that the different solutions for the Minimax could
be used in a game of Kuhn Poker, as a form to confuse and not make the decision
maker’s way of playing obvious to his opponent.

Prior probability discussion

The Bernoulli principle differentiates itself quite a lot from other criteria with
the addition of prior probabilities. This allows the decision maker to add some sort
of knowledge about the different states of nature to the process of deciding and
strategy drafting. In the specific case of this Kuhn poker problem, there are some
clear prior probabilities that can be deduced through the problem description. For
example, as it is known there are three cards in the deck at the moment the game
is played, one can say that the probability of receiving a king, a queen and a jack
is one third each (Pθ(Aking) = Pθ(Aqueen) = Pθ(Ajack) =

1
3
). Another known fact is

that whenever the decision maker has a queen, the other player will only be able to
have a king or a jack. Therefore, it is already known that Pθ(Dking|Aqueen∩Braise) =
Pθ(Djack|Aqueen∩Braise) = Pθ(Dking|Aqueen∩Bcheck) = Pθ(Djack|Aqueen∩Bcheck) =

1
2
.

What is still not known is about how the opponent of the decision maker is
going to play, whether he will raise, check or fold(Braise, Bcheck or Bfold). It is also
possible to discriminate the different occasions, when the opponent will raise more,
check more of fold more. If the decision maker has a king, then the opponent, which
has either a queen or a jack, might fold more than he would if the decision maker had
a jack (Pθ(Bfold|Aking) > Pθ(Bfold|Ajack)). These differences can be quantifiable.

Although these information are not known, there are two forms of getting these
prior probabilities to be able to use the Bernoulli principle. The first would be simply
deducing which kind of player the opponent is, through personality traits or other
similar factors. For example, one could assume that a player has a balanced style
of play and this would mean he will have similar numbers on how many times he
raises, checks or folds. In this case, the probability of each choice after our decision
maker has gotten a queen(Aqueen) could be something near Pθ(∩Braise|Aqueen) ≈
Pθ(Bcheck|Aqueen) ≈ Pθ(Bfold|Aqueen). But using things as simple as personality
traits or perceptions might be quite difficult to quantify, it might also be the case
that the perceptions are simply wrong. For this reason, the second method will be
a more reliable procedure.
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Instance Possibility’s Space Regret Criterion
ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 Minimax Regret

η1 0 0 0 2 0 1 0 0 1 1 0 2
η2 0 0 0 0 4 1 0 0 1 1 0 4
η3 0 0 0 1 1 0 1 0 1 1 0 1
η4 0 0 0 0 4 0 1 0 1 1 0 4
η5 0 0 0 0 4 0 3 2 1 1 0 4
η6 0 0 0 2 0 1 0 0 0 0 0 2
η7 0 0 0 0 4 1 0 0 0 0 0 4
η8 0 0 0 1 1 0 1 0 0 0 0 1
η9 0 0 0 0 4 0 1 0 0 0 0 4
η10 0 0 0 0 4 0 3 2 0 0 0 4
η11 0 0 0 2 0 1 0 0 0 0 2 2
η12 0 0 0 0 4 1 0 0 0 0 2 4
η13 0 0 0 1 1 0 1 0 0 0 2 2
η14 0 0 0 0 4 0 1 0 0 0 2 4
η15 0 0 0 0 4 0 3 2 0 0 2 4
η16 1 1 0 2 0 1 0 0 1 1 0 2
η17 1 1 0 0 4 1 0 0 1 1 0 4
η18 1 1 0 1 1 0 1 0 1 1 0 1
η19 1 1 0 0 4 0 1 0 1 1 0 4
η20 1 1 0 0 4 0 3 2 1 1 0 4
η21 1 1 0 2 0 1 0 0 0 0 0 2
η22 1 1 0 0 4 1 0 0 0 0 0 4
η23 1 1 0 1 1 0 1 0 0 0 0 1
η24 1 1 0 0 4 0 1 0 0 0 0 4
η25 1 1 0 0 4 0 3 2 0 0 0 4
η26 1 1 0 2 0 1 0 0 0 0 2 2
η27 1 1 0 0 4 1 0 0 0 0 2 4
η28 1 1 0 1 1 0 1 0 0 0 2 2
η29 1 1 0 0 4 0 1 0 0 0 2 4
η30 1 1 0 0 4 0 3 2 0 0 2 4
η31 4 3 2 2 0 1 0 0 1 1 0 4
η32 4 3 2 0 4 1 0 0 1 1 0 4
η33 4 3 2 1 1 0 1 0 1 1 0 4
η34 4 3 2 0 4 0 1 0 1 1 0 4
η35 4 3 2 0 4 0 3 2 1 1 0 4
η36 4 3 2 2 0 1 0 0 0 0 0 4
η37 4 3 2 0 4 1 0 0 0 0 0 4
η38 4 3 2 1 1 0 1 0 0 0 0 4
η39 4 3 2 0 4 0 1 0 0 0 0 4
η40 4 3 2 0 4 0 3 2 0 0 0 4
η41 4 3 2 2 0 1 0 0 0 0 2 4
η42 4 3 2 0 4 1 0 0 0 0 2 4
η43 4 3 2 1 1 0 1 0 0 0 2 4
η44 4 3 2 0 4 0 1 0 0 0 2 4
η45 4 3 2 0 4 0 3 2 0 0 2 4

Table 4.5: Minimax Regret
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The second form of getting this prior probability would be empirically through
observing how the opponent has played in the past. This past could be either all the
previous game rounds the opponent has played throughout his life or just the short
time span where he has been playing against the current decision maker. It might
also be interesting to be able to differentiate how the opponent plays under pressure
with almost no money to when he plays with no pressure and a lot of money. How
these priors would be calculated in a practical sense, would be basically count how
many times he made each decision dependent of the decision maker’s card. This
is very useful, because one might never know what he has if he simply folds before
the end of the round. Therefore in a game where the decision maker has drawn
seven queen cards and the opponent choose raise twice, check three times and twice
to fold, then the prior for these states of nature would be Pθ(Braise|Aqueen) = 2/7,
Pθ(Bcheck|Aqueen) = 3/7 and Pθ(Bfold|Aqueen) = 2/7.

Bernoulli principle

Differently than the other criteria, the Bernoulli principle doesn’t use the normal
form instances to define which decisions are the optimal solution for the decision
maker. Instead, the Bernoulli principle uses prior probability together with the
utilities of the rewards leaves. As it was already mentioned in the last subsection,
some of the prior probabilities are already known but still the preferences of our
opponent are not yet known. To be able to develop this example, some of the
probabilities need to be assumed. There will be three different possibilities for the
different probabilities combination that will be tested out.

The first important aspect to highlight is that the different cases won’t be dis-
criminated , as it was described in the subsection prior probability. This means that
the prior probability for Braise after Aking, will be the same as Braise after Aqueen or
Ajack. There is one practical argument for not discriminating between the different
cases, which is whenever the decision maker is playing, it is easier for him to remem-
ber what his opponent did, if he raised, checked or fold how many times, instead of
remembering how many times his opponent raised, checked or folded depending of
his own cards. The ei will be used to represent the different probabilities for the act of
raising, checking or folding, where the i is the index for raise(1), check(2) or fold(3).
In this case P (Braise|Aking) = P (Braise|Aqueen) = P (Braise|Ajack) = e1 and analo-
gously defined for the other two cases. This will facilitate a bit the example. These
probabilities will also be used for the Hodges and Lehmann criterion. In the first
the combination the opponent will have a more riskier strategy, where he will raise
80 percent of the time, while checking only 10 percent and folding only 10 percent
as well(e1 = 0.8; e2 = 0.1; e3 = 0.1). In the second possible strategy the opponent
will play a balanced strategy, where the probabilities are equal(e1 = e2 = e3 = 1/3)
and in the last combination of probabilities the player will be risk a verse and he
will fold 80 percent of the time, check 10 and raise 10(e1 = 0.8; e2 = 0.1; e3 = 0.1)1

It is important to denote that the calculations that compose the Bernoulli prin-
ciple depend of the combination of the expected utility from the different branch
paths of the tree. In this case, it depends of the expected utility for the strategy if

1the different probability combinations will be represented in the tables by the number 1, 2 and
3, respectively representing these are as they were mentioned in the text

38



the decision maker draws a king plus if the draws a queen plus if he draws a jack.
In case he draws a king, he will have tree possible paths to take with tree possible
expected utilities depending on the probability combination that is being used. If
he draws a queen he will have five and if he draws a jack he will have two more.
These possible parts of the general expected utility are denoted down below and
will be summed up directly in table 4.6. The main reason is to allow the better
visualization of what strategy is being calculated with which other strategies for the
others cards.

In table 4.6 it is possible to see the three different calculations for the different
forms the opponent can play. What is most interesting is that independently of
how the opponent is playing the Bernoulli principle will still have the same two
solutions(η6 and η8) for all three different probability combinations. The other
important aspect that has to be highlighted is that both Laplace and Bernoulli
principle have exactly the same optimal decision solutions. In the subsection, where
the Laplace solutions were explained, it was also better explained why these solution
might be reasonable and how one decision maker might decide to use them.

King

(3Pθ(Braise|Aking) + 2Pθ(Bcheck|Aking) + 1Pθ(Bfold|Aking))Pθ(Aking) =

(3e1 + 2e2 + 1e3)
1

3
= 1e1 +

2

3
e2 +

1

3
e3

2Pθ(Braise|Aking) + 1Pθ(Bcheck|Aking + 1Pθ(Bfold|Aking))Pθ(Aking) =

(2e1 + 1e2 + 1e3)
1

3
=

2

3
e1 +

1

3
e2 +

1

3
e3

−1P (Aking) = −11
3
= −1

3

Queen

((−3Pθ(Dking|Aqueen ∩Bcheck) + 3Pθ(Djack|Aqueen ∩Bcheck))Pθ(Braise|Aqueen)+

(−2Pθ(Dking|Aqueen ∩Bcheck) + 2Pθ(Djack|Aqueen ∩Bcheck))Pθ(Bcheck|Aqueen)+

1Pθ(Bfold|Aqueen))Pθ(Aqueen) = ((−3∗0.5+3∗0.5)e1+(−2∗0.5+2∗0.5)e2+e3)
1

3
=

1

3
e3

(−1Pθ(Braise|Aqueen)+(−2∗Pθ(Dking|Aqueen)+2∗Pθ(Djack|Aqueen))Pθ(Bcheck|Aqueen)+

1Pθ(Bfold|Aqueen))Pθ(Aqueen) = ((−1e1+(−2∗0.5+2∗0.5)e2+e3)
1

3
= −1

3
e1+

1

3
e3

((−2Pθ(Dking|Aqueen ∩Bcheck) + 2Pθ(Djack|Aqueen ∩Bcheck))Pθ(Braise|Aqueen)+

+ (−1Pθ(Dking|Aqueen ∩Bcheck) + 1Pθ(Djack|Aqueen ∩Bcheck))Pθ(Bcheck|Aqueen)+

1Pθ(Bfold|Aqueen))Pθ(Aqueen) = ((−2∗0.5+2∗0.5)e1+(−1∗0.5+1∗0.5)e2+e3)
1

3
=

1

3
e3
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(−1Pθ(Braise|Aqueen)+(−1∗Pθ(Dking|Aqueen)+1∗Pθ(Djack|Aqueen))Pθ(Bcheck|Aqueen)+

1Pθ(Bfold|Aqueen))Pθ(Aqueen) = ((−1e1+(−1∗0.5+1∗0.5)e2+e3)
1

3
= −1

3
e1+

1

3
e3

−1Pθ(Aking) = −11
3
= −1

3

Jack

((−2Pθ(Braise|Ajack)− 2Pθ(Bcheck|Ajack) + 1Pθ(Braise|Ajack)))Pθ(Ajack) =

(−2e1 − 2e2 + 1e3)
1

3
= −2

3
e1 −

2

3
e2 +

1

3
e3

(−1Pθ(Braise|Ajack)− 1Pθ(Bcheck|Ajack) + 1Pθ(Braise|Ajack)))Pθ(Ajack) =

(−1e1 − 1e2 + 1e3)
1

3
= −1

3
e1 −

1

3
e2 +

1

3
e3

−1Pθ(Ajack) = −11
3
= −1

3

Hodges and Lehmann criterion

It was already described that the Hodges and Lehmann criterion is a combination
of the Bernoulli principle and the Maximin criterion, but how does it differ in this
example from just a Bernoulli normal form solution or a Maximin solution. Firstly, it
is possible to see through tables 4.3, 4.4, 4.5, 4.6 and more specifically table 4.7 that
from all of the different criteria, the Hodges and Lehmann is the only criterion that
gives just one possible normal form solution to the modified Kuhn Poker problem.
The solution, which corresponds to strategy η9, is also at the same time a Maximin
optimal solution but not a Bernoulli optimal solution. What is observable is that
the Bernoulli optimal solutions have by themselves a pretty risky downside which is
the scenario, where a queen is drawn and our opponent has a king. But through the
addition of a Maximin, these two riskier solutions are then discarded and the only
chosen solution is also a somewhat balanced strategy. In the first part of the strategy
the decision maker chooses to braise, which has big possible rewards, while with a
queen he will bcheck and if the opponent Braise then the decision maker will simply
cfold and with a jack he will just bcheck. This exploits the advantageous scenario of
receiving the best card in the game but plays it in a more conservative way when
relating to either not so clear scenarios or disadvantageous scenarios.

Another important aspect to highlight is that other possible Maximin solutions
will not be a normal form solution with the Hodges and Lehmann criterion, mainly
because their general expected utility aren’t as good, even thought their minimum
reward leaf is the best out of all possible minimum reward leaves. For the modified
Kuhn poker example, it is possible to describe the Hodges and Lehmann criterion
as being balanced but at the same time a bit more conservative than the Bernoulli
principle mainly due to the addition of the Maximin criterion.
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Instance Bernoulli principle calculation Bernoulli principle
1 2 3

η1 1e1 +
2
3
e2 +

1
3
e3 +

1
3
e3 − 2

3
e1 − 2

3
e2 +

1
3
e3 0.37 0.44 0.83

η2 1e1 +
2
3
e2 +

1
3
e3 − 1

3
e1 +

1
3
e3 − 2

3
e1 − 2

3
e2 +

1
3
e3 0.1 0.33 0.8

η3 1e1 +
2
3
e2 +

1
3
e3 − 2

3
e1 − 2

3
e2 +

1
3
e3 0.37 .44 0.83

η4 1e1 +
2
3
e2 +

1
3
e3 − 1

3
e1 +

1
3
e3 − 2

3
e1 − 2

3
e2 +

1
3
e3 0.1 0.33 0.80

η5 1e1 +
2
3
e2 +

1
3
e3 − 1

3
− 2

3
e1 − 2

3
e2 +

1
3
e3 0 0 0.23

η6 1e1 +
2
3
e2 +

1
3
e3 +

1
3
e3 − 1

3
e1 − 1

3
e2 +

1
3
e3 0.67 0.67 0.9

η7 1e1 +
2
3
e2 +

1
3
e3 − 1

3
e1 +

1
3
e3 − 1

3
e1 − 1

3
e2 +

1
3
e3 0.4 0.56 0.87

η8 1e1 +
2
3
e2 +

1
3
e3 +

1
3
e3 − 1

3
e1 − 1

3
e2 +

1
3
e3 0.67 0.67 0.9

η9 1e1 +
2
3
e2 +

1
3
e3 − 1

3
e1 +

1
3
e3 − 1

3
e1 − 1

3
e2 +

1
3
e3 0.4 0.56 0.87

η10 1e1 +
2
3
e2 +

1
3
e3 − 1

3
− 1

3
e1 − 1

3
e2 +

1
3
e3 0.3 0.22 0.33

η11 1e1 +
2
3
e2 +

1
3
e3 +

1
3
e3 − 1

3
0.6 0.44 0.37

η12 1e1 +
2
3
e2 +

1
3
e3 − 1

3
e1 +

1
3
e3 − 1

3
0.33 0.33 0.33

η13 1e1 +
2
3
e2 +

1
3
e3 +

1
3
e3 − 1

3
0.6 0.44 0.37

η14 1e1 +
2
3
e2 +

1
3
e3 − 1

3
e1 +

1
3
e3 − 1

3
0.33 0.33 0.33

η15 1e1 +
2
3
e2 +

1
3
e3 − 1

3
− 1

3
0.23 0 -0.23

η16
2
3
e1 +

1
3
e2 +

1
3
e3 +

1
3
e3 − 2

3
e1 − 2

3
e2 +

1
3
e3 0.07 0.22 0.76

η17
2
3
e1 +

1
3
e2 +

1
3
e3 − 1

3
e1 +

1
3
e3 − 2

3
e1 − 2

3
e2 +

1
3
e3 -0.20 0.11 0.73

η18
2
3
e1 +

1
3
e2 +

1
3
e3 +

1
3
e3 − 2

3
e1 − 2

3
e2 +

1
3
e3 0.07 0.22 0.76

η19
2
3
e1 +

1
3
e2 +

1
3
e3 − 1

3
e1 +

1
3
e3 − 2

3
e1 − 2

3
e2 +

1
3
e3 -0.20 0.11 0.73

η20
2
3
e1 +

1
3
e2 +

1
3
e3 − 1

3
− 2

3
e1 − 2

3
e2 +

1
3
e3 +

1
3
e1 +

1
3
e2 +

1
3
e3 -0.30 -0.22 0.17

η21
2
3
e1 +

1
3
e2 +

1
3
e3 − 1

3
e3 − 1

3
e1 +

1
3
e2 +

1
3
e3 0.36 0.44 0.83

η22
2
3
e1 +

1
3
e2 +

1
3
e3 − 1

3
e1 +

1
3
e3 − 1

3
e1 − 1

3
e2 +

1
3
e3 0.10 0.33 0.8

η23
2
3
e1 +

1
3
e2 +

1
3
e3 +

1
3
e3 − 1

3
e1 − 1

3
e2 +

1
3
e3 0.36 0.44 0.83

η24
2
3
e1 +

1
3
e2 +

1
3
e3 − 1

3
e1 +

1
3
e3 − 1

3
e1 − 1

3
e2 +

1
3
e3 0.10 0.33 0.8

η25
2
3
e1 +

1
3
e2 +

1
3
e3 +−1

3
− 1

3
e1 − 1

3
e2 +

1
3
e3 0 0 0.23

η26
2
3
e1 +

1
3
e2 +

1
3
e3 +

1
3
e3 − 1

3
0.3 0.22 0.3

η27
2
3
e1 +

1
3
e2 +

1
3
e3 − 1

3
e1 +

1
3
e3 − 1

3
0.03 0.11 0.27

η28
2
3
e1 +

1
3
e2 +

1
3
e3 +

1
3
e3 − 1

3
0.30 0.22 0.30

η29
2
3
e1 +

1
3
e2 +

1
3
e3 − 1

3
e1 +

1
3
e3 − 1

3
0.03 0.11 0.27

η30
2
3
e1 +

1
3
e2 +

1
3
e3 − 1

3
− 1

3
-0.07 -0.22 -0.3

η31 −1
3
+ 1

3
e3 − 2

3
e1 − 2

3
e2 +

1
3
e3 -0.87 -0.55 0.07

η32 −1
3
− 1

3
e1 +

1
3
e3 − 2

3
e1 − 2

3
e2 +

1
3
e3 -1.13 -0.67 0.03

η33 −1
3
+ 1

3
e3 − 2

3
e1 − 2

3
e2 +

1
3
e3 -0.87 -0.55 0.07

η34 −1
3
− 1

3
e1 +

1
3
e3 − 2

3
e1 − 2

3
e2 +

1
3
e3 -1.13 -0.67 0.03

η35 −1
3
− 1

3
− 2

3
e1 − 2

3
e2 +

1
3
e3 -1.23 -1 -0.53

η36 −1
3
+ 1

3
e3 − 1

3
e1 − 1

3
e2 +

1
3
e3 -0.56 -0.33 0.13

η37 −1
3
− 1

3
e1 +

1
3
e3 − 1

3
e1 − 1

3
e2 +

1
3
e3 -0.83 -0.44 0.10

η38 −1
3
+ 1

3
e3 − 1

3
e1 − 1

3
e2 +

1
3
e3 -0.56 -0.33 0.13

η39 −1
3
− 1

3
e1 +

1
3
e3 − 1

3
e1 − 1

3
e2 +

1
3
e3 -0.83 -0.44 0.10

η40 −1
3
− 1

3
− 1

3
e1 − 1

3
e2 +

1
3
e3 -0.93 -0.77 -0.46

η41 −1
3
+ 1

3
e3 − 1

3
-0.63 -0.55 -0.4

η42 −1
3
− 1

3
e1 +

1
3
e3 − 1

3
-0.9 -0.67 -0.43

η43 −1
3
+ 1

3
e3 − 1

3
-0.63 -0.55 -0.4

η44 −1
3
− 1

3
e1 +

1
3
e3 − 1

3
-0.9 -0.67 -0.43

η45 −1
3
− 1

3
− 1

3
-1 -1 -1

Table 4.6: Bernoulli principle
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Instance Bernoulli + Maximin Hodges and Lehmann
1 2 3

η1 λBernoulli(η1) + (1− λ)(−3) -1.32 -1.28 -1.09
η2 λBernoulli(η2) + (1− λ)(−2) -0.95 -0.84 -0.60
η3 λBernoulli(η3) + (1− λ)(−2) -0.82 -0.78 -0.59
η4 λBernoulli(η4) + (1− λ)(−2) -0.95 -0.84 -0.60
η5 λBernoulli(η5) + (1− λ)(−2) -1 -1 -0.89
η6 λBernoulli(η6) + (1− λ)(−3) -1.17 -1.17 -1.05
η7 λBernoulli(η7) + (1− λ)(−2) -0.80 -0.72 -0.57
η8 λBernoulli(η8) + (1− λ)(−2) -0.67 -0.665 -0.55
η9 λBernoulli(η9) + (1− λ)(−1) -0.3 -0.22 -0.07
η10 λBernoulli(η10) + (1− λ)(−1) -0.35 -0.39 -0.34
η11 λBernoulli(η11) + (1− λ)(−3) -1.2 -1.28 -1.34
η12 λBernoulli(η12) + (1− λ)(−2) -0.84 -0.84 -0.815
η13 λBernoulli(η13) + (1− λ)(−2) -0.7 -0.78 -0.835
η14 λBernoulli(η14) + (1− λ)(−1) -0.34 -0.34 -0.34
η15 λBernoulli(η15) + (1− λ)(−1) -0.39 -0.50 -0.39
η16 λBernoulli(η16) + (1− λ)(−3) -1.47 -1.39 -1.12
η17 λBernoulli(η17) + (1− λ)(−2) -1.1 -0.95 -0.64
η18 λBernoulli(η18) + (1− λ)(−2) -0.97 -0.89 -0.62
η19 λBernoulli(η19) + (1− λ)(−2) -1.1 -0.45 -0.64
η20 λBernoulli(η20) + (1− λ)(−2) -1.15 -1.11 -0.92
η21 λBernoulli(η21) + (1− λ)(−3) -1.32 -1.28 -1.09
η22 λBernoulli(η22) + (1− λ)(−2) -0.95 -0.84 -0.60
η23 λBernoulli(η23) + (1− λ)(−2) -0.84 -0.78 -0.59
η24 λBernoulli(η24) + (1− λ)(−1) -0.45 -0.34 -0.10
η25 λBernoulli(η25) + (1− λ)(−1) -0.50 -0.50 -0.39
η26 λBernoulli(η26) + (1− λ)(−3) -1.35 -1.39 -1.35
η27 λBernoulli(η27) + (1− λ)(−2) -0.99 -0.95 -0.82
η28 λBernoulli(η28) + (1− λ)(−2) -0.85 -0.89 -0.85
η29 λBernoulli(η29) + (1− λ)(−1) -0.97 -0.45 -0.32
η30 λBernoulli(η30) + (1− λ)(−1) -0.49 -0.61 -0.65
η31 λBernoulli(η31) + (1− λ)(−3) -1.94 -1.775 -1.47
η32 λBernoulli(η32) + (1− λ)(−2) -1.57 -1.34 -0.985
η33 λBernoulli(η33) + (1− λ)(−2) -1.435 -1.28 -0.97
η34 λBernoulli(η34) + (1− λ)(−2) -1.57 -1.34 -0.985
η35 λBernoulli(η35) + (1− λ)(−2) -1.62 -1.5 -1.27
η36 λBernoulli(η36) + (1− λ)(−3) -1.78 -1.67 -1.44
η37 λBernoulli(η37) + (1− λ)(−2) -1.415 -1.22 -0.95
η38 λBernoulli(η38) + (1− λ)(−2) -1.28 -1.17 -0.94
η39 λBernoulli(η39) + (1− λ)(−1) -0.92 -0.72 -0.45
η40 λBernoulli(η40) + (1− λ)(−1) -0.97 -0.89 -0.73
η41 λBernoulli(η41) + (1− λ)(−3) -1.82 -1.78 -1.7
η42 λBernoulli(η42) + (1− λ)(−2) -1.45 -1.34 -1.22
η43 λBernoulli(η43) + (1− λ)(−2) - 1.32 -1.28 -1.2
η44 λBernoulli(η44) + (1− λ)(−1) -0.95 -0.84 -0.715
η45 λBernoulli(η45) + (1− λ)(−1) -1 -1 -1

Table 4.7: Hodges and Lehmann criterion(λ = 0.5)
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4.3 Solving Kuhn poker with decision tree extensive
form

As the extensive form solution method has already been described in section 3.3,
this short section will describe some specific details of this section. It was already
explained that the subtrees will be solved as single normal form problems and after
the last subtree is solved it will go a step backward to solve the penultimate subtree
and the process will be repeated until the entire tree is solved. It is important to add
that this method together with different optimality criteria, such as the Maximax,
the Maximin, the Laplace and the Hurwicz criteria, can quite easily be seen and
solved directly in the decision tree, as these criteria do not need to calculate regret
or use some sort of prior information. Therefore, they will be done so directly.
For other criteria such as the Minimax Regret, the Bernoulli and the Hodges and
Lehmann will have their subtrees solved with the normal form single decision tables
and then the corresponding solution branches will be seen in their corresponding
tree.

Maximax

In figure 4.2 it is possible to see the extensive form solution with Maximax for the
modified Kuhn poker problem. If the extensive form solution were divided into two
different normal forms solutions(mainly because of the strategy with the jack), then
it would correspond to the normal solutions η1 and η6, which are also normal form
optimal with the Maximax criterion. It is quite notable how there are a significant
lower number of extensive form optimal normal form solutions in comparison to the
normal form optimal method(21 normal form optimal solutions). The main reason
for this difference between methods is that the extensive form is able to not neglect
parts of the tree and it will define different strategies for the different cards that are
possible. Another important aspect is that even though the criterion is still quite
optimistic, each subtree will be dependent of a reward leaf that actually happens in
that subtree. This provides the decision maker to always have an Maximax optimal
throught the tree and not just in a specific part of it. Comparing both normal form
and extensive form optimal with Maximax criterion, it is difficult to see the big
advantages to the normal form method. This is the case mainly because while both
of them are optimistic, the normal form will always be dependant of only one reward
leaf, independent of how big the decision tree is, while the extensive form is able to
take more reward leaves into account and have a strategy that doesn’t "forget" any
parts of the decision tree.

Maximin criterion

The optimal extensive form solutions with Maximin seen in figure 4.3, if divided
into normal form solutions, represent 8 possible normal form solutions, which corre-
spond to: η9, η10, η14, η15, η24, η25, η29 and η30. These are also optimal normal form
solutions with Maximin and the main difference between the extensive form and the
normal form optimal solutions is that in the scenario, where the king is chosen, the
extensive form chooses only braise and bcheck, mainly because the minimum of braise
and bcheck are clearly higher than bfold. This difference occurs because when solving

43



n1

+1

+1

+1

n12

+2

+1

+2

+2

+3

+2

+3

+3

+3

+2

+3

Ajack

bfold

bcheck

Bfold

Bcheck

Braise

braise

Bfold

Bcheck

Braise

Aqueen

bfold

bcheck

Bfold

Bcheck

Djack

Dking

Braise

cfold

ccheck

Djack

Dking

braise

Bfold

Bcheck

Djack

Dking

Braise

cfold

ccheck

Djack

Dking

Aking

bfold

bcheck

Bfold

Bcheck

Braise

braise

Bfold

Bcheck

Braise

-1 +1

-1

-1

+1

-2

-2

-1
+1

+1

-1

-1

+2

-2+1

+2

-2

-1

+3

-3-1 +1

+1

+2

+1

+2

+3

Figure 4.2: Maximax extensive form solution
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the tree separately, there are parts that might exclude possible Maximin rewards
leaves from the entire decision tree, because in that subtree the Maximin is actually
higher than the general Maximin from the tree. This is clearly seen in the Aking

part of the tree, as the Maximin of this subtree is one and it is higher than from
the general tree, which is -1 according to the normal form optimal solutions. The
extensive form solution with Maximin is quite interesting in this sense, mainly be-
cause it can still be pessimistic, but as the different subtrees are being solved, there
might be better Maximins and in turn the strategies might not be as pessimistic as
the optimal normal form solution with Maximin.

Laplace criterion

The Laplace extensive form solution seen in figure 4.4, if divided in to normal so-
lutions, would have the same two normal form solutions as the normal form optimal
solutions, which are η6 and η8. This is not so surprising, as the normal form solution
with Laplace criterion tends to be a balanced method as it takes into account all the
possible rewards leaves to decide on the normal form optimals. Although this is spe-
cially the case in the optimal normal form for our modified Kuhn Poker example, if
there were outlier values in some reward leaves, this could cause entire strategies for
other parts of the tree to be overlooked, while with the extensive form the solution
to other subtrees might not be impacted at all if the subtree with outlier rewards
are not directly connected to the other subtrees.

Hurwicz criterion

The extensive form solution with Hurwicz criterion can be seen in figure 4.5. As
it was also done for the other extensive form solutions, this result will be transformed
into it’s corresponding normal form solutions for a better comparison to the normal
form optimal solutions to be possible. In this case, the extensive form solution will
correspond to the normal form solutions η6 and η8. This is the first criterion ,until
now, where the corresponding normal form solutions of the extensive form are not
normal form optimums for that criterion as well. This might happen because get-
ting the Maximax and Maximin of all the possible rewards together might develop
strategies that are based on the different reward leaves of a king and jack(two sub-
trees that might not relate in a single round as much to one another). While using
the extensive form it is possible to individually assess each subtree and their specific
maximum and minimun rewards will be separately compared and combined. As
these maximums and minimums from the specific subtree often differ to the max-
imum and minimum reward leaves of the entire tree, it is possible to have quite
different strategies and optimal solutions.

It is also interesting that the Hurwicz extensive form solutions and the Laplace
extensive form solution are strategically equivalent. There might be different reasons
why this is actually the case. The first is that as each chance node in this solution
has a maximux of three branches, then getting two of them to represent the outcome
is already more than half of the possible paths that can happen if not the entirety of
that chance node. The second contributing factor is that the "pessimism" parameter
which is being used has also the same consequence as averaging the nodes whenever
there are only two chance nodes(multiplying by λ = 0.5 is the same as dividing by
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Figure 4.3: Maximin extensive form solution
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2). Although the same extensive form solution for both these criteria can be seen in
this example, if it is the case that each chance node has a larger number of branches,
then the solutions might be completely different, even though to some extent both
are balanced criteria for utilities that are not drastically disparate.

Another aspect that has to be discussed are outlier reward leaves, which have
a significant bigger or smaller value than all other rewards leaves. It is important
to denote that these outliers would for the Hurwicz criterion definitely be more
influential to the normal form method, mainly because the entire strategy is based
on two reward leaves, while in the extensive form it might only influence parts of
the tree and not the entirety of the strategies, as these are defined with a certain
degree of independence from one another.

Minimax Regret criterion

To be able to calculate the Minimax regret, first the regret has to be separately
calculated, which is represented by the right part of the solution on tables 4.8-
4.12. The combination of solutions seen in the tables before mentioned has been
concatenated into the decision tree of figure 4.6. This extensive form solution is
also a normal form solution and it represents the strategy η8, which is also a normal
form optimum with the Minimax regret. To be able to solve the queen scenario a
small possibility space had to be drawn to be able to solve this small normal form
problem. In this possibility space Ω = {ω1, ω2, ω3, ω4, ω5}, where Braise = {ω1, ω2},
Bcheck = {ω3, ω4}, Bfold = {ω5}, ccheck = {ω1, ω3} and cfold = {ω2, ω4}.

The problematic with the Minimax regret is similar to Maximax, Maximin and
Hurwicz, in the sense that when solving with the extensive form methods the sub-
trees might have different regrets values than all of the reward leaves being compared
together. This explains why there is one normal form solutions to the extensive form
optimum and 4 with the normal form method. Still, the normal form optimals are
comparing mainly the same nodes, which results in solutions that are able to treat
reward leaves individually. On the other hand, outlier rewards leaves would impact
the normal form optimal solution more than the extensive, mainly because the en-
tire strategy would be influenced while with the extensive form just parts of the tree
that has the outlier reward value.

Acts States of nature Regret Minimax
Dking Djack Dking Djack

ccheck -3 3 2 0 2
cfold -1 -1 0 4 4

Table 4.8: Minimax Regret n1211

Acts States of nature Regret Minimax
Dking Djack Dking Djack

ccheck -2 2 1 0 1
cfold -1 -1 0 3 3

Table 4.9: Minimax Regret n1221
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Figure 4.5: Hurwicz extensive form solution
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Acts States of nature Regret Minimax
Braise Bcheck Bfold Braise Bcheck DBfold

braise 3 2 1 0 0 0 0
bcheck 2 1 1 1 1 0 1
bfold -1 -1 -1 4 3 2 4

Table 4.10: Minimax Regret n11

Acts States of nature Regret Minimax
ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5

braise -3 3 -2 2 2 2 0 1 0 0 2
bcheck -2 2 -1 1 1 1 1 0 1 1 1
bfold -1 -1 -1 -1 -1 0 4 0 3 3 4

Table 4.11: Minimax Regret n12

Bernoulli principle

Through figure 4.7 it is possible to see the different extensive form solutions
with three different combinations of prior probabilities concatenated into the same
extensive form solution, while tables 4.13, 4.14 and 4.15 show how the nodes were
more specifically solved. It is important to highlight that the combinations of prior
probabilities used for the extensive form are the same as the ones used with the
normal form method and the notation with c1, c2 and c3 will be continued. The
main particularity of this solution is that, even though there are three different
prior probabilities that would define drastically different forms of how the opponent
plays, in all of them the decisions taken are always the same. This might be the case
because the rewards of set actions are better, even though the probabilities could
have had an influence on that.

It is also quite notable that the extensive form solution represented as normal
form solutions, would correspond exactly to the normal form optimal solution with
Bernoulli principle. These solutions would be η6 and η8. As it was already described,
this strategy makes sense for different reasons on how each part of the strategy acts
accordingly to certain aspect of drawing a specific card. Considering the Bernoulli
principle is a somewhat balanced criterion and takes into account all the rewards
leaves in both normal and extensive methods, it is not that surprising that both
methods arrive at the same optimal solution.

Acts States of nature Regret Minimax
Dking Dqueen Dqueen Dking Dking Dqueen

braise -2 -2 1 1 1 0 1
bcheck -1 -1 1 0 0 0 0
bfold -1 -1 -1 0 0 2 2

Table 4.12: Minimax Regret n13
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Figure 4.7: Bernoulli principle extensive form solution
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Acts Calculating Bernoulli principle Bernoulli principle
1 2 3

braise 3e1 + 2e2 + 1e3 3,7 2 1.3
bcheck 2e1 + 1e2 + 1e3 1.8 1.33 1.1
bfold −1 -1 -1 -1

Table 4.13: Bernoulli principle solution for node n_11

Acts Calculating Bernoulli principle Bernoulli principle
a b c

braise 0e1 + 0e2 + 1e3 0.1 0.33 0.8
bcheck 0e1 + 0e2 + 1e3 0.1 0.33 0.8
bfold −1 -1 -1 -1

Table 4.14: Bernoulli principle solution for node n_12

Hodges and Lehmann criterion

Through figure 4.8 and table 4.16-4.21 it is possible to see the extensive form
solution with Hodges and Lehmann criterion. As it was also done with the Bernoulli
principle, the Hodges and Lehmann will also use the same combination of probabil-
ities from the normal form with Bernoulli principle and normal form with Hodges
and Lehmann criterion. It is interesting how independent of the different combi-
nation of prior probabilities of the opponent, they will still induce for all of the
combinations the same normal form optimal solutions for the different nodes of the
decision tree. One must also denote that the extensive form solution can be divided
in to two normal form solutions, which are and η8 and η9. η9 is also the normal
form optimal for the normal form with Hodges and Lehmann criterion. The biggest
difference with the Bernoulli method is that adding the Maximin makes the criteria
somewhat more pessimistic, which is seen by the decision to fold with queen in case
the player raises. It is important to denote that in a tree with not so many branches
in each chance node adding another Maximin could make it overestimate the lowest
bound nodes, as the Bernoulli principle already takes into account the the Maximin
utility value in a general form. Still, this higher amount of pessimism could be com-
pensated by the parameter and in situations where the player is overly afraid of the
worst possible utility reward it might appear to be quite meaningful.

4.4 Expanding Kuhn Poker
An interesting thought experiment would be to expand the modified Kuhn poker

game and talk about how the solutions might differ from the three card version, how

Acts Calculating Bernoulli principle Bernoulli principle
1 2 3

braise −2e1 − 2e2 + 1e3 -1.7 -1 0.4
bcheck −1e1 − 1e2 + 1e3 -0.8 -0.33 0.6
bfold −1− 1− 1 -1 -1 -1

Table 4.15: Bernoulli principle solution for node n_13 with a
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Acts Bernoulli + Minimax Hodges and Lehmann

ccheck λ(−3 ∗ 0.5 + 3 ∗ 0.5) + λ(−3) -1.5
cfold λ(−1) + λ(−1) -1

Table 4.16: Hodges and Lehmann for node n1211

Acts Bernoulli + Minimax Hodges and Lehmann

ccheck λ(−2 ∗ 0.5 + 2 ∗ 0.5) + λ(−2) -1
cfold λ(−1) + λ(−1) -1

Table 4.17: Hodges and Lehman solution for node n1221

Acts Bernoulli + Minimax Hodges and Lehmann
1 2 3

braise λ(3e1 + 2e2 + 1e3) + λ(1) 1.85 1.5 1.15
bcheck (2e1 + 1e2 + 1e3) + 1 1.4 1.17 1.05
bfold λ(−1) + λ(−1) -1 -1 -1

Table 4.18: Hodges and Lehman solution for node n11

Acts Bernoulli + Minimax Hodges and Lehmann
1 2 3

braise λ(−1e1 + (−2 ∗ .5 + 2 ∗ 0.5)e2 + 1e3) + λ(−2) -1.35 -1 -0.65
bcheck ((−2 ∗ 0.5 + 2 ∗ 0.5)e1 + (−1 ∗ 0.5 + 1 ∗ 0.5)e2 + 1e3) + (−2) -0.95 -0.83 -0.6
bfold λ(−1) + λ(−1) -1 -1 -1

Table 4.19: Hodges and Lehman criterion solution for node n12

Acts Bernoulli + Minimax Hodges and Lehmann
1 2 3

braise λ(−1e1 + (−2 ∗ .5 + 2 ∗ 0.5)e2 + 1e3) + λ(−2) -1.35 -1 -.65
bcheck λ((−1)e1 + (−1 ∗ 0.5 + 1 ∗ 0.5)e2 + 1e3) + λ(−1) -0.85 -0.5 -0.15
bfold λ(−1) + λ(−1) -1 -1 -1

Table 4.20: Hodges and Lehman criterion solution for node n12

Acts Bernoulli + Minimax Hodges and Lehmann
1 2 3

braise λ(−2e1 − 2e2 + 1e3) + λ(−2) -1.85 -1-5 -0.8
bcheck λ(−1e1 − 1e2 + 1e3) + λ(−1) -0.9 -0.67 -0.2
bfold λ(−1) + λ(−1) -1 -1 -1

Table 4.21: Hodges and Lehman solution for node n13
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would the different criteria equate with big and small modifications. This idea is
quite interesting because the game of poker normally has a significant amount of
cards more than the simplified poker version that was introduced. Even though
having more cards or solving the real game of texas hold’em poker would have been
interesting, the complexity wouldn’t be as manageable for this bachelor thesis. If
one observes that the modified Kuhn Poker has 45 different possible normal form
strategies, it is quite easy to understand the problematic. Therefore, this thought
experiment might be an intriguing form of at least thinking how the modified Kuhn
poker would equate in a scenario which is closer to the real world.

The first experiment that will be thought about would be what would happen if,
instead of having three cards, there were 5 possible cards that can be drawn and the
reward leaves were maintained the same. In this case these would be: 9, 10, jack,
queen and king. The 10, jack and queen would have the same structure of decision
strategies possible as the queen in the three card version, while the king would
have the same structure as the king and the 9 would correspond to the structure
of the lowest card of the three card version which is the jack. It is quite fair to
assume that the scenarios where the decision maker draws the best card(king) and
the worst card(9) would be the same strategy wise for most of the different criteria.
Mainly because these are exactly the same scenarios where the decision maker will
definitely win or definitely lose if the round reaches the end. The biggest changes
in this case would probably be with the Bernoulli principle and the Hodges and
Lehmann criterion, mainly because the prior probability of cards drawn would be
modified. Also, the card in the middle(the jack) would also somewhat be equivalent
to the queen scenario in the three card version. The most interesting discussion
here would be talking about the 10 and the queen, while for the Minimax, Maximin,
Hurwicz and Minimax regret criterion these cards will be solved exactly the same
as the queen in the three card scenario, with the other criteria it will differ. This
is mainly because the number of reward leaves coming out of the leaves and their
rewards being repeated in the last chance node wouldn’t influence in anything how
the strategy is chosen. But for the Laplace, the Bernoulli and the Hodges and
Lehmann criterion the number of rewards leaves with repeated values when winning
or losing would change the criterion a bit. One can suppose that in the case of the
queen that is a bit better than the jack, there would be somewhat of a tendency to
raise more, while with the 10 would be to rather check more.

Although having more cards could change the last chance node for the scenario
with 10, jack and queen, it does not necessarily has to change the amount of leaves
coming out of the last change node. If instead of having chance nodes that represent
the cards from the opponent, such as Dking, Dqueen and Djack, the decision tree might
just be structured with Dwin and Dlose and the prior probability would correspond
to the probability of the decision maker of winning or losing. This could also be a
way of using these methods to solve the last bidding of a texas hold’em poker round.
After every card is revealed, there would be one more round of gambling were the
decision process could be portrayed exactly like our modified three card Kuhn poker.
The main difference would be that instead of having individual cards represented,
then certain combinations of the cards would equate to a king, a queen or a jack. As
most combinations would have a strategy that assembles more the queen scenario
then the king or jack scenarios, then the probability of win for the decision maker
would be based on the combination of cards the opponent might have that would
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win against our decision maker.

4.5 Conclusions
Through the fourth chapter it was possible to see some of the main differences

each methods has, while also comparing the different criterion. There are some inter-
esting aspects of the solutions that have to be summarized in this short conclusion.
Mostly the combination of of normal form method with criteria such as Maximax
and Hurwicz induce answers that are often very dependent of single rewards or re-
wards that not necessarily will impact the entire strategy, mainly neglecting other
parts of the tree. The normal form combined with Maximin doesn’t necessarily
produce strategies, where the player wins a lot of money but rather doesn’t allow
him to choose the worst possible reward paths. This doesn’t necessarily mean that
the utilities chosen are actually a good reward from a perspective of earning the
most money. The normal form with Minimax regret is quite intriguing because it
compares every action with their equivalent but then chooses based on limiting how
bad a regret can be. This in itself is not that different from the Maximin and it
is also very dependent of just one action with a specific state of nature after the
regret has been calculated. The normal form with Laplace, Bernoulli or Hodges and
Lehmann criteria try to solve the decision tree taking into account all the reward
leaves, which produced a smaller number of normal form optimal solutions but at
the same time didn’t seem to neglect other parts of the tree.

The extensive form method with the different criteria obviously maintained the
major characteristics of each criteria, still it was able to treat the different parts
of the trees as individual trees, which would combine to make strategies that don’t
neglect certain parts of the trees or that are too focused in only one or two rewards
leaves. It was also quite interesting how only the Hurwicz and the Hodges and
Lehmann criteria had extensive form solutions, which had normal form solution
which weren’t also normal form optimal solution, while all the other has solutions
which were normal form optimal.

One interesting aspect of the research which could still be talked about in the
future is how the combination of different criteria could compliment one another
throughout more rounds of the game being played. Another important aspect would
be how could neural networks, with the objective of playing poker, be developed
based on different optimality criterion game and how they would use these different
criterion to learn how to play in a manner which maximizes their wins in every
different situation, if they would use one criteria more than the other and other
different possible usages.
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