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A Comparative Evaluation of the Utility of Linguistic Features for Part-of-Speech-Tagging

Abstract

The task of Part-of-Speech-tagging is an important step in many natural lan-
guage processing tasks. It constitutes the automatic assignment of tags to words
that signify their syntactic function and morphological behaviour, thereby provid-
ing valuable information which can help to disambiguate the semantic nature of the
corresponding word.

This thesis explores different sources of features that can be obtained from raw
text data and may prove useful to build an effective Part-of-Speech-tagging model.
Therefore the word identity as a feature was encoded using dense word embeddings.
The Word2Vec and FastText framework were utilized to train the respective word
embeddings directly on the training data while for the GloVe framework Stanford’s
pre-trained word embeddings were deployed. Additionally to the word identity sev-
eral groups of linguistic features were implemented regarding the kind of characters
a word may encompass, the case of characters in a word, the position of a word
relative to its sentence and possible affixes present in a word.

As an architecture for the Part-of-Speech-tagger a Long-Short-Term-Memory
Neural Network was chosen as it is able to capture structural regularities in sequen-
tial data and sentences are essentially sequences of words.

The Georgetown University Multilayer Corpus constitutes the data on which all
evaluations are performed and as a compilation of texts that stem from a variety of
communicative purposes was deemed a reasonable basis for the analysis to generalize
well to a wide scope of data.

The utility of the before mentioned features was compared by consulting met-
rics such as the accuracy and weighted F1-score on the Part-of-Speech-tagging task.
For models, regardless of the implemented word embedding framework, the fea-
tures regarding the case of characters in a word have been shown to considerably
enhance its performance across the evaluation metrics. If the GloVe framework is
utilized to encode the word identity, the additional information provided by features
dealing with possible affixes of words is shown to significantly improve the models
performance.

In general, this thesis first gives a theoretical introduction into the topics of Part-
of-Speech-tagging, neural networks and word embeddings. Secondly, the practical
part explores which instantiations of word embedding frameworks are favorable and
afterwards compares the utility of including the different groups of linguistic features
in the input for the Part-of-Speech-tagging models.
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1 Introduction

With the advent of intelligent speech assistants such as Apple’s Siri, Microsoft’s Cortana
and Amazon’s Alexa into the daily life of numerous people, natural language process-
ing/generation and its applications seem to have manifested themselves to stay and fur-
ther shape the way humans cooperate with software. To interact with a voice-activated
interface demonstrates to most users just how far the technological basis behind these
applications has advanced and exhibits the capacity of algorithms to handle natural lan-
guage. These bots may represent the pinnacle of current advancements to the layperson,
though most of the underlying subdivisions of their software are based on tasks the fields
of natural language processing, natural language generation and machine learning have
been dealing with for decades.
This thesis will have its focus on one important pre-processing task relevant to a wide
variety of natural language processing applications, the automatic categorization of words
in classes describing their grammatical behavior, called Part-of-Speech-tagging.
Annotating corpora with Part-of-Speech-tags has been done manually in the past (Mar-
tinez, 2012). One famous example of an annotated corpus, consisting of roughly one
million words, is the Brown Corpus. In 1967 Henry Kucera and W. Nelson Francis com-
piled texts selected from a wide scope of sources of American English (Kučera, 1967).
This resulted in a corpus that has been cited extensively, because of its variegated nature
and has been tagged partly with rule-based systems (Schmid, 1994) and manually in the
years following its compilation. Among others this annotated corpora helped to develop
taggers with an accuracy of up to 97% (Jurafsky, Martin, 2021). Hence for the English
language humans tend to perform the task of Part-of-Speech-tagging as well as the current
state-of-the-art algorithms (Manning, 2011).
Two major difficulties for the successful completion of this task are the ambiguity of words
and the encounter of before unseen words. Consider the example sentence of Martinez
(2012) ’We can can the can’. Three different syntactic functions of the word ’can’ are
represented in these five words. In order from left to right, ’can’ is first an auxiliary, a
verb and finally a noun, thereby showcasing the ambiguity of this word in one very short
sentence.
This thesis will first outline the general framework of Part-of-Speech-tagging. Afterwards
an exploration of the theoretical foundation of LSTM (Long Short-Term Memory) Neu-
ral Networks will be given which will touch on the basic concepts of Feed-Forward and
Recurrent Neural Networks as they build the foundation for the model used as the Part-of-
Speech-tagger. Next a short overview will demonstrate some of the different possibilities
to encode the semantic representation of a word into an embedding, thereby concluding
the theoretical part of this work.
A short description of the Georgetown University Multilayer Corpus (GUM) will be pro-
vided since this annotated corpus is used for the empiric analysis. Following this the
implementation of the feature selection process and the setup of the architecture for the
Part-of-Speech-tagging model will be examined. Finally the utility of the different lin-
guistic features, provided as inputs to the tagger, will be evaluated.
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2 Part-of-Speech-Tagging

2.1 Definition

Part-of-Speech-tagging implements an annotation of data which proceeds at the level
of words. Hereby each element of a corpus receives a morphosyntaktic label called the
Part-of-Speech-tag (Westpfahl, 2020). This label incorporates information on the mor-
phological behaviour and syntactic function of its unit, thereby leading to the alternative
naming conventions such as word classes, morphological classes or lexical tags (Jurafsky,
Martin, 2021).
In this thesis the label will always be referred to as the POS-tag.
Since clear distinctions between these categories are an animated source of discussions,
the pool of possible tags, from which a model draws, varies vehemently according to which
tagset a model was trained on. These tagsets comprise categories which in unison are all-
encompassing and try to provide a complete subdivision of the different morphosyntactic
roles words can embody (Westpfahl, 2020). Tagsets naturally are only applicable for
one language since morphosyntactic roles vary in their delimitation between themselves
and apart from that, some categories may not even have an equivalent counterpart in a
language which was not the origin of the tagset.
While the decision making process for a certain POS-tag uses several features on the word
itself, the process of tagging performs poorly if merely the to-be-tagged word is provided
(Jurafsky, Martin, 2021). The underlying algorithm of the model receives the data to be
annotated sentence-wise and has access to intrinsic and extrinsic cues (Goldberg, 2017).

2.2 Significance of accurate syntactic and lexical classification

A variety of natural language processing tasks utilize the information provided by tags
concerning the POS of tokens. While the concrete instantiation is seldom considered a
relevant piece of information in the finalized output of tasks such as machine translation
or information retrieval (IR), it can help to disambiguate the semantic nature of a word
during parsing. For tokens that belong to several morphosyntactic classes inhibit an
ambiguity regarding their meaning (Pilehvar, Camacho-Collados, 2020).
The filtering of nouns of a corpus may provide valuable insight for the Information-
Retrieval task.
Machine translation algorithms often use POS-tags as one source of information (Westp-
fahl, 2020).
A POS-tag is also relevant to disambiguate the cases in which varying POS-instantiations
would be pronounced differently. The different pronunciations of ’object’ come into place
whether it is considered a noun or a verb where in the case of being a noun the first
syllable would be stressed and in case of being a verb the second syllable. ’Content’ has
an emphasis on the first syllable when instantiated as a noun or on the second if considered
an adjective.
These two examples should showcase how the Part-of-Speech-tag can be relevant for
producing a more accurate speech recognition system or help to choose the correct pro-
nunciation for speech synthesis systems (Jurafsky, Martin, 2021).
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A correct classification also provides more subtle cues considering the stem of a word or
the probability of words which could appear in its vicinity.

2.3 Tagsets

Tagsets are compilations of the morphosyntactic roles which try to encompass a full
representation of the different morphological behaviours and syntactic functions words
can occupy in a certain language. As stated before the delimitation of these categories is
not strictly defined and therefore a multitude of different tagsets has been introduced.
Because of the ongoing discussions and the frequently indistinct boundaries of grammat-
ical categories, tagsets aim to be pragmatic, since a pure theoretical, all-encompassing
distinction of different POSs is not yet achieved and will likely not be any time soon
(Westpfahl, 2020). Additionally the slight alterations that occur constantly in natural
languages impedes the realisation of a definitive discrimination.
Among the most recognized tagsets is the Brown tagset which is based on the 82 categories
used on the Brown corpus. The rationale for the tagging procedure was initially introduced
in Greene and Rubin 1971, but was extended by numerous contributors (Francis, 1979).
Another prominent tagset is CLAWS, Constituent Likelihood Automatic Word-tagging
System, introduced by the Lancaster University which encompasses a varying number
of different POS-tags depending on the version of its tagset. It has been continuously
developed since the early 1980s (Garside, 1987). Currently 8 versions are published.
The English Penn Treebank tagset consists of 36 POS-tags and 12 tags specifically for
punctuation purposes. After the compilation of the roughly 4.5 million word Penn corpus
by the University of Pennsylvania in 1989, it has been annotated in the following three
years with its corresponding tagset (Marcinkiewicz, 1994).
In this thesis the tagset of the Universal Dependencies (UD) framework with its 17 tags
will be used. It has become widely accepted as one of the most important tagsets, since
it has treebanks for over 100 languages (Universal-Dependency-Community, 2022). It is
an open community effort. The tags in it are:

ADJ Adjective: noun modifiers describing properties

ADV Adverb: verb modifiers of time, place, manner

NOUN words for persons, places, things, etc.

VERB words for actions and processes

PROPN Proper noun: name of a person, organization, place, etc..

INTJ Interjection: exclamation, greeting, yes/no response, etc.

ADP Adposition (Preposition/Postposition): marks a noun’s spacial, temporal, or other
relation

AUX Auxiliary: helping verb marking tense, aspect, mood, etc.

CCONJ Coordinating Conjunction: joins two phrases/clauses
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DET Determiner: marks noun phrase properties

NUM Numeral

PART Particle: a preposition-like form used together with a verb

PRON Pronoun: a shorthand for referring to an entity or event

SCONJ Subordinating Conjunction: joins a main clause with a subordinate clause such
as a sentential complement

PUNCT Punctuation

SYM Symbols like $ or emoji

X Other

2.4 Related linguistic features

Goldberg (2017) divides the sources of information for POS-tagging into two major groups.
One is formed by the utilization of attributes of the word itself which from now on will
be called intrinsic cues. These stand against the complementary group of extrinsic cues
that compromise all features the context of the to be tagged word, the sentence, is able
to provide.
As mentioned before POS-tags hold information on the morphosyntactic nature of a
word. Therefore the the inverse direction, morphological and syntactic attributes provide
information on the respective POS-tag, may hold valuable data, too.
Intrinsic cues unsurprisingly are based mostly on the morphological characteristic of a
token. Depending on the level of inflection present in a language, the morphology of a word
can be indicative of its syntactic function (Earl, 1966). In comparison to other languages,
English is not a highly inflected language though in many cases a relationship between
form and POS-tag is present. For example the suffix ’-ed’ is, with a high probability,
an indication for a past-tense verb, just as the prefix ’un-’ will be incorporated at the
beginning of an adjective most of the time. Another important intrinsic cue for POS-
tagging is the identity of the word itself which in an unambiguous language would be
sufficient to build an infallible tagger, but even in ambiguous settings the identity is
linked to a certain probability distribution for its tag (Goldberg, 2017). Finally sub-word
information such as the incorporation of capital or non-alphanumeric characters and digits
may be used as features for POS-tagging.
On the other hand extrinsic cues are based on all information which can be gathered
without considering the target word for the current decision. While we may not have direct
information on the syntactic function of a word in an untagged sentence, the position in
the sentence in relationship to the other words is to be considered an indication of its
syntactic role. Therefore it is paramount to consider the surrounding words and their
features to make an prediction for the target word. Additionally to the intrinsic cues we
obtained for each preceding word, the predicted POS-tag for these tokens in the sentence
may be beneficial, provided that we make the tagging decision sequentially (Goldberg,
2017).
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3 Neural Networks

3.1 The modeling of the logical XOR

While for many problem cases linear classifiers perform reasonable well, the restriction
that purely linear decision boundaries for the classification can be modeled limit their
scope of application.
This restriction was prominently demonstrated by Minsky and Papert (1969). They
illustrated that for the different input combinations to the logical XOR operator, no
linear decision boundary could be perceived for its outputs. A simple neural network
may solve this problem. In the following section the boolean values True and False will be
interchangeably used with their respective numeric representations 1 (True) and 0 (False).
The XOR operator is true if and only if one of two logical values on which this operator
is used is true.

Figure 1: Adapted from Jurafsky, Martin (2021): Visualisation of the logical functions a)
AND, b) OR and c) XOR in a two dimensional space. If the points are blue the logical
operator is True for this combination of truth values.

In figure 1 three basic logical operators are shown in two-dimensional space where each
axis represents the value of the boolean variables called x1, x2 respectively. For the logical
AND and OR one can easily assess that a linear decision boundary is conceivable. For the
logical XOR on the other hand no decision boundary to separate the resulting boolean
values can be reached in such a way.
Here the concept of layering multiple layers of processing units and applying non-linear
functions on them can solve this. By adding a hidden layer the input values change
eventually into a representation that is more favorable for basing a decision on.
Figure 2 shows the processing units by circles with h inside for the hidden units and y for
the output unit. Weights are depicted by numbers on the black arrows and the value of
the bias b for a unit by the number on a grey arrow. Each unit multiplies the incoming
values with the weights, sums them up, adds the bias and then returns the value if it
is greater than 0, else 0 is given as its output. This filtering of outputs on whether the
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Figure 2: Adapted and modified from Jurafsky, Martin (2021): Two-layer neural network
to model the XOR operator

value is at least 0 is known as using the Rectified Linear Unit (ReLU) activation function
which will be explored in more detail in 3.2.1.
To give one example, in the case that both input variables x1, x2 are true, the input for
this network is [1,1]. The computation that happens in h1 is summing up x1 times the
weight from x1 to h1 (1*1), x2 times the weight from x2 to h1 (1*1) and the bias that
goes to h1 (0) and afterwards returning 2 since this value is bigger than 0. In the second
hidden node the computation happens similarly and its return value is 1. Therefore the
input for the last layer which consists of only one unit y1 which is called the output layer
is [2,1]. Once the computation is finished for the last layer the return value is 0 which is
the correct value in this case for the XOR operator.
This can be done for all input combinations and it will return the appropriate value the
XOR operator should return.
After passing the hidden layer the input has been transformed into a different kind of
representation of the data it held. If one computes the values of the hidden layer for
all input combinations, the new resulting representation is linearly separable. Cases for
which the XOR operator should return True have collapsed into the representation of [0,1]
where the first value represents the first hidden unit’s output and the second the other
one. Figure 3 shows the representation of data after the hidden layer for all cases. In b)
we can now conceive a linear decision boundary which was not possible beforehand.

3.2 Feed-Forward Neural Networks

While the last chapter has shown the application of a neural network for a simple use
case, this chapter will go into more detail on the different parts of such a model and its
configuration.
The fact that this model incorporates numerous processing units that compute a single
output which is passed on to other units was inspired by the brain’s computational mech-
anism, though to compare it to the real neural system in human brains makes an overly
simplistic assumption on our cognitive system and is not accurate and just the naming
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Figure 3: Adapted from Jurafsky, Martin (2021): All cases for inputs to the XOR operator:
a) are shown in their original configuration. b) have been transformed by passing the
hidden layer (h) shown in Figure 2

convention has stuck (Goldberg, 2017).
In general a neural network takes input values in form of numeric vectors. In this thesis
a single input vector will be notated by x. The training of such a model takes not one
input vector at a time, but rather a so called batch which is the collection of a certain
number of input vectors into a matrix where the rows represent the different samples. To
reference the j-th value of the i-th sample in the input matrix the notation is Xi,j.
Next it has any number of layers which consist of an arbitrary number of processing units.
All layers that are not the input vector or the last layer in line are called hidden layers
since during computations the user does not interact with them. These will be referred
to as h(k) where it is the k-th hidden layer.
Finally the layer which produces the output of the whole model is called output layer
which is notated by y.
If all the units between two layers are connected to each other, the network is called fully
connected or affine (Goldberg, 2017).
All the units take as input the outputs of connected units of the layer before, multiply
them with weights W which are specific for this layer and in most cases sum up the results
of the multiplication. Seldom, instead of summing up the results of the multiplications,
a unit could just use the maximum or some other statistics on them (Goldberg, 2017).
Once this step is done the unit adds a bias b and applies a non-linear function which will
produce the output that will be passed on to the next layer. Without separating these
linear combinations by these so called activation functions the whole neural network would
be a long, but linear function of the input values itself.
Activation functions transform the value as the last step of all processes done by a unit
and in many cases scale its output.
Suppose we have a batch of 100 samples with a length of their input of 20, one hidden layer
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with 30 units and the output layer with 10 units. Then we have the following matrices
and vectors with their dimensionality:

X ∈ IR100×20

X1. = x(1) ∈ IR20

W(1) ∈ IR20×30

b(1) ∈ IR30

h(1) ∈ IR30

W(2) ∈ IR30×10

b(2) ∈ IR10

y ∈ IR10

If we consider a single input sample, vector x, we can associate the units of layers with
the scalar values they return for their singular (not a batch/matrix) input and the dimen-
sionality seen above stays correct. For simplicity activation functions are represented by
the lower case letter ’a’ and are not yet specified in more detail, but could be any function
presented in 3.2.1.

h(1) = a1(xW
(1) + b(1))

y = a2(h
(1)W+ b(2))

If the whole batch of samples is propagated through this example neural network, the
whole equation would be:

a2(a1(XW(1) + b(1))W(2) + b(2)) (1)

This would result into an output with the dimensionality of 100 × 10 where each row
represents the output of layer y for one row of the input matrix X. In the equation with
matrices the bias vectors b(k) are added similarly for each row of the matrix to the left
side of the addition sign or can just be considered as a matrix with the same bias vector
for all its rows.
Considering X as the beginning of the information flow through the neural network,
it is first passed on through the hidden layer h(1) and finally through the output layer
y. The direction of the information flow is merely forward through the different layers
which motivated the naming convention for such simple models as Feed-Forward Neural
Network. The flow of information can be passed back to previous layers for Recurrent
Neural Network which will be defined in 3.3.
In the following section four of the most important activation functions are presented.
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3.2.1 Activation functions

First of is the sigmoid σ function, shown in equation 2, which maps any value it receives
onto the range [0,1], a property that makes this activation function attractive for the
usage at an output layer where a probability for binary classification is considered useful.
Additionally the effect of outliers for possible following layers is mitigated.

σ(x) = 1/(1 + e−x) (2)

Next of is the hyperbolic tangent tanh function which behaves very similarly to the
sigmoid function except that it squashes the values to the range of [-1,1] and thereby
maps outliers towards the mean (Jurafsky, Martin, 2021). Its equation is the following:

tanh(x) = (ex − e−x)/(ex + e−x) (3)

It’s derivative is vanishing less quickly than the sigmoid’s which is a favorable property
for the training process explained in 3.2.3.
Build as an approximation of the tanh activation function the hard tanh hardtanh, shown
in equation 4, is a more computationally efficient alternative (Goldberg, 2017).

hardtanh(x) =


−1 x < -1

1 x > 1

0 otherwise.

(4)

Finally, the Rectified Linear Unit ReLU activation function which we have already seen
in chapter 3.1 is presented. Positive values given to this function will be returned without
any modification and negative values are capped so that the smallest value this function
returns is 0. This can be mathematically expressed as in equation 5. ReLU is computa-
tionally very efficient and has nearly linear properties (Jurafsky, Martin, 2021).

ReLU(x) = max(0, x) (5)

It’s derivative is either 0 for all values less than zero or 1 for all values greater than zero.
The property that the gradient for positive values is constantly at 1 is one advantage of
ReLU over the other activation functions presented here since the other functions struggle
with the fact that their gradients may become infinitesimal small or are 0 for extreme
values.
In figure 4 the four activation functions are plotted and their respective derivatives.
While not strictly speaking an activation function, it’s application on whole vectors of
output layers make the softmax, shown in equation 6, somewhat related to the functions
mentioned above.

softmax(xi) = exi /
C∑

j=1

exj (6)

For the output layer in settings where a probability distribution over different class choices
is favorable, e.g. POS-tagging, the softmax function is used on the units of the output
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Figure 4: Adapted from Goldberg (2017): Plots of the functions and their derivatives for
the sigmoid, tanh, hardtanh and ReLU activation function

layer. It normalize all the values in such a way that their sum is 1 and they can be
regarded as conditional probabilities for being a certain class (Jurafsky, Martin, 2021).
In Equation 6 we suppose that the final layer has C units.

3.2.2 Loss function

As neural networks are an instance of supervised machine learning, we possess the correct
output for the samples on which we train our model.
To extract information on the model’s quality on performing a certain task, we need
to quantify the degree to which the model makes the right decisions. Therefore a so
called loss function is instantiated which compares the model’s output with the validated
output we have on our training data and applies different metrics to make the correctness
tangible. Since the neural network usually provides a distribution as its output for a given
prediction, conditioned on the input it has received and the model’s parameters, the final
decision is based on the principle of maximum likelihood (Jurafsky, Martin, 2021).
This limits the scope of this thesis and its the application of the described neural networks
to tasks where there is one correct output among at least two choices. This makes the
Cross-Entropy (LCE) loss function, as seen in equation 7, a valid choice to quantify the
distance between the model’s decisions and the gold standard (Goodfellow et al., 2016).

LCE(ŷ, y) =
C∑
i=1

yilogŷi (7)

In this equation we suppose that our output is a vector of length C which represents the
number of possible categories from which the model has to choose. The gold standard
that was not generated by the model is a one-hot-encoded vector in which the true class
is encoded as 1, while the other positions in the vector are 0.
In cases in which we use the neural network for a binary classification task the Cross-
Entropy loss function can be reduced to a function which is analogous to the loss function
for a logistic regression (Jurafsky, Martin, 2021).
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One alternative loss function, though mostly used in linear regression tasks, would be the
Mean Squared Error loss (MSE). It sums up the squared distances between the model’s
prediction and the real output for each possible class. Afterwards it is multiplied by the
inverse of the number of classes (C) as shown in equation 8:

LMSE(ŷ, y) = (1/C) ∗
C∑
i=1

(yi − ŷi)
2 (8)

The MSE is seldom a reasonable choice for classification tasks in neural networks. The
fact that the usage of this loss function assumes the data to be derived from a normal
distribution and the assumption that the values provided to the function are arbitrary
real valued numbers, not restricted to the range of probabilities [0,1], makes the MSE
inappropriate for most settings for which neural networks are used (Khan, 2019).

3.2.3 Training Neural Networks

So once a loss function is chosen, input data, typically in batches, can be fed into the
neural network and it will pass through the consecutive layers and produce an output.
Afterwards the loss is calculated for the model and it is possible to quantify the distance
between the correct output and the predicted one. This flow of data through all the
computations is called the forward pass (Goldberg, 2017).
We can use the information the loss function provides to adjust the weights and biases,
the parameters, of the model and ideally make it perform better. This is done by min-
imizing the loss and computing the partial derivatives of the loss function with respect
to each parameter of the neural network and adjusting the parameters according to them
(Goodfellow et al., 2016).
Even if the loss function itself is not necessarily convex which means that there might
be local minima in which the optimization might get stuck, gradient based methods like
gradient descent for training a neural network are widely used and have proven to work
well in practice (Goldberg, 2017).
Since the model consists of several layers with a multitude of parameters each, the task of
calculating the gradient can get very complex and cumbersome. Therefore the chain-rule
of differentiation is applied to make the calculations more docile.
Often computation graphs, which are directed acyclic graphs of the partial calculations
involved in computing the loss, are used to simplify the process of determining the gra-
dient and derivatives for the model (Goldberg, 2017). Being broken down into separate
operations the forward pass through the neural network will produce some additional
intermediate results, but its major gain lies in the backward pass of information.
By using the chain-rule a gradient for each operation in the computation graph can be
computed step by step through the directed acyclic graph by using the gradient gotten
from the previous step.
The name backward pass springs from the fact that the first derivative we compute starts
at the loss function itself and we move backwards through all the operations involved.
This procedure is called the error backpropagation algorithm (Jurafsky, Martin, 2021).
Since the forward pass has produced the intermediate results for all operations in the
chain of equations, the derivatives are easily calculated once the partial gradients are
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worked out (Jurafsky, Martin, 2021).
Afterwards these are used to adjust weights and biases of the model after being multiplied
with a learning rate which tries to stabilize the training process.

3.3 Recurrent Neural Networks

For applications in which the input-output mapping is static, Feed-Forward Neural Net-
works suffice most of the time. As soon as temporal correlations between the samples
exists, this static assumption becomes inadequate (Tsoi, 1997). Temporal correlation can
mean that the input instances happened sequentially or that an order persists between
them. Feed-Forward Neural Networks do not incorporate these structural properties of
the input which may hold valuable information for task in which the sequential nature of
data is of relevance.
Therefore the concept of Recurrent Neural Networks (RNN) is introduced for sequences
of inputs and the ability to capture statistical regularities in them (Goldberg, 2017).
These regularities are captured by the fact that previous inputs may influence the current
information flow by a recurrent state element specific to RNNs. So the flow of information
is not only forward, but has a cyclic element to it (Jurafsky, Martin, 2021). Incorporating
such feedback loops allows the neural network to exhibit a temporal dynamic behaviour
and, as Pilehvar, Camacho-Collados (2020) puts it, remember the past. In figure 5 this
is exemplified by the connection of the same unit in the model with itself at the time the
next input instance is fed through it.
On a mathematical level this is achieved by making a prediction at point i in a sequence
dependent on all inputs up to index i in the sequence, x1:i−1. In general terms this can
be represented, without specifying a concrete model architecture, by a recursive state
element s. It incorporates the information of previous time steps and is combined with
the current input to generate the recursive state element for the current prediction and
for providing memory for the next time step.

si = R(si−1, xi) (9)

In equation 9 the letter ’R’ is used as a placeholder for a multitude of recursive techniques
for which the model architectures may incorporate the information of former states. In
case of the first input vector the previous recursive state element s is a zero vector. A
concrete implementation of s will be given in more detail for the architecture of LSTM
Neural Networks in 3.4.
One major difficulty when training Neural Network occurs due to the so called vanishing
gradient problem. As explained in 3.2.3 the adjustment of weights and biases of the
model happens according to the calculated gradients and derivatives starting at the loss
and propagating backwards. Since the calculation of gradients uses the results of the
preceding steps in the backwards pass through the broken down equations of the whole
model, the values of the gradients may vanish or, in cases of activation functions not
presented here, explode when put through the activation functions used on the layers
(Pilehvar, Camacho-Collados, 2020).
If one considers the gradients of activation functions presented in figure 4 one can assess
that their gradients are in the range of values between 0 to 1. As their gradients become
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Figure 5: Adapted and modified from Pilehvar, Camacho-Collados (2020): Visualization
of a single unit of a RNN for sequential data. These three time correlated or sequential
instances i, i + 1, i + 2 show the recurrence of the model by the two arrows between the
unit in different time steps.
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close to 0 and the backpropagation multiplies these low values several times, the resulting
gradients may get vanishingly low (Tsoi, 1997).
This problem especially arises for Recurrent Neural Networks since it incorporates a recur-
sive element in the model to capture the structural properties of the input data. Therefore
an increasing number of multiplications with very low values may take place once the error
backpropagation has passed through some recurrences. Consequently the adjustments of
the according parameters happens only at a vanishingly low rate that makes the training
procedure very inefficient. The problem of inefficiently capturing long-range dependencies
was thoroughly investigated by Bengio et al. (1994).
Another difficulty these models deal with is the fact that the recurrent state element s
has to provide relevant information for the current decision while at the same time try to
retain information for future decisions.
One way to deal with these problems is to use gated varients of Recurrent Neural Networks.

3.4 Long-Short-Term-Memory Neural Networks

One widely used variant to deal with the before mentioned problems for Recurrent Neural
Networks are LSTMs. These so called Long-Short-Term-Memory (LSTM) Neural Net-
works split the two tasks the recurrent state element s in basic Recurrent Neural Networks
has into two layers present in each processing unit which are controlled by gates. There-
fore these models are considered gated-architectures and the accessed memory is regulated
and so is its output (Goldberg, 2017).
A LSTM Neural Network unit incorporates a context layer c which tries to capture the
information relevant for future predictions while forgetting some of its past information.
This layer is regulated by the forget gate and the input gate.
Additionally, the units possess a hidden state h layer that gets updated by the current
context state and this update is regulated by the so called output gate. Since the context
state captures structural information relevant for future predictions, the hidden state
can capitalize on the task of encompassing the most valuable information for the current
prediction (Jurafsky, Martin, 2021).
These additional internal mechanisms, called gates, in combination with the additional
context layer are integrated to, as Pilehvar, Camacho-Collados (2020) puts it, make the
memory last longer.
In figure 6 the installation of an unit in a LSTM is visualised. Each unit gets fed the cur-
rent input xi along with the hidden state hi−1 and the context state ci−1 of the calculation
this unit has made for the preceding input.

fi = σ(W(x)(f)xi +W(h)(f)hi−1 + b(f)) (10)

ini = σ(W(x)(in)xi +W(h)(in)hi−1 + b(in)) (11)

oi = σ(W(x)(o)xi +W(h)(o)hi−1 + b(o)) (12)

The forget gate, equation 10, has its own set of parameters which consists of weights
W(x)(f) that are multiplied with the current input vector, weights W(h)(f) that are multi-
plied with the previous hidden state and its own bias vector b(f). After the multiplications
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Figure 6: Adapted and modified from Pilehvar, Camacho-Collados (2020): Visualization
of a processing unit in a LSTM. It receives the previous hidden state hi−1, the previous
context state ci−1, the current input vector xi

and produces as outputs the hidden state hi and context state ci for the current step
in the sequence. The forget gate fi, the input gate ini and the output gate oi are the
controlling mechanisms to regulate the information flow between its inputs and outputs.

with weights and the addition of its bias, the sigmoid function is used element-wise on
the resulting vector. Therefore the output of this gate is a vector with values between 0
and 1.
The intuition behind this procedure is that for values nearing 1 in the output of the forget
gate almost all the memory of the respective value in the previous context state is retained
and for values nearing 0 almost all the memory is removed.
Similarly the input gate, equation 11, and the output gate, equation 12, have their re-
spective parameters and usage of the sigmoid function. So all gates result in vectors of
values between 0 and 1 to control the flow of information. While the input gate controls
what information may be incorporated of the new input, the output gate controls to what
extend the information kept in the current context state propagates to the hidden state
(Pilehvar, Camacho-Collados, 2020).

ci = fi ◦ ci−1 + ini ◦ tanh(W(x)(c)xi +W(h)(c)hi−1 + b(c)) (13)

Equation 13 shows that the current context state ci is computed by the hadamard-product,
the element-wise multiplication of two vectors (Goldberg, 2017), of the result of the forget
gate fi with the previous context state ci−1 and the addition of new information which is
controlled by the input gate ini similarly. The informations regulated by the input gate
is provided by a separate computation of the input vector x, previous hidden state vector
hi−1 and its own set of parameters, passed element-wise through the tanh function.
Once we have the current context state ci, the hidden state hi can be computed by
the hadamard-product of the result of the output gate with the current state element
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put through the tanh function. This equation can be seen in 14. The result of this
computation is also considered as the output for the unit in general.

hi = oi ◦ tanh(ci) (14)

si = RLSTM(si−1, xi) = [ci, hi] (15)

To summarize the equations presented in this chapter one can unite them by defining the
former unspecified function R for Recurrent Neural Networks presented in 3.3 and define
the recurrent state element s as the tuple of the context and hidden state as shown in
equation 15.
Finally, a major advantage these LSTM Neural Network provide is the fact that the
vanishing gradient problem may be avoided since no activation function is used on track
the context state takes through the LSTM cell. Therefore the error backpropagation
algorithm may take place without encountering vanishing gradients as easily as in basic
Recurrent Neural Networks (Pilehvar, Camacho-Collados, 2020).
All the gates and computations presented in figure 6 are encapsulated in the units, so only
the context state is an additional complexity that reaches the external level of the whole
neural network. This modularity is considered as the key to the power and widespread
applicability of LSTMs by Jurafsky, Martin (2021).

4 Word Embeddings

4.1 Aspiration

As mentioned in chapter 2.4 the identity of words is a crucial feature for POS-tagging.
The model used in this thesis is a neural network and as shown in chapter 3.2 these take
numeric vectors as input. So the first issue is to find a representation of words which
consists of numeric values and have a fixed length to be usable for neural networks.
One simple and important concept of representing words as numeric vectors is the one-
hot-encoding. It can be used to find numeric representations for arbitrary objects though
we will limit our discussion to character sequences (words).
One-hot representations create vectors with lengths according to the number of distinct
words in a certain corpus. Once the set of words, the vocabulary, is known, each word
receives an unique index within the vector range which will indicate whether this word is
represented within a vector or not. Eventually every object out of the vocabulary of the
corpus has been assigned an index and thereby received its unique one-hot representation
where the vector possesses zeros at all positions except at the word specific index the
number one.
While this technique is easy to implement, it results in vectors that are computation-
ally inefficient for the majority of neural network architectures, because of their high-
dimensionality and and data sparseness (Goldberg, 2017).
While numeric features often hold valuable data by allowing useful metrics for compar-
isons, e.g. distance measures, the numeric representation of words in one-hot-encoding
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can perform no reasonable metric such as similarity measures which represent some un-
derlying relation between two words (Hirschle, 2022). Even synonyms have distinct and
unrelated representation as one-hot-encoded vectors.
So additionally to its computational inefficiency one-hot-encodings for words fail at cap-
turing any meaningful semantic properties.
A wide-spread and popular solution for these two problems are dense word embeddings
which have a dimensionality ranging from 50 to 1000 which comes at the cost that they
do not possess a clear interpretation by themselves (Jurafsky, Martin, 2021).
Furthermore these techniques create semantic spaces which are automatically constructed
by using the distributional hypothesis. The idea behind this hypothesis can be neatly
summarized by supposing that ’a word is characterized by the company it keeps.’ This
concept was popularized by J.R. Firth in 1957 (Pilehvar, Camacho-Collados, 2020).

4.2 Word2Vec

The first word embedding framework presented here was introduced by Mikolov et al.
(2013) and has been proven to outperform the previously best performing techniques
regarding semantic and syntactic word relationship tests in the paper.
The intuition behind Word2Vec word embeddings is that it trains a neural network on a
binary prediction task and afterwards returns the weights of the neural network trained
on this task which constitute the embeddings for the words (Pilehvar, Camacho-Collados,
2020).
This prediction task depends on the used architecture presented in Mikolov et al. (2013),
the continuous bag-of-words (CBOW) and skipgram (SG).
The CBOW architecture is implemented by the task of predicting a target word given a
certain number of context words that surround it. The amount of context words used is
defined by the window size which sets the number of preceding and subsequent words to
consider (Řeh̊uřek, 2022b).
In figure 7 a) a target word wi shall be predicted using a window size of 2. Therefore the
input for this predictive task are the two preceding words wi−2, wi−1 and the two subse-
quent words wi+1, wi+2. These four words are combined by being averaged or summed up
and fed into the projection layer. By combining them the order of the context words gets
lost which is the reason Mikolov et al. (2013) has coined this architecture a bag-of-words
model. Afterwards a log-linear classifier tries to predict the target word.
Figure 7 b) visualizes the second architecture, the skipgram approach. Here wi serves as
the input to the model, is fed to the projection layer and a log-linear classifier tries to
predict the words in the context (Mikolov et al., 2013), in this case wi−2, wi−1, wi+1, wi+2.
Therefore one instance for the training process is the tuple of the middle word wi and
either one of its context words as a positive example or a word that does not appear in
its context as a negative example.
Since such tuples could be created for each combination of the vocabulary and this would
result in innumerous cases, the process called negative sampling chooses a limited number
of combinations of the middle word and words that did not appear in its context (Karimi,
2021). Additionally since the relatedness of words declines once you move further away
from a certain word, combinations of the middle word and words in its context, but
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Figure 7: Adapted and modified from Pilehvar, Camacho-Collados (2020): Visualization
of the two prediction tasks present in the Word2Vec framework with a window size of 2.
a) CBOW: wi constitutes the target word which shall be predicted using the two preceding
and subsequent words.
b) Skipgram: wi constitutes the input (middle word) which shall be used to predict the
two preceding and subsequent words.

relatively far away, are sampled less frequently (Mikolov et al., 2013).
For both architectures the log-linear classifier then has to distinguish the positive cases in
which the samples are made up of words that belong to the same context and the negative
samples (Jurafsky, Martin, 2021).
Once the training process for the prediction task is finished, it is no longer relevant since
the word embeddings are obtained by extracting the weight matrix of the projection layer
(Mikolov et al., 2013).
As shown by Mikolov et al. (2013) these techniques result in word embeddings that provide
valuable information on the syntactic and semantic relatedness of words when trained on
very huge datasets.
The fact that for training the word embeddings the running text itself provides the in-
put and correct output like a supervised task is called self-supervision and provides, as
Jurafsky, Martin (2021) put it, a ’revolutionary intuition’ for effective word embedding
training.

4.3 FastText

One shortcoming of the Word2Vec framework is that it only assigns distinct embeddings
to words. In cases of corpora with many rare words, this may result in missing embeddings
for words that have not been in the training corpus (Bojanowski et al., 2017).
To bypass this limitation by providing word embeddings for a high percentage of before
unseen words, the concept of implementing the prediction tasks of chapter 4.2 additionally
at the level of constituent character n-grams for each word is realized. This technique
was developed as an extension of the Word2Vec framework, called FastText (Bojanowski
et al., 2017).
Especially since many before unseen words are morphological variations of words that
exist in the vocabulary (Pilehvar, Camacho-Collados, 2020), the enabling of learning these
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different morphological forms of words without necessarily encountering each form in its
completeness in the corpus provides valuable data (Jain, 2016).
So the representations of words are learned by summing up the embeddings learnt for the
constituent n-grams and the word itself (Řeh̊uřek, 2022a).
If one considers the word ’fastext’ and character n-grams of length 3, the resulting sequence
on which sub-word character ngram embeddings are learnt is made up of:

<fa, fas, ast, stt, tte, tex, ext, xt>

’<’ and ’>’ are considered special boundary symbols to delimit the word boundaies (Ju-
rafsky, Martin, 2021).
Once a before unseen word is encountered, the FastText framework creates its word em-
bedding by averaging its constituent sub-word embeddings. Thereby providing a reason-
able alternative to assigning 0-vectors or random numbers as word embeddings for these
words with the drawback that words may incorporate the same constituent sub-word
n-grams without being semantically related (Pilehvar, Camacho-Collados, 2020).

4.4 GloVe

The Word2Vec and FastText framework provide word embeddings that utilize local con-
text window methods, the prediction tasks discussed in chapter 4.2, to enable them to
perform considerably well on analogy tasks regarding their semantic relatedness. Though
statistical information like the global co-occurrence counts are mostly disregarded by
these frameworks and thereby they miss potential leverage for the quality of the word
embeddings as they do not take advantage of the vast amount of repetition in the data
(Pennington et al., 2014).
In contrast, the GloVe framework directly utilizes the global corpus statistics which gave
rise to its name (Jurafsky, Martin, 2021).
Another key difference to the two before mentioned frameworks is that GloVe uses no
neural network in its model, but introduces an optimization problem to construct the
word embeddings (Pilehvar, Camacho-Collados, 2020). While a neural network could have
been deployed in the construction of this framework, Pennington et al. (2014) have made
a point against this, since it would obfuscate the linear structure of the word embeddings
they were trying to capture.
The key idea behind the GloVe framework is to use co-occurrence probabilities of words
and their ratios (Jurafsky, Martin, 2021) to build an objective function which is optimized
by stochastic gradient descent (Pilehvar, Camacho-Collados, 2020). This objective func-
tion is built on the hypothesis that semantic relationships can be effictively captured by
computing the ratio of co-occurrence probabilities for three words wi, wj, wk. Consider
Pi,k as the probability of the word wk occurring in the context of word wi.

Pi,k/Pj,k (16)

Then the ratio (16) is expected to be large if wi and wk have a semantic relatedness,
co-occur often, while wj and wk have no semantic relatedness, seldom co-occur. It is
expected to be small in the vice-versa case. If neither or both, wi and wj, have a semantic
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relatedness to wk, the before mentioned ratio is expected to be near 1. All these hypotheses
have been exemplified in Pennington et al. (2014).
As the before mentioned ratio is based on three different words wi, wj, wk and can be the
source of information on their semantic relatedness, the objective function that is opti-
mized in the GloVe framework has been modified as to capture the information inherent
in such ratios in the word embeddings of the respective words (Pennington et al., 2014).
Pennington et al. (2014) have shown in their result chapter that the GloVe framework
may outperform Word2Vec on word analogy tasks and provide the word embeddings in a
shorter time span under similar conditions.

5 The Georgetown University Multilayer Corpus

The Georgetown University Multilayer Corpus (GUM) is an open source collection of texts
of multiple types which get annotated extensively (Universal-Dependency-Community,
2022). At the Georgetown University students collect and expand the corpus as a part
of their curriculum by adding layers of analysis to a text chosen from openly available
sources (Zeldes, 2017).
The POS-tags are manually annotated using the Stanford Typed Dependencies (De Marn-
effe and Manning, 2008) and are converted to the Universal Dependencies tagset using
the DepEdit tool (Universal-Dependency-Community, 2022). Afterwards the tags are
corrected manually using the Universal Dependencies guidelines, to ensure the quality of
the annotations.
The text types used in the data are meant to represent a variety of communicative pur-
poses and stem from openly available sources to prevent restrictive licenses from interfering
with the process of annotating and publishing. Sources include Wikinews, Wikipedia and
reddit, while the text types are divided in categories in such as interviews, news articles,
biographies and fiction (Zeldes, 2017).
The fact of being open source helps making the analysis reproducible. Being compiled by
the Georgetown University ensures that the data follows institutional guidelines and qual-
ity standards, while the corpus size of roughly 7 thousand sentences allows for reasonable
computability speeds on machines with an average computing capability. Therefore the
choice of data for this thesis has been the GUM dataset.

6 Implementation

6.1 CoNLL-U format and data extraction

First of, it needs to be said that all programming related notions are done using the
programming language Python.
The data of the Georgetown University Multilayer Corpus is openly avaible on the Uni-
versal Dependencies website where it is provided in the CoNLL-U format. This format
encodes the data in plain text form using the LF character as line breaks and incorpo-
rates lines containing information on words, comment lines and blank lines marking the
boundary of a sentence (Universal-Dependency-Community, 2022).
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Sentences are made up by at least a single word line which possesses 10 fields with infor-
mation on the syntactic nature and dependencies of its words.
As this thesis explores the predictive power of linguistic features for POS-tagging in
settings where just the plain text is being provided, the fields that are extracted are
simply the ’form’ which is present in the sentence and the respective ’UPOS’ which is one
of the 17 tags in the Universal Dependencies tagset, presented in chapter 2.3. The latter
will be considered the gold standard for the task in general.
While some of the remaining 8 fields of the words may hold valuable information for the
prediction of tags, these were not extracted since they are not accessible once a corpus
without annotations is presented to the POS-tagging model.
Zeldes (2017) provided the data already split in a train, development and test set while
ensuring that the discussed text types in chapter 5 are balanced equally in them.
So after importing the data from the CoNLL-U format to Python, a list of sentences
which themselves are lists of tuples with word form and the respective tag is provided for
each of the sets. The training set contains roughly one hundred thousand tagged words
while the development and test set compromise about 16 thousand respectively.

6.2 Simple feature extraction and encoding

Once the data is retrieved in Python in form of a list of sentences which themselves are
lists of tuples (the word and their respective tag), the features for the POS-tagger have
to be extracted.
As neural networks provide the framework for our model, all features have to be encoded
in a numeric fashion.
The features used in this thesis are grouped into classes to limit the combinations for which
to run the evaluations of the models since the computational cost of training thousands
of neural networks to cover all possible combinations of single features was not feasible.
First of is the group of features that concerns itself with the class of characters a word
encompasses. Therefore five features have been encoded in a binary fashion (either 0 or 1)
to check for different characteristics of the associated characters of a word. It is checked
whether a word is made up of purely alphabetic characters, purely numeric characters,
purely alphanumeric characters, whether it contains at least one numeric character and
whether it contains a hyphen. In positive cases these features are encoded with the value
1 and else with 0. From now on this class of features will be referred to as the character
related features.
Secondly, a feature group of four deals with the case of characters in a word. They check
whether a word starts with a capital letter, it has a capital letter after the first character,
is completely upper case or completely lower case. This group will be referred to as the
case related features.
Thirdly a group of two features checks whether a word appears at the beginning or end
of a sentence and will therefore be called the sentence position related features.
The final group of features concerns itself with affixes of words, prefixes and suffixes. To
get information on the prefixes that may be encompassed in a word, a list of the most
common English prefixes according to the Cambridge Dictionary (Cambridge-Dictionary,
2022) was used to search for words with these prefixes in the training data. For prefixes
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found in the training data the most common tag for words with the respective prefix
has been set as the default tag which will be encoded for all words with such a prefix.
Similarly, suffixes are searched for by using a stemmer provided by the NLTK package.
Again, for suffixes that have been found in the training data the most common tag for
each respective suffix will be encoded for words that encompass it. For both, prefixes and
suffixes, it is checked how many different tags, that were most common to words with
a certain affix, were encountered. Afterwards a one-hot-encoding is created with length
respective to the different tags, found as mentioned before, in which the position of the
tag, which was the most common tag for a certain affix, is encoded with a 1 if this affix
is found in a word. Thereby the two features for prefixes and suffixes result in one-hot-
encodings with varying length indicating which tag was most common to a known affix
in the training data. This group will be referred to as the affix related feature group.

6.3 LSTM Neural Network

The task of POS-tagging utilizes intrinsic and extrinsic features of words in a sentence
as its input values as described in chapter 2.4. Sentences can be considered as sequential
data, a sequence of words.
To ensure the preservation of the structural properties of sequential data Recurrent Neural
Networks are appropriate, while the task of retaining information of previous predictions
and avoiding vanishing gradients in the training process of neural network makes LSTM
Neural Networks the choice for the model architecture for the POS-tagging task.
In Python LSTM Neural Networks can be implemented using the Keras package. There-
fore a sequential model (keras.models.Sequential) was defined. As the sole hidden layer
in this model a LSTM layer (keras.layers.LSTM) was appended with a varying number
of units (unit count) which are specified by other modules in this thesis. Afterwards
the output layer is added which contains as many units as the tagset contains different
tags. So in case of using the Universal Dependencies tagset, it has 17 units on which the
softmax function is applied. The compilation of this model was done with the optimizer
called adam and the Cross-Entropy loss function was implemented.
The number of input units for this model was not specified to ensure the model’s setup to
be adaptable to the varying number of features that are used in the different evaluation
processes.
To enable feeding the whole set of training data for fitting the model, the sentences need
to have a fixed length. Therefore the length of the longest sentence in the data is used
as the length for all the other sentences which are padded with zero vectors to fill the
difference in their length.
All models mentioned in this thesis use this LSTM Neural Network’s setup for the task of
POS-tagging and are therefore often referred to simply as the POS-tagging models. If the
sole input of such a model is the implementation of a certain word embedding framework,
the LSTM Neural Network given the POS-tagging task is often referenced by the name
of the word embedding framework plus ’model’.
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6.4 Encoding word identity with word embeddings

6.4.1 Word2vec

To encode the word identity, all word embedding frameworks presented in chapter 4 were
utilized and in the case of Word2Vec and FastText self-trained on the training data with
the Gensim package.
For the Word2Vec framework 216 different word embeddings have been trained using all
possible combinations of values for the hyperparameters which will be discussed in the
following paragraphs and the two architectures of Word2Vec.
As the gensim.models.Word2V ec function comes with numerous hyperparameters for
regulating the training process of the Word2Vec word embeddings, all hyperparameters
not mentioned here were given their default value.
First of is the hyperparameter, calledmin count, which filters all words that have occurred
at least as often as the value it is set to. Words that have occurred fewer times in the
used corpus are disregarded for in the training procedure. Values used in the thesis are 1,
2, 3 and 5 which are relatively low values considering the default value to be 5, but given
the limited corpus size this choice was deemed reasonable.
Next of is the window size (window) which regulates the prediction task as explained in
chapter 4.2. In this thesis the values 2, 3 and 5 were employed, though these are again
rather on the low side of values given the default value to be 5. This choice was made
on the basis that the syntactic relatedness of words declines sharply with the distance
between them which is of main concern to the task of POS-tagging.
The third hyperparameter for which different instantiations were utilized is the vector
size (vector size) of the resulting word embeddings. As the default for this parameter
is 100, the values used in this thesis are 50, 100 and 200 to test for the quality of word
embeddings with dimensionalities of the default value, a lower value and a considerably
higher value.
Afterwards the hyperparameter called alpha which is the learning rate of the training
algorithm was tuned with the values of 0.015, 0.03 and 0.045. These values were chosen
as to reasonably cover the different learning rates relative to the default value of 0.025.
All the before mentioned values of hyperparameters were used in combination with the
two architectures, CBOW and SG, to create the 216 different word embeddings with the
Word2Vec framework.
The hyperparameter of the minimal learning rate (min alpha), which constitutes the
bottom line for the linearly decreasing learning rate (alpha) as training progresses, was
set to the quotient of alpha and the default value of the training epochs (5). This results
for all applied learning rates in a much higher value than its default value 0.0001. This
was done since the amount of data used for training the word embeddings (the GUM
training data) is much smaller than the size of data Mikolov et al. (2013) used in their
paper.
For all created Word2Vec word embeddings two LSTM Neural Networks, see chapter 6.3,
for the POS-tagging task are created. The first has 75 units in the hidden LSTM layer
and the second one has 125. The accuracy of these models should be the basis on which
to decide the quality of the different Word2Vec word embeddings when these are the only
features provided for the POS-tagging model.

23



A Comparative Evaluation of the Utility of Linguistic Features for Part-of-Speech-Tagging

6.4.2 FastText

As mentioned in chapter 4.3, the FastText framework was developed as an extension to
Word2Vec. Therefore it was deemed reasonable to build different FastText models with
the hyperparameters of the best performing Word2Vec word embeddings and thereby
limit the combinations of parameters for which FastText word embeddings are created.
As mentioned in the last paragraph of chapter 6.4.1, each Word2Vec model has been
evaluated with two different LSTM Neural Networks which differ only in their number of
units in the hidden layer. The accuracy of these models decides which word embeddings
have performed best on the POS-tagging task.
In this thesis the five best performing Word2Vec word embeddings will provide most of the
hyperparameters for the FastText models and are combined with two additional hyperpa-
rameters which are inherent to the FastText framework. FastText models incorporate sub-
word information by considering character ngrams. This is done by defining the range of
character ngrams that should be embedded using the hyperparameters, minimum (min n)
and maximum (max n) character sequence length. While the gensim.models.Fasttext
function incorporates the minimum and maximum as separate parameters, they were
treated as a tuple in this thesis. The ranges used for training the FastText word embed-
dings were (2, 5) and (3, 6).
This resulted in 10 different FastText word embeddings, 5 different sets of hyperparame-
ters of the best performing Word2Vec models times the 2 different characters ranges for
character ngrams. These were evaluated in the same way as described in chapter 6.4.1
and use the same unit count(s) as the Word2Vec models on which they are based.

6.4.3 GloVe

As there exists no module to implement the GloVe framework to train word embeddings
on specific data in Python, pre-trained word embeddings from Pennington et al. (2014)
were utilized. They were originally trained on a corpus of 6 billion words compiled from
Wikipedia and the English Gigaword archive.
The pre-trained word embeddings come with a vector size of 50, 100, 200 and 300. To
maintain a valid comparability between the different word embedding frameworks only
the 50, 100 and 200 dimensional ones were considered. As for the other two frameworks,
these three different GloVe word embeddings were tested on their performance for the
POS-tagging task on the training data by the accuracy of a LSTM Neural Network with
the word embeddings as their sole input with the two different numbers of units in the
hidden layer (75, 125).

6.5 Workflow of the evaluation process

All the previously described implementations are combined and controllable via a main
script.
The overall workflow of this script includes 8 major steps.
First of is the creation of Word2Vec word embeddings with the different hyperparameters
and archictectures which are described in chapter 6.4.1. These are parameters of the main
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script (see we min count, we window size, we vector size, we alpha, we implementation
in table 1) and are configurable in the console.
Secondly the created Word2Vec embedding(s) that are specified by the parameters of
the main script is evaluated by computing the accuracy the LSTM Neural Network has
achieved on the POS-tagging task with the word embedding as its sole input. This neural
network contains the number of units in the LSTM layer specified by a parameter of the
main script (see unit count in table 1) which is configurable. Each evaluated Word2Vec
model is documented with its accuracy in a CSV file.
The third step searches for the five best performing Word2Vec models evaluated as de-
scribed in step two, even if they were evaluated in another session, supposing there are
already as much as 5 evaluated in the respective CSV file. The selected Word2Vec models
provide the hyperparameters for the FastText word embeddings as described in chapter
6.4.2 and the range for the character ngrams is supplied by parameters of the main script
(see ft char range min, ft char range max in table 1) and is thereby again directly
configurable in the console.
Next comes the evaluation of the created FastText word embeddings which happens sim-
ilarly to step two for the Word2Vec models and is executed for all FastText word embed-
dings that are specified by the creation process of step 3 with the same number of units
as was specified for step 2 (unit count). These evaluations have a respective CSV file to
document the performance of the FastText models.
As the fifth step of the main script workflow, the GloVe word embedding(s) is evaluated
by selecting the pre-trained word embedding with the vector size according to a parameter
of the main script (see glove dimensions in table 1) and, as for the other frameworks,
a LSTM Neural Network with the before specified number of units in its hidden layer
(unit count) is evaluated by computing the accuracy on the POS-tagging task and docu-
mented in a CSV file.
The sixth step searches for all word embedding frameworks the best performing model,
which was at some point evaluated by step 2, 4 and 5, in the respective CSV file. This will
not necessarily be the word embeddings specified by the parameters of the main script
that were chosen for this particular execution of the script. These 3 models will provide
the word embeddings and the number of units in the hidden layer of the POS-tagging
model for the final evaluations in step 7.
Afterwards, in the seventh step the three best performing models of each word embedding
framework with their respective unit count are evaluated thoroughly in combination with
the feature groups that are either included or excluded through the parameters of the
script (see eval char related, eval case related, eval sent position, eval affixes in table
1) and are described in chapter 6.2. Additionally it can be regulated whether the word
embeddings are placed at the beginning or the end of the encoded features for a word
by the parameter eval we end. For the resulting POS-tagging models dictionaries are
created and saved as JSON files which include several evaluation metrics. For each tag
in the tagset the precision, recall and F1-score is computed individually. Overarching
the individual tags the macro precision, macro recall, macro F1-score, weighted precision,
weighted recall, weighted F1-score and the general accuracy are computed and added to
the dictionary.
Finally, in step 8, for all thoroughly evaluated models the macro precision, macro recall,
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Parameter name Description Covered
we min count Minimal word count for W2V/FT creation [1, 2, 3, 5]
we window size Window size for W2V/FT creation [2, 3, 5]
we vector size Vector sizes for W2V/FT creation [50, 100, 200]
we alpha Alpha (learning rate) for W2V/FT creation [0.015, 0.03, 0.045]
we implementation Architecture for W2V/FT creation [’cbow’, ’sg’]
ft char range min Minimum character range for FT creation [(2, 5), (3, 6)]
ft char range max Maximum character range for FT creation [(2, 5), (3, 6)]
glove dimensions Vector size for GloVe embedding selection [50, 100, 200]
unit count Unit count for the LSTM layer in POS-tagger [75, 125]
eval char related Binary: Include character related features [0, 1]
eval case related Binary: Include case related features [0, 1]
eval sent position Binary: Include sentence position r. features [0, 1]
eval affixes Binary: Include affix related features [0, 1]
eval we end Binary: Place word embedding at the end [0, 1]

Table 1: Parameters to regulate the behaviour of the main script. The columns include the
parameter name, a description of its function and values used in the complete evaluation.

macro F1-score, weighted precision, weighted recall, weighted F1-score and accuracy are
printed to the console. This is done for all models that have been evaluated at any point
in time in step 7 and therefore have a respective dictionary with their evaluation.
To reproduce all the created word embeddings, their respectively evaluated POS-tagging
models and the thorough evaluations of the best word embeddings models per framework
with all the different combinations of feature groups, it is recommended to change the
code of the main script by commenting out the specific parameters given to the main
script by the console arguments and instead use the list of choices for those parameters
(see column 3 in table 6.5) that are present in the script but are commented out.

7 Results

7.1 Word embeddings

As explained in chapter 6.5, a first evaluation on the basis of the accuracy on the POS-
tagging task was done to decide which word embeddings in combination with a certain
number of units in the hidden layer of the LSTM Neural Network model (unit count)
perform the best for each of the three covered frameworks.
Each framework was individually evaluated to decide the most favorable hyperparameters,
architecture (in case of Word2Vec and FastText) and the best performing amount of units
in the hidden layer (in case of all frameworks). The only hyperparameter to differentiate
for between the pre-trained GloVe word embeddings is their vector size.
In table 2 the five best performing Word2Vec models are listed by their hyperparameters,
architecture and the number of units used in the LSTM layer of the POS-tagging model.
One can surmise from this table that a high vector size, a high learning rate, the SG
architecture and the higher amount of units in the hidden layer make a POS-tagging
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min count window vector size alpha architecture unit count accuracy
2 3 200 0.045 SG 125 0.696
5 5 200 0.045 SG 125 0.692
2 2 200 0.045 SG 125 0.690
3 2 200 0.045 SG 125 0.688
3 5 200 0.045 SG 75 0.687

Table 2: Hyperparameters, architecture and number of units in the hidden layer of the
model of the five best performing Word2Vec models sorted by accuracy

Word2Vec model basis min n max n accuracy
w2v 2 3 200 045 sg 125 2 5 0.698
w2v 2 2 200 045 sg 125 2 5 0.692
w2v 3 2 200 045 sg 125 2 5 0.692
w2v 3 5 200 045 sg 75 2 5 0.669
w2v 2 2 200 045 sg 125 3 6 0.664

Table 3: The first column displays the Word2Vec model basis which supplies the
min count, window, vector size, alpha, architecture parameters for the FastText word
embeddings and the number of units in the hidden layer (unit count) for the resulting
model. The second and third column are the hyperparameters characteristic to FastText
word embeddings and the last column is the accuracy of the resulting model.

model perform better on the GUM dataset. It could be speculated that higher vector
sizes and numbers for the unit count parameter enable the model to represent more
complex attributes that are valuable to the POS-tagging task. The fact that the highest
of the three covered learning rates performed best could indicate that with the limited
amount of data available the pace of learning needs to be relatively high to enabling the
training process to encode valuable structural properties.
Given the information in table 2, the final evaluation of the utility of linguistic features
used a Word2Vec word embedding with the hyperparameters and architecture of the up-
permost model in the table and the respective unit count in the POS-tagging model. This
will be the foundation of the final analysis given that one uses the Word2Vec framework
for word embeddings.
The five models present in table 2 specify the hyperparameters min count, window,
vector size, alpha, the architecture and number of units (unit count) for the creation
of FastText word embeddings and the respective LSTM Neural Networks that are build
with them as their sole input.
In table 3 the five best performing FastText models are presented which incorporate
subword information by providing embeddings for character ngrams in the ranges of (2,5)
and (3,6). These models yield no considerably better results regarding the accuracy in
the POS-tagging task on the GUM dataset than the Word2Vec models.
The first column in table 3 describes the Word2Vec model basis. It follows the notational
approach that was used throughout this thesis. Word embeddings and the evaluations
for their models are saved and referenced by a naming convention that uses underscores
to separate their integral parts. First comes an abbreviation for the word embedding
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vector size unit count accuracy
200 125 0.811
100 125 0.804
200 75 0.797
100 75 0.791
50 75 0.664
50 125 0.655

Table 4: Vector size of the pre-trained GloVe embeddings and the number of units in the
hidden layer for the resulting model (unit count) sorted by the third column, the accuracy
on the POS-tagging task.

framework, afterwards, separated by underscores, parameters that were covered in this
thesis and belong to this respective framework and finally, if the name refers to the
evaluation of the respective POS-tagging model, the number of units in its hidden layer
is written at the end.
For example w2v 2 3 200 045 sg refers to the Word2Vec word embedding with min count
2, window 3, vector size 200, alpha 0.045 and the SG architecture.
In w2v 2 3 200 045 sg 125 the appended ’ 125’ at the end indicates that it refers to the
evaluation of the LSTM Neural Network with 125 units in the hidden layer and the before
mentioned word embeddings as its sole input.
For the final analysis the FastText model specified by the top row in table 3 will serve as
the base model regarding the FastText framework.
As for the GloVe framework, all six combinations of vector sizes ([50, 100, 200]) and
numbers of units for the hidden layer of the POS-tagging model ([75, 125]) are evaluated
considering their accuracy and depicted in table 4. The evaluation of linguistic features
will use a GloVe model with vector size 200 for the word embedding and a unit count of
125 for the respective POS-tagging model.

7.2 Utility of linguistic features

For each of the three different word embedding frameworks, one model, presented as the
best performing for one framework in the previous chapter, is utilized to analyse the
utility of the different linguistic features. This is done by expanding the input the model
receives by the different feature groups of chapter 6.2.
In figure 8, the gain in accuracy is depicted once a certain feature group is incorporated
compared to the model with the word embedding as its sole input. It can be seen that the
groups of character related and affix related features provide the biggest gain in accuracy
for the POS-tagging models while the group of character related features is the least
informative for the Word2Vec and FastText model.
Table 5 shows the change in model performance on the POS-tagging task once a certain
feature group is included in the LSTM Neural Network compared to the model without
the information of this feature group.
The values are obtained by averaging the distance in the metrics between models that
incorporate that feature group and ones that do not while being exactly similar in all other
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Figure 8: Bar plot of the increase in accuracy of the POS-tagging model once one of the
four feature groups is incorporated in the model in comparison to the model with the
respective word embedding as its sole input.

Framework related features accuracy weighted F1 macro F1
Word2Vec character 0.0191 0.0235 0.0407
Word2Vec case 0.0528 0.0494 0.0480
Word2Vec sentence position 0.0268 0.0340 0.0435
Word2Vec affix 0.0500 0.0614 0.0495
FastText character 0.0102 0.0143 0.0223
FastText case 0.0646 0.0614 0.0611
FastText sentence position 0.0294 0.0343 0.0435
FastText affix 0.0368 0.0468 0.0402
GloVe character 0.0079 0.0080 0.0094
GloVe case 0.0219 0.0228 0.0255
GloVe sentence position 0.0157 0.0176 0.0242
GloVe affix 0.0332 0.0360 0.0270

Table 5: Average increase in the metrics accuracy, weighted F1-score and macro F1-score
once a feature group is added compared to each model that does not incorporate that
feature group.
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aspects. For the POS-tagging models with the self-trained word embeddings, utilizing
the group of case related features results in biggest increase in all but one of the depicted
evaluation metrics.
For models with the GloVe word embedding, the incorporation of the group of affix
related features produces the biggest increase in the evaluation metrics. This may have
been due to a incapability of the GloVe framework to capture meaningful sub-word level
information while being high quality word embeddings in general (since the embedddings
were pre-trained on huge amounts of data).
Word2Vec models have a bigger increase in the metrics if the affix feature group is utilized
compared to the FastText models which could indicate that the FastText framework was
able to capture meaningful sub-word level information regarding affixes on itself.
The performance of the POS-tagging models on the level of individual tags varies strongly,
but the tendency that tags that occur seldom in general are mostly ignored can be shown
by the fact that for the tag ’X’ which has occurred only 252 times in the training data all
POS-tagging models have a F1-score of 0 for this tag.
No meaningful change in model performance was perceived by changing the word embed-
ding position from the beginning of the input space to its end.
Overall, the combinations of feature groups, the word embedding position and the three
frameworks for word embeddings resulted in 93 POS-tagging models that were evaluated
with the before mentioned metrics. The best perfoming POS-tagging model was a LSTM
Neural Network with 125 units in its hidden layer, the GloVe word embedding with vector
size 200 and all feature groups as its input. It has achieved an accuracy of 0.882 and a
weighted F1-score of 0.877.
As a baseline for putting the evaluated models in perspective, a tagger was build that
assigns the most common tag for a word in the training data to each respective word that
was encountered and the the most common tag in general (’NOUN’) to before unseen
words. This baseline tagger has achieved an accuracy of 0.828 on the POS-tagging task
on the GUM data. 26 of the 93 thoroughly investigated LSTM Neural Networks have per-
formed on this task with a higher accuracy. 24 of them incorporated the pretrained GloVe
word embeddings while two of them used the self-trained Word2Vec word embeddings.

8 Discussion and Conclusion

As mentioned at the end of the previous chapter, only about a third of the POS-tagging
models beat the baseline tagger with regards to the accuracy on the GUM data. This begs
the question what limitations of the self-build models may have caused such an outcome.
Firstly, the self-traind word embeddings need to be considered. As mentioned by Mikolov
et al. (2013) and Jain (2016) these frameworks were originally trained on huge datasets
while the training data for GUM is approximately 4 orders of magnitude smaller in the case
of the Word2Vec embeddings. Thereby the quality of the self-trained word embeddings
may be put to question. Especially since the pre-trained GloVe embeddings provide mcuh
better results if only word embeddings are utilized in the POS-tagging model.
Additionally the size of the used dataset may not be enough to let the training procedure
of the LSTM Neural Network perfectly capture the regularities in the data.
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As the computing resources for this thesis were limited, the limited data size was favorable,
but if this evaluation is to be repeated with more computing power greater amounts of
data and more tuning of hyperparameters for the word embeddings and models may result
in POS-tagging models that perform better.
The way in which affixes were included as features for the POS-tagging model may also
be put to question. Prefixes are searched for by recognizing patterns which resemble the
prefixes of the provided list of prefixes. While this may catch all of the prefixes present
in the data and the list, it also encodes integral parts of words that are no prefixes as
such. One example is the word ’read’ which has no prefix, but the particular way in which
prefixes are searched for in this thesis encodes the prefix ’re’ for this word as the pattern
of characters is found at the beginning of the word. Similarly the way in which suffixes are
retained by utilizing a stemmer is at the mercy of the stemmers accuracy in performing
its task. It is known that stemmers in the NLTK package are efficient though often error
prone since they may wrongly cut of characters at the end of a word that are not suffixes.
To ensure the the correctness of the encoding process for affixes, further analyses could
implement lexical databases such as WordNet to check whether the word being stripped
of its possible affixes is still a meaningful entity.
Another thing to consider is that LSTM Neural Networks are models to capture struc-
tural properties of data in one direction, moving forward through a sequence. Though
syntactical relationships may comprise words that come at the end of a sequence of words,
sentences. Therefore the inverse direction may hold valuable too, since words further down
the sequence can encompass information relevant to the prediction of tags for words that
come at a previous point in the sentence. If one wants to further explore the topic of
this thesis, Bidirectional Recurrent Neural Networks could be explored as to ascertain
whether they are more appropriate architectures for the POS-tagging model.
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A Electronic appendix

To access all material relevant to this thesis, please refer to the respective GitLab repos-
itory which is available under: A Comparative Evaluation of the Utility of Linguistic
Features for Part-of-Speech-Tagging
It contains the following:

• The GUM data split in train, development and test set as provided by the Universal
Dependencies website.

• Stanford’s pre-trained GloVe word embeddings with the dimensionalities of 50, 100
and 200.

• The code that is necessary to reproduce the analysis of this thesis with additional
instructional clues on how to utilize it.

• All evaluation files mentioned in thesis.

• A folder with the LaTeX project.

III
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Řeh̊uřek (2022a). Fasttext model, https://radimrehurek.
com/gensim/auto_examples/tutorials/run_fasttext.html#

sphx-glr-auto-examples-tutorials-run-fasttext-py. Accessed: 2022-07-
06.
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